SlideShare a Scribd company logo
1 of 32
Download to read offline
The Congo Basin Coast
Gabon
Tim Liponis
Emily Sturdivant
Ryan Taylor Williams
2	
  
Kilometers	
  
100	
  50	
  
Study Area
Atlantic Ocean
Congo Basin
Coast
Gabon
Landsat 8 Image
USGS and World Atlas
mangroves 2010
UNEP Wetlands 2005
Coastal zone
Protected Areas
3	
  
0°	
  
4°	
  S	
  
Research Objectives
•  Identify coastal habitats in Gabon from
Landsat 8 imagery;
•  Assess optimal classification methods
based on Landsat 8 data, including
valuable bands and datasets for the
Congo Basin Coast;
•  Document challenges and solutions to
facilitate future classifications in the
region.
4	
  
Post-
Classification
Classification
Training Site
Development
Preprocessing
•  Scene selection
–  Downloaded all scenes with less
than 40% cloud cover
–  Selected image path 185, row
62
•  Cloud-masking
Quality Assessment Band(BQA)
Level slicing
Mahalanobis Typicality
Unsupervised classification
(ISOCLUST)
	
  
Image Prep
5	
  
6	
  
Isoclust
Post-
Classification
Classification
Image Prep
Training Site Development
•  Literature Review
–  Identify important classes
–  Develop contextual
knowledge
•  Ancillary data
–  UNEP, USGS
•  Wetlands, mangroves
–  Vegetation indices
–  Elevation imagery
–  Google Earth
•  Panaramio (user imagery)
Training Site
Development
7	
  
Non-Mangrove Training Site Selection
Class	
   No.	
  of	
  Pixels	
  
Water	
   76728	
  
Forest	
   82244	
  
Forest	
  Shadow	
   1343	
  
Wetland	
   44135	
  
Wetland	
  Shadow	
   223	
  
Secondary	
  	
  
Complex	
  
2689	
  
Soils	
  Bright	
   2582	
  
Soils	
  Medium	
   578	
  
Soils	
  Dark	
   1684	
  
Savannah	
   5551	
  
Savannah	
  	
  
shadow	
  
102	
  
20 40 km
8	
  
20 40 km
Training Site Selection Forest
9	
  
20 40 km
Training Site Selection Wetland
10	
  
20 40 km
Training Site Selection Secondary Complex
11	
  
20 40 km
Training Site Selection Soils
12	
  
20 40 km
Training Site Selection Grassland/Savannah
13	
  
Spectral Signatures of Training Sites
Coastal	
  	
  Blue 	
  	
  	
  Blue	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  Green	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Red	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NIR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SWIR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SWIR	
  
4000	
  
6000	
  
8000	
  
10000	
  
12000	
  
14000	
  
16000	
  
18000	
  
1	
   2	
   3	
   4	
   5	
   6	
   7	
  
Water	
  
Forest	
  
Wetland	
  
Secondary	
  Complex	
  
Soils	
  Bright	
  
Soils	
  Medium	
  
Soils	
  Dark	
  
Savannah	
  
Landsat 8 Band
DN
14	
  
Spectral Signatures of Jones et al. (2014)
0	
  
0.05	
  
0.1	
  
0.15	
  
0.2	
  
0.25	
  
0.3	
  
0.35	
  
0.4	
  
0.45	
  
Band	
  1	
  (Blue)	
   Band	
  2	
  (Green)	
   Band	
  3	
  	
  	
  	
  	
  (Red)	
   Band	
  4	
  	
  	
  (NIR)	
   Band	
  5	
  (SWIR)	
   Band	
  7	
  (SWIR)	
  
At-surfacespectralreflectance
Landsat 7 ETM+ bands
savannah	
  
acYve	
  crops	
  
terrestrial	
  forest	
  
exposed	
  soil	
  
exposed	
  mud	
  
15	
  
0	
  
0.05	
  
0.1	
  
0.15	
  
0.2	
  
0.25	
  
0.3	
  
0.35	
  
0.4	
  
0.45	
  
Band	
  1	
  
(Blue)	
  
Band	
  2	
  
(Green)	
  
Band	
  3	
  
(Red)	
  
Band	
  4	
  
(NIR)	
  
Band	
  5	
  
(SWIR)	
  
Band	
  7	
  
(SWIR)	
  
