SlideShare a Scribd company logo
1 of 13
Download to read offline
Protected	
  primary	
  amides	
  from	
  acyl	
  isocyanates	
  
Stephen	
  C.	
  Hahneman,	
  Megan	
  M.	
  Hanly	
  and	
  Brian	
  R.	
  Linton	
  
Department	
  of	
  Chemistry,	
  College	
  of	
  the	
  Holy	
  Cross,	
  Worcester,	
  MA	
  01610	
  
Corresponding	
  Author:	
  blinton@holycross.edu	
  
	
  
TOC	
  Graphic	
  
	
  
	
  
Abstract:	
  	
  A	
  procedure	
  has	
  been	
  developed	
  for	
  the	
  convenient	
  
synthesis	
  of	
  primary	
  amides	
  from	
  carboxylic	
  acid	
  derivatives.	
  	
  At	
  the	
  
heart	
  of	
  this	
  approach	
  is	
  the	
  formation	
  of	
  acyl	
  isocyanates,	
  which	
  can	
  
be	
  reacted	
  with	
  alcohols	
  to	
  produce	
  carbamoyl-­‐protected	
  primary	
  
amides.	
  	
  Different	
  alcohols	
  have	
  been	
  used	
  to	
  produce	
  amides	
  that	
  
contain	
  Cbz,	
  Boc,	
  Fmoc,	
  Alloc,	
  Teoc	
  and	
  o-­‐nitrobenzyl	
  protecting	
  
groups,	
  permitting	
  deprotection	
  using	
  a	
  variety	
  of	
  methods.	
  
	
  
	
  
INTRODUCTION	
  
	
   A	
  variety	
  of	
  synthetic	
  methods	
  exist	
  for	
  the	
  production	
  of	
  primary	
  amides,	
  
but	
  each	
  has	
  potential	
  downsides.	
  	
  The	
  majority	
  of	
  approaches	
  require	
  the	
  use	
  of	
  
gaseous	
   ammonia,	
   ammonium	
   hydroxide	
   or	
   other	
   ammonium	
   salts.	
   	
   The	
   loss	
   of	
  
reagent	
  ammonia	
  can	
  lead	
  to	
  reduced	
  yields,	
  and	
  the	
  highly	
  basic	
  nature	
  of	
  reaction	
  
conditions	
   can	
   at	
   times	
   be	
   problematic.	
   	
   Additionally,	
   traditional	
   organic	
  
purification	
  techniques	
  can	
  be	
  less	
  successful	
  due	
  to	
  the	
  polar	
  nature	
  of	
  the	
  primary	
  
amide	
   and	
   potential	
   insolubility	
   in	
   organic	
   solvents.	
   	
   A	
   synthetic	
   scheme	
   that	
  
smoothly	
  produces	
  a	
  primary	
  amide	
  with	
  a	
  protecting	
  group	
  that	
  maximizes	
  organic	
  
solubility	
  would	
  be	
  attractive	
  for	
  a	
  variety	
  of	
  organic	
  and	
  peptide	
  targets.	
  
	
   Carbamate	
  protection	
  of	
  the	
  amide	
  nitrogen	
  would	
  be	
  ideal	
  due	
  to	
  the	
  well-­‐
established	
   methods	
   of	
   removal	
   and	
   purification,	
   but	
   few	
   literature	
   examples	
   of	
  
acyl-­‐carbamates	
  exist.	
  	
  They	
  have	
  been	
  synthesized	
  through	
  either	
  carbamoylation	
  
of	
   an	
   amide	
   or	
   acylation	
   of	
   a	
   carbamate,	
   but	
   the	
   reduced	
   nucleophilicity	
   of	
   these	
  
nitrogens	
  typically	
  requires	
  strongly	
  basic	
  conditions.1	
  	
  Another	
  approach	
  towards	
  a	
  
protected	
   primary	
   amide	
   is	
   to	
   introduce	
   the	
   nitrogen	
   atom	
   to	
   a	
   carboxylic	
   acid	
  
derivative	
  using	
  the	
  cyanate	
  anion	
  (Figure	
  1).2,3	
  	
  The	
  resulting	
  acyl	
  isocyanates	
  2	
  can	
  
R Cl
O O
N
H
R
O
O
R'
R
O
NH2
1) AgNCO
2) R'OH
deprotection
react	
  with	
  an	
  appropriate	
  alcohol	
  to	
  lead	
  to	
  a	
  carbamate-­‐protected	
  primary	
  amide	
  
3.4	
  	
  The	
  method	
  of	
  deprotection	
  would	
  depend	
  on	
  the	
  choice	
  of	
  alcohol	
  and	
  should	
  
lead	
  to	
  clean	
  isolation	
  of	
  the	
  primary	
  amide	
  4,	
  presumably	
  at	
  the	
  end	
  of	
  a	
  synthetic	
  
sequence.	
  
	
  
Figure	
  1.	
  	
  Synthesis	
  and	
  deprotection	
  of	
  carbamate-­‐protected	
  primary	
  amides	
  via	
  acyl-­‐isocyanates.	
  
