SlideShare a Scribd company logo
1 of 34
Automatic Transmission Gear
Material Selection
By
Dominick Carluccio
William Holden
Tahjee Seymour
Date: 4/28/15
Instructor: Professor Samardzic
ME438-102 : METALLURGY
SPRING 2015
Table of Contents
Abstract
Introduction
Theory
Proposed Materials
Material Analysis
Material Selection
Conclusion
Nomenclature
References
Appendix
1
2
5
10
17
28
29
31
32
33
Abstract
Helical gearsare usedinautomatictransmissionstoallow the gearteethtoengage more
graduallythenspurgearteethcausingthemto run smootherandquieter.Whenselectingthe material
for helical gears,itisveryimportanttotake the correct mechanical propertiesintoaccount.Some of the
mostimportantmechanical propertiestoconsiderare,yieldstrength,hardness,cost,modulusof
elasticityanddensity.The mainobjective of thisreportistoinvestigate possible candidatesandperform
a material selectionanalysistochoose anappropriate material andprocedure forahelical gearinside a
BMW M4 sportscar poweredbya six cylinder3.0literturbochargedengine coupledtoaGetrag
7DCI700 Powershift7-SpeedDual-ClutchTransmission.
Introduction
The firstattemptat an AutomaticTransmission(usinghydraulicfluid) wasintroducedbythe
companyGeneral Motors in1937. The transmissionwassemi-automaticandpromotedasthe
AutomaticSafetyTransmission(AST).Itwasimplementedinhopesof becomingthe new standardfor
vehicles,boastinghighincreasesinfueleconomy,greaterefficiency,andthe new featureof clutch-less
driving.Unfortunatelythe ASTwasquicklydubbedafailure due tounreliability,highinstallationcosts,
and lowconsumerdemand.Intwoyearstime the ASTceasedmanufacture.Howeverin1940 GM
designedanewversionof the transmissioncalledthe Hydra-Matic,the firstfullyautomatictransmission
evercreated.Witha noticeable dropininstallationcostamongotherfeatures, the Hydra-Maticbecame
the firstmass producedandcommerciallyusedautotransmission.In1948 the firstautotransmission
usinga torque converterwasintroducedbyBuick(calledthe Dynaflow).Soonafter,companiessuchas
Packard andChevroletquickly followedsuite.Atthistime vehicle transmissionswereonlytwospeed.
Notuntil the early1950’s didthe firstthree speedautotransmissionappear(equippedwithtorque
converter) createdbyBorgWarner, an Americanautomotiveindustryandpartssupplier.Three speed
auto transmissionswithtorque convertersremainedthe topsellerfor30 yearsuntil the automatic
transmissionwithoverdrivewasintroducedtothe market,providingfourormore gears,improvedfuel
economy,andincreasedefficiency.Since the inceptionof the overdrive the mostnotable improvements
on the automatictransmissionhave beenthe increasednumberof forwardgearsandthe cross overto
electronicallycontrolledtransmissionfrommechanicallycontrolledoperations.
The major componentsof the automatictransmissionare the compoundplanetarygearset,
torque converter,bands,clutches,hydraulicsystem, valves,modulators,andthe ElectronicControl
Module.Notall componentswill be discussed.The primaryfunctionof the automatictransmissionisto
transmitengine powertothe drive wheels(rear,front,orall wheels).Poweristransmittedinthe
transmissionthroughthe use of gearsconnectedatvariousratios.Withouta transmissioncarswouldbe
limitedtoone gearratiowhich ultimatelyresultsinthe sacrifice of eitheraccelerationortopspeed.
While amanual transmissiondoesindeedcompletethe same task,the automatictransmissiondiffersby
usingthe same setof gearsto produce multiple ratiosratherthanlockingand unlockingdifferentgears
to the outputshaftvia a manual clutch.The numerousgearsusedtoaccomplishpowertransmissionis
calleda compoundplanetarygearset.Fora four speedautomatictransmissionthe compoundplanetary
gear setincludestwosungears,twoplanetcarriers,andan outerringthat is responsible forthe output
of the transmission.Generallyinatransmissionthe 3rd
speed(gear) issetat a 1:1 (readone to one) ratio
withthe outerring,gear ratiossmallerthan1:1 put the transmissionintooverdrive.Overdriveisany
ratiothat leadsto the ringgear (output) rotatingfasterthanthe driveninputgear(example beinga.8:1
gear ratio).
All automatictransmissionscome withthe shiftingpositionsPark,Reverse,Neutral,andDrive,
withsome vehiclescomingwithadditional optionssuchasmanuallylockingat3rd
, 2nd
, and 1st
gear.The
shiftintoParkpositionsaParkingPawl (asteel pin) intothe rotationpathof the outputgear, effectively
impedingthe shaftfromrotating.The ParkingPawl’sprimarypurposeistokeepthe enginespowerfrom
reachingthe drive wheels.Movingthe shiftertothe Reverse positiontriggersasolenoidthatcausesan
additional geartoengage,thusreversingthe rotationof the outputshaft.Neutral disengagesall gears
disconnectingthe transmissionfromthe drivenwheels.Drive allowsthe automatictransmissionto
engage all gearratiosas needed.Ratiosare controlledbyanonboard computercalledthe Engine
Control Unit(ECU). The ECU monitorsa large networkof sensorswithinthe carto ensure conditionsare
innormal operatingranges.If available,shiftingintothe 3rd
,2nd
, or 1st
positionlocksthe transmissionin
saidgear,disallowingupshiftswhile enablinganylowergearratiostoengage if needed.
Under considerationisthe 7speedtransmissionforthe BMW M4 for the purpose of creatinga
componentof itsgearbox. The M4 usesan automatictransmissiontype calledaDual Clutch
TransmissionorDCT. The layoutof a DCT isessentiallythe combinationof twomanual gearboxesinone,
howeverall gearshiftsare conductedautomaticallywithelectronicandhydraulicscontrols.Insteadof
usinga compoundplanetarygearset,the DCT usesall external gearsandtwoshaftsconnectedtoeach
of the clutches.Made possible withahollow outershaftanda solidinnerone,the DCTcan holda
relativelylarge numberof gearsbyplacingsaidgearson differentshafts.Toclarify,ona6 speed
transmissionthe firstof twoclutchesisresponsibleforthe oddgears(1, 3, 5 in additiontoreverse) laid
on the innershaftandthe secondclutchcontrolsthe evengears(2,4, and6) laidonthe outershaft.
Withtwo clutchesoperatingalternatinggearsthe shifttime dropstoa mere eightmillisecondswhile the
bestautomatictransmissionshifttimeshoveraround100 milliseconds.A decrease inshifttime
significantlyincreasesfuel economydue tothe shortenedtime the engine powerisdisconnectedfrom
the gears.Also,a short shifttime decreasesthe severityof aphenomenonknownas“ShiftShock”which
isthe jerkingmotionone issusceptible towhenthe transmissionchangesgears.ShiftShockismore
prevalentinmanual transmissionvehiclesespeciallywithanunskilleddriver. The componentbeing
analyzedin the DCT isthe connectionbetweenthe drivingpinionandone of itscorrespondinggears. For
the creationof the gears,five chosenmaterialswillbe thoroughlyanalyzedinordertofindthe best
combinationof density,strength,cost,andhardness.
Theory
The transmissionunderconsiderationisthe PowerShift7DCI700 7-SpeedMDouble Clutchwith
Drive Logicand Launch Control manufacturedbyGetrag and foundinBMW’s M4, but alsoavailable in
the M3 andM5. BMW has playedalarge part inthe developmentof recentautomatictransmissionsand
was the firstcompanyto release afullyautomatedmanual gearboxinaproductioncar in1996. Since
thenthey have workedwithGetragto developevenmore efficientautomatictransmissionsthatare
now able to evenoutperformmanual
transmissions.Likemostautomotive
technology,the doubleclutchautomatic
transmissionswereaderivativeof 80’s and
90’s Formula1 sequential gearboxesand
BMW playedtheirpartinpast yearsof
Formula1 so theyhad accessto this
technologywhenitwasmostvaluable.
Dual clutch transmissionsare the forefrontof future automatictransmissionsandare growingin
popularityamongstautomotive manufacturerseveryyear.A dual clutchtransmissioniscomparable to
twomanual transmissions;itutilizestwowetclutcheswithgears1,3, 5, and 7 onthe firstclutchand
gears2, 4, and 6 on the secondclutch.Like mosttransmissionsthough,the dual clutchtransmissions
utilize helical gearstominimize vibrations.Theiruse of wetclutcheseliminatesthe needof atorque
converter;itusesa seriesof wetpadsto reduce frictionina pressurizedcylindertotransferpower,the
clutchis disengagedbyreducingthe pressure of the cylinder.Dual clutchtransmissionswill typically
outperformmanual transmissionsbecause itutilizesthe twoclutchestominimizethe time inbetween
Figure 1: The 2015 BMW M4
gear shiftsandmaximizingthe qualityof the meshincreasingthe comfortlevel aswell.While one clutch
isengagedonone shaft the nextgearcan be setup forthe secondclutch,the secondclutchthen
engageswhile the firstdisengages
reducesthe time betweenshiftsto
milliseconds.The mannerof upshifting
and downshiftingare almostidentical
and are controlledbythe electronic
control module (ECM);hard
accelerationwill tell the transmissionto
shiftup,and hard brakingwill tell the
transmissiontoshiftdown. Moderndaydual clutchtransmissionshave beenputtothe testand the
worldfastestdragracers withmanual transmissionscan’tshiftasfastas these dual clutchtransmissions.
BMW has developedDrivelogicwhichistheirsoftware thatcontrolsthe transmissionsand
ultimatelytellsithowtoact. The smoothgear changesthat thistransmissionispossibleof achievingare
largelyaresultof Drivelogictellingthe transmissionsexactlywhentomeshgearsandengage clutches.
NotonlydoesDrivelogiccoupledtothistransmissionresultinamore comfortable ride thana typical
automatictransmission,butitalsoresultsinabetterperformingride.Drivelogicisprogramedtoonly
shiftradicallywhenthe caris goingstraighttopreventa largerchange in force to the real wheelswhich
wouldresultina lossof traction,whichisverydangerousaroundturns.Drive logicisalsoresponsiblefor
synchronizingdownshiftsandengagingthe clutchinasmootherfashionduringdownshiftssothatsame
large change in force doesn’tresultintolarge of a change inforce to the rearwheelswhichcouldcause
a suddenlossof traction.Drivelogicalsorecognizesthe driver’sunique drivingmannerandpreferences
and triestoaccommodate and adapt to those preferences.
Figure 2: BMW’s Dual ClutchTransmission
The dual clutchtransmissionhas3 differentdrivingmodesDrive mode,Sportmode,and
SequentialManual mode.Drive mode isfullyautomaticanddesignedtoprovide the mostcomfortable
and efficientcharacteristicsof the transmissionsandissimilartothe drive selectionintypical automatic
transmissions.Sportmode isalsofullyautomaticbutitsprogrammingisslightlydifferent.Since
turbochargedenginesperformbestwhenthe turboisalreadyspooledup,Sportmode keepsthe engine
at the mostoptimal highrevvingrange where the turbocanstayspooledupwhichwill providethe user
instanttorque similartoa naturallyaspiratedengine.Sequential Manual mode providesthe userthe
abilitytomanuallyselectgearlike inaclutch lesssequential gearbox.
Thisgearbox alsoprovidesthe unique abilityof launchcontrol.Since aspooledupturbo
performsbetterthanone thatstill hasto be spooledup,thistransmissionallowsthe usertorevthe
motor at a complete stopandspool upthe turbowhile the brake isheld.Thenthe clutchisengaged
while the engineisrevvingallowingalaunchfroma stop withthe maximumamountof torque possible.
BMW has developedaunique coolingsystemforthistransmissionthatincorporatesthe cooling
cycle of the engine intothe coolingsystemof the transmission.Thisnotonlykeepsthe oil ata perfectly
maintainedtemperature range,butitalsoheatsup
the oil to withinthisrange fasterprovidingquicker
warm upswhichreduce the amountof time that
the transmissionhastoovercome largerthan
normal frictional forcesfromthe oil inthe
transmission.Thiswill provide betterefficiency
