SlideShare a Scribd company logo
1 of 36
5.1
Chapter 5
Analog Transmission
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
5.2
5-1 DIGITAL-TO-ANALOG CONVERSION
Digital-to-analog conversion is the process of
changing one of the characteristics of an analog
signal based on the information in digital data.
Aspects of Digital-to-Analog Conversion
Amplitude Shift Keying
Frequency Shift Keying
Phase Shift Keying
Quadrature Amplitude Modulation
Topics discussed in this section:
5.3
Figure 5.1 Digital-to-analog conversion
5.4
Figure 5.2 Types of digital-to-analog conversion
5.5
Bit rate is the number of bits per second.
Baud rate is the number of signal
elements per second.
In the analog transmission of digital
data, the baud rate is less than
or equal to the bit rate.
Note
5.6
An analog signal carries 4 bits per signal element. If
1000 signal elements are sent per second, find the bit
rate.
Solution
In this case, r = 4, S = 1000, and N is unknown. We can
find the value of N from
Example 5.1
5.7
Example 5.2
An analog signal has a bit rate of 8000 bps and a baud
rate of 1000 baud. How many data elements are
carried by each signal element? How many signal
elements do we need?
Solution
In this example, S = 1000, N = 8000, and r and L are
unknown. We find first the value of r and then the value
of L.
5.8
Figure 5.3 Binary amplitude shift keying
5.9
Figure 5.4 Implementation of binary ASK
5.10
Example 5.3
We have an available bandwidth of 100 kHz which
spans from 200 to 300 kHz. What are the carrier
frequency and the bit rate if we modulated our data by
using ASK with d = 1?
Solution
The middle of the bandwidth is located at 250 kHz. This
means that our carrier frequency can be at fc = 250 kHz.
We can use the formula for bandwidth to find the bit rate
(with d = 1 and r = 1).
5.11
Example 5.4
In data communications, we normally use full-duplex
links with communication in both directions. We need
to divide the bandwidth into two with two carrier
frequencies, as shown in Figure 5.5. The figure shows
the positions of two carrier frequencies and the
bandwidths. The available bandwidth for each
direction is now 50 kHz, which leaves us with a data
rate of 25 kbps in each direction.
5.12
Figure 5.5 Bandwidth of full-duplex ASK used in Example 5.4
5.13
Figure 5.6 Binary frequency shift keying
5.14
Example 5.5
We have an available bandwidth of 100 kHz which
spans from 200 to 300 kHz. What should be the carrier
frequency and the bit rate if we modulated our data by
using FSK with d = 1?
Solution
This problem is similar to Example 5.3, but we are
modulating by using FSK. The midpoint of the band is at
250 kHz. We choose 2Δf to be 50 kHz; this means
5.15
Figure 5.7 Bandwidth of MFSK used in Example 5.6
5.16
Example 5.6
We need to send data 3 bits at a time at a bit rate of 3
Mbps. The carrier frequency is 10 MHz. Calculate the
number of levels (different frequencies), the baud rate,
and the bandwidth.
Solution
We can have L = 23 = 8. The baud rate is S = 3 MHz/3 =
1000 Mbaud. This means that the carrier frequencies
must be 1 MHz apart (2Δf = 1 MHz). The bandwidth is B
= 8 × 1000 = 8000. Figure 5.8 shows the allocation of
frequencies and bandwidth.
5.17
Figure 5.8 Bandwidth of MFSK used in Example 5.6
5.18
Figure 5.9 Binary phase shift keying
5.19
Figure 5.10 Implementation of BASK
5.20
Figure 5.11 QPSK and its implementation
5.21
Example 5.7
Find the bandwidth for a signal transmitting at 12
Mbps for QPSK. The value of d = 0.
Solution
For QPSK, 2 bits is carried by one signal element. This
means that r = 2. So the signal rate (baud rate) is S = N ×
(1/r) = 6 Mbaud. With a value of d = 0, we have B = S = 6
MHz.
5.22
Figure 5.12 Concept of a constellation diagram
5.23
Example 5.8
Show the constellation diagrams for an ASK (OOK),
BPSK, and QPSK signals.
Solution
Figure 5.13 shows the three constellation diagrams.
5.24
Figure 5.13 Three constellation diagrams
5.25
Quadrature amplitude modulation is a
combination of ASK and PSK.
Note
5.26
Figure 5.14 Constellation diagrams for some QAMs
5.27
5-2 ANALOG AND DIGITAL
Analog-to-analog conversion is the representation of
analog information by an analog signal. One may ask
why we need to modulate an analog signal; it is
already analog. Modulation is needed if the medium is
bandpass in nature or if only a bandpass channel is
available to us.
Amplitude Modulation
Frequency Modulation
Phase Modulation
Topics discussed in this section:
5.28
Figure 5.15 Types of analog-to-analog modulation
5.29
Figure 5.16 Amplitude modulation
5.30
The total bandwidth required for AM
can be determined
from the bandwidth of the audio
signal: BAM = 2B.
Note
5.31
Figure 5.17 AM band allocation
5.32
The total bandwidth required for FM can
be determined from the bandwidth
of the audio signal: BFM = 2(1 + β)B.
Note
5.33
Figure 5.18 Frequency modulation
5.34
Figure 5.19 FM band allocation
5.35
Figure 5.20 Phase modulation
5.36
The total bandwidth required for PM can
be determined from the bandwidth
and maximum amplitude of the
modulating signal:
BPM = 2(1 + β)B.
Note