At-­‐surface	
  spectral	
  reflectance	
  
Landsat	
  7	
  ETM+	
  bands	
  
closed-­‐canopy	
  mangrove	
  
open-­‐canopy	
  mangrove	
  
mix	
  closed	
  &	
  open	
  
mangrove	
  
terrestrial	
  forest	
  
Spectral Signatures of Mangroves
Jones et al. (2014)
5000	
  
7000	
  
9000	
  
11000	
  
13000	
  
15000	
  
4	
   5	
   6	
   7	
  
DN	
  
Landsat	
  8	
  bands	
  
Training Sites Signatures	
  Title	
  
Mangroves	
  
Forest	
  
16	
  
Red	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  NIR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SWIR	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SWIR	
  
20 40 km
Mangrove Classification Image Subsets
17	
  
–  Unsupervised
classification
–  Digitized sites
based on
USGS
–  Compared
training sites
to auxiliary
data
–  Iteratively
refined
2km
Mangroves Training sites
18	
  
Post-
Classification
Image Prep
Mangrove Classification
Training Site
Development
Classification
Training sites
Flood polygons
Segmentation
Manual digitization
Classification inputs
1 - 7
PCA components
4 - 7
4 - 6, NDWI, and
Distance to water (in CTA)
Red-NIR- SWIR
Classification technique
Maximum Likelihood
Classification Tree Analysis
19	
  
Mangroves Classification Tree Analysis
30 60 km
20	
  
Mayumba
2 4 km
Image Overlay Method
+
21	
  
Post-
Classification
Classification
•  Split into two lines of
methodology
– Non-mangrove
Multi-layered Perceptron
Classification Tree Analysis
Maximum Likelihood
– Mangrove – two windows
Maximum Likelihood
Classification Tree Analysis
Image Prep
Training Site
Development
Classification
22	
  
Image Prep
Training Site
Development
Classification
Post-Classification
•  3x3 filter
Post-
Classification
23	
  
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
Cloud
40 km20
24	
  
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
Cloud
3 km1.5
25	
  
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
Cloud
40 km20
26	
  
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
Cloud
3 km1.5
27	
  
Route Nationale 6
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
40 km20
28	
  
Water
Forest
Wetland
Secondary Complex
Beach/Bright Soil
Classification
Medium Soil
Dark Soil
Savannah
Mangrove
Cloud
3 km1.5
29	
  
Conclusions of this study
•  Mitigating cloud contamination
•  Mask clouds using unsupervised classification
•  Classifying
•  Maximum likelihood identifies prevalent terrestrial types
(Bands 1-7)
•  Image sub-setting for rare vegetation types
•  Classification tree analysis for mangrove terrestrial
types using Red, NIR, and SWIR bands
•  Literature review and ancillary
datasets very useful to determine
training sites
30	
  
Recommendations
•  Find best imagery
•  Review metadata
•  Early dry season
•  Know study area
•  Review literature
•  Survey scene and auxiliary data
•  Learn the ecology and signatures together
•  Site knowledge of scene is crucial!
31	
  
Thank You
Acknowledgements:
We would like to thank Dr.
David Wilkie, Dr. Robert Rose,
Dr. Trevor Jones, WCS Congo Program,
Dr. Florencia Sangermano, Arthur Elmes,
and our colleagues for their support on this project.

More Related Content

What's hot

WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADARWE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
grssieee
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
grssieee
 
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
grssieee
 
TU2.T10.1.pptx
TU2.T10.1.pptxTU2.T10.1.pptx
TU2.T10.1.pptx
grssieee
 
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSIONFR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
grssieee
 

What's hot (15)

Kglc 061709
Kglc 061709Kglc 061709
Kglc 061709
 
Andy Jarvis PARASID Near Real Time Monitoring Of Habitat Change Using A Neur...
Andy  Jarvis PARASID Near Real Time Monitoring Of Habitat Change Using A Neur...Andy  Jarvis PARASID Near Real Time Monitoring Of Habitat Change Using A Neur...
Andy Jarvis PARASID Near Real Time Monitoring Of Habitat Change Using A Neur...
 
