SlideShare a Scribd company logo
1 of 32
5.1
Chapter 5
Analog Transmission
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
5.2
5-1 DIGITAL-TO-ANALOG CONVERSION
Digital-to-analog conversion is the process of
changing one of the characteristics of an analog
signal based on the information in digital data.
 Aspects of Digital-to-Analog Conversion
 Amplitude Shift Keying
 Frequency Shift Keying
 Phase Shift Keying
Topics discussed in this section:
5.3
Digital to Analog Conversion
 Digital data needs to be carried on an
analog signal.
 A carrier signal (frequency fc) performs
the function of transporting the digital
data in an analog waveform.
 The analog carrier signal is manipulated
to uniquely identify the digital data
being carried.
5.4
Figure 5.1 Digital-to-analog conversion
5.5
Figure 5.2 Types of digital-to-analog conversion
5.6
Bit rate, N, is the number of bits per
second (bps). Baud rate is the number of
signal
elements per second (bauds).
In the analog transmission of digital
data, the signal or baud rate is less than
or equal to the bit rate.
S=Nx1/r bauds
Where r is the number of data bits per
signal element.
Note
5.7
An analog signal carries 4 bits per signal element. If
1000 signal elements are sent per second, find the bit
rate.
Solution
In this case, r = 4, S = 1000, and N is unknown. We can
find the value of N from
Example 5.1
5.8
Example 5.2
An analog signal has a bit rate of 8000 bps and a baud
rate of 1000 baud. How many data elements are
carried by each signal element? How many different
signal elements do we need?
Solution
In this example, S = 1000, N = 8000, and r and L are
unknown. We find first the value of r and then the value
of L.
The value of r in analog transmission is r = log2 L, where L is the
number of different signal elements.
5.9
Amplitude Shift Keying (ASK)
 ASK is implemented by changing the
amplitude of a carrier signal to reflect
amplitude levels in the digital signal.
 For example: a digital “1” could not affect the
signal, whereas a digital “0” would, by
making it zero.
5.10
Bandwidth of ASK
 The bandwidth B of ASK is proportional
to the signal rate S.
B = (1+d)S
 “d” is due to modulation and filtering,
lies between 0 and 1.
5.11
Figure 5.3 Binary amplitude shift keying
5.12
Figure 5.4 Implementation of binary ASK
5.13
Example 5.3
We have an available bandwidth of 100 kHz which
spans from 200 to 300 kHz. What are the carrier
frequency and the bit rate if we modulated our data by
using ASK with d = 1?
Solution
The middle of the bandwidth is located at 250 kHz. This
means that our carrier frequency can be at fc = 250 kHz.
We can use the formula for bandwidth to find the bit rate
(with d = 1 and r = 1).
5.14
Example 5.4
In data communications, we normally use full-duplex
links with communication in both directions. We need
to divide the bandwidth into two with two carrier
frequencies, as shown in Figure 5.5. The figure shows
the positions of two carrier frequencies and the
bandwidths. The available bandwidth for each
direction is now 50 kHz, which leaves us with a data
rate of 25 kbps in each direction.
5.15
Figure 5.5 Bandwidth of full-duplex ASK used in Example 5.4
5.16
Frequency Shift Keying
 The digital data stream changes the
frequency of the carrier signal, fc.
 For example, a “1” could be
represented by f1=fc +f, and a “0”
could be represented by f2=fc-f.
5.17
Figure 5.6 Binary frequency shift keying
5.18
Bandwidth of FSK
 If the difference between the two
frequencies (f1 and f2) is 2f, then the
required BW B will be:
B = (1+d)xS +2f
5.19
Example 5.5
We have an available bandwidth of 100 kHz which
spans from 200 to 300 kHz. What should be the carrier
frequency and the bit rate if we modulated our data by
using FSK with d = 1?
Solution
This problem is similar to Example 5.3, but we are
modulating by using FSK. The midpoint of the band is at
250 kHz. We choose 2Δf to be 50 kHz; this means
5.20
Phase Shift Keyeing
 We vary the phase shift of the carrier
signal to represent digital data.
 The bandwidth requirement, B is:
B = (1+d)xS
 PSK is much more robust than ASK as it
is not that vulnerable to noise, which
changes amplitude of the signal.
5.21
Figure 5.9 Binary phase shift keying
5.22
5-2 Analog To Analog
Analog-to-analog conversion is the representation of
analog information by an analog signal. One may ask
why we need to modulate an analog signal; it is
already analog. Modulation is needed if the medium is
bandpass in nature or if only a bandpass channel is
available to us.
 Amplitude Modulation
 Frequency Modulation
 Phase Modulation
Topics discussed in this section:
5.23
Figure 5.15 Types of analog-to-analog modulation
5.24
Amplitude Modulation
 A carrier signal is modulated only in
amplitude value
 The modulating signal is the envelope of the
carrier
 The required bandwidth is 2B, where B is the
bandwidth of the modulating signal
5.25
Figure 5.16 Amplitude modulation
5.26
The total bandwidth required for AM
can be determined
from the bandwidth of the audio
signal: BAM = 2B.
Note
5.27
Frequency Modulation
 The modulating signal changes the freq.
fc of the carrier signal
 The bandwidth for FM is high
 It is approx. 10x the signal frequency
 Both peak amplitude and phase remain
constant for the carrier signal
5.28
The total bandwidth required for FM can
be determined from the bandwidth
of the audio signal: BFM = 2(1 + β)B.
Where  is usually 4.
Note
5.29
Figure 5.18 Frequency modulation
5.30
Phase Modulation (PM)
 The modulating signal only changes the
phase of the carrier signal.
 Phase modulation is practically similar
to Frequency Modulation, but in Phase
modulation frequency of the carrier
signal is not increased. Frequency of
carrier is signal is changed (made dense
and sparse) to reflect voltage change in
the amplitude of modulating signal.
 The bandwidth is higher than for AM.
5.31
Figure 5.20 Phase modulation
5.32
The total bandwidth required for PM can
be determined from the bandwidth
and maximum amplitude of the
modulating signal:
BPM = 2(1 + β)B.
Where  = 2 most often.
Note