	
  
	
  
	
  
RESULTS	
  AND	
  DISCUSSION	
  
	
   Our	
  investigation	
  began	
  with	
  the	
  conditions	
  to	
  form	
  acyl-­‐isocyanates	
  from	
  
activated	
  carboxylic	
  acid	
  derivatives	
  and	
  silver	
  cyanate.5	
  	
  	
  After	
  several	
  attempts	
  to	
  
isolate	
  the	
  acyl-­‐isocyanate	
  yielded	
  complex	
  mixtures,	
  it	
  became	
  obvious	
  that	
  the	
  
best	
  approach	
  was	
  to	
  create	
  the	
  reactive	
  acyl-­‐isocyanate	
  2	
  in	
  situ,	
  and	
  proceed	
  with	
  
a	
  one-­‐pot	
  addition	
  of	
  the	
  alcohol	
  to	
  ultimately	
  isolate	
  the	
  quite	
  stable	
  acyl-­‐
carbamates	
  3.	
  	
  These	
  reactions	
  proved	
  to	
  be	
  highly	
  dependent	
  on	
  the	
  reaction	
  
conditions	
  and	
  resulted	
  in	
  alternate	
  reaction	
  paths	
  (Figure	
  2)	
  that	
  created	
  varying	
  
amounts	
  of	
  carboxylic	
  acid	
  5,	
  ester	
  6,	
  amide	
  7,	
  anhydride	
  8,	
  and	
  imide	
  9	
  side-­‐
products.	
  	
  A	
  survey	
  of	
  reaction	
  conditions	
  and	
  resulting	
  product	
  ratios	
  can	
  be	
  seen	
  
in	
  Table	
  1.	
  
	
  
Figure	
  2.	
  	
  Observed	
  side-­‐products	
  that	
  result	
  from	
  the	
  presence	
  of	
  water	
  in	
  the	
  reaction,	
  or	
  
incomplete	
  consumption	
  of	
  acyl	
  halide.	
  
	
  	
  
	
  
	
  
R Cl
O O
NR
O
N
H
R
O
O
R'
R
O
NH2
C
OAgNCO R'OH
1 2 3 4
deprotection
R Cl
O O
NR
O
N
H
R
O
O
R'C
OAgNCO R'OH
1 2 3
R OH
O
5
R OBn
O
6
R
O
NH2
7
path
a
path
b
path
c
path
d
R O R
O O
8
R N
H
R
O O
9
 
Table	
  1.	
  	
  Product	
  ratios	
  from	
  the	
  reaction	
  of	
  hexanoyl	
  chloride	
  with	
  AgNCO,	
  and	
  then	
  ethanol.	
  
	
   conditions	
   	
   	
   product	
  ratios	
   	
  
entry	
   solvent/reagents	
   temp	
   time	
   3	
   5	
   6	
   7	
   8	
   9	
  
1	
   Et2O	
   reflux	
   10	
  min	
   0	
   79	
   0	
   14	
   7	
   0	
  
2	
   Et2O	
   RT	
   5	
  hr	
   0	
   77	
   0	
   12	
   11	
   0	
  
3	
   Et2O	
  (anhydrous)	
   RT	
   5	
  hr	
   50	
   2	
   4	
   16	
   4	
   24	
  
4	
   Et2O	
  (anhydrous)	
   reflux	
   5	
  min	
   94	
   1	
   1	
   1	
   1	
   2	
  
5	
   C6H6	
  (anhydrous)	
   reflux	
  	
   5	
  min	
   85	
   4	
   0	
   1	
   7	
   3	
  
6	
   PhCH3	
  (anhydrous)	
   reflux	
  	
   5	
  min	
   83	
   2	
   0	
   2	
   7	
   6	
  
7	
   	
  	
  	
  	
  NaNCO	
  
Et2O	
  (anhydrous)	
  
reflux	
   5	
  min	
   0	
   0	
   100	
   0	
   0	
   0	
  
	
  
	
  
	
   Hexanoyl	
  chloride	
  was	
  chosen	
  as	
  a	
  simple	
  carboxylic	
  acid	
  derivative	
  and	
  the	
  
initial	
   reactions	
   (entries	
   1-­‐2)	
   began	
   to	
   show	
   the	
   unanticipated	
   reactivity	
   of	
  
intermediates.	
  	
  The	
  reaction	
  with	
  silver	
  cyanate	
  in	
  commercial	
  ethyl	
  ether	
  followed	
  
by	
  addition	
  of	
  ethanol	
  resulted	
  in	
  the	
  isolation	
  of	
  carboxylic	
  acid	
  5	
  and	
  anhydride	
  8,	
  
presumably	
  formed	
  from	
  the	
  reaction	
  of	
  the	
  acyl	
  halide	
  with	
  water	
  (path	
  a).	
  	
  The	
  
isolation	
  of	
  hexanamide	
  7	
  showed	
  that	
  acyl-­‐isocyanate	
  was	
  being	
  formed,	
  but	
  also	
  
being	
  consumed	
  by	
  water	
  as	
  shown	
  in	
  path	
  d.	
  	
  Simply	
  switching	
  to	
  anhydrous	
  ethyl	
  
ether	
  resulted	
  in	
  formation	
  of	
  the	
  desired	
  acyl-­‐carbamate,	
  but	
  time	
  and	
  temperature	
  
were	
   also	
   important	
   factors.	
   	