More Related Content

Similar to Analog Transmission.ppt

Digital to analog conversion
Digital to analog conversionDigital to analog conversion
Digital to analog conversionWaseemKhan00
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfabdnazar2003
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog TransmissionsTechiNerd
 
Chapter_5.pptx
Chapter_5.pptxChapter_5.pptx
Chapter_5.pptxbraaabgg
 
Analog transmission
Analog transmissionAnalog transmission
Analog transmissionEngr Ginna
 
Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleNeha Kurale
 
Lecture 9 5th_ed data com
Lecture  9 5th_ed data comLecture  9 5th_ed data com
Lecture 9 5th_ed data comAnar Gul
 
Analog Transmition
Analog TransmitionAnalog Transmition
Analog TransmitionAli Raxa
 
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdf
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdfComm_Bandwidth_MSC_Job_related_mathsch_05.pdf
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdfEasirArafat17
 
DCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfDCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfBilal Munir Mughal
 
05 analog transmission
05 analog transmission05 analog transmission
05 analog transmissionMeenakshi Paul
 
Communication system lec 8
Communication system lec 8Communication system lec 8
Communication system lec 8ZareenRauf1
 
Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...Souvik Das
 

Similar to Analog Transmission.ppt (20)

Digital to analog conversion
Digital to analog conversionDigital to analog conversion
Digital to analog conversion
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdf
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog Transmissions
 
ch5_1_v1.ppt
ch5_1_v1.pptch5_1_v1.ppt
ch5_1_v1.ppt
 
Chapter_5.pptx
Chapter_5.pptxChapter_5.pptx
Chapter_5.pptx
 
Analog transmission
Analog transmissionAnalog transmission
Analog transmission
 
Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kurale
 
Week5 (chap 5)
Week5 (chap 5)Week5 (chap 5)
Week5 (chap 5)
 
Lecture 9 5th_ed data com
Lecture  9 5th_ed data comLecture  9 5th_ed data com
Lecture 9 5th_ed data com
 
Analog Transmition
Analog TransmitionAnalog Transmition
Analog Transmition
 
Digital Modulation
Digital ModulationDigital Modulation
Digital Modulation
 
Analog signals
Analog signalsAnalog signals
Analog signals
 
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdf
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdfComm_Bandwidth_MSC_Job_related_mathsch_05.pdf
Comm_Bandwidth_MSC_Job_related_mathsch_05.pdf
 
Ch 05
Ch 05Ch 05
Ch 05
 
dtoa.ppt
dtoa.pptdtoa.ppt
dtoa.ppt
 
DCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfDCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdf
 
05 analog transmission
05 analog transmission05 analog transmission
05 analog transmission
 
Communication system lec 8
Communication system lec 8Communication system lec 8
Communication system lec 8
 
Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...
 
