SlideShare a Scribd company logo
1 of 1
Download to read offline
Method:	
  
Step	
  #1:	
  Place	
  soleus	
  muscle	
  in	
  cryomold.	
  
	
  
Step	
  #2:	
  Make	
  sec3ons	
  of	
  soleus	
  muscle	
  at	
  
a	
  thickness	
  of	
  5	
  microns.	
  Place	
  three	
  cross-­‐
sec3ons	
  on	
  each	
  slide	
  and	
  label	
  the	
  slide.	
  
	
  
Step	
  #3:	
  Complete	
  Lec3n	
  staining	
  protocol	
  
using	
  materials	
  listed	
  below.	
  
	
  
Step	
  #4:	
  Take	
  images	
  of	
  cross-­‐sec3ons	
  
using	
  Olympus	
  DP80	
  camera	
  and	
  cellSense	
  
computer	
  program.	
  
	
  
The	
  protocol	
  used	
  to	
  stain	
  the	
  muscle	
  
sec:ons	
  requires	
  the	
  following	
  materials:	
  
Rhodamine-­‐labeled	
  Griffonia	
  Simplificolia	
  I	
  
Lec3n,	
  1X	
  Phosphate	
  Buffered	
  Saline	
  
(PBS),	
  ProLong	
  Gold	
  An3fade	
  Mountant,	
  
an	
  Immedge	
  Pen,	
  a	
  black	
  permanent	
  
marker,	
  cover	
  slips,	
  and	
  clear	
  nailpolish.	
  	
  
Introduc:on:	
  
Purpose:	
  
The	
  purpose	
  of	
  our	
  on-­‐going	
  experiment	
  is	
  
to	
  find	
  out	
  whether	
  or	
  not	
  the	
  knock-­‐in	
  mice	
  
containing	
  the	
  A8V	
  muta3on	
  will	
  have	
  
impaired	
  skeletal	
  muscle	
  func3on	
  and	
  
correspondingly,	
  have	
  reduced	
  vascular	
  
supply	
  in	
  skeletal	
  muscle.	
  We	
  predict	
  that	
  
our	
  experiment	
  will	
  give	
  us	
  a	
  greater	
  
understanding	
  of	
  hypertrophic	
  
cardiomyopathy	
  and	
  how	
  daily	
  exercise	
  
could	
  reduce	
  its	
  symptoms	
  and	
  effects.	
  This	
  
is	
  currently	
  being	
  done	
  by	
  taking	
  images	
  of	
  
the	
  soleus	
  muscle	
  of	
  the	
  mice	
  using	
  the	
  
computer	
  program,	
  cellSens.	
  A	
  separate	
  
computer	
  program,	
  ImageJ,	
  will	
  be	
  used	
  to	
  
calculate	
  capillary	
  density.	
  
Conclusions:	
  
Acknowledgements:	
  
Picture	
  
Department	
  of	
  Biomedical	
  Sciences,	
  The	
  Florida	
  State	
  University	
  
Capillary	
  Density	
  in	
  Skeletal	
  Muscle	
  of	
  Mice	
  with	
  	
  
Gene3c	
  Cardiomyopathy	
  
Ongoing	
  Work:	
  
Currently,	
  we	
  are	
  working	
  on	
  cuXng	
  cross-­‐sec3ons	
  of	
  the	
  soleus	
  muscle	
  on	
  the	
  cryostat.	
  