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADARWE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
 
1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt1_Buck - Wavemil Steps IGARSS-11.ppt
1_Buck - Wavemil Steps IGARSS-11.ppt
 
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
TU2.L10 - ACCURATE MONITORING OF TERRESTRIAL AEROSOLS AND TOTAL SOLAR IRRADIA...
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
Current HDF Tools (1997)
Current HDF Tools (1997)Current HDF Tools (1997)
Current HDF Tools (1997)
 
PosterV2small
PosterV2smallPosterV2small
PosterV2small
 
TU2.T10.1.pptx
TU2.T10.1.pptxTU2.T10.1.pptx
TU2.T10.1.pptx
 
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel TypesOn the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
On the Use of Satellite Remote Sensing Data to Characterize and Map Fuel Types
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...
 
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSIONFR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
FR1.L09.2 - ONBOARD RADAR PROCESSING CONCEPTS FOR THE DESDYNI MISSION
 
The use of spectral libraries to reduce the influence of soil moisture on the...
The use of spectral libraries to reduce the influence of soil moisture on the...The use of spectral libraries to reduce the influence of soil moisture on the...
The use of spectral libraries to reduce the influence of soil moisture on the...
 
Towards the Improvement of National Forest Monitoring Approaches
Towards the Improvement of National Forest Monitoring ApproachesTowards the Improvement of National Forest Monitoring Approaches
Towards the Improvement of National Forest Monitoring Approaches
 
DRI UAV Expertise and Related Interests
DRI UAV Expertise and Related InterestsDRI UAV Expertise and Related Interests
DRI UAV Expertise and Related Interests
 

Similar to WCS_Congo_Final

201107IGARSS_OHKI.pptx
201107IGARSS_OHKI.pptx201107IGARSS_OHKI.pptx
201107IGARSS_OHKI.pptx
grssieee
 
Selection of an appropriate classification technique for coastal biomass mapp...
Selection of an appropriate classification technique for coastal biomass mapp...Selection of an appropriate classification technique for coastal biomass mapp...
Selection of an appropriate classification technique for coastal biomass mapp...
Urooj Saeed
 
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
grssieee
 
Remote Sensing
Remote SensingRemote Sensing
Remote Sensing
Chad Weiss
 
Remote sensing of biophysical parameters: linking field, airborne and contine...
Remote sensing of biophysical parameters: linking field, airborne and contine...Remote sensing of biophysical parameters: linking field, airborne and contine...
Remote sensing of biophysical parameters: linking field, airborne and contine...
TERN Australia
 
Imagery Interpretation for Coastal and Marine Spatial Planning
Imagery Interpretation for Coastal and Marine Spatial PlanningImagery Interpretation for Coastal and Marine Spatial Planning
Imagery Interpretation for Coastal and Marine Spatial Planning
Keith VanGraafeiland
 
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
grssieee
 
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
GIS in the Rockies
 

Similar to WCS_Congo_Final (20)

Presentation: Fee & Brigley
Presentation: Fee & BrigleyPresentation: Fee & Brigley
Presentation: Fee & Brigley
 
201107IGARSS_OHKI.pptx
201107IGARSS_OHKI.pptx201107IGARSS_OHKI.pptx
201107IGARSS_OHKI.pptx
 
Identification of carbon stock changes at a national level using a combinatio...
Identification of carbon stock changes at a national level using a combinatio...Identification of carbon stock changes at a national level using a combinatio...
Identification of carbon stock changes at a national level using a combinatio...
 
Selection of an appropriate classification technique for coastal biomass mapp...
Selection of an appropriate classification technique for coastal biomass mapp...Selection of an appropriate classification technique for coastal biomass mapp...
Selection of an appropriate classification technique for coastal biomass mapp...
 
Great Lakes Restoration Initiative Remote Sensing Applications
Great Lakes Restoration Initiative Remote Sensing ApplicationsGreat Lakes Restoration Initiative Remote Sensing Applications
Great Lakes Restoration Initiative Remote Sensing Applications
 
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
TU3.L09 - SPACEBORNE FULLY POLARIMETRIC TIME-SERIES DATASETS FOR LAND COVER A...
 
Advances in Agricultural remote sensings
Advances in Agricultural remote sensingsAdvances in Agricultural remote sensings
Advances in Agricultural remote sensings
 
Remote Sensing
Remote SensingRemote Sensing
Remote Sensing
 
Earth Observation
Earth ObservationEarth Observation
Earth Observation
 
Remote sensing of biophysical parameters: linking field, airborne and contine...
Remote sensing of biophysical parameters: linking field, airborne and contine...Remote sensing of biophysical parameters: linking field, airborne and contine...
Remote sensing of biophysical parameters: linking field, airborne and contine...
 