duringstartupsand betterperformance under
heavyuse whenthe transmissionwill producea
large amountof heatfromfriction.
Figure 3: BMW’s 3.0 litersix cylinder
turbochargedengine
BMW has coupleda3.0 literturbocharged6 cylinder(S55B30) coupledtotheir dual clutch
transmission.The S55B30 utilizestwotwinmono-scroll turbochargersandproduces425 horsepowerat
5500 RPMand 406 lb·ftof torque.The transmissiontransmitspowertothe rearwheel andismounted
to the car withthe engine longitudinally.Inthe sevenspeedgearbox,the twogearswiththe highest
stresswouldbe the meshingof the piniontofirstgearwhichhasa gearratio of 4.81:1. The othergears
wouldexperience lowerstressvaluessostressanalysisof the firstgearmeshwiththe givenmaterials
will suffice forthe dataneededformaterial selection.
Whenchoosinga material foruse ina
transmissionthere are certaincharacteristicsand
attributesof the material thatare necessary.Gears
are verysensitivetogeometrictolerance
differencessoanychange inthe geometryof the
gear mayresultinchatter,vibrations,oreven
ultimate failureof the gearas seeninfigure ().The
causesof gearfailure come inthe formof bendingfatigue of the teeth,wearorcontact fatigue onthe
surfaces,andscuffingwhichtransfersmaterialfromone gearontothe other.A highyieldstressisthe
firstand mostimportantcharacteristic.Whencoupledtomostmoderndayautomotive engines,gear
teethinthe transmissionwillexperience large forcesandresultingstressthatthe material mustbe
strongenoughto withstand.A highyieldstresswill preventthe gearfromfailingdue tobendingfatigue.
A highhardnessisthe secondmostimportantcharacteristic,itisnecessarytopreventanychanges in
the geometryof the gear sothat the transmissionremainsassmoothaspossible.Anyscuffing,wear,or
contact fatigue onthe surfaceswill resultinchatterorvibrationsandwill ultimatelyweakenthe gear
and create stressconcentrations.
Figure 4: Failure of helical gearsdue to high
contact stresses
The third characteristictotake intoconsiderationiscost.Like mostengineeringapplications
choosinga material withalowcost isusuallya limitingfactor.Costof the raw material shouldbe
investigatedaswell asthe machiningandtreatmentcosts.Sometimes shippingcostswill be anissue as
well because some materialsare exclusive tocertainlocationsof the world.The fourthpropertyto
considerformaterial selectionisalowYoung’sModulus,orhighvibrationabsorptionability.If avery
hard and stiff material waschosenforthe whole gearthe meshwouldresultinhighvibrations.To
preventthistypicallyamore ductile material ischosenforthe innerportionof the gearand thenitis
case hardenedtoincrease the hardnessjustonthe outersurfaces.Bychoosinga material withalow
Young’sModulus,butalsowiththe abilitytowithstandwearandcontact surface abrasion,thiswill
resultina very“smooth”transmission.The fifthmostimportantpropertyisalow density.The weightof
the car, and evenmore importantly,the weightof the drive trainplayalarge role on fuel economyand
performance.Bydecreasingthe weightof the drive train,the momentof inertiaisalsodecreased;this
allowsthe motorto transmitpowertothe wheelsquickerorwithlessforce.
Proposed Materials
The followingfive materialswerechosenbythe designteamtobe analyzedforselectionasthe
material fora single internal gearforthe automaticgeartransmission:
 SAE 950X
 SAE 4340H
 SAE 4720H
 XM023
 CFRP (CarbonFiberReinforcedPolymer)
SAE 950X
SAE 950X iscategorizedasa High-StrengthLow-AlloySteel (HSLA)thismeansthatthe carbon
contentof the steel isusuallylessthan0.3 percent.SAE950X containstrace amountsof alloyingmetals
to enhance desiredmechanical propertiesandsometimesresistancetoatmosphericcorrosion.The
HSLA steelstypicallyachieve thesepropertieswithoutadditional heattreatment.
Table 1: Chemical Composition of SAE 950X Steel
SAE 950X Chemical Composition
C Fe Mn P Si S
<= 0.23% 97.43 – 100% <=1.35% <=0.04% <=0.90% <=0.05%
Figure 5: Stress Strain Diagram for Plain Carbon Steel and SAE 950X
Table 1 shows thatthe chemical compositionof SAE950X can range between100% pure iron to
97.43% iron withmixedalloys.Figure1showsa comparisonbetweenplaincarbonsteel SAE1010 with
SAE 950X. It isclearlyseenthatthe area underthe SAE950X curve,infigure 5, ismuch largerthan the
area underthe SAE 1010 curve whichmeansthatthe increasedtoughnessisclearlyseen.SAE950X is
typicallyusedwhere agoodstrength-to-weightratioisrequiredasHSLA steel crosssectionsare usually
20 to 30% lighterthancarbonsteel withthe same strength.
SAE 950X Mechanical Properties
Ultimate Tensile
Strength
YieldTensile Strength Brinell Hardness Modulus of Elasticity
63,500 psi 49,200 psi 120-124 29,900 ksi
Table 2: SAE 950X Mechanical Properties
Table 2 shows a summaryof the mechanical propertiesforSAE950X. SAE 950X isavailable from
suppliersinChinaandJapanas well aslimitedquantityinthe UnitedStates.
SAE 4340H
SAE 4340H isa seriesof steel withmainalloysof nickel,molybdenumandchromium.Eachthree
of these alloyshasaneffectof increase inhardenability.SAE4340H has a favorable responsetoheat
treatmentwhenquenchedinoil followedbytempering.WhentemperedSAE4340H displaysagood
arrangementof strengthandductilityandhasa wide varietyof usesinbearings,pistonpins,ordinance,
gears,dies,andpressure vessels.4340H can be machinedbyall conventional methodsandcanbe bent
or formedbyspinningorpressinginthe annealedstate.Heattreatmentforstrengtheningisdone at
approximately1525 degreesFthenfollowedbyanoil quench.
SAE 4340H Chemical Composition
C Cr Fe Mn Mo Ni P Si S
0.37-
0.44%
0.65-
0.95%
95.04 –
96.53%
0.55-
0.90%
0.2-
0.3%
1.55-
2.0%
<0.04% 0.15-
0.30%
<=0.04%
Table 3: Chemical Composition of SAE 4340H Steel
Figure 6: Microstructure of SAE 4340H
SAE 4340H Mechanical Properties
Ultimate Tensile
Strength
YieldTensile Strength Brinell Hardness Modulus of Elasticity
186,000 psi 125,000 psi 363 29,000 ksi
Table 4: SAE 4340H Mechanical Properties
Figure 6 showsthe microstructure of SAE 4340H at 25 micrometers.The blackparticlesare
Bainite andthe white orlightgreyparticlesare Martensite. SAE4340H isavailable from78 distributors
inNorth Americaandproducedby41 large mills.
SAE 4720H
SAE 4720H isclassifiedinthe same seriesasSAE4340H andis composedof the alloys
molybdenum,chromiumandnickel anddesignedforgoodstrength,wearresistance andtoughness
properties.SAE4720H isconsideredamoderatelylow carbonsteel withapproximately0.17-0.20%
carbon. The H variant of SAE 4720 isa special compositionthathasa goodcase hardeningability.SAE
4720H is rarelyannealedasitimpedesmachinabilitybutisusuallynormalizedpriortocase hardening.
The austenitizingtemperature forSAE4720 before quenchingis1500-1550 degreesFfollowedby
quenchinginwateroroil. SAE 4720H is manufacturedmainlyinChinaandIndia
SAE 4720H Chemical Composition
C Cr Fe Mn Mo Ni P Si S
0.17-
0.23%
0.30-
0.60%
96.55 –
97.93%
0.45-
0.75%
0.15-
0.25%
0.85-
1.25%
<0.035% 0.15-
0.30%
<=0.04%
Table 5: Chemical Composition of SAE 4720H
SAE 4720H Mechanical Properties
Ultimate Tensile
Strength
YieldTensile Strength Brinell Hardness Modulus of Elasticity
95,000-128,000 psi 50,100-80,000 psi 187-229 29,700 ksi
Table 6: SAE 4720H Mechanical Properties
Figure 7: SAE 4720H Alloy Steel Round Bar
Table 5 showsthe chemical compositionforSAE4720H steel.The alloyingcompositionof 4720H
isfairlysimilarto4340H but withminordifferencesinquantityforeachalloyingelement.Table 6shows
the summaryof mechanical properties
Figure 7 showsan example of SAE4720H roundbar stock fromthe manufacturer.Forgear
manufacturing,the gearmaterial wouldtypicallybe cutfromanendof the round bar stockthenfurther
machinedona lathe and toothcuttingmachine.
XM023
XM023 isa steel alloydesignedandmanufacturedbyXTRAC.XTRACisa worldwideleaderinthe
designandmanufacture of transmissionsystemscoveringmotorsports,defenseandmarine.XM023
steel alloywasdevelopedspecificallyforthe use inFormulaOne race transmissionsandwasusedto
secure the championshipsfor2005 and 2006. XM023 wasdevelopedtoimprove uponthe bending
fatigue andbearingproperties.The temperingtemperature forXM023 isapproximately390-480
degreesF.XM023 is usedas a varietyof gearbox internalsincludinggears,mainshaft,layshaft,hubsand
selectorforks.UnfortunatelyXM023 steel alloyisaproprietarymaterial andnomechanical properties
are available tothe public.
Carbon Fiber Reinforced Polymer (CFRP)
CarbonfiberreinforcedplasticorCFRPis a composite of strongcarbon fibersboundwithina
matrix polymer.The specificcompositechosenforthisprojectisQuantumCompositesLytex 4149.
Oftenthe polymerisathermosetresinsuchasepoxybutvinyl,polyesterandnylonare sometimesused.
CFRPexhibitsaverylarge strengthtoweightratioandis commonlyusedwhere strength,rigidityand
weightare the mostimportantfactors.The composite ismade upof two majorparts, a matrix and
reinforcement.Forthisprojectthe reinforcementisthe carbonfiberthatprovidesthe hightensile
strengthandthe matrix isepoxyresin.The Mechanical propertiesdependonthe characteristicsof the
twocomponentsof the composite aswell asthe orientationof the fiberswithinthe matrix.Typicallythe
reinforcementgivesthe composite itsstrengthandrigidity.AlthoughCFRPhasahighstrengthto weight
ratio,a major designlimitationisthe lackof a definablefatigueendurancelimit.Thisisextremely
importantforgear material selectionasthe gearwill constantlybe experiencingcyclicloadingandwill
resultinfatigue.Itisextremelydifficulttodocumentthe mechanical propertiesforcarbonfiber
compositesasthe manufacturingprocess,matrix materials,fiberorientationandatmospheric
environmentall have aneffectonthe mechanical properties.
Lytex 4149 iscomposedof 55% carbonfibersand45% resinepoxymatrix.
Lytex 4149 CFRP Mechanical Properties
Ultimate Tensile
Strength
YieldTensile Strength Brinell Hardness Modulus of Elasticity
Not defined 41,900 psi 32-54 65,000 ksi
Table 7: Lytex 4149 CFRP Mechanical Properties
Table 7 showsthe mechanical propertiesforthe CFRP.Notice thatthe ultimate tensile strength
isnot definedasitdependson the orientationof the carbonfibers.The hardnessisdeterminedfrom
the propertiesof the matrix.Inthiscase the hardnessisfairlylow comparedtothe otherresearched
materialsbecause itisa functionof the resinepoxy.
Figures 8 and 9 : Microstructure of Carbon Fiber Reinforced Polymer
Figures8 and 9 above showsthe microstructure of CFRPin side view (LEFT) andendview
(RIGHT).The individual carbonfiberscaneasilybe seen.
Summary
Mechanical Properties
Material Ultimate
Tensile
Strength
Yield Tensile
Strength
Brinell
Hardness
Modulus of
Elasticity
Comments
SAE 950X 63,500 psi 49,200 psi 120-124 29,900 ksi
SAE 4340H 186,000 psi 125,000 psi 363 29,000 ksi ExcellentHardenability
SAE 4720H 95,000-
128,000 psi
50,100-
80,000 psi
187-229 29,700 ksi Good Hardenability
XM023 N/A N/A N/A N/A Proprietary Material
CFRP Not defined 42,000 psi 32-54 65,000 ksi Unknown Yield,
Undefined Fatigue
Endurance
Table 8: Comparisonof characteristics
betweenmaterials
Material Analysis
Heat Treatment
Heat treatmentforgearsisusuallyfavorable asitallowsthe abilitytoimprove strengthand
hardnesstothe surfacesof the gear teethtopreventwearandfailure overtime. The twobasicstepsin
hardeningsteel istoheatthe steel to some temperature above itstransformationpointsothatit
becomesentirelyausteniticinstructure,thentoquenchthe steel atsome rate fasterthan the critical
rate to produce a martensiticstructure. Althoughnotall of the materialsconsideredinthisreportare