Each	
  cross-­‐sec3on	
  has	
  a	
  thickness	
  of	
  5	
  microns,	
  which	
  is	
  why	
  a	
  special	
  machine	
  is	
  used	
  to	
  
cut	
  them.	
  Three	
  cross-­‐sec3ons	
  are	
  placed	
  on	
  one	
  glass	
  slide	
  in	
  order	
  to	
  be	
  stained	
  with	
  
Lec3n	
  fluorescent	
  and	
  looked	
  at	
  under	
  the	
  Olympus	
  microscope.	
  A[er	
  the	
  	
  
staining	
  protocol	
  is	
  complete,	
  the	
  slides	
  are	
  placed	
  under	
  the	
  microscope	
  and	
  	
  
looked	
  at	
  through	
  the	
  Texas	
  Red	
  excita3on	
  filter.	
  The	
  image	
  you	
  would	
  see	
  	
  
through	
  the	
  lenses	
  of	
  the	
  microscope	
  is	
  displayed	
  on	
  the	
  computer	
  	
  
screen	
  and	
  images	
  are	
  seen	
  using	
  the	
  computer	
  program,	
  cellSens	
  	
  
By	
  Olympus.	
  
	
  
	
  
	
  
	
  
	
  
Troponin	
  C	
  (TnC)	
  is	
  part	
  of	
  the	
  troponin	
  
protein	
  complex	
  that	
  regulates	
  ac3n-­‐myosin	
  
cycling	
  in	
  striated	
  muscle.	
  Gene3c	
  variants	
  
of	
  the	
  gene,	
  TNNC1,	
  which	
  codes	
  for	
  the	
  
Troponin	
  C	
  protein,	
  may	
  be	
  linked	
  to	
  
hypertrophic	
  cardiomyopathy.	
  Knock-­‐in	
  
mice	
  containing	
  the	
  human	
  A8V	
  muta3on	
  
display	
  decreased	
  ventricular	
  dimensions	
  
and	
  diastolic	
  dysfunc3on;	
  however,	
  the	
  
effects	
  of	
  the	
  muta3on	
  on	
  skeletal	
  muscle	
  
func3on	
  are	
  less	
  well	
  understood.	
  We	
  are	
  
tes3ng	
  the	
  hypothesis	
  that	
  knock-­‐in	
  of	
  the	
  
A8V	
  muta3on	
  will	
  impair	
  skeletal	
  muscle	
  
func3on	
  and	
  correspondingly,	
  reduce	
  the	
  
vascular	
  supply	
  in	
  skeletal	
  muscle.	
  Soleus	
  
muscle	
  from	
  wild	
  type	
  (no	
  muta3on)	
  and	
  
knock-­‐in	
  A8V	
  mice	
  will	
  be	
  cross-­‐sec3oned	
  
into	
  5	
  micron	
  sec3ons	
  on	
  a	
  cryostat.	
  Soleus	
  
muscle	
  cross-­‐sec3ons	
  will	
  then	
  be	
  stained	
  
with	
  Rhodamine-­‐labeled	
  Griffonia	
  
Simplificolia	
  I	
  Lec3n	
  for	
  iden3fica3on	
  of	
  
capillaries.	
  Sec3ons	
  will	
  be	
  viewed	
  on	
  an	
  
Olympus	
  microscope	
  equipped	
  with	
  a	
  
Rhodamine	
  filter	
  for	
  epifluorescence,	
  and	
  
images	
  will	
  be	
  captured	
  with	
  an	
  Olympus	
  
DP80	
  camera.	
  Capillary	
  density	
  will	
  be	
  
expressed	
  as	
  number	
  of	
  capillaries	
  per	
  
cross-­‐sec3onal	
  area	
  of	
  muscle.	
  Differences	
  
between	
  WT	
  and	
  knock-­‐in	
  mice	
  will	
  be	
  
determined	
  with	
  Student’s	
  t-­‐test.	
  
Taylor	
  D.	
  Posey,	
  Judy	
  M.	
  Delp,	
  Kazuki	
  Hoca	
  
I	
  would	
  like	
  to	
  thank	
  my	
  research	
  professor,	
  
Judy	
  Delp,	
  and	
  her	
  assistant,	
  Kazuki	
  Hoca,	
  
for	
  taking	
  the	
  3me	
  to	
  teach	
  me	
  about	
  their	
  
work	
  all	
  throughout	
  the	
  past	
  two	
  
semesters.	
  I	
  appreciate	
  all	
  of	
  the	
  help	
  and	
  
guidance	
  you	
  have	
  provided	
  me	
  throughout	
  
my	
  3me	
  in	
  the	
  laboratory.	
  	