Imagery Interpretation for Coastal and Marine Spatial Planning
Imagery Interpretation for Coastal and Marine Spatial PlanningImagery Interpretation for Coastal and Marine Spatial Planning
Imagery Interpretation for Coastal and Marine Spatial Planning
 
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
 
Fundamentals remote sensing land used
Fundamentals remote sensing land usedFundamentals remote sensing land used
Fundamentals remote sensing land used
 
Remote Sensing - Operating Satellites
Remote Sensing -  Operating SatellitesRemote Sensing -  Operating Satellites
Remote Sensing - Operating Satellites
 
Characterizing Forest Degradation and Carbon Biomass Assessment in Tropical ...
Characterizing Forest Degradation and Carbon Biomass Assessment  in Tropical ...Characterizing Forest Degradation and Carbon Biomass Assessment  in Tropical ...
Characterizing Forest Degradation and Carbon Biomass Assessment in Tropical ...
 
GFW Partner Meeting 2017 - Parallel Discussions 3: Monitoring Beyond Forests
GFW Partner Meeting 2017 - Parallel Discussions 3: Monitoring Beyond ForestsGFW Partner Meeting 2017 - Parallel Discussions 3: Monitoring Beyond Forests
GFW Partner Meeting 2017 - Parallel Discussions 3: Monitoring Beyond Forests
 
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
2013 GISCO Track, Wildfire and Water: Utilizing LANDSAT imagery, GIS, and Sta...
 
2018 ASPRS: Big Data: Utilizing Landsat to Detect Ephemeral Water Sources in ...
2018 ASPRS: Big Data: Utilizing Landsat to Detect Ephemeral Water Sources in ...2018 ASPRS: Big Data: Utilizing Landsat to Detect Ephemeral Water Sources in ...
2018 ASPRS: Big Data: Utilizing Landsat to Detect Ephemeral Water Sources in ...
 
PhD defence - Steven Vanonckelen
PhD defence - Steven VanonckelenPhD defence - Steven Vanonckelen
PhD defence - Steven Vanonckelen
 
Image classification and land cover mapping
Image classification and land cover mappingImage classification and land cover mapping
Image classification and land cover mapping
 