   Extended	
   reaction	
   at	
   room	
   temperature	
   (entry	
   3)	
  
showed	
  the	
  side-­‐products	
  seen	
  above,	
  but	
  also	
  showed	
  ester	
  6	
  that	
  resulted	
  from	
  
unreacted	
  acyl	
  halide	
  via	
  path	
  b,	
  and	
  the	
  symmetric	
  imide	
  9	
  that	
  presumably	
  forms	
  
from	
  an	
  additional	
  acylation	
  of	
  amide	
  7.	
  	
  Raising	
  the	
  temperature	
  to	
  reflux	
  for	
  five	
  
minutes	
  (entry	
  4)	
  produced	
  the	
  best	
  product	
  ratios	
  for	
  these	
  substrates,	
  with	
  near	
  
complete	
  conversion	
  from	
  acyl	
  halide	
  to	
  acyl-­‐isocyanate	
  but	
  limited	
  side-­‐products.	
  	
  
Acceptable	
  results	
  were	
  also	
  obtained	
  with	
  refluxing	
  anhydrous	
  benzene	
  or	
  toluene	
  
(entries	
   5	
   and	
   6),	
   with	
   complete	
   consumption	
   of	
   starting	
   material	
   but	
   greater	
  
production	
  of	
  side-­‐products	
  at	
  these	
  elevated	
  temperatures.	
  	
  	
  Replacement	
  of	
  the	
  
silver	
  salt	
  with	
  sodium	
  cyanate	
  (entry	
  7)	
  resulted	
  in	
  no	
  detectable	
  acyl-­‐carbamate	
  4,	
  
but	
   rather	
   only	
   ester	
   6	
   was	
   observed	
   suggesting	
   that	
   there	
   was	
   no	
   reaction	
   of	
  
cyanate	
  without	
  the	
  assistance	
  of	
  the	
  silver	
  ion.6	
  	
  
  This	
   approach	
   has	
   been	
   shown	
   to	
   be	
   successful	
   for	
   other	
   acyl	
   halide	
  
derivatives,	
   with	
   the	
   ideal	
   reaction	
   conditions	
   dependent	
   on	
   the	
   reactivity	
   of	
   the	
  
carboxylic	
  acid	
  derivative	
  (see	
  Table	
  2).	
  	
  Application	
  of	
  the	
  experimental	
  conditions	
  
above	
  for	
  hexanoyl	
  chloride,	
  silver	
  cyanate	
  and	
  benzyl	
  alcohol	
  produced	
  the	
  CBZ-­‐
protected	
  amide	
  11	
  in	
  excellent	
  isolated	
  yield	
  (entry	
  1).	
  	
  Under	
  identical	
  conditions,	
  
isobutyryl	
  chloride	
  showed	
  some	
  reduction	
  in	
  the	
  yield	
  of	
  12	
  (entry	
  2),	
  but	
  pivaloyl	
  
chloride	
  produced	
  only	
  ester	
  6.	
  	
  This	
  suggests	
  that	
  when	
  the	
  attack	
  by	
  the	
  cyanate	
  
was	
  hindered,	
  the	
  reaction	
  followed	
  alternate	
  path	
  b	
  with	
  the	
  alcohol	
  attacking	
  the	
  
unreacted	
   acyl	
   halide.	
   	
   These	
   competing	
   reaction	
   paths	
   could	
   be	
   attenuated	
   by	
  
changing	
   the	
   reaction	
   conditions.	
   	
   Increasing	
   the	
   reflux	
   time	
   to	
   ten	
   minutes	
   and	
  
adding	
  two	
  equivalents	
  of	
  silver	
  cyanate	
  produced	
  the	
  CBZ-­‐pivalamide	
  13	
  with	
  an	
  
acceptable	
  yield.	
  	
  A	
  similar	
  effect	
  was	
  observed	
  with	
  benzoyl	
  chloride,	
  where	
  ester	
  
was	
   the	
   major	
   product	
   under	
   the	
   conditions	
   above,	
   but	
   five	
   equivalents	
   of	
   silver	
  
cyanate	
  and	
  an	
  hour	
  reflux	
  led	
  to	
  a	
  good	
  yield	
  of	
  the	
  CBZ-­‐benzamide	
  14.	
  	
  Even	
  under	
  
the	
   most	
   strenuous	
   conditions,	
   similar	
   reactions	
   of	
   the	
   hexanoyl-­‐N-­‐hydroxy-­‐
succinimide	
  ester	
  (entry	
  5)	
  led	
  to	
  only	
  the	
  ester	
  6,	
  again	
  suggesting	
  that	
  the	
  cyanate	
  
ion	
  was	
  unable	
  to	
  add	
  to	
  the	
  carbonyl	
  without	
  the	
  concomitant	
  formation	
  of	
  silver	
  
chloride.	
  
Table	
  2.	
  	
  Isolated	
  yields	
  for	
  Cbz-­‐protected	
  amide	
  3	
  in	
  refluxing	
  ethyl	
  ether.	
  
entry	
   electrophile	
   major	
  product	
   yield	
  of	
  3	
  
Eq.	
  