  
LEFT:	
  
Image	
  of	
  	
  
soleus	
  
muscle.	
  This	
  
image	
  was	
  
taken	
  on	
  
January	
  26th,	
  
2015.	
  	
  
	
  
Exposure	
  	
  
Time:	
  50	
  ms	
  
ABOVE:	
  
Image	
  of	
  soleus	
  muscle.	
  This	
  image	
  	
  
was	
  taken	
  on	
  January	
  26th,	
  2015.	
  
	
  
Exposure	
  Time:	
  120	
  ms	
  
ABOVE:	
  
Image	
  of	
  a	
  standard	
  set-­‐up	
  of	
  the	
  Lec3n	
  
staining	
  protocol.	
  Slides	
  are	
  stained	
  with	
  a	
  
diluted	
  Lec3n	
  solu3on	
  using	
  micropipeces.	
  
rgwhite	
  and	
  PrometheusWiki	
  contributors.	
  "Cryostat	
  sec3oning	
  of	
  frozen	
  
3ssues."	
  PrometheusWiki.	
  ,	
  22	
  Jan.	
  2011	
  Web.	
  16	
  Mar.	
  2015.	
  	
  
ABOVE:	
  	
  
This	
  is	
  an	
  image	
  of	
  a	
  cryostat,	
  iden3cal	
  to	
  the	
  one	
  
used	
  in	
  our	
  laboratory.	
  This	
  machine	
  is	
  used	
  to	
  cut	
  
very	
  small	
  cross-­‐sec3ons	
  of	
  skeletal	
  muscle	
  by	
  
keeping	
  the	
  samples	
  at	
  -­‐20	
  °C.	
  The	
  cold	
  
environment	
  in	
  the	
  cryostat	
  allows	
  sec3ons	
  	
  
to	
  be	
  cut	
  with	
  ease.	
  	
  
BELOW:	
  	
  
This	
  is	
  a	
  close-­‐up	
  image	
  of	
  the	
  cryostat.	
  Samples	
  are	
  
placed	
  on	
  the	
  chuck	
  so	
  that	
  they	
  will	
  not	
  move.	
  
Sec3on	
  thickness	
  is	
  set	
  to	
  5	
  microns.	
  By	
  rota3ng	
  a	
  
handle	
  on	
  the	
  side	
  of	
  the	
  cryostat,	
  the	
  sample	
  
moves	
  up	
  and	
  down	
  on	
  the	
  blade	
  and	
  makes	
  small	
  
cross-­‐sec3ons	
  of	
  the	
  skeletal	
  muscle.	
  	
  
At	
  this	
  3me,	
  we	
  have	
  not	
  evaluated	
  
sufficient	
  samples	
  in	
  order	
  to	
  allow	
  
sta3s3cal	
  comparisons	
  to	
  be	
  made.	
  We	
  
now	
  know	
  that	
  our	
  method	
  is	
  sufficient	
  to	
  
allow	
  good	
  visualiza3on	
  of	
  muscle	
  
capillaries,	
  and	
  quan3fica3on	
  of	
  capillary	
  
density	
  in	
  mouse	
  skeletal	
  muscle.	
  We	
  will	
  
con3nue	
  this	
  procedure	
  un3l	
  our	
  sample	
  
size	
  is	
  sufficient	
  to	
  provide	
  the	
  sta3s3cal	
  
power	
  needed	
  to	
  detect	
  differences	
  
between	
  wild	
  type	
  and	
  A8V	
  mice.	
  