WCS_Congo_Final

  • 1. The Congo Basin Coast Gabon Tim Liponis Emily Sturdivant Ryan Taylor Williams
  • 3. Kilometers   100  50   Study Area Atlantic Ocean Congo Basin Coast Gabon Landsat 8 Image USGS and World Atlas mangroves 2010 UNEP Wetlands 2005 Coastal zone Protected Areas 3   0°   4°  S  
  • 4. Research Objectives •  Identify coastal habitats in Gabon from Landsat 8 imagery; •  Assess optimal classification methods based on Landsat 8 data, including valuable bands and datasets for the Congo Basin Coast; •  Document challenges and solutions to facilitate future classifications in the region. 4  
  • 5. Post- Classification Classification Training Site Development Preprocessing •  Scene selection –  Downloaded all scenes with less than 40% cloud cover –  Selected image path 185, row 62 •  Cloud-masking Quality Assessment Band(BQA) Level slicing Mahalanobis Typicality Unsupervised classification (ISOCLUST)   Image Prep 5  
  • 7. Post- Classification Classification Image Prep Training Site Development •  Literature Review –  Identify important classes –  Develop contextual knowledge •  Ancillary data –  UNEP, USGS •  Wetlands, mangroves –  Vegetation indices –  Elevation imagery –  Google Earth •  Panaramio (user imagery) Training Site Development 7  
  • 8. Non-Mangrove Training Site Selection Class   No.  of  Pixels   Water   76728   Forest   82244   Forest  Shadow   1343   Wetland   44135   Wetland  Shadow   223   Secondary     Complex   2689   Soils  Bright   2582   Soils  Medium   578   Soils  Dark   1684   Savannah   5551   Savannah     shadow   102   20 40 km 8  
  • 9. 20 40 km Training Site Selection Forest 9  
  • 10. 20 40 km Training Site Selection Wetland 10  
  • 11. 20 40 km Training Site Selection Secondary Complex 11  
  • 12. 20 40 km Training Site Selection Soils 12  
  • 13. 20 40 km Training Site Selection Grassland/Savannah 13  
  • 14. Spectral Signatures of Training Sites Coastal    Blue      Blue                                      Green                                              Red                                                      NIR                                                      SWIR                                                  SWIR   4000   6000   8000   10000   12000   14000   16000   18000   1   2   3   4   5   6   7   Water   Forest   Wetland   Secondary  Complex   Soils  Bright   Soils  Medium   Soils  Dark   Savannah   Landsat 8 Band DN 14  
  • 15. Spectral Signatures of Jones et al. (2014) 0   0.05   0.1   0.15   0.2   0.25   0.3   0.35   0.4   0.45   Band  1  (Blue)   Band  2  (Green)   Band  3          (Red)   Band  4      (NIR)   Band  5  (SWIR)   Band  7  (SWIR)   At-surfacespectralreflectance Landsat 7 ETM+ bands savannah   acYve  crops   terrestrial  forest   exposed  soil   exposed  mud   15  
  • 16. 0   0.05   0.1   0.15   0.2   0.25   0.3   0.35   0.4   0.45   Band  1   (Blue)   Band  2   (Green)   Band  3   (Red)   Band  4   (NIR)   Band  5   (SWIR)   Band  7   (SWIR)   At-­‐surface  spectral  reflectance   Landsat  7  ETM+  bands   closed-­‐canopy  mangrove   open-­‐canopy  mangrove   mix  closed  &  open   mangrove   terrestrial  forest   Spectral Signatures of Mangroves Jones et al. (2014) 5000   7000   9000   11000   13000   15000   4   5   6   7   DN   Landsat  8  bands   Training Sites Signatures  Title   Mangroves   Forest   16   Red                              NIR                          SWIR                      SWIR  
  • 17. 20 40 km Mangrove Classification Image Subsets 17  
  • 18. –  Unsupervised classification –  Digitized sites based on USGS –  Compared training sites to auxiliary data –  Iteratively refined 2km Mangroves Training sites 18  
  • 19. Post- Classification Image Prep Mangrove Classification Training Site Development Classification Training sites Flood polygons Segmentation Manual digitization Classification inputs 1 - 7 PCA components 4 - 7 4 - 6, NDWI, and Distance to water (in CTA) Red-NIR- SWIR Classification technique Maximum Likelihood Classification Tree Analysis 19  
  • 20. Mangroves Classification Tree Analysis 30 60 km 20   Mayumba
  • 21. 2 4 km Image Overlay Method + 21  
  • 22. Post- Classification Classification •  Split into two lines of methodology – Non-mangrove Multi-layered Perceptron Classification Tree Analysis Maximum Likelihood – Mangrove – two windows Maximum Likelihood Classification Tree Analysis Image Prep Training Site Development Classification 22  
  • 24. Water Forest Wetland Secondary Complex Beach/Bright Soil Classification Medium Soil Dark Soil Savannah Mangrove Cloud 40 km20 24  
  • 25. Water Forest Wetland Secondary Complex Beach/Bright Soil Classification Medium Soil Dark Soil Savannah Mangrove Cloud 3 km1.5 25  
  • 26. Water Forest Wetland Secondary Complex Beach/Bright Soil Classification Medium Soil Dark Soil Savannah Mangrove Cloud 40 km20 26  
  • 27. Water Forest Wetland Secondary Complex Beach/Bright Soil Classification Medium Soil Dark Soil Savannah Mangrove Cloud 3 km1.5 27   Route Nationale 6
  • 29. Water Forest Wetland Secondary Complex Beach/Bright Soil Classification Medium Soil Dark Soil Savannah Mangrove Cloud 3 km1.5 29  
  • 30. Conclusions of this study •  Mitigating cloud contamination •  Mask clouds using unsupervised classification •  Classifying •  Maximum likelihood identifies prevalent terrestrial types (Bands 1-7) •  Image sub-setting for rare vegetation types •  Classification tree analysis for mangrove terrestrial types using Red, NIR, and SWIR bands •  Literature review and ancillary datasets very useful to determine training sites 30  
  • 31. Recommendations •  Find best imagery •  Review metadata •  Early dry season •  Know study area •  Review literature •  Survey scene and auxiliary data •  Learn the ecology and signatures together •  Site knowledge of scene is crucial! 31  
  • 32. Thank You Acknowledgements: We would like to thank Dr. David Wilkie, Dr. Robert Rose, Dr. Trevor Jones, WCS Congo Program, Dr. Florencia Sangermano, Arthur Elmes, and our colleagues for their support on this project.