AgNCO	
  
reflux	
  
time	
  
1	
  
hexanoyl	
  
chloride	
  
	
  11	
  
91	
   1.1	
   5	
  min	
  
2	
  
isobutyryl	
  
chloride	
  
	
  12	
  
77	
   1.1	
   5	
  min	
  
3	
  
pivaloyl	
  
chloride	
  
	
  13	
  
67	
   2	
   10	
  min	
  
4	
  
benzoyl	
  
chloride	
  
	
  14	
  
78	
   5	
   1	
  hr	
  
5	
   hexanoyl-­‐OSu	
  
	
  	
  	
  	
   	
  
0	
   5	
   1	
  hr	
  
O
N
H
O
O
O
N
H
O
O
O
N
H
O
O
O
N
H
O
O
O
O
ester only
 
	
   Since	
  the	
  identity	
  of	
  the	
  protecting	
  group	
  is	
  entirely	
  dependent	
  on	
  the	
  alcohol	
  
chosen,	
  numerous	
  protecting	
  groups	
  can	
  be	
  employed	
  using	
  this	
  approach.	
  	
  Table	
  3	
  
demonstrates	
   that	
   synthetic	
   flexibility,	
   with	
   the	
   five	
   minute	
   reflux	
   of	
   hexanoyl	
  
chloride	
   and	
   silver	
   cyanate,	
   followed	
   by	
   the	
   addition	
   of	
   various	
   alcohols.	
   	
   All	
   six	
  
alcohols	
  tested	
  led	
  to	
  good	
  yields	
  of	
  acyl-­‐carbamates	
  15-­‐19	
  regardless	
  of	
  differing	
  
chemical	
  characteristics.	
  	
  All	
  crude	
  reactions	
  showed	
  product	
  ratios	
  similar	
  to	
  the	
  
best	
   conditions	
   in	
   Table	
   1,	
   and	
   reduced	
   yields	
   are	
   largely	
   a	
   result	
   of	
   purification	
  
conditions	
  rather	
  than	
  restrictions	
  on	
  the	
  reaction	
  itself.	
  	
  Examples	
  that	
  use	
  alcohols	
  
that	
   could	
   be	
   more	
   easily	
   removed	
   during	
   purification	
   tended	
   to	
   lead	
   to	
   higher	
  
isolated	
   yields.	
   	
   The	
   chosen	
   alcohols	
   permit	
   deprotection	
   using	
   respectively	
  
hydrogenation,	
  acid,	
  base,	
  Pd,	
  fluoride,	
  and	
  photolytic	
  cleavage,	
  and	
  certainly	
  other	
  
alcohols	
  should	
  be	
  applicable	
  as	
  well.	
  	
  	
  
	
  
Table	
  3.	
  	
  Isolated	
  yields	
  for	
  the	
  reaction	
  of	
  hexanoyl	
  chloride	
  with	
  AgNCO,	
  and	
  then	
  alcohol.	
  
entry	
   alcohol	
  (R’OH)	
   product	
  
protecting	
  
group	
  
yield	
  3	
  
1	
   benzyl	
  alcohol	
  
	
  	
  	
  	
  11	
  
Cbz	
   91	
  
2	
   tert-­‐butanol	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  15	
  
Boc	
   92	
  
3	
  
9-­‐fluorenyl	
  
methanol	
  
16	
  
Fmoc	
   83	
  
4	
   allyl	
  alcohol	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  17	
  
Alloc	
   86	
  
5	
   2-­‐TMS-­‐ethanol	
  
	
  	
  	
  	
  	
  18	
  
Teoc	
   89	
  
6	
  
o-­‐nitrobenzyl	
  	
  
alcohol	
  
	
  	
  	
  	
  19	
  
oNb	
   78	
  
	
  
	
  
O
N
H
O
O
O
N
H
O
O
O
N
H
O
O
O
N
H
O
O
O
N
H
O
O
Si
O
N
H
O
O NO2
  Acyl-­‐isocyanates	
   have	
   proven	
   to	
   be	
   an	
   exceptional	
   intermediates	
   in	
   the	
  
formation	
  of	
  carbamate-­‐protected	
  primary	
  amides.	
  	
  Acyl	
  chloride	
  derivatives	
  can	
  be	
  
cleanly	
   converted	
   to	
   acyl-­‐isocyanates	
   with	
   silver	
   cyanate	
   in	
   refluxing	
   ethyl	
   ether,	
  
and	
   addition	
   of	
   an	
   appropriate	
   alcohol	
   leads	
   to	
   the	
   carbamate-­‐protected	
   primary	
  
amide.	
   	
   Each	
   electrophile	
   provides	
   a	
   different	
   balance	
   of	
   competing	
   pathways,	
   so	
  
each	
  new	
  substrate	
  requires	
  optimization	
  of	
  reaction	
  times,	
  equivalents	
  of	
  reagents	
  
and	
  potentially	
  solvent.	
  	
  Since	
  the	
  protecting	
  group	
  is	
  purely	
  a	
  consequence	
  of	
  the	
  
alcohol	
  chosen,	
  a	
  variety	
  of	
  orthogonal	
  protecting	
  groups	
  can	
  be	
  utilized.	
  	