able to be heattreated,twoof the materialsbenefitfromanadditionalheattreatment. Carburizationis
alsonot takenintoaccount as none of the proposedmaterialsundergotreatment.
SAE 4340H can be heattreatedbyheatingthe material toapproximately1525 degreesFthen
quenchinginoil.ItisimportanttoquenchSAE 4340H inonlyoil as it wouldleadtocorrosionif itwere to
be quenchedinwater.
SAE 4720H can alsobenefitfromheattreatment.SAE4720H can be case hardenedor
carburizedbutisrarelyannealedasitimpedesmachinability. The austenizingtemperature forSAE
4720H is 1500-1550 degreesFthenquenchedusingwateroroil.
Cost
Cost isa major considerationwhenselectingamaterial forlarge scale manufacturing. To
estimate the costto have the helical gearmade itisimportantto take the raw material costinto
account. The cost perunitvolume forthe raw material was calculated,the resultscanbe seenbelowin
Table 9.
Table 9: Cost Per Cubic Inch By Material
Cost Per Cubic Inch
SAE 950X * SAE 4340H SAE 4720H * XM023 CFRP *
$0.17* $0.65 $0.18* N/A $1.71*
It isimportantto note that the cost percubic inchmarkedwith(*) are rough estimationsbased
on varyinggeometryanddonot include shippingfromoriginof manufacture.The costestimationfor
SAE 4340H isbasedoff of a quote for 5” diameterroundbarby 12 feetlongfroma distributorlocated
inNorth America.BothSAE950X and4720H couldnotbe sourcedwithinNorthAmericaandwouldneed
to be imported fromChina.BMW GmbH doesowntheirowncarbon fibermanufacturingplantssothe
cost analysisonCFRPwas basedonan average assumingthatBMW doesn'tpaymore than the average
price for theircarbonfiberproduction.The CFRPcostestimationonlyincludesthe raw materialsand
doesnotinclude anycost pertainingtocasts,moldsor instrumentsrequiredtocure the matrix.
Stress and Pitting Analysis
For the dual clutch transmissionunder
investigation,the meshof the piniontofirstgear
has the higheststressloadsandalsothe location
of the minimumfactorof safety;soa bending
stressand pittinganalysisonthe meshof the
pinionandfirstgearwill be sufficienttodetermine
the maximumstressesinthe transmission.This
meshresultsina gearratio of 4.81:1. The equation
usedto determine bendingstressandpittingis
fromthe AGMA designequationsfromAGMA Standard2001-C95. The bendingstressequationissimilar
to the one usedfor spurgears butwitha slightmodificationforhelical gears.The mode of stress
applicationforpittingfailure iscontactstressandthe contact stressequationisalsosimilartothe one
for spurgears butwith a slightmodificationaswell.
A factor of safetyof 2 wasusedfor the designof the gearsand pinions.All the gearsandpinions
had the same geometrical designexceptfortheirface width.The shaftswere designedusingthe max
shearstressformulaandthe geometrical preferenceswere researchedandborrowedfromprevious
designersbutalsomodifiedtoaccommodate the five proposedmaterials.The motorthatwas appliedto
the transmissionproduced425 hpat 5500 RPMand 406 lb-ftof torque.Thistranslatesto232 lbsof
force on the gear teethwithapitch line velocityof 2522. The overloadfactorforthe transmissionwas
assumedtobe 1.3 (lightshock) consideringthe qualityof modernbearingsandvibrationabsorption
material usedindesigntoday.
Figure 10: Pinionand1st
Gear Mesh for Analysis
Afterthe analysiswasinvestigated,the contactstressendedupbeingthe more sensitive
portionof the stressesonthe gears. The teethparticularlytookthe highestamountof stressasseenin
figures11 and 12. The piniontookthe highestloadandthe original geometricdesignhadto be modified
for use withthe twomaterialsSAE950x and CFRPbecause the factorof safetywasnot highenough.
Theirwidthhadto be increasedfrom2inchesto 3 inches.
Figure 12: X Y plane view of stresslocationsFigure 11: Isometricview of stresslocations
SAE 950X Steel
Figure 13: BendingAnalysisof SAE950X
Figure 14: PittingAnalysisof SAE950X
SAE 4340H Steel
Figure 15: BendingAnalysisof 4340H
Figure 16: PittingAnalysisof 4340H
SAE 4720H Steel
Figure 17: BendingAnalysisof 4720H
Figure 18: PittingAnalysisof 4720H
CFRP (Carbon Fiber Reinforced Plastic)
Figure 19: BendingAnalysisof CFRP
Merit Analysis
Series Alternatives Yield Stress (ksi) Hardness (BNH) Youngs Modulus (ksi x 1000) Density (lb/in^3) Cost (lb/in^3)
1 950X 49.2 120 29.9 0.284 ≈ 0.17
2 4340H 125 363 29 0.284 0.65
3 4720H 50.1 187 29.7 0.284 ≈ 0.175
4 CFRP 42 32 65 0.066 ≈ 1.71
Attribute Ranking Points Nomalized Ij
Density 1 0.066666667
Youngs Modulus 2 0.13
Cost 3 0.20
Hardness 4 0.27
Yield Stress 5 0.333333333
Material Yield Stress (ksi) Hardness (BNH) Youngs Modulus (ksi x 1000) Density (lb/in^3) Cost (lb/in^3)
1 0.086 0.266 0.025 0 1
2 1 1 0 0 0.688
3 0.097 0.468 0.019 0 0.996
4 0 0 1 1 0
Material Mi Merit Percents
950X 0.3029 30.29
4340H 0.7376 73.76
4720H 0.3589 35.89
CFRP 0.2000 20.00
Table 10: MeritAnalysis
Material Selection
Withthe exceptionof the steel alloyXM023,the materialshave beenrankedbasedonafive
attribute meritanalysis.The attributesconsistof Density,Cost,Elasticity,YieldStress,andHardness.The
attribute of Machinability,thoughimportant,isan aspectof a material’sproductionwhichcanbe
factoredintothe Cost attribute.OtherattributessuchasWearResistance andDuctilityare also
importanthowever,similarlytoMachinability,WearResistance isabyproductof Hardnesswhile
Ductilityisgenerallydeterminedwithamaterial’sModulusof Elasticity.Importantattributesthatcould
not make the listsuchas Fatigue life are simplytoodifficulttoascertain.Eachof the five attributes
chosenforthe meritanalysiswere givenarankrangingfrom the mostimportant(5) to the least
important(1).The rankingfrom mostto leastimportantisas follows,YieldStress,Hardness,Cost,
Elasticity,andDensity.Thisinformationcanbe foundin table 10. The analysisyieldedthe highestvalue
for the steel alloy4340H at 73.76 percent,trailedby4720H at 35.89 percent.The pure steel alloy950X
came thirdwitha meritpercentat30.76 withCFRPfollowingata low 20 percent.Steel alloy4340H is
the clear material selectionwithitsprevailingBrinell Hardnessreaching363, a magnitude difference of
176 overitsnearestcontender,4720H. Withthe highestyieldstrengthat125 ksi,the 4340H material is
inferioronlyinthe ElasticityandCostwhichdue totheirrankingsdidn’taffect4340H’s outcome of being
the bestmaterial forthe gear set.It shouldbe notedhoweverthatthisoutcome mayhave changedif
the attributesof the steel alloyXM023 had beenmade available.
Conclusion
Thisreportdemonstratesanunderstandingof mechanical propertiesrequiredtoadequately
selectanappropriate material forthe BMW M4 sportscar poweredbya Getrag 7DCI700 Powershift7-
SpeedDual-ClutchTransmission.UsingTheoryfrommachine design,the designlimitsforhardnessand
yieldstrengthwere defined bythe equationsfortoothbendingandpittinginhelical gears.The results
fromthe meritanalysisconcluded thatSAE4340H has the correct combinationof propertiesrequiredto
preventthe gearfromfailing.Overallthisdesignreportwassuccessful inselectinganappropriate
material fora helical gearandallowedthe studentsanopportunitytouse the course material inareal-
worldscenario.
Nomenclature
Torque [ft·lbs] T
Horsepower hp
RotationsperMinute RPM, N
Rotational Velocity[rad/s] ω
InnerDiameter [in] di
OuterDiameter[in] do
InnerRadius[in] ri
OuterRadius[in] ro
Pressure Angle [degrees] φ
Helix Angle [degrees] ψ
Diametral Pitch [teeth/in] Pd
Face Width[in] F
TransmittedLoad[lbs] Wt
PitchLine Velocity[ft/min] vl
Factor of Safety Sf
OverloadFactor Ko
QualityClassof Gear Set Qv
Size Factor Ks
RimThicknessFactor KB
StressCycle Factor YN
Temperature factor KT
ReliabilityFactor KR
AllowableStress[psi] Sal
GeometryFactor J, I
PitchDiameter[in] d
DynamicFactor Kv
Load DistributionFactor Km
Stress[psi] σ
PoisonsRatio υ, μ
Young’sModulus[psi] E
ElasticCoefficient[(lb/in2
)0.5
] Cp
HardnessRatioFactor CH
Axial ContactRatio mF
Carbon C
Iron Fe
Manganese Mn
Phosphorus P
Silicone Si
Sulfur S
Chromium Cr
Molybdenum Mb
Nickel Ni
CarbonFiberReinforcedPlastic CFRP
References
"AISI4340H Steel,Normalized870°C(1600°F)." AISI4340H Steel, Normalized 870°C (1600°F). Web. 21
Apr. 2015. <http://www.matweb.com/search/DataSheet.aspx?MatGUID=7a5b65114de34c0894
027b37fc899323&ckck=1>.
"AISI4720H Steel."AISI4720H Steel. Web.21 Apr.2015.
<http://www.matweb.com/search/DataSheet.aspx?MatGUID=aa006d3c064c49e7b340f6f077e7
d095>.
Brain,Marshall."How Gear RatiosWork."HowStuffWorks.HowStuffWorks.com, 20Nov.2000. Web. 23
Apr.2015. <http://science.howstuffworks.com/transport/engines-equipment/gear-ratio4.htm>.
"Composite Materials/CFRP." CompositeMaterials:CFRP,Brinell HardnessNumber,PhenolicResins.
Web.21 Apr. 2015. <http://en.allexperts.com/q/Composite-Materials-2430/2011/4/CFRP-
1.htm>.
Corum,J.,R. Battiste,K.Liu,and M. Ruggles. "BasicPropertiesof Reference CrossplyCarbon-Fiber
Composite."LockheedMartin - Oak Ridge National Laboratory.Web.21 Apr.2015.
<http://web.ornl.gov/~webworks/cpr/v823/rpt/106099.pdf>.
"Gardco :: Barcol HardnessImpressor." Gardco ::Barcol HardnessImpressor.Web.21 Apr.2015.
<http://gardco.com/pages/hardness/barcol.cfm>.
"HighPerformance Gearbox Steels." AutoSpeed ArticlesRSS.Xtrac.Web.21 Apr. 2015.
<http://www.autospeed.com/cms/article.html?&title=High-Performance-Gearbox-
Steels&A=112918>.
"MATS324 CompositesDesignandManufacture." MATS324CompositesDesign and Manufacture.Web.
21 Apr. 2015. <http://www.tech.plym.ac.uk/sme/mats324/characterisation.htm>.
Nice,Karim."HowAutomaticTransmissionsWork - HowStuffWorks."HowStuffWorks.N.p.,29Nov.
2000. Web.23 Apr.2015. <http://auto.howstuffworks.com/automatic-transmission.htm>.
Oberg,Erik,FranklinJones,HolbrookHorton,andHenryRyffel. Machinery'sHandbook:A Reference
Bookforthe MechanicalEngineer,Designer, Manufacturing Engineer, Draftsman,Toolmaker,
and Machinist.29th ed.NewYork: Industrial,2012. Print.
Pollack,HermanW. Materials Science and Metallurgy.Fourthed.Reston,Va.:RestonPub.,1973. Print.
"QuantumCompositesLytex® 4149 55% CarbonFiberEpoxySMC." QuantumCompositesLytex® 4149
55% Carbon FiberEpoxy SMC.Web.21 Apr. 2015.
<http://www.matweb.com/search/datasheet.aspx?matguid=3b8b3df085d2448fad7436fa7c492
107>.
"SAE 950X HSLA Steel." SAE950X HSLA Steel. Web.21 Apr.2015.
<http://www.matweb.com/search/DataSheet.aspx?MatGUID=66e33e2d694648ce9f83c9f31143
b087>.
"TransmissionSchool."TransmissionHistoryBasics.N.p.,n.d.Web.23Apr. 2015.
<http://www.mistertransmission.com/a-brief-history-of-the-automatic-transmission>.
Web.21 Apr. 2015. <http://www.specialsteel-jy.com/SAE_950X.html>.
"4340 AlloySteelsMaterial PropertyDataSheet - ProductAvailabilityandRequestaQuote." 4340 Alloy
Steels Material PropertyDataSheet - ProductAvailability and Requesta Quote.Web.21 Apr.
2015. <http://www.suppliersonline.com/propertypages/4340.asp>.
AGMA Standard2001-C95, Fundamental RatingFactorsand Calculation MethodsforInvoluteSpurand
Helical Gear Teeth withthe permissionof the publisher,AmericanGearManufacturers
Association,1500 KingStreet,Suite 201, Alexandria,VA 22314.
Hijazi,Ala.“CH14: Spur and Helical Gears (n.d.):n.pag. Shigley’sMechanicalEngineering Design,
9 Th Ed.“ Web.1 Apr.2015. <https://eis.hu.edu.jo/ACUploads/10526/CH%2014.pdf>
“Ii,Machine Design, andProf.K.gopinath&Prof.M.m.mayuram. Module2- GEARS Lecture – 11
HELICAL GEARS” Contents(n.d.):n.pag. Helical Gears.Web.4 Apr.2015.
<http://nptel.ac.in/courses/IIT-MADRAS/Machine_Design_II/pdf/2_11.pdf>
AGMA. "Overload Factor." Overload Factor.N.p.,n.d.Web.4Apr.2015.
<http://www.gearcalc.com/downloads/manual/manualse60.html>