More Related Content

Similar to UROP Poster

Leica ARTOS 3D serial sectioning
Leica ARTOS 3D serial sectioningLeica ARTOS 3D serial sectioning
Leica ARTOS 3D serial sectioningGareth Jackson
 
Osmolarity Research Paper TM
Osmolarity Research Paper TMOsmolarity Research Paper TM
Osmolarity Research Paper TMThalia Matos
 
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula Tion
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula TionMapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula Tion
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula TionTaruna Ikrar
 
Chondrocytes in Microgravity
Chondrocytes in MicrogravityChondrocytes in Microgravity
Chondrocytes in MicrogravityOliviaAskowitz
 
Development and motility of Dicty actin mutants
Development and motility of Dicty actin mutantsDevelopment and motility of Dicty actin mutants
Development and motility of Dicty actin mutantsAndrey Dementyev
 
poag-160909121826.pdf
poag-160909121826.pdfpoag-160909121826.pdf
poag-160909121826.pdfAliJatt2
 
Diabetic-Retinopathy
Diabetic-RetinopathyDiabetic-Retinopathy
Diabetic-Retinopathyanish h
 
Large scale cell tracking using an approximated Sinkhorn algorithm
Large scale cell tracking using an approximated Sinkhorn algorithmLarge scale cell tracking using an approximated Sinkhorn algorithm
Large scale cell tracking using an approximated Sinkhorn algorithmParth Nandedkar
 
Stable nanoemulsions slide show (ppt)
Stable nanoemulsions slide show (ppt)Stable nanoemulsions slide show (ppt)
Stable nanoemulsions slide show (ppt)cavcon
 
OCR F221 AS BIOLOGY
OCR F221 AS BIOLOGYOCR F221 AS BIOLOGY
OCR F221 AS BIOLOGYJenBash
 
a section of OCR AS F221 notes
a section of OCR AS F221 notesa section of OCR AS F221 notes
a section of OCR AS F221 notesJenBash
 
Experimental Ablation
Experimental AblationExperimental Ablation
Experimental AblationAleem Ashraf
 
Practical 2 07
Practical 2 07Practical 2 07
Practical 2 07medik.cz
 
Pavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisPavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisantonio pio masciotra
 

Similar to UROP Poster (20)

Leica ARTOS 3D serial sectioning
Leica ARTOS 3D serial sectioningLeica ARTOS 3D serial sectioning
Leica ARTOS 3D serial sectioning
 
Osmolarity Research Paper TM
Osmolarity Research Paper TMOsmolarity Research Paper TM
Osmolarity Research Paper TM
 
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula Tion
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula TionMapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula Tion
Mapping Inhibitory Neuronal Ircuits By Laser Scanning Photostimula Tion
 
Chondrocytes in Microgravity
Chondrocytes in MicrogravityChondrocytes in Microgravity
Chondrocytes in Microgravity
 
Development and motility of Dicty actin mutants
Development and motility of Dicty actin mutantsDevelopment and motility of Dicty actin mutants
Development and motility of Dicty actin mutants
 
poag-160909121826.pdf
poag-160909121826.pdfpoag-160909121826.pdf
poag-160909121826.pdf
 
USRP Poster4
USRP Poster4USRP Poster4
USRP Poster4
 
POAG
POAGPOAG
POAG
 
Diabetic-Retinopathy
Diabetic-RetinopathyDiabetic-Retinopathy
Diabetic-Retinopathy
 
Integrative Modeling.pptx
Integrative Modeling.pptxIntegrative Modeling.pptx
Integrative Modeling.pptx
 
Large scale cell tracking using an approximated Sinkhorn algorithm
Large scale cell tracking using an approximated Sinkhorn algorithmLarge scale cell tracking using an approximated Sinkhorn algorithm
Large scale cell tracking using an approximated Sinkhorn algorithm
 
Stable nanoemulsions slide show (ppt)
Stable nanoemulsions slide show (ppt)Stable nanoemulsions slide show (ppt)
Stable nanoemulsions slide show (ppt)
 