  With	
  this	
  
in	
  mind,	
  primary	
  amides	
  can	
  be	
  synthesized	
  in	
  a	
  straightforward	
  fashion,	
  remain	
  
protected	
   through	
   a	
   synthetic	
   sequence,	
   and	
   be	
   subjected	
   to	
   facile	
   deprotection	
  
through	
  a	
  variety	
  of	
  methods.	
  	
  	
  
	
  
	
  
Experimental	
  
	
  
General information. Anhydrous solvents (ethyl ether, benene, toluene) used in
moisture sensitive reactions were obtained from an MBraun solvent purification
system (MB-SPS). Glassware in these reactions was oven-dried overnight. Ethyl
ether for non-anhydrous conditions was purchased from Fisher Scientific and used
directly. Silver cyanate was placed under high-vacuum for several hours in an
effort to remove any residual moisture. Reagent quality hexanoyl chloride,
benzoyl chloride, isobutyryl chloride, pivaloyl chloride, benzyl alcohol, 9-
fluorenylmethanol, allyl alcohol, 2-(trimethylsilyl)ethanol, 2-nitrobenzyl alcohol,
hexanoic acid, hexanoic anhydride, and hexanoamide were obtained from Aldrich
and used directly. Anhydrous tert-butanol was obtained from Aldrich.
	
  
N-­‐hexanoylhexamide	
  (9)	
  	
  Hexanoamide	
  (90	
  mg,	
  
0.78	
  mmol)	
  was	
  dissolved	
  in	
  15	
  mL	
  anhydrous	
  THF.	
  	
  
Sodium	
  hydride	
  was	
  added	
  as	
  a	
  60%	
  suspension	
  in	
  
mineral	
  oil	
  (65mg,	
  1.63	
  mmol).	
  	
  The	
  solution	
  formed	
  a	
  slush	
  and	
  was	
  stirred	
  for	
  30	
  
min.	
  	
  Hexanoyl	
  chloride	
  (108	
  mg,	
  0.80mmol)	
  was	
  added	
  and	
  the	
  solution	
  was	
  stirred	
  
O
N
H
O
for	
  an	
  additional	
  hour.	
  	
  A	
  solution	
  of	
  10%	
  aqueous	
  HCl	
  (30	
  mL)	
  was	
  slowly	
  added,	
  
followed	
  by	
  50	
  mL	
  of	
  dichloromethane.	
  	
  The	
  organic	
  layer	
  was	
  separated,	
  dried	
  with	
  
sodium	
  sulfate	
  and	
  evaporated	
  to	
  dryness.	
  	
  The	
  resulting	
  pale	
  solid	
  with	
  obvious	
  
liquid	
  was	
  triturated	
  with	
  diethyl	
  ether.	
  	
  The	
  soluble	
  fraction	
  contained	
  unreacted	
  
hexanoamide,	
  hexanoic	
  acid	
  and	
  product,	
  while	
  the	
  insoluble	
  fraction	
  contained	
  
only	
  product	
  (21	
  mg).	
  	
  	
  1H-­‐NMR	
  δ	
  8.72	
  (br,	
  1H),	
  2.59	
  (t,	
  J	
  =	
  7.5	
  Hz,	
  4H),	
  1.65	
  (m,	
  4H),	
  
1.33	
  (m,	
  4H),	
  0.90	
  (t,	
  7.1	
  Hz);	
  13C-­‐NMR	
  δ	
  175.8,	
  150.9,	
  135.0,	
  128.7,	
  67.6,	
  40.2,	
  27.0;	
  
HRMS	
  calcd.	
  for	
  [C12H23NO2	
  -­‐	
  M+Na]	
  requires	
  m/z	
  236.1626,	
  observed	
  236.1632.	
  
	
  
	
  ethyl	
  hexanoylcarbamate	
  (10)	
  	
  The	
  general	
  procedure	
  
for	
  the	
  evaluation	
  of	
  reaction	
  conditions	
  shown	
  in	
  Table	
  
1	
  started	
  by	
  dissolving	
  hexanoyl	
  chloride	
  (100	
  mg,	
  0.74	
  
mmol)	
  in	
  5	
  mL	
  anhydrous	
  ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (122	
  mg,	
  0.81	
  mmol)	
  was	
  
added	
  at	
  which	
  point	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  
under	
  an	
  atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐
warmed	
  heating	
  mantle.	
  	
  The	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  the	
  indicated	
  
time.	
  	
  The	
  heat	
  was	
  then	
  removed	
  and	
  ethanol	
  (45	
  mg,	
  0.98	
  mmol)	
  was	
  added.	
  	
  The	
  
reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  The	
  
insoluble	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  	
  NMR	
  product	
  ratios	
  were	
  reported	
  from	
  the	
  
integrations	
  of	
  the	
  alpha-­‐methylene	
  signals,	
  which	
  were	
  distinguishable	
  for	
  each	
  
side-­‐product.	
  	
  An	
  analytical	
  sample	
  was	
  obtained	
  by	
  recrystallizing	
  the	
  white	
  solid	
  
in	
  dichloromethane/hexanes	
  at	
  -­‐20˚C.	
  	