More Related Content

What's hot

Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
IOSRJEEE
 
Continuously variable-transmission-cvt
Continuously variable-transmission-cvtContinuously variable-transmission-cvt
Continuously variable-transmission-cvt
Amit Sharma
 
J0502 01 5762
J0502 01 5762J0502 01 5762
J0502 01 5762
IJMER
 

What's hot (20)

Study of Infinitely Variable Transmission
Study of Infinitely Variable TransmissionStudy of Infinitely Variable Transmission
Study of Infinitely Variable Transmission
 
Continuously Variable Transmission ( CVT )
Continuously Variable Transmission ( CVT )Continuously Variable Transmission ( CVT )
Continuously Variable Transmission ( CVT )
 
Suspension system
Suspension systemSuspension system
Suspension system
 
IRJET - Regenerative Braking for an Electric Car
IRJET -  	  Regenerative Braking for an Electric CarIRJET -  	  Regenerative Braking for an Electric Car
IRJET - Regenerative Braking for an Electric Car
 
Electricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleElectricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill Tricycle
 
Chapter10 clutches and_brakes
Chapter10 clutches and_brakesChapter10 clutches and_brakes
Chapter10 clutches and_brakes
 
Literature Review on Simulation and Analysis of Timing Chain of an Automotive...
Literature Review on Simulation and Analysis of Timing Chain of an Automotive...Literature Review on Simulation and Analysis of Timing Chain of an Automotive...
Literature Review on Simulation and Analysis of Timing Chain of an Automotive...
 
IRJET- A Review on Automobile Gear Transmission Mechanism
IRJET-  	  A Review on Automobile Gear Transmission MechanismIRJET-  	  A Review on Automobile Gear Transmission Mechanism
IRJET- A Review on Automobile Gear Transmission Mechanism
 
Continuously Variable Transmission Teaching Model
Continuously Variable Transmission Teaching ModelContinuously Variable Transmission Teaching Model
Continuously Variable Transmission Teaching Model
 
Continuous Variable Transmission
Continuous Variable TransmissionContinuous Variable Transmission
Continuous Variable Transmission
 
Modelling simulation and control of an active suspension system
Modelling  simulation and control of an active suspension systemModelling  simulation and control of an active suspension system
Modelling simulation and control of an active suspension system
 
Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
Modeling and Simulation of Three Phase Induction Machine Using Written Pole T...
 
Embragues y Frenos
Embragues y FrenosEmbragues y Frenos
Embragues y Frenos
 
Continuously variable-transmission-cvt
Continuously variable-transmission-cvtContinuously variable-transmission-cvt
Continuously variable-transmission-cvt
 
controlling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controllercontrolling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controller
 
Automatic transmission
Automatic transmissionAutomatic transmission
Automatic transmission
 
Veyron : Clutch
Veyron : ClutchVeyron : Clutch
Veyron : Clutch
 
Presentation on dragline cat8200 & dumper CAT MT4400 D AC used in sasan coal ...
Presentation on dragline cat8200 & dumper CAT MT4400 D AC used in sasan coal ...Presentation on dragline cat8200 & dumper CAT MT4400 D AC used in sasan coal ...
Presentation on dragline cat8200 & dumper CAT MT4400 D AC used in sasan coal ...
 
J0502 01 5762
J0502 01 5762J0502 01 5762
J0502 01 5762
 
Continuously variable transmission
Continuously variable transmissionContinuously variable transmission
Continuously variable transmission
 

Viewers also liked

Fuels & fueling methods used in the blast furnace
Fuels & fueling methods used in the blast furnaceFuels & fueling methods used in the blast furnace
Fuels & fueling methods used in the blast furnace
Abhijeet Singh
 
Kitesurf gear and properties
Kitesurf gear and propertiesKitesurf gear and properties
Kitesurf gear and properties
Oliver DeWolf
 
New trends in manufacturing
New trends in manufacturingNew trends in manufacturing
New trends in manufacturing
Sathees Kumar
 

Viewers also liked (17)

Metallurgy project on Heat Treatment process
Metallurgy project on Heat Treatment processMetallurgy project on Heat Treatment process
Metallurgy project on Heat Treatment process
 
Fuels & fueling methods used in the blast furnace
Fuels & fueling methods used in the blast furnaceFuels & fueling methods used in the blast furnace
Fuels & fueling methods used in the blast furnace
 
ELECTRONICALLY ASSISTED SKID CONTROL SYSTEM FOR TWO-WHEELER WITH THE IMPLICAT...
ELECTRONICALLY ASSISTED SKID CONTROL SYSTEM FOR TWO-WHEELER WITH THE IMPLICAT...ELECTRONICALLY ASSISTED SKID CONTROL SYSTEM FOR TWO-WHEELER WITH THE IMPLICAT...
ELECTRONICALLY ASSISTED SKID CONTROL SYSTEM FOR TWO-WHEELER WITH THE IMPLICAT...
 