Digital Modulation.pptx
Digital Modulation.pptxDigital Modulation.pptx
Digital Modulation.pptx
 

More from TamiratDejene1

Congestion Control and QOS.ppt
Congestion Control and QOS.pptCongestion Control and QOS.ppt
Congestion Control and QOS.pptTamiratDejene1
 
Chapter 5 (Part I) - Pointers.pdf
Chapter 5 (Part I) - Pointers.pdfChapter 5 (Part I) - Pointers.pdf
Chapter 5 (Part I) - Pointers.pdfTamiratDejene1
 
Chapter 7 (Part I) - User Defined Datatypes.pdf
Chapter 7 (Part I) - User Defined Datatypes.pdfChapter 7 (Part I) - User Defined Datatypes.pdf
Chapter 7 (Part I) - User Defined Datatypes.pdfTamiratDejene1
 
00-intro-to-classes.pdf
00-intro-to-classes.pdf00-intro-to-classes.pdf
00-intro-to-classes.pdfTamiratDejene1
 
Chapter 8_Shift Registers (EEEg4302)1.pdf
Chapter 8_Shift Registers (EEEg4302)1.pdfChapter 8_Shift Registers (EEEg4302)1.pdf
Chapter 8_Shift Registers (EEEg4302)1.pdfTamiratDejene1
 
Chapter 7_Counters (EEEg4302).pdf
Chapter 7_Counters (EEEg4302).pdfChapter 7_Counters (EEEg4302).pdf
Chapter 7_Counters (EEEg4302).pdfTamiratDejene1
 
Chapter 5_combinational logic (EEEg4302).pdf
Chapter 5_combinational logic (EEEg4302).pdfChapter 5_combinational logic (EEEg4302).pdf
Chapter 5_combinational logic (EEEg4302).pdfTamiratDejene1
 
Chapter 3_Logic Gates (EEEg4302).pdf
Chapter 3_Logic Gates (EEEg4302).pdfChapter 3_Logic Gates (EEEg4302).pdf
Chapter 3_Logic Gates (EEEg4302).pdfTamiratDejene1
 
Chapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfChapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfTamiratDejene1
 
Chapter 1_Introduction to digital design (EEEg4302).pdf
Chapter 1_Introduction to digital design (EEEg4302).pdfChapter 1_Introduction to digital design (EEEg4302).pdf
Chapter 1_Introduction to digital design (EEEg4302).pdfTamiratDejene1
 
Chapter – 1 Intro to DBS.pdf
Chapter – 1 Intro to DBS.pdfChapter – 1 Intro to DBS.pdf
Chapter – 1 Intro to DBS.pdfTamiratDejene1
 

More from TamiratDejene1 (20)

Ch-3 lecture.pdf
Ch-3 lecture.pdfCh-3 lecture.pdf
Ch-3 lecture.pdf
 
Chapter 2.pptx
Chapter 2.pptxChapter 2.pptx
Chapter 2.pptx
 
Wireless LANs.ppt
Wireless LANs.pptWireless LANs.ppt
Wireless LANs.ppt
 
Data Link Control.ppt
Data Link Control.pptData Link Control.ppt
Data Link Control.ppt
 
Congestion Control and QOS.ppt
Congestion Control and QOS.pptCongestion Control and QOS.ppt
Congestion Control and QOS.ppt
 