  1H-­‐NMR	
  δ	
  7.89	
  (br,	
  1H),	
  4.21	
  (q,	
  J	
  =	
  7.1	
  Hz,	
  
2H),	
  2.75	
  (t,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  1.66	
  (m,	
  2H),	
  1.33	
  (m,	
  4H),	
  1.31	
  (t,	
  J	
  =	
  7.1	
  Hz,	
  3H),	
  	
  0.90	
  
(t,	
  7.1	
  Hz);	
  13C-­‐NMR	
  δ	
  175.3,	
  152.1,	
  62.,	
  36.3,	
  31.5,	
  24.2,	
  22.6,	
  14.4,	
  14.1;	
  HRMS	
  calcd.	
  
for	
  [C9H18NO3	
  -­‐	
  M+H]	
  requires	
  m/z	
  188.1287,	
  observed	
  188.1286.	
  
	
  
	
  benzyl	
  hexanoylcarbamate	
  (11)	
  	
  Hexanoyl	
  
chloride	
  (200	
  mg,	
  1.49	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  
anhydrous	
  ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (245	
  mg,	
  1.63	
  
O
N
H
O
O
O
N
H
O
O
mmol)	
  was	
  added	
  and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  
under	
  an	
  atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐
warmed	
  heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  five	
  
minutes.	
  	
  After	
  this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  benzyl	
  alcohol	
  (177	
  mg,	
  1.64	
  
mmol)	
  was	
  added.	
  	
  The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  
under	
  nitrogen.	
  	
  The	
  insoluble	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  
solvent	
  was	
  removed	
  under	
  reduced	
  pressure.	
  yielding	
  337	
  mg	
  (91%)	
  of	
  white	
  
solid.	
  	
  1H-­‐NMR	
  δ	
  7.84	
  (br,	
  1H),	
  7.36	
  (m,	
  5H),	
  5.17	
  (s,	
  2H),	
  2.73	
  (t,	
  J	
  =	
  7.6	
  Hz,	
  4H),	
  1.64	
  
(m,	
  2H),	
  1.32	
  (m,	
  4H),	
  0.89	
  (t,	
  7.1	
  Hz);	
  13C-­‐NMR	
  δ	
  175.0,	
  151.9,	
  135.2,	
  128.9,	
  128.8,	
  
128.5,	
  67.9,	
  36.3,	
  31.5,	
  24.1,	
  22.6,	
  14.1;	
  	
  HRMS	
  calcd.	
  for	
  [C14H19NO3	
  -­‐	
  M+H]	
  requires	
  
m/z	
  250.1443,	
  observed	
  250.1445.	
  
	
  
benzyl	
  isobutyrylcarbamate	
  (12)	
  	
  Isobutyryl	
  chloride	
  
(211	
  mg,	
  1.98	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  anhydrous	
  
ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (366	
  mg,	
  2.44	
  mmol)	
  was	
  added	
  
and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  
atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  
heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  five	
  minutes.	
  	
  
After	
  this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  benzyl	
  alcohol	
  (214	
  mg,	
  1.98	
  mmol)	
  was	
  
added.	
  	
  The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  
The	
  insoluble	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  yielding	
  338	
  mg	
  (77%)	
  of	
  white	
  solid.	
  	
  1H-­‐NMR	
  δ	
  
8.19	
  (br,	
  1H),	
  7.33	
  (m,	
  5H),	
  5.14	
  (s,	
  2H),	
  3.12	
  (m,	
  1H),	
  1.14	
  (d,	
  J	
  =	
  7.2	
  Hz,	
  9H);	
  13C-­‐
NMR	
  δ 178.1,	
  151.5,	
  135.1,	
  128.6,	
  128.6,	
  128.3,	
  67.6,	
  34.4,	
  18.8,	
  18.7;	
  HRMS	
  calcd.	
  
for	
  [C12H15NO3	
  -­‐	
  M+Na]	
  requires	
  m/z	
  244.0950,	
  observed	
  244.0951.	
  
	
  
benzyl	
  pivaloylcarbamate	
  (13)	
  	
  Pivaloyl	
  chloride	
  (210	
  
mg,	
  1.74	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  anhydrous	
  ethyl	
  
ether.	
  	
  Silver	
  cyanate	
  (536	
  mg,	
  3.59	
  mmol)	
  was	
  added	
  and	
  
the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  atmosphere	
  
O
N
H
O
O
O
N
H
O
O
of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  heating	
  
mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  ten	
  minutes.	
  	
  After	
  this	
  
time,	
  the	
  heat	
  was	
  removed	
  and	
  benzyl	
  alcohol	
  (197	
  mg,	
  1.82	
  mmol)	
  was	
  added.	
  	
  
The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  The	
  
insoluble	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  yielding	
  276	
  mg	
  (67%)	
  of	
  white	
  solid.	
  	
  	
  1H-­‐NMR	
  δ	
  
7.99	
  (br,	
  1H),	
  7.36	
  (m,	
  5H),	
  5.16	
  (s,	
  2H),	
  1.21	
  (s,	
  9H);	
  13C-­‐NMR	
  
δ 174.8, 37.6, 31.5, 24.3, 22.6, 14.1; 	
  HRMS	
  calcd.	
  for	
  [C13H18NO3	
  -­‐	
  M+H]	
  requires	
  m/z	
  
236.1287,	
  observed	
  236.1292.	
  