OCR F221 AS BIOLOGY
OCR F221 AS BIOLOGYOCR F221 AS BIOLOGY
OCR F221 AS BIOLOGY
 
a section of OCR AS F221 notes
a section of OCR AS F221 notesa section of OCR AS F221 notes
a section of OCR AS F221 notes
 
Thesis-it
Thesis-itThesis-it
Thesis-it
 
Experimental Ablation
Experimental AblationExperimental Ablation
Experimental Ablation
 
Practical 2 07
Practical 2 07Practical 2 07
Practical 2 07
 
Biophysical techniques
Biophysical techniquesBiophysical techniques
Biophysical techniques
 
Stem cell Biobridge
Stem cell BiobridgeStem cell Biobridge
Stem cell Biobridge
 
Pavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testisPavia 2013 dr. masciotra sonoelastography of the testis
Pavia 2013 dr. masciotra sonoelastography of the testis
 

UROP Poster

  • 1. Method:   Step  #1:  Place  soleus  muscle  in  cryomold.     Step  #2:  Make  sec3ons  of  soleus  muscle  at   a  thickness  of  5  microns.  Place  three  cross-­‐ sec3ons  on  each  slide  and  label  the  slide.     Step  #3:  Complete  Lec3n  staining  protocol   using  materials  listed  below.     Step  #4:  Take  images  of  cross-­‐sec3ons   using  Olympus  DP80  camera  and  cellSense   computer  program.     The  protocol  used  to  stain  the  muscle   sec:ons  requires  the  following  materials:   Rhodamine-­‐labeled  Griffonia  Simplificolia  I   Lec3n,  1X  Phosphate  Buffered  Saline   (PBS),  ProLong  Gold  An3fade  Mountant,   an  Immedge  Pen,  a  black  permanent   marker,  cover  slips,  and  clear  nailpolish.     Introduc:on:   Purpose:   The  purpose  of  our  on-­‐going  experiment  is   to  find  out  whether  or  not  the  knock-­‐in  mice   containing  the  A8V  muta3on  will  have   impaired  skeletal  muscle  func3on  and   correspondingly,  have  reduced  vascular   supply  in  skeletal  muscle.  We  predict  that   our  experiment  will  give  us  a  greater   understanding  of  hypertrophic   cardiomyopathy  and  how  daily  exercise   could  reduce  its  symptoms  and  effects.  This   is  currently  being  done  by  taking  images  of   the  soleus  muscle  of  the  mice  using  the   computer  program,  cellSens.  A  separate   computer  program,  ImageJ,  will  be  used  to   calculate  capillary  density.   Conclusions:   Acknowledgements:   Picture   Department  of  Biomedical  Sciences,  The  Florida  State  University   Capillary  Density  in  Skeletal  Muscle  of  Mice  with     Gene3c  Cardiomyopathy   Ongoing  Work:   Currently,  we  are  working  on  cuXng  cross-­‐sec3ons  of  the  soleus  muscle  on  the  cryostat.   Each  cross-­‐sec3on  has  a  thickness  of  5  microns,  which  is  why  a  special  machine  is  used  to   cut  them.  Three  cross-­‐sec3ons  are  placed  on  one  glass  slide  in  order  to  be  stained  with   Lec3n  fluorescent  and  looked  at  under  the  Olympus  microscope.  A[er  the     staining  protocol  is  complete,  the  slides  are  placed  under  the  microscope  and     looked  at  through  the  Texas  Red  excita3on  filter.  The  image  you  would  see     through  the  lenses  of  the  microscope  is  displayed  on  the  computer     screen  and  images  are  seen  using  the  computer  program,  cellSens     By  Olympus.             Troponin  C  (TnC)  is  part  of  the  troponin   protein  complex  that  regulates  ac3n-­‐myosin   cycling  in  striated  muscle.  