Chapter 5 (Part I) - Pointers.pdf
Chapter 5 (Part I) - Pointers.pdfChapter 5 (Part I) - Pointers.pdf
Chapter 5 (Part I) - Pointers.pdf
 
Chapter 7 (Part I) - User Defined Datatypes.pdf
Chapter 7 (Part I) - User Defined Datatypes.pdfChapter 7 (Part I) - User Defined Datatypes.pdf
Chapter 7 (Part I) - User Defined Datatypes.pdf
 
00-intro-to-classes.pdf
00-intro-to-classes.pdf00-intro-to-classes.pdf
00-intro-to-classes.pdf
 
DLD Chapter-5.pdf
DLD Chapter-5.pdfDLD Chapter-5.pdf
DLD Chapter-5.pdf
 
DLD Chapter-4.pdf
DLD Chapter-4.pdfDLD Chapter-4.pdf
DLD Chapter-4.pdf
 
DLD Chapter-2.pdf
DLD Chapter-2.pdfDLD Chapter-2.pdf
DLD Chapter-2.pdf
 
DLD Chapter-1.pdf
DLD Chapter-1.pdfDLD Chapter-1.pdf
DLD Chapter-1.pdf
 
DLD_Chapter_1.pdf
DLD_Chapter_1.pdfDLD_Chapter_1.pdf
DLD_Chapter_1.pdf
 
Chapter 8_Shift Registers (EEEg4302)1.pdf
Chapter 8_Shift Registers (EEEg4302)1.pdfChapter 8_Shift Registers (EEEg4302)1.pdf
Chapter 8_Shift Registers (EEEg4302)1.pdf
 
Chapter 7_Counters (EEEg4302).pdf
Chapter 7_Counters (EEEg4302).pdfChapter 7_Counters (EEEg4302).pdf
Chapter 7_Counters (EEEg4302).pdf
 
Chapter 5_combinational logic (EEEg4302).pdf
Chapter 5_combinational logic (EEEg4302).pdfChapter 5_combinational logic (EEEg4302).pdf
Chapter 5_combinational logic (EEEg4302).pdf
 
Chapter 3_Logic Gates (EEEg4302).pdf
Chapter 3_Logic Gates (EEEg4302).pdfChapter 3_Logic Gates (EEEg4302).pdf
Chapter 3_Logic Gates (EEEg4302).pdf
 
Chapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdfChapter 2_Number system (EEEg4302).pdf
Chapter 2_Number system (EEEg4302).pdf
 
Chapter 1_Introduction to digital design (EEEg4302).pdf
Chapter 1_Introduction to digital design (EEEg4302).pdfChapter 1_Introduction to digital design (EEEg4302).pdf
Chapter 1_Introduction to digital design (EEEg4302).pdf
 
Chapter – 1 Intro to DBS.pdf
Chapter – 1 Intro to DBS.pdfChapter – 1 Intro to DBS.pdf
Chapter – 1 Intro to DBS.pdf
 

Recently uploaded

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 

Recently uploaded (20)