	
  
benzyl	
  benzoylcarbamate	
  (14)	
  	
  Benzoyl	
  chloride	
  (200	
  
mg,	
  1.42	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  anhydrous	
  ethyl	
  
ether.	
  	
  Silver	
  cyanate	
  (1.07	
  g,	
  7.14	
  mmol)	
  was	
  added	
  and	
  
the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  atmosphere	
  
of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  heating	
  
mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  one	
  hour.	
  	
  After	
  this	
  time,	
  
the	
  heat	
  was	
  removed	
  and	
  benzyl	
  alcohol	
  (150	
  µL,	
  1.45	
  mmol)	
  was	
  added.	
  	
  The	
  
reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  The	
  
remaining	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  oil	
  was	
  recrystallized	
  using	
  diethyl	
  
ether/hexanes	
  to	
  yield	
  283	
  mg	
  (78%)	
  white	
  solid.	
  	
  	
  1H-­‐NMR	
  δ	
  8.43	
  (br,	
  1H),	
  7.81	
  (d,	
  ,	
  
J	
  =	
  8.2,	
  2H),	
  7.56	
  (t,	
  J	
  =	
  7.4,	
  1H),	
  7.44	
  (t,	
  J	
  =	
  7.4,	
  1.4	
  Hz	
  2H),	
  7.34	
  (m,	
  5H),	
  5.20	
  (s,	
  2H);	
  
13C-­‐NMR	
  δ	
  165.2,	
  151.2,	
  135.1,	
  133.2,	
  133.0,	
  129.0,	
  128.9,	
  128.8,	
  127.9,	
  68.1;	
  HRMS	
  
calcd.	
  for	
  [C15H14NO3	
  -­‐	
  M+H]	
  requires	
  m/z	
  256.0974,	
  observed	
  256.0974.	
  
	
  
tert-­‐butyl	
  hexanoylcarbamate	
  (15)	
  	
  Hexanoyl	
  chloride	
  
(200	
  mg,	
  1.49	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  anhydrous	
  
ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (234	
  mg,	
  1.56	
  mmol)	
  was	
  
added	
  and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  
atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  
O
N
H
O
O
O
N
H
O
O
heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  5	
  minutes.	
  	
  After	
  
this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  tert-­‐butanol	
  (212	
  µL,	
  2.23	
  mmol)	
  was	
  added.	
  	
  
The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  The	
  
remaining	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  oil	
  was	
  purified	
  using	
  column	
  
chromatography	
  (silica:	
  dichloromethane)	
  to	
  yield	
  294	
  mg	
  (92%)	
  clear	
  oil.	
  	
  	
  1H-­‐NMR	
  
δ	
  7.44	
  (br,	
  1H),	
  2.71	
  (t,	
  J	
  =	
  7.5	
  Hz,	
  4H),	
  1.65	
  (m,	
  2H),	
  1.50	
  (s,	
  9H),	
  1.32	
  (m,	
  4H),	
  0.90	
  
(t,	
  7.1	
  Hz);	
  	
  13C-­‐NMR	
  δ	
  175.3,	
  150.8,	
  82.4,	
  36.2,	
  31.4,	
  28.1,	
  24.1,22.5,14.0;	
  HRMS	
  
calcd.	
  for	
  [C11H21NO3	
  -­‐	
  M+Na]	
  requires	
  m/z	
  238.1419,	
  observed	
  238.1427.	
  
	
  
	
  fluorenylmethyl	
  hexanoylcarbamate	
  (16)	
  	
  
Hexanoyl	
  chloride	
  (203	
  mg,	
  1.51	
  mmol)	
  was	
  
dissolved	
  in	
  5	
  mL	
  anhydrous	
  ethyl	
  ether.	
  	
  Silver	
  
cyanate	
  (248	
  mg,	
  1.65	
  mmol)	
  was	
  added	
  and	
  the	
  
reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  atmosphere	
  of	
  
nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  heating	
  mantle	
  
where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  5	
  minutes.	
  	
  After	
  this	
  time,	
  the	
  
heat	
  was	
  removed	
  and	
  9-­‐fluorenylmethanol	
  (300mg,	
  1.53	
  mmol)	
  was	
  added.	
  	
  The	
  
reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen,	
  during	
  
which	
  time	
  an	
  obvious	
  white	
  precipitate	
  formed.	
  	
  The	
  remaining	
  solids	
  were	
  
removed	
  using	
  vacuum	
  filtration	
  and	
  washed	
  with	
  dichloromethane,	
  after	
  which	
  the	
  
solvents	
  were	
  removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  white	
  solid	
  was	
  
recrystallized	
  using	
  dichloromethane/hexanes	
  to	
  yield	
  422	
  mg	
  (83%)	
  white	
  solid.	
  	