Gene3c  variants   of  the  gene,  TNNC1,  which  codes  for  the   Troponin  C  protein,  may  be  linked  to   hypertrophic  cardiomyopathy.  Knock-­‐in   mice  containing  the  human  A8V  muta3on   display  decreased  ventricular  dimensions   and  diastolic  dysfunc3on;  however,  the   effects  of  the  muta3on  on  skeletal  muscle   func3on  are  less  well  understood.  We  are   tes3ng  the  hypothesis  that  knock-­‐in  of  the   A8V  muta3on  will  impair  skeletal  muscle   func3on  and  correspondingly,  reduce  the   vascular  supply  in  skeletal  muscle.  Soleus   muscle  from  wild  type  (no  muta3on)  and   knock-­‐in  A8V  mice  will  be  cross-­‐sec3oned   into  5  micron  sec3ons  on  a  cryostat.  Soleus   muscle  cross-­‐sec3ons  will  then  be  stained   with  Rhodamine-­‐labeled  Griffonia   Simplificolia  I  Lec3n  for  iden3fica3on  of   capillaries.  Sec3ons  will  be  viewed  on  an   Olympus  microscope  equipped  with  a   Rhodamine  filter  for  epifluorescence,  and   images  will  be  captured  with  an  Olympus   DP80  camera.  Capillary  density  will  be   expressed  as  number  of  capillaries  per   cross-­‐sec3onal  area  of  muscle.  Differences   between  WT  and  knock-­‐in  mice  will  be   determined  with  Student’s  t-­‐test.   Taylor  D.  Posey,  Judy  M.  Delp,  Kazuki  Hoca   I  would  like  to  thank  my  research  professor,   Judy  Delp,  and  her  assistant,  Kazuki  Hoca,   for  taking  the  3me  to  teach  me  about  their   work  all  throughout  the  past  two   semesters.  I  appreciate  all  of  the  help  and   guidance  you  have  provided  me  throughout   my  3me  in  the  laboratory.     LEFT:   Image  of     soleus   muscle.  This   image  was   taken  on   January  26th,   2015.       Exposure     Time:  50  ms   ABOVE:   Image  of  soleus  muscle.  This  image     was  taken  on  January  26th,  2015.     Exposure  Time:  120  ms   ABOVE:   Image  of  a  standard  set-­‐up  of  the  Lec3n   staining  protocol.  Slides  are  stained  with  a   diluted  Lec3n  solu3on  using  micropipeces.   rgwhite  and  PrometheusWiki  contributors.  "Cryostat  sec3oning  of  frozen   3ssues."  PrometheusWiki.  ,  22  Jan.  2011  Web.  16  Mar.  2015.     ABOVE:     This  is  an  image  of  a  cryostat,  iden3cal  to  the  one   used  in  our  laboratory.  This  machine  is  used  to  cut   very  small  cross-­‐sec3ons  of  skeletal  muscle  by   keeping  the  samples  at  -­‐20  °C.  The  cold   environment  in  the  cryostat  allows  sec3ons     to  be  cut  with  ease.     BELOW:     This  is  a  close-­‐up  image  of  the  cryostat.  Samples  are   placed  on  the  chuck  so  that  they  will  not  move.   Sec3on  thickness  is  set  to  5  microns.  By  rota3ng  a   handle  on  the  side  of  the  cryostat,  the  sample   moves  up  and  down  on  the  blade  and  makes  small   cross-­‐sec3ons  of  the  skeletal  muscle.     At  this  3me,  we  have  not  evaluated   sufficient  samples  in  order  to  allow   sta3s3cal  comparisons  to  be  made.  We   now  know  that  our  method  is  sufficient  to   allow  good  visualiza3on  of  muscle   capillaries,  and  quan3fica3on  of  capillary   density  in  mouse  skeletal  muscle.  We  will   con3nue  this  procedure  un3l  our  sample   size  is  sufficient  to  provide  the  sta3s3cal   power  needed  to  detect  differences   between  wild  type  and  A8V  mice.