International Journal of Metallurgy and Alloys (Vol 2 Issue 2)
International Journal of Metallurgy and Alloys  (Vol 2 Issue 2)International Journal of Metallurgy and Alloys  (Vol 2 Issue 2)
International Journal of Metallurgy and Alloys (Vol 2 Issue 2)
 
Kitesurf gear and properties
Kitesurf gear and propertiesKitesurf gear and properties
Kitesurf gear and properties
 
Fab gearshift 2012
Fab gearshift 2012Fab gearshift 2012
Fab gearshift 2012
 
Control Of Offshore Windmills
Control Of Offshore WindmillsControl Of Offshore Windmills
Control Of Offshore Windmills
 
Metallurgy -All about it
Metallurgy -All about itMetallurgy -All about it
Metallurgy -All about it
 
Metallurgical Thermodynamics & Kinetics Lecture Notes
Metallurgical Thermodynamics & Kinetics Lecture NotesMetallurgical Thermodynamics & Kinetics Lecture Notes
Metallurgical Thermodynamics & Kinetics Lecture Notes
 
Automatic-gear-shift-mechanism
 Automatic-gear-shift-mechanism Automatic-gear-shift-mechanism
Automatic-gear-shift-mechanism
 
Metallurgy
MetallurgyMetallurgy
Metallurgy
 
“Applications Of Powder Metallurgy In Reference with Cutting tools”
“Applications Of Powder Metallurgy In Reference with Cutting tools”“Applications Of Powder Metallurgy In Reference with Cutting tools”
“Applications Of Powder Metallurgy In Reference with Cutting tools”
 
Digital Manufacturing
Digital ManufacturingDigital Manufacturing
Digital Manufacturing
 
New trends in manufacturing
New trends in manufacturingNew trends in manufacturing
New trends in manufacturing
 
Advanced manufacturing systems
Advanced manufacturing systemsAdvanced manufacturing systems
Advanced manufacturing systems
 
Automatic gear transmission
Automatic gear transmissionAutomatic gear transmission
Automatic gear transmission
 
Heat treatment process
Heat treatment processHeat treatment process
Heat treatment process
 

Similar to Metallurgy Project

Harmonic planetary gearheads_catalog
Harmonic planetary gearheads_catalogHarmonic planetary gearheads_catalog
Harmonic planetary gearheads_catalog
Electromate
 

Similar to Metallurgy Project (20)

Dual clutch transmission seminar report
Dual clutch transmission seminar reportDual clutch transmission seminar report
Dual clutch transmission seminar report
 
PPT ON CONTINUOUSLY VARIABLE TRANSMISSION CVT by Pukhraj Palariya
PPT ON CONTINUOUSLY VARIABLE   TRANSMISSION CVT by Pukhraj PalariyaPPT ON CONTINUOUSLY VARIABLE   TRANSMISSION CVT by Pukhraj Palariya
PPT ON CONTINUOUSLY VARIABLE TRANSMISSION CVT by Pukhraj Palariya
 
Ijariie1167
Ijariie1167Ijariie1167
Ijariie1167
 
Design and Analysis of All Wheel Drive Gearbox
Design and Analysis of All Wheel Drive GearboxDesign and Analysis of All Wheel Drive Gearbox
Design and Analysis of All Wheel Drive Gearbox
 
Fabrication of CVT operated bike
Fabrication of CVT operated bikeFabrication of CVT operated bike
Fabrication of CVT operated bike
 
IRJET- Speed Variation using Cone Ring Traction Drive
IRJET- Speed Variation using Cone Ring Traction DriveIRJET- Speed Variation using Cone Ring Traction Drive
IRJET- Speed Variation using Cone Ring Traction Drive
 
E013133743
E013133743E013133743
E013133743
 
Hydrostatic Continuous Variable Power Transmission Drive for Two wheelers usi...
Hydrostatic Continuous Variable Power Transmission Drive for Two wheelers usi...Hydrostatic Continuous Variable Power Transmission Drive for Two wheelers usi...
Hydrostatic Continuous Variable Power Transmission Drive for Two wheelers usi...
 
Automatic Transmission
Automatic TransmissionAutomatic Transmission
Automatic Transmission
 
Design & Installation of Hydraulically operated clutch
Design & Installation of Hydraulically operated clutchDesign & Installation of Hydraulically operated clutch
Design & Installation of Hydraulically operated clutch
 
MECHATRONIC SYSTEM BASED MANUAL TRANSMISSION
MECHATRONIC SYSTEM BASED MANUAL TRANSMISSION MECHATRONIC SYSTEM BASED MANUAL TRANSMISSION
MECHATRONIC SYSTEM BASED MANUAL TRANSMISSION
 
Mechatronic system based manual transmission
Mechatronic system based manual transmissionMechatronic system based manual transmission
Mechatronic system based manual transmission
 
Cone Ring Traction Drive
Cone Ring Traction DriveCone Ring Traction Drive
Cone Ring Traction Drive
 
IRJET- Design Optimization and Analysis of a One Piece Composite Drive Shaft ...
IRJET- Design Optimization and Analysis of a One Piece Composite Drive Shaft ...IRJET- Design Optimization and Analysis of a One Piece Composite Drive Shaft ...
IRJET- Design Optimization and Analysis of a One Piece Composite Drive Shaft ...
 
PERFORMANCE INVESTIGATION OF A CONTROLLED DIFFERENTIAL CONTINUOUSLY VARIABLE ...
PERFORMANCE INVESTIGATION OF A CONTROLLED DIFFERENTIAL CONTINUOUSLY VARIABLE ...PERFORMANCE INVESTIGATION OF A CONTROLLED DIFFERENTIAL CONTINUOUSLY VARIABLE ...
PERFORMANCE INVESTIGATION OF A CONTROLLED DIFFERENTIAL CONTINUOUSLY VARIABLE ...
 
IRJET- Survey on Gear Shifting Strategies in the Vehicles
IRJET-  	  Survey on Gear Shifting Strategies in the VehiclesIRJET-  	  Survey on Gear Shifting Strategies in the Vehicles
IRJET- Survey on Gear Shifting Strategies in the Vehicles
 
Harmonic planetary gearheads_catalog
Harmonic planetary gearheads_catalogHarmonic planetary gearheads_catalog
Harmonic planetary gearheads_catalog
 
Cat.dcs.cmms.servlet9
Cat.dcs.cmms.servlet9Cat.dcs.cmms.servlet9
Cat.dcs.cmms.servlet9
 
Single Speed Transmission for Electric Vehicles
Single Speed Transmission for Electric VehiclesSingle Speed Transmission for Electric Vehicles
Single Speed Transmission for Electric Vehicles
 
Latest Transmission Technologies In Passenger Cars- A Review
Latest Transmission Technologies In Passenger Cars- A ReviewLatest Transmission Technologies In Passenger Cars- A Review
Latest Transmission Technologies In Passenger Cars- A Review
 