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 

Analog Transmission.ppt

  • 1. 5.1 Chapter 5 Analog Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 5.2 5-1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. Aspects of Digital-to-Analog Conversion Amplitude Shift Keying Frequency Shift Keying Phase Shift Keying Quadrature Amplitude Modulation Topics discussed in this section:
  • 4. 5.4 Figure 5.2 Types of digital-to-analog conversion
  • 5. 5.5 Bit rate is the number of bits per second. Baud rate is the number of signal elements per second. In the analog transmission of digital data, the baud rate is less than or equal to the bit rate. Note
  • 6. 5.6 An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate. Solution In this case, r = 4, S = 1000, and N is unknown. We can find the value of N from Example 5.1
  • 7. 5.7 Example 5.2 An analog signal has a bit rate of 8000 bps and a baud rate of 1000 baud. How many data elements are carried by each signal element? How many signal elements do we need? Solution In this example, S = 1000, N = 8000, and r and L are unknown. We find first the value of r and then the value of L.
  • 8. 5.8 Figure 5.3 Binary amplitude shift keying
  • 10. 5.10 Example 5.3 We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What are the carrier frequency and the bit rate if we modulated our data by using ASK with d = 1? Solution The middle of the bandwidth is located at 250 kHz. This means that our carrier frequency can be at fc = 250 kHz. We can use the formula for bandwidth to find the bit rate (with d = 1 and r = 1).
  • 11. 5.11 Example 5.4 In data communications, we normally use full-duplex links with communication in both directions. We need to divide the bandwidth into two with two carrier frequencies, as shown in Figure 5.5. The figure shows the positions of two carrier frequencies and the bandwidths. The available bandwidth for each direction is now 50 kHz, which leaves us with a data rate of 25 kbps in each direction.
  • 12. 5.12 Figure 5.5 Bandwidth of full-duplex ASK used in Example 5.4
  • 13. 5.13 Figure 5.6 Binary frequency shift keying
  • 14. 5.14 Example 5.5 We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What should be the carrier frequency and the bit rate if we modulated our data by using FSK with d = 1? Solution This problem is similar to Example 5.3, but we are modulating by using FSK. The midpoint of the band is at 250 kHz. We choose 2Δf to be 50 kHz; this means
  • 15. 5.15 Figure 5.7 Bandwidth of MFSK used in Example 5.6
  • 16. 5.16 Example 5.6 We need to send data 3 bits at a time at a bit rate of 3 Mbps. The carrier frequency is 10 MHz. Calculate the number of levels (different frequencies), the baud rate, and the bandwidth. Solution We can have L = 23 = 8. The baud rate is S = 3 MHz/3 = 1000 Mbaud. This means that the carrier frequencies must be 1 MHz apart (2Δf = 1 MHz). The bandwidth is B = 8 × 1000 = 8000. Figure 5.8 shows the allocation of frequencies and bandwidth.
  • 17. 5.17 Figure 5.8 Bandwidth of MFSK used in Example 5.6
  • 18. 5.18 Figure 5.9 Binary phase shift keying
  • 20. 5.20 Figure 5.11 QPSK and its implementation
  • 21. 5.21 Example 5.7 Find the bandwidth for a signal transmitting at 12 Mbps for QPSK. The value of d = 0. Solution For QPSK, 2 bits is carried by one signal element. This means that r = 2. So the signal rate (baud rate) is S = N × (1/r) = 6 Mbaud. With a value of d = 0, we have B = S = 6 MHz.
  • 22. 5.22 Figure 5.12 Concept of a constellation diagram
  • 23. 5.23 Example 5.8 Show the constellation diagrams for an ASK (OOK), BPSK, and QPSK signals. Solution Figure 5.13 shows the three constellation diagrams.
  • 24. 5.24 Figure 5.13 Three constellation diagrams
  • 25. 5.25 Quadrature amplitude modulation is a combination of ASK and PSK. Note
  • 26. 5.26 Figure 5.14 Constellation diagrams for some QAMs
  • 27. 5.27 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. One may ask why we need to modulate an analog signal; it is already analog. Modulation is needed if the medium is bandpass in nature or if only a bandpass channel is available to us. Amplitude Modulation Frequency Modulation Phase Modulation Topics discussed in this section:
  • 28. 5.28 Figure 5.15 Types of analog-to-analog modulation
  • 30. 5.30 The total bandwidth required for AM can be determined from the bandwidth of the audio signal: BAM = 2B. Note
  • 31. 5.31 Figure 5.17 AM band allocation
  • 32. 5.32 The total bandwidth required for FM can be determined from the bandwidth of the audio signal: BFM = 2(1 + β)B. Note
  • 34. 5.34 Figure 5.19 FM band allocation
  • 36. 5.36 The total bandwidth required for PM can be determined from the bandwidth and maximum amplitude of the modulating signal: BPM = 2(1 + β)B. Note