More Related Content

Similar to Chapter_5.pptx

Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleNeha Kurale
 
Chapter 5 analog transmission computer_network
Chapter 5 analog transmission  computer_networkChapter 5 analog transmission  computer_network
Chapter 5 analog transmission computer_networkDhairya Joshi
 
05 Analog Transmission
05 Analog Transmission05 Analog Transmission
05 Analog TransmissionAhmar Hashmi
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog TransmissionsTechiNerd
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfabdnazar2003
 
Analog Transmission.ppt
Analog Transmission.pptAnalog Transmission.ppt
Analog Transmission.pptTamiratDejene1
 
Lecture 9 5th_ed data com
Lecture  9 5th_ed data comLecture  9 5th_ed data com
Lecture 9 5th_ed data comAnar Gul
 
Ch5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kuraleCh5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kuraleNeha Kurale
 
DCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfDCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfBilal Munir Mughal
 
Analog Transmition
Analog TransmitionAnalog Transmition
Analog TransmitionAli Raxa
 

Similar to Chapter_5.pptx (20)

Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kurale
 
Ch05
Ch05Ch05
Ch05
 
Chapter 5 analog transmission computer_network
Chapter 5 analog transmission  computer_networkChapter 5 analog transmission  computer_network
Chapter 5 analog transmission computer_network
 
05 Analog Transmission
05 Analog Transmission05 Analog Transmission
05 Analog Transmission
 
Analog signals
Analog signalsAnalog signals
Analog signals
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog Transmissions
 
dtoa.ppt
dtoa.pptdtoa.ppt
dtoa.ppt
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdf
 
Analog Transmission.ppt
Analog Transmission.pptAnalog Transmission.ppt
Analog Transmission.ppt
 
ch05.ppt
ch05.pptch05.ppt
ch05.ppt
 
cn ch05.ppt
cn ch05.pptcn ch05.ppt
cn ch05.ppt
 
Lecture 9 5th_ed data com
Lecture  9 5th_ed data comLecture  9 5th_ed data com
Lecture 9 5th_ed data com
 
Digital Modulation
Digital ModulationDigital Modulation
Digital Modulation
 
Ch5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kuraleCh5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kurale
 
Week5 (chap 5)
Week5 (chap 5)Week5 (chap 5)
Week5 (chap 5)
 
DCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdfDCN 5th ed. slides ch05 Analog Transmission.pdf
DCN 5th ed. slides ch05 Analog Transmission.pdf
 
ANALOG TRANSMISSION
ANALOG TRANSMISSIONANALOG TRANSMISSION
ANALOG TRANSMISSION
 
Ch5 2 v1
Ch5 2 v1Ch5 2 v1
Ch5 2 v1
 
Ch5 2 v1
Ch5 2 v1Ch5 2 v1
Ch5 2 v1
 
Analog Transmition
Analog TransmitionAnalog Transmition
Analog Transmition
 

Recently uploaded

Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 

Recently uploaded (20)

Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 

Chapter_5.pptx

  • 1. 5.1 Chapter 5 Analog Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 5.2 5-1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data.  Aspects of Digital-to-Analog Conversion  Amplitude Shift Keying  Frequency Shift Keying  Phase Shift Keying Topics discussed in this section:
  • 3. 5.3 Digital to Analog Conversion  Digital data needs to be carried on an analog signal.  A carrier signal (frequency fc) performs the function of transporting the digital data in an analog waveform.  The analog carrier signal is manipulated to uniquely identify the digital data being carried.
  • 5. 5.5 Figure 5.2 Types of digital-to-analog conversion
  • 6. 5.6 Bit rate, N, is the number of bits per second (bps). Baud rate is the number of signal elements per second (bauds). In the analog transmission of digital data, the signal or baud rate is less than or equal to the bit rate. S=Nx1/r bauds Where r is the number of data bits per signal element. Note
  • 7. 5.7 An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate. Solution In this case, r = 4, S = 1000, and N is unknown. We can find the value of N from Example 5.1
  • 8. 5.8 Example 5.2 An analog signal has a bit rate of 8000 bps and a baud rate of 1000 baud. How many data elements are carried by each signal element? How many different signal elements do we need? Solution In this example, S = 1000, N = 8000, and r and L are unknown. We find first the value of r and then the value of L. The value of r in analog transmission is r = log2 L, where L is the number of different signal elements.
  • 9. 5.9 Amplitude Shift Keying (ASK)  ASK is implemented by changing the amplitude of a carrier signal to reflect amplitude levels in the digital signal.  For example: a digital “1” could not affect the signal, whereas a digital “0” would, by making it zero.
  • 10. 5.10 Bandwidth of ASK  The bandwidth B of ASK is proportional to the signal rate S. B = (1+d)S  “d” is due to modulation and filtering, lies between 0 and 1.
  • 11. 5.11 Figure 5.3 Binary amplitude shift keying
  • 13. 5.13 Example 5.3 We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What are the carrier frequency and the bit rate if we modulated our data by using ASK with d = 1? Solution The middle of the bandwidth is located at 250 kHz. This means that our carrier frequency can be at fc = 250 kHz. We can use the formula for bandwidth to find the bit rate (with d = 1 and r = 1).
  • 14. 5.14 Example 5.4 In data communications, we normally use full-duplex links with communication in both directions. We need to divide the bandwidth into two with two carrier frequencies, as shown in Figure 5.5. The figure shows the positions of two carrier frequencies and the bandwidths. The available bandwidth for each direction is now 50 kHz, which leaves us with a data rate of 25 kbps in each direction.
  • 15. 5.15 Figure 5.5 Bandwidth of full-duplex ASK used in Example 5.4
  • 16. 5.16 Frequency Shift Keying  The digital data stream changes the frequency of the carrier signal, fc.  For example, a “1” could be represented by f1=fc +f, and a “0” could be represented by f2=fc-f.
  • 17. 5.17 Figure 5.6 Binary frequency shift keying
  • 18. 5.18 Bandwidth of FSK  If the difference between the two frequencies (f1 and f2) is 2f, then the required BW B will be: B = (1+d)xS +2f
  • 19. 5.19 Example 5.5 We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What should be the carrier frequency and the bit rate if we modulated our data by using FSK with d = 1? Solution This problem is similar to Example 5.3, but we are modulating by using FSK. The midpoint of the band is at 250 kHz. We choose 2Δf to be 50 kHz; this means
  • 20. 5.20 Phase Shift Keyeing  We vary the phase shift of the carrier signal to represent digital data.  The bandwidth requirement, B is: B = (1+d)xS  PSK is much more robust than ASK as it is not that vulnerable to noise, which changes amplitude of the signal.
  • 21. 5.21 Figure 5.9 Binary phase shift keying
  • 22. 5.22 5-2 Analog To Analog Analog-to-analog conversion is the representation of analog information by an analog signal. One may ask why we need to modulate an analog signal; it is already analog. Modulation is needed if the medium is bandpass in nature or if only a bandpass channel is available to us.  Amplitude Modulation  Frequency Modulation  Phase Modulation Topics discussed in this section:
  • 23. 5.23 Figure 5.15 Types of analog-to-analog modulation
  • 24. 5.24 Amplitude Modulation  A carrier signal is modulated only in amplitude value  The modulating signal is the envelope of the carrier  The required bandwidth is 2B, where B is the bandwidth of the modulating signal
  • 26. 5.26 The total bandwidth required for AM can be determined from the bandwidth of the audio signal: BAM = 2B. Note
  • 27. 5.27 Frequency Modulation  The modulating signal changes the freq. fc of the carrier signal  The bandwidth for FM is high  It is approx. 10x the signal frequency  Both peak amplitude and phase remain constant for the carrier signal
  • 28. 5.28 The total bandwidth required for FM can be determined from the bandwidth of the audio signal: BFM = 2(1 + β)B. Where  is usually 4. Note
  • 30. 5.30 Phase Modulation (PM)  The modulating signal only changes the phase of the carrier signal.  Phase modulation is practically similar to Frequency Modulation, but in Phase modulation frequency of the carrier signal is not increased. Frequency of carrier is signal is changed (made dense and sparse) to reflect voltage change in the amplitude of modulating signal.  The bandwidth is higher than for AM.
  • 32. 5.32 The total bandwidth required for PM can be determined from the bandwidth and maximum amplitude of the modulating signal: BPM = 2(1 + β)B. Where  = 2 most often. Note