Metallurgy Project

  • 1. Automatic Transmission Gear Material Selection By Dominick Carluccio William Holden Tahjee Seymour Date: 4/28/15 Instructor: Professor Samardzic ME438-102 : METALLURGY SPRING 2015
  • 2. Table of Contents Abstract Introduction Theory Proposed Materials Material Analysis Material Selection Conclusion Nomenclature References Appendix 1 2 5 10 17 28 29 31 32 33
  • 3. Abstract Helical gearsare usedinautomatictransmissionstoallow the gearteethtoengage more graduallythenspurgearteethcausingthemto run smootherandquieter.Whenselectingthe material for helical gears,itisveryimportanttotake the correct mechanical propertiesintoaccount.Some of the mostimportantmechanical propertiestoconsiderare,yieldstrength,hardness,cost,modulusof elasticityanddensity.The mainobjective of thisreportistoinvestigate possible candidatesandperform a material selectionanalysistochoose anappropriate material andprocedure forahelical gearinside a BMW M4 sportscar poweredbya six cylinder3.0literturbochargedengine coupledtoaGetrag 7DCI700 Powershift7-SpeedDual-ClutchTransmission.
  • 4. Introduction The firstattemptat an AutomaticTransmission(usinghydraulicfluid) wasintroducedbythe companyGeneral Motors in1937. The transmissionwassemi-automaticandpromotedasthe AutomaticSafetyTransmission(AST).Itwasimplementedinhopesof becomingthe new standardfor vehicles,boastinghighincreasesinfueleconomy,greaterefficiency,andthe new featureof clutch-less driving.Unfortunatelythe ASTwasquicklydubbedafailure due tounreliability,highinstallationcosts, and lowconsumerdemand.Intwoyearstime the ASTceasedmanufacture.Howeverin1940 GM designedanewversionof the transmissioncalledthe Hydra-Matic,the firstfullyautomatictransmission evercreated.Witha noticeable dropininstallationcostamongotherfeatures, the Hydra-Maticbecame the firstmass producedandcommerciallyusedautotransmission.In1948 the firstautotransmission usinga torque converterwasintroducedbyBuick(calledthe Dynaflow).Soonafter,companiessuchas Packard andChevroletquickly followedsuite.Atthistime vehicle transmissionswereonlytwospeed. Notuntil the early1950’s didthe firstthree speedautotransmissionappear(equippedwithtorque converter) createdbyBorgWarner, an Americanautomotiveindustryandpartssupplier.Three speed auto transmissionswithtorque convertersremainedthe topsellerfor30 yearsuntil the automatic transmissionwithoverdrivewasintroducedtothe market,providingfourormore gears,improvedfuel economy,andincreasedefficiency.Since the inceptionof the overdrive the mostnotable improvements on the automatictransmissionhave beenthe increasednumberof forwardgearsandthe cross overto electronicallycontrolledtransmissionfrommechanicallycontrolledoperations. The major componentsof the automatictransmissionare the compoundplanetarygearset, torque converter,bands,clutches,hydraulicsystem, valves,modulators,andthe ElectronicControl Module.Notall componentswill be discussed.The primaryfunctionof the automatictransmissionisto
  • 5. transmitengine powertothe drive wheels(rear,front,orall wheels).Poweristransmittedinthe transmissionthroughthe use of gearsconnectedatvariousratios.Withouta transmissioncarswouldbe limitedtoone gearratiowhich ultimatelyresultsinthe sacrifice of eitheraccelerationortopspeed. While amanual transmissiondoesindeedcompletethe same task,the automatictransmissiondiffersby usingthe same setof gearsto produce multiple ratiosratherthanlockingand unlockingdifferentgears to the outputshaftvia a manual clutch.The numerousgearsusedtoaccomplishpowertransmissionis calleda compoundplanetarygearset.Fora four speedautomatictransmissionthe compoundplanetary gear setincludestwosungears,twoplanetcarriers,andan outerringthat is responsible forthe output of the transmission.Generallyinatransmissionthe 3rd speed(gear) issetat a 1:1 (readone to one) ratio withthe outerring,gear ratiossmallerthan1:1 put the transmissionintooverdrive.Overdriveisany ratiothat leadsto the ringgear (output) rotatingfasterthanthe driveninputgear(example beinga.8:1 gear ratio). All automatictransmissionscome withthe shiftingpositionsPark,Reverse,Neutral,andDrive, withsome vehiclescomingwithadditional optionssuchasmanuallylockingat3rd , 2nd , and 1st gear.The shiftintoParkpositionsaParkingPawl (asteel pin) intothe rotationpathof the outputgear, effectively impedingthe shaftfromrotating.The ParkingPawl’sprimarypurposeistokeepthe enginespowerfrom reachingthe drive wheels.Movingthe shiftertothe Reverse positiontriggersasolenoidthatcausesan additional geartoengage,thusreversingthe rotationof the outputshaft.Neutral disengagesall gears disconnectingthe transmissionfromthe drivenwheels.Drive allowsthe automatictransmissionto engage all gearratiosas needed.Ratiosare controlledbyanonboard computercalledthe Engine Control Unit(ECU). The ECU monitorsa large networkof sensorswithinthe carto ensure conditionsare innormal operatingranges.If available,shiftingintothe 3rd ,2nd , or 1st positionlocksthe transmissionin saidgear,disallowingupshiftswhile enablinganylowergearratiostoengage if needed.
  • 6. Under considerationisthe 7speedtransmissionforthe BMW M4 for the purpose of creatinga componentof itsgearbox. The M4 usesan automatictransmissiontype calledaDual Clutch TransmissionorDCT. The layoutof a DCT isessentiallythe combinationof twomanual gearboxesinone, howeverall gearshiftsare conductedautomaticallywithelectronicandhydraulicscontrols.Insteadof usinga compoundplanetarygearset,the DCT usesall external gearsandtwoshaftsconnectedtoeach of the clutches.Made possible withahollow outershaftanda solidinnerone,the DCTcan holda relativelylarge numberof gearsbyplacingsaidgearson differentshafts.Toclarify,ona6 speed transmissionthe firstof twoclutchesisresponsibleforthe oddgears(1, 3, 5 in additiontoreverse) laid on the innershaftandthe secondclutchcontrolsthe evengears(2,4, and6) laidonthe outershaft. Withtwo clutchesoperatingalternatinggearsthe shifttime dropstoa mere eightmillisecondswhile the bestautomatictransmissionshifttimeshoveraround100 milliseconds.A decrease inshifttime significantlyincreasesfuel economydue tothe shortenedtime the engine powerisdisconnectedfrom the gears.Also,a short shifttime decreasesthe severityof aphenomenonknownas“ShiftShock”which isthe jerkingmotionone issusceptible towhenthe transmissionchangesgears.ShiftShockismore prevalentinmanual transmissionvehiclesespeciallywithanunskilleddriver. The componentbeing analyzedin the DCT isthe connectionbetweenthe drivingpinionandone of itscorrespondinggears. For the creationof the gears,five chosenmaterialswillbe thoroughlyanalyzedinordertofindthe best combinationof density,strength,cost,andhardness.
  • 7. Theory The transmissionunderconsiderationisthe PowerShift7DCI700 7-SpeedMDouble Clutchwith Drive Logicand Launch Control manufacturedbyGetrag and foundinBMW’s M4, but alsoavailable in the M3 andM5. BMW has playedalarge part inthe developmentof recentautomatictransmissionsand was the firstcompanyto release afullyautomatedmanual gearboxinaproductioncar in1996. Since thenthey have workedwithGetragto developevenmore efficientautomatictransmissionsthatare now able to evenoutperformmanual transmissions.Likemostautomotive technology,the doubleclutchautomatic transmissionswereaderivativeof 80’s and 90’s Formula1 sequential gearboxesand BMW playedtheirpartinpast yearsof Formula1 so theyhad accessto this technologywhenitwasmostvaluable. Dual clutch transmissionsare the forefrontof future automatictransmissionsandare growingin popularityamongstautomotive manufacturerseveryyear.A dual clutchtransmissioniscomparable to twomanual transmissions;itutilizestwowetclutcheswithgears1,3, 5, and 7 onthe firstclutchand gears2, 4, and 6 on the secondclutch.Like mosttransmissionsthough,the dual clutchtransmissions utilize helical gearstominimize vibrations.Theiruse of wetclutcheseliminatesthe needof atorque converter;itusesa seriesof wetpadsto reduce frictionina pressurizedcylindertotransferpower,the clutchis disengagedbyreducingthe pressure of the cylinder.Dual clutchtransmissionswill typically outperformmanual transmissionsbecause itutilizesthe twoclutchestominimizethe time inbetween Figure 1: The 2015 BMW M4
  • 8. gear shiftsandmaximizingthe qualityof the meshincreasingthe comfortlevel aswell.While one clutch isengagedonone shaft the nextgearcan be setup forthe secondclutch,the secondclutchthen engageswhile the firstdisengages reducesthe time betweenshiftsto milliseconds.The mannerof upshifting and downshiftingare almostidentical and are controlledbythe electronic control module (ECM);hard accelerationwill tell the transmissionto shiftup,and hard brakingwill tell the transmissiontoshiftdown. Moderndaydual clutchtransmissionshave beenputtothe testand the worldfastestdragracers withmanual transmissionscan’tshiftasfastas these dual clutchtransmissions. BMW has developedDrivelogicwhichistheirsoftware thatcontrolsthe transmissionsand ultimatelytellsithowtoact. The smoothgear changesthat thistransmissionispossibleof achievingare largelyaresultof Drivelogictellingthe transmissionsexactlywhentomeshgearsandengage clutches. NotonlydoesDrivelogiccoupledtothistransmissionresultinamore comfortable ride thana typical automatictransmission,butitalsoresultsinabetterperformingride.Drivelogicisprogramedtoonly shiftradicallywhenthe caris goingstraighttopreventa largerchange in force to the real wheelswhich wouldresultina lossof traction,whichisverydangerousaroundturns.Drive logicisalsoresponsiblefor synchronizingdownshiftsandengagingthe clutchinasmootherfashionduringdownshiftssothatsame large change in force doesn’tresultintolarge of a change inforce to the rearwheelswhichcouldcause a suddenlossof traction.Drivelogicalsorecognizesthe driver’sunique drivingmannerandpreferences and triestoaccommodate and adapt to those preferences. Figure 2: BMW’s Dual ClutchTransmission
  • 9. The dual clutchtransmissionhas3 differentdrivingmodesDrive mode,Sportmode,and SequentialManual mode.Drive mode isfullyautomaticanddesignedtoprovide the mostcomfortable and efficientcharacteristicsof the transmissionsandissimilartothe drive selectionintypical automatic transmissions.Sportmode isalsofullyautomaticbutitsprogrammingisslightlydifferent.Since turbochargedenginesperformbestwhenthe turboisalreadyspooledup,Sportmode keepsthe engine at the mostoptimal highrevvingrange where the turbocanstayspooledupwhichwill providethe user instanttorque similartoa naturallyaspiratedengine.Sequential Manual mode providesthe userthe abilitytomanuallyselectgearlike inaclutch lesssequential gearbox. Thisgearbox alsoprovidesthe unique abilityof launchcontrol.Since aspooledupturbo performsbetterthanone thatstill hasto be spooledup,thistransmissionallowsthe usertorevthe motor at a complete stopandspool upthe turbowhile the brake isheld.Thenthe clutchisengaged while the engineisrevvingallowingalaunchfroma stop withthe maximumamountof torque possible. BMW has developedaunique coolingsystemforthistransmissionthatincorporatesthe cooling cycle of the engine intothe coolingsystemof the transmission.Thisnotonlykeepsthe oil ata perfectly maintainedtemperature range,butitalsoheatsup the oil to withinthisrange fasterprovidingquicker warm upswhichreduce the amountof time that the transmissionhastoovercome largerthan normal frictional forcesfromthe oil inthe transmission.Thiswill provide betterefficiency duringstartupsand betterperformance under heavyuse whenthe transmissionwill producea large amountof heatfromfriction. Figure 3: BMW’s 3.0 litersix cylinder turbochargedengine
  • 10. BMW has coupleda3.0 literturbocharged6 cylinder(S55B30) coupledtotheir dual clutch transmission.The S55B30 utilizestwotwinmono-scroll turbochargersandproduces425 horsepowerat 5500 RPMand 406 lb·ftof torque.The transmissiontransmitspowertothe rearwheel andismounted to the car withthe engine longitudinally.Inthe sevenspeedgearbox,the twogearswiththe highest stresswouldbe the meshingof the piniontofirstgearwhichhasa gearratio of 4.81:1. The othergears wouldexperience lowerstressvaluessostressanalysisof the firstgearmeshwiththe givenmaterials will suffice forthe dataneededformaterial selection. Whenchoosinga material foruse ina transmissionthere are certaincharacteristicsand attributesof the material thatare necessary.Gears are verysensitivetogeometrictolerance differencessoanychange inthe geometryof the gear mayresultinchatter,vibrations,oreven ultimate failureof the gearas seeninfigure ().The causesof gearfailure come inthe formof bendingfatigue of the teeth,wearorcontact fatigue onthe surfaces,andscuffingwhichtransfersmaterialfromone gearontothe other.A highyieldstressisthe firstand mostimportantcharacteristic.Whencoupledtomostmoderndayautomotive engines,gear teethinthe transmissionwillexperience large forcesandresultingstressthatthe material mustbe strongenoughto withstand.A highyieldstresswill preventthe gearfromfailingdue tobendingfatigue. A highhardnessisthe secondmostimportantcharacteristic,itisnecessarytopreventanychanges in the geometryof the gear sothat the transmissionremainsassmoothaspossible.Anyscuffing,wear,or contact fatigue onthe surfaceswill resultinchatterorvibrationsandwill ultimatelyweakenthe gear and create stressconcentrations. Figure 4: Failure of helical gearsdue to high contact stresses
  • 11. The third characteristictotake intoconsiderationiscost.Like mostengineeringapplications choosinga material withalowcost isusuallya limitingfactor.Costof the raw material shouldbe investigatedaswell asthe machiningandtreatmentcosts.Sometimes shippingcostswill be anissue as well because some materialsare exclusive tocertainlocationsof the world.The fourthpropertyto considerformaterial selectionisalowYoung’sModulus,orhighvibrationabsorptionability.If avery hard and stiff material waschosenforthe whole gearthe meshwouldresultinhighvibrations.To preventthistypicallyamore ductile material ischosenforthe innerportionof the gearand thenitis case hardenedtoincrease the hardnessjustonthe outersurfaces.Bychoosinga material withalow Young’sModulus,butalsowiththe abilitytowithstandwearandcontact surface abrasion,thiswill resultina very“smooth”transmission.The fifthmostimportantpropertyisalow density.The weightof the car, and evenmore importantly,the weightof the drive trainplayalarge role on fuel economyand performance.Bydecreasingthe weightof the drive train,the momentof inertiaisalsodecreased;this allowsthe motorto transmitpowertothe wheelsquickerorwithlessforce.
  • 12. Proposed Materials The followingfive materialswerechosenbythe designteamtobe analyzedforselectionasthe material fora single internal gearforthe automaticgeartransmission:  SAE 950X  SAE 4340H  SAE 4720H  XM023  CFRP (CarbonFiberReinforcedPolymer) SAE 950X SAE 950X iscategorizedasa High-StrengthLow-AlloySteel (HSLA)thismeansthatthe carbon contentof the steel isusuallylessthan0.3 percent.SAE950X containstrace amountsof alloyingmetals to enhance desiredmechanical propertiesandsometimesresistancetoatmosphericcorrosion.The HSLA steelstypicallyachieve thesepropertieswithoutadditional heattreatment. Table 1: Chemical Composition of SAE 950X Steel SAE 950X Chemical Composition C Fe Mn P Si S <= 0.23% 97.43 – 100% <=1.35% <=0.04% <=0.90% <=0.05%
  • 13. Figure 5: Stress Strain Diagram for Plain Carbon Steel and SAE 950X Table 1 shows thatthe chemical compositionof SAE950X can range between100% pure iron to 97.43% iron withmixedalloys.Figure1showsa comparisonbetweenplaincarbonsteel SAE1010 with SAE 950X. It isclearlyseenthatthe area underthe SAE950X curve,infigure 5, ismuch largerthan the area underthe SAE 1010 curve whichmeansthatthe increasedtoughnessisclearlyseen.SAE950X is typicallyusedwhere agoodstrength-to-weightratioisrequiredasHSLA steel crosssectionsare usually 20 to 30% lighterthancarbonsteel withthe same strength. SAE 950X Mechanical Properties Ultimate Tensile Strength YieldTensile Strength Brinell Hardness Modulus of Elasticity 63,500 psi 49,200 psi 120-124 29,900 ksi Table 2: SAE 950X Mechanical Properties Table 2 shows a summaryof the mechanical propertiesforSAE950X. SAE 950X isavailable from suppliersinChinaandJapanas well aslimitedquantityinthe UnitedStates. SAE 4340H SAE 4340H isa seriesof steel withmainalloysof nickel,molybdenumandchromium.Eachthree of these alloyshasaneffectof increase inhardenability.SAE4340H has a favorable responsetoheat treatmentwhenquenchedinoil followedbytempering.WhentemperedSAE4340H displaysagood
  • 14. arrangementof strengthandductilityandhasa wide varietyof usesinbearings,pistonpins,ordinance, gears,dies,andpressure vessels.4340H can be machinedbyall conventional methodsandcanbe bent or formedbyspinningorpressinginthe annealedstate.Heattreatmentforstrengtheningisdone at approximately1525 degreesFthenfollowedbyanoil quench. SAE 4340H Chemical Composition C Cr Fe Mn Mo Ni P Si S 0.37- 0.44% 0.65- 0.95% 95.04 – 96.53% 0.55- 0.90% 0.2- 0.3% 1.55- 2.0% <0.04% 0.15- 0.30% <=0.04% Table 3: Chemical Composition of SAE 4340H Steel Figure 6: Microstructure of SAE 4340H SAE 4340H Mechanical Properties Ultimate Tensile Strength YieldTensile Strength Brinell Hardness Modulus of Elasticity 186,000 psi 125,000 psi 363 29,000 ksi Table 4: SAE 4340H Mechanical Properties
  • 15. Figure 6 showsthe microstructure of SAE 4340H at 25 micrometers.The blackparticlesare Bainite andthe white orlightgreyparticlesare Martensite. SAE4340H isavailable from78 distributors inNorth Americaandproducedby41 large mills. SAE 4720H SAE 4720H isclassifiedinthe same seriesasSAE4340H andis composedof the alloys molybdenum,chromiumandnickel anddesignedforgoodstrength,wearresistance andtoughness properties.SAE4720H isconsideredamoderatelylow carbonsteel withapproximately0.17-0.20% carbon. The H variant of SAE 4720 isa special compositionthathasa goodcase hardeningability.SAE 4720H is rarelyannealedasitimpedesmachinabilitybutisusuallynormalizedpriortocase hardening. The austenitizingtemperature forSAE4720 before quenchingis1500-1550 degreesFfollowedby quenchinginwateroroil. SAE 4720H is manufacturedmainlyinChinaandIndia SAE 4720H Chemical Composition C Cr Fe Mn Mo Ni P Si S 0.17- 0.23% 0.30- 0.60% 96.55 – 97.93% 0.45- 0.75% 0.15- 0.25% 0.85- 1.25% <0.035% 0.15- 0.30% <=0.04% Table 5: Chemical Composition of SAE 4720H SAE 4720H Mechanical Properties Ultimate Tensile Strength YieldTensile Strength Brinell Hardness Modulus of Elasticity 95,000-128,000 psi 50,100-80,000 psi 187-229 29,700 ksi Table 6: SAE 4720H Mechanical Properties
  • 16. Figure 7: SAE 4720H Alloy Steel Round Bar Table 5 showsthe chemical compositionforSAE4720H steel.The alloyingcompositionof 4720H isfairlysimilarto4340H but withminordifferencesinquantityforeachalloyingelement.Table 6shows the summaryof mechanical properties Figure 7 showsan example of SAE4720H roundbar stock fromthe manufacturer.Forgear manufacturing,the gearmaterial wouldtypicallybe cutfromanendof the round bar stockthenfurther machinedona lathe and toothcuttingmachine. XM023 XM023 isa steel alloydesignedandmanufacturedbyXTRAC.XTRACisa worldwideleaderinthe designandmanufacture of transmissionsystemscoveringmotorsports,defenseandmarine.XM023 steel alloywasdevelopedspecificallyforthe use inFormulaOne race transmissionsandwasusedto secure the championshipsfor2005 and 2006. XM023 wasdevelopedtoimprove uponthe bending fatigue andbearingproperties.The temperingtemperature forXM023 isapproximately390-480 degreesF.XM023 is usedas a varietyof gearbox internalsincludinggears,mainshaft,layshaft,hubsand
  • 17. selectorforks.UnfortunatelyXM023 steel alloyisaproprietarymaterial andnomechanical properties are available tothe public. Carbon Fiber Reinforced Polymer (CFRP) CarbonfiberreinforcedplasticorCFRPis a composite of strongcarbon fibersboundwithina matrix polymer.The specificcompositechosenforthisprojectisQuantumCompositesLytex 4149. Oftenthe polymerisathermosetresinsuchasepoxybutvinyl,polyesterandnylonare sometimesused. CFRPexhibitsaverylarge strengthtoweightratioandis commonlyusedwhere strength,rigidityand weightare the mostimportantfactors.The composite ismade upof two majorparts, a matrix and reinforcement.Forthisprojectthe reinforcementisthe carbonfiberthatprovidesthe hightensile strengthandthe matrix isepoxyresin.The Mechanical propertiesdependonthe characteristicsof the twocomponentsof the composite aswell asthe orientationof the fiberswithinthe matrix.Typicallythe reinforcementgivesthe composite itsstrengthandrigidity.AlthoughCFRPhasahighstrengthto weight ratio,a major designlimitationisthe lackof a definablefatigueendurancelimit.Thisisextremely importantforgear material selectionasthe gearwill constantlybe experiencingcyclicloadingandwill resultinfatigue.Itisextremelydifficulttodocumentthe mechanical propertiesforcarbonfiber compositesasthe manufacturingprocess,matrix materials,fiberorientationandatmospheric environmentall have aneffectonthe mechanical properties. Lytex 4149 iscomposedof 55% carbonfibersand45% resinepoxymatrix. Lytex 4149 CFRP Mechanical Properties Ultimate Tensile Strength YieldTensile Strength Brinell Hardness Modulus of Elasticity Not defined 41,900 psi 32-54 65,000 ksi Table 7: Lytex 4149 CFRP Mechanical Properties Table 7 showsthe mechanical propertiesforthe CFRP.Notice thatthe ultimate tensile strength isnot definedasitdependson the orientationof the carbonfibers.The hardnessisdeterminedfrom the propertiesof the matrix.Inthiscase the hardnessisfairlylow comparedtothe otherresearched materialsbecause itisa functionof the resinepoxy.
  • 18. Figures 8 and 9 : Microstructure of Carbon Fiber Reinforced Polymer Figures8 and 9 above showsthe microstructure of CFRPin side view (LEFT) andendview (RIGHT).The individual carbonfiberscaneasilybe seen. Summary Mechanical Properties Material Ultimate Tensile Strength Yield Tensile Strength Brinell Hardness Modulus of Elasticity Comments SAE 950X 63,500 psi 49,200 psi 120-124 29,900 ksi SAE 4340H 186,000 psi 125,000 psi 363 29,000 ksi ExcellentHardenability SAE 4720H 95,000- 128,000 psi 50,100- 80,000 psi 187-229 29,700 ksi Good Hardenability XM023 N/A N/A N/A N/A Proprietary Material CFRP Not defined 42,000 psi 32-54 65,000 ksi Unknown Yield, Undefined Fatigue Endurance Table 8: Comparisonof characteristics betweenmaterials
  • 19. Material Analysis Heat Treatment Heat treatmentforgearsisusuallyfavorable asitallowsthe abilitytoimprove strengthand hardnesstothe surfacesof the gear teethtopreventwearandfailure overtime. The twobasicstepsin hardeningsteel istoheatthe steel to some temperature above itstransformationpointsothatit becomesentirelyausteniticinstructure,thentoquenchthe steel atsome rate fasterthan the critical rate to produce a martensiticstructure. Althoughnotall of the materialsconsideredinthisreportare able to be heattreated,twoof the materialsbenefitfromanadditionalheattreatment. Carburizationis alsonot takenintoaccount as none of the proposedmaterialsundergotreatment. SAE 4340H can be heattreatedbyheatingthe material toapproximately1525 degreesFthen quenchinginoil.ItisimportanttoquenchSAE 4340H inonlyoil as it wouldleadtocorrosionif itwere to be quenchedinwater. SAE 4720H can alsobenefitfromheattreatment.SAE4720H can be case hardenedor carburizedbutisrarelyannealedasitimpedesmachinability. The austenizingtemperature forSAE 4720H is 1500-1550 degreesFthenquenchedusingwateroroil. Cost Cost isa major considerationwhenselectingamaterial forlarge scale manufacturing. To estimate the costto have the helical gearmade itisimportantto take the raw material costinto account. The cost perunitvolume forthe raw material was calculated,the resultscanbe seenbelowin Table 9. Table 9: Cost Per Cubic Inch By Material Cost Per Cubic Inch SAE 950X * SAE 4340H SAE 4720H * XM023 CFRP * $0.17* $0.65 $0.18* N/A $1.71*
  • 20. It isimportantto note that the cost percubic inchmarkedwith(*) are rough estimationsbased on varyinggeometryanddonot include shippingfromoriginof manufacture.The costestimationfor SAE 4340H isbasedoff of a quote for 5” diameterroundbarby 12 feetlongfroma distributorlocated inNorth America.BothSAE950X and4720H couldnotbe sourcedwithinNorthAmericaandwouldneed to be imported fromChina.BMW GmbH doesowntheirowncarbon fibermanufacturingplantssothe cost analysisonCFRPwas basedonan average assumingthatBMW doesn'tpaymore than the average price for theircarbonfiberproduction.The CFRPcostestimationonlyincludesthe raw materialsand doesnotinclude anycost pertainingtocasts,moldsor instrumentsrequiredtocure the matrix. Stress and Pitting Analysis For the dual clutch transmissionunder investigation,the meshof the piniontofirstgear has the higheststressloadsandalsothe location of the minimumfactorof safety;soa bending stressand pittinganalysisonthe meshof the pinionandfirstgearwill be sufficienttodetermine the maximumstressesinthe transmission.This meshresultsina gearratio of 4.81:1. The equation usedto determine bendingstressandpittingis fromthe AGMA designequationsfromAGMA Standard2001-C95. The bendingstressequationissimilar to the one usedfor spurgears butwitha slightmodificationforhelical gears.The mode of stress applicationforpittingfailure iscontactstressandthe contact stressequationisalsosimilartothe one for spurgears butwith a slightmodificationaswell. A factor of safetyof 2 wasusedfor the designof the gearsand pinions.All the gearsandpinions had the same geometrical designexceptfortheirface width.The shaftswere designedusingthe max shearstressformulaandthe geometrical preferenceswere researchedandborrowedfromprevious designersbutalsomodifiedtoaccommodate the five proposedmaterials.The motorthatwas appliedto the transmissionproduced425 hpat 5500 RPMand 406 lb-ftof torque.Thistranslatesto232 lbsof force on the gear teethwithapitch line velocityof 2522. The overloadfactorforthe transmissionwas assumedtobe 1.3 (lightshock) consideringthe qualityof modernbearingsandvibrationabsorption material usedindesigntoday. Figure 10: Pinionand1st Gear Mesh for Analysis
  • 21. Afterthe analysiswasinvestigated,the contactstressendedupbeingthe more sensitive portionof the stressesonthe gears. The teethparticularlytookthe highestamountof stressasseenin figures11 and 12. The piniontookthe highestloadandthe original geometricdesignhadto be modified for use withthe twomaterialsSAE950x and CFRPbecause the factorof safetywasnot highenough. Theirwidthhadto be increasedfrom2inchesto 3 inches. Figure 12: X Y plane view of stresslocationsFigure 11: Isometricview of stresslocations
  • 22. SAE 950X Steel Figure 13: BendingAnalysisof SAE950X
  • 24. SAE 4340H Steel Figure 15: BendingAnalysisof 4340H
  • 26. SAE 4720H Steel Figure 17: BendingAnalysisof 4720H
  • 28. CFRP (Carbon Fiber Reinforced Plastic) Figure 19: BendingAnalysisof CFRP
  • 29. Merit Analysis Series Alternatives Yield Stress (ksi) Hardness (BNH) Youngs Modulus (ksi x 1000) Density (lb/in^3) Cost (lb/in^3) 1 950X 49.2 120 29.9 0.284 ≈ 0.17 2 4340H 125 363 29 0.284 0.65 3 4720H 50.1 187 29.7 0.284 ≈ 0.175 4 CFRP 42 32 65 0.066 ≈ 1.71 Attribute Ranking Points Nomalized Ij Density 1 0.066666667 Youngs Modulus 2 0.13 Cost 3 0.20 Hardness 4 0.27 Yield Stress 5 0.333333333 Material Yield Stress (ksi) Hardness (BNH) Youngs Modulus (ksi x 1000) Density (lb/in^3) Cost (lb/in^3) 1 0.086 0.266 0.025 0 1 2 1 1 0 0 0.688 3 0.097 0.468 0.019 0 0.996 4 0 0 1 1 0 Material Mi Merit Percents 950X 0.3029 30.29 4340H 0.7376 73.76 4720H 0.3589 35.89 CFRP 0.2000 20.00 Table 10: MeritAnalysis
  • 30. Material Selection Withthe exceptionof the steel alloyXM023,the materialshave beenrankedbasedonafive attribute meritanalysis.The attributesconsistof Density,Cost,Elasticity,YieldStress,andHardness.The attribute of Machinability,thoughimportant,isan aspectof a material’sproductionwhichcanbe factoredintothe Cost attribute.OtherattributessuchasWearResistance andDuctilityare also importanthowever,similarlytoMachinability,WearResistance isabyproductof Hardnesswhile Ductilityisgenerallydeterminedwithamaterial’sModulusof Elasticity.Importantattributesthatcould not make the listsuchas Fatigue life are simplytoodifficulttoascertain.Eachof the five attributes chosenforthe meritanalysiswere givenarankrangingfrom the mostimportant(5) to the least important(1).The rankingfrom mostto leastimportantisas follows,YieldStress,Hardness,Cost, Elasticity,andDensity.Thisinformationcanbe foundin table 10. The analysisyieldedthe highestvalue for the steel alloy4340H at 73.76 percent,trailedby4720H at 35.89 percent.The pure steel alloy950X came thirdwitha meritpercentat30.76 withCFRPfollowingata low 20 percent.Steel alloy4340H is the clear material selectionwithitsprevailingBrinell Hardnessreaching363, a magnitude difference of 176 overitsnearestcontender,4720H. Withthe highestyieldstrengthat125 ksi,the 4340H material is inferioronlyinthe ElasticityandCostwhichdue totheirrankingsdidn’taffect4340H’s outcome of being the bestmaterial forthe gear set.It shouldbe notedhoweverthatthisoutcome mayhave changedif the attributesof the steel alloyXM023 had beenmade available.
  • 31. Conclusion Thisreportdemonstratesanunderstandingof mechanical propertiesrequiredtoadequately selectanappropriate material forthe BMW M4 sportscar poweredbya Getrag 7DCI700 Powershift7- SpeedDual-ClutchTransmission.UsingTheoryfrommachine design,the designlimitsforhardnessand yieldstrengthwere defined bythe equationsfortoothbendingandpittinginhelical gears.The results fromthe meritanalysisconcluded thatSAE4340H has the correct combinationof propertiesrequiredto preventthe gearfromfailing.Overallthisdesignreportwassuccessful inselectinganappropriate material fora helical gearandallowedthe studentsanopportunitytouse the course material inareal- worldscenario.
  • 32. Nomenclature Torque [ft·lbs] T Horsepower hp RotationsperMinute RPM, N Rotational Velocity[rad/s] ω InnerDiameter [in] di OuterDiameter[in] do InnerRadius[in] ri OuterRadius[in] ro Pressure Angle [degrees] φ Helix Angle [degrees] ψ Diametral Pitch [teeth/in] Pd Face Width[in] F TransmittedLoad[lbs] Wt PitchLine Velocity[ft/min] vl Factor of Safety Sf OverloadFactor Ko QualityClassof Gear Set Qv Size Factor Ks RimThicknessFactor KB StressCycle Factor YN Temperature factor KT ReliabilityFactor KR AllowableStress[psi] Sal GeometryFactor J, I PitchDiameter[in] d DynamicFactor Kv Load DistributionFactor Km Stress[psi] σ PoisonsRatio υ, μ Young’sModulus[psi] E ElasticCoefficient[(lb/in2 )0.5 ] Cp HardnessRatioFactor CH Axial ContactRatio mF Carbon C Iron Fe Manganese Mn Phosphorus P Silicone Si Sulfur S Chromium Cr Molybdenum Mb Nickel Ni CarbonFiberReinforcedPlastic CFRP
  • 33. References "AISI4340H Steel,Normalized870°C(1600°F)." AISI4340H Steel, Normalized 870°C (1600°F). Web. 21 Apr. 2015. <http://www.matweb.com/search/DataSheet.aspx?MatGUID=7a5b65114de34c0894 027b37fc899323&ckck=1>. "AISI4720H Steel."AISI4720H Steel. Web.21 Apr.2015. <http://www.matweb.com/search/DataSheet.aspx?MatGUID=aa006d3c064c49e7b340f6f077e7 d095>. Brain,Marshall."How Gear RatiosWork."HowStuffWorks.HowStuffWorks.com, 20Nov.2000. Web. 23 Apr.2015. <http://science.howstuffworks.com/transport/engines-equipment/gear-ratio4.htm>. "Composite Materials/CFRP." CompositeMaterials:CFRP,Brinell HardnessNumber,PhenolicResins. Web.21 Apr. 2015. <http://en.allexperts.com/q/Composite-Materials-2430/2011/4/CFRP- 1.htm>. Corum,J.,R. Battiste,K.Liu,and M. Ruggles. "BasicPropertiesof Reference CrossplyCarbon-Fiber Composite."LockheedMartin - Oak Ridge National Laboratory.Web.21 Apr.2015. <http://web.ornl.gov/~webworks/cpr/v823/rpt/106099.pdf>. "Gardco :: Barcol HardnessImpressor." Gardco ::Barcol HardnessImpressor.Web.21 Apr.2015. <http://gardco.com/pages/hardness/barcol.cfm>. "HighPerformance Gearbox Steels." AutoSpeed ArticlesRSS.Xtrac.Web.21 Apr. 2015. <http://www.autospeed.com/cms/article.html?&title=High-Performance-Gearbox- Steels&A=112918>. "MATS324 CompositesDesignandManufacture." MATS324CompositesDesign and Manufacture.Web. 21 Apr. 2015. <http://www.tech.plym.ac.uk/sme/mats324/characterisation.htm>. Nice,Karim."HowAutomaticTransmissionsWork - HowStuffWorks."HowStuffWorks.N.p.,29Nov. 2000. Web.23 Apr.2015. <http://auto.howstuffworks.com/automatic-transmission.htm>. Oberg,Erik,FranklinJones,HolbrookHorton,andHenryRyffel. Machinery'sHandbook:A Reference Bookforthe MechanicalEngineer,Designer, Manufacturing Engineer, Draftsman,Toolmaker, and Machinist.29th ed.NewYork: Industrial,2012. Print. Pollack,HermanW. Materials Science and Metallurgy.Fourthed.Reston,Va.:RestonPub.,1973. Print. "QuantumCompositesLytex® 4149 55% CarbonFiberEpoxySMC." QuantumCompositesLytex® 4149 55% Carbon FiberEpoxy SMC.Web.21 Apr. 2015.
  • 34. <http://www.matweb.com/search/datasheet.aspx?matguid=3b8b3df085d2448fad7436fa7c492 107>. "SAE 950X HSLA Steel." SAE950X HSLA Steel. Web.21 Apr.2015. <http://www.matweb.com/search/DataSheet.aspx?MatGUID=66e33e2d694648ce9f83c9f31143 b087>. "TransmissionSchool."TransmissionHistoryBasics.N.p.,n.d.Web.23Apr. 2015. <http://www.mistertransmission.com/a-brief-history-of-the-automatic-transmission>. Web.21 Apr. 2015. <http://www.specialsteel-jy.com/SAE_950X.html>. "4340 AlloySteelsMaterial PropertyDataSheet - ProductAvailabilityandRequestaQuote." 4340 Alloy Steels Material PropertyDataSheet - ProductAvailability and Requesta Quote.Web.21 Apr. 2015. <http://www.suppliersonline.com/propertypages/4340.asp>. AGMA Standard2001-C95, Fundamental RatingFactorsand Calculation MethodsforInvoluteSpurand Helical Gear Teeth withthe permissionof the publisher,AmericanGearManufacturers Association,1500 KingStreet,Suite 201, Alexandria,VA 22314. Hijazi,Ala.“CH14: Spur and Helical Gears (n.d.):n.pag. Shigley’sMechanicalEngineering Design, 9 Th Ed.“ Web.1 Apr.2015. <https://eis.hu.edu.jo/ACUploads/10526/CH%2014.pdf> “Ii,Machine Design, andProf.K.gopinath&Prof.M.m.mayuram. Module2- GEARS Lecture – 11 HELICAL GEARS” Contents(n.d.):n.pag. Helical Gears.Web.4 Apr.2015. <http://nptel.ac.in/courses/IIT-MADRAS/Machine_Design_II/pdf/2_11.pdf> AGMA. "Overload Factor." Overload Factor.N.p.,n.d.Web.4Apr.2015. <http://www.gearcalc.com/downloads/manual/manualse60.html>