  	
  
1H-­‐NMR	
  δ	
  7.82	
  (br,	
  1H),	
  7.77	
  (d,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  7.59	
  (d,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  7.42	
  (t,	
  J	
  =	
  7.6	
  
Hz,	
  1H),	
  7.32	
  (t,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  4.49	
  (d,	
  J	
  =	
  6.8	
  Hz,	
  2H),	
  4.24	
  (t,	
  J	
  =	
  6.8	
  Hz,	
  1H),	
  2.72	
  (t,	
  
J	
  =	
  7.5	
  Hz,	
  2H),	
  1.66	
  (m,	
  2H),	
  1.32	
  (m,	
  4H),	
  0.89	
  (t,	
  J	
  =	
  7.1	
  Hz,	
  3H);	
  	
  13C-­‐NMR	
  
δ 175.4,	
  152.0,	
  143.4,	
  141.6,	
  128.2,	
  127.4,	
  125.2,	
  120.4,	
  67.9,	
  46.9,	
  36.3,	
  31.5,	
  24.1,	
  2
2.6,	
  14.1;	
  HRMS	
  calcd.	
  for	
  [C21H24NO3	
  -­‐	
  M+H]	
  requires	
  m/z	
  338.1756,	
  observed	
  
338.1756.
	
  
O
N
H
O
O
allyl	
  hexanoylcarbamate	
  (17)	
  	
  Hexanoyl	
  chloride	
  
(200	
  mg,	
  1.49	
  mmol)	
  was	
  dissolved	
  in	
  5	
  mL	
  anhydrous	
  
ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (234	
  mg,	
  1.56	
  mmol)	
  was	
  
added	
  and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  
atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  
heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  5	
  minutes.	
  	
  After	
  
this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  allyl	
  alcohol	
  (110	
  µL,	
  1.62	
  mmol)	
  was	
  added.	
  	
  
The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  nitrogen.	
  	
  The	
  
remaining	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  solvent	
  was	
  
removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  oil	
  was	
  recrystallized	
  using	
  
dichloromethane/hexanes	
  to	
  yield	
  255	
  mg	
  (86%)	
  white	
  solid.	
  	
  1H-­‐NMR	
  δ	
  8.00	
  (br,	
  
1H),	
  7.33	
  (m,	
  5H),	
  5.92	
  (ddt,	
  J	
  =	
  17.2,	
  10.4,	
  5.7	
  Hz	
  1H),	
  5.37	
  (dq,	
  J	
  =	
  17.2,	
  1.4	
  Hz	
  1H),	
  
5.29	
  (dq,	
  J	
  =	
  10.4,	
  1.4	
  Hz	
  1H),	
  4.65	
  (dt,	
  J	
  =	
  5.7,	
  1.4	
  Hz	
  1H),	
  2.75	
  (t,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  1.65	
  
(m,	
  2H),	
  1.33	
  (m,	
  4H),	
  0.89	
  (t,	
  J	
  =	
  7.2	
  Hz,	
  3H);	
  13C-­‐NMR	
  δ	
  175.3,	
  151.8,	
  131.6,	
  119.2,	
  
66.8,	
  36.3,	
  31.5,	
  24.1,	
  22.6,	
  14.1;	
  HRMS	
  calcd.	
  for	
  [C10H17NO3	
  -­‐	
  M+Na]	
  requires	
  m/z	
  
222.1106,	
  observed	
  222.1108.	
  
	
  
2-­‐(trimethylsilyl)ethyl	
  hexanoylcarbamate	
  (18)	
  
Hexanoyl	
  chloride	
  (200	
  mg,	
  1.49	
  mmol)	
  was	
  
dissolved	
  in	
  5	
  mL	
  anhydrous	
  ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (234	
  mg,	
  1.56	
  mmol)	
  was	
  
added	
  and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  placed	
  under	
  an	
  
atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  on	
  a	
  pre-­‐warmed	
  
heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  5	
  minutes.	
  	
  After	
  
this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  2-­‐(trimethylsilyl)ethanol	
  (194	
  mg,	
  1.64	
  mmol)	
  
was	
  added.	
  	
  The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  under	
  
nitrogen.	
  	
  The	
  remaining	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  the	
  
solvent	
  was	
  removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  oil	
  was	
  purified	
  using	
  
column	
  chromatography	
  (silica:	
  dichloromethane)	
  to	
  yield	
  342	
  mg	
  (89%)	
  clear	
  oil.	
  	
  	
  	
  
1H-­‐NMR	
  δ	
  7.85	
  (br,	
  1H),	
  4.22	
  (m,	
  2H),	
  2.72	
  (t,	
  J	
  =	
  7.6	
  Hz,	
  2H),	
  1.63	
  (m,	
  2H),	
  1.31	
  (m,	
  
4H),	
  1.01	
  (m,	
  2H),	
  0.87	
  (t	
  J	
  =	
  7.0	
  Hz,	
  3H),	
  0.03	
  (s,	
  9H);	
  13C-­‐NMR	
  δ	
  175.4,	
  152.2,	
  64.9,	
  
O
N
H
O
O
Si
O
N
H
O
O
36.3,	
  31.5,	
  24.2,	
  22.6,	
  17.7,	
  14.1,	
  -­‐1.3;	
  HRMS	
  calcd.	
  for	
  [C12H25NO3Si	
  -­‐	
  M+Na]	
  requires	
  
m/z	
  282.1501,	
  observed	
  282.1500.	
  
	
  
2-­‐nitrobenzyl	
  hexanoylcarbamate	
  (19)	
  Hexanoyl	
  
chloride	
  (200	
  mg,	
  1.49	
  mmol)	
  was	
  dissolved	
  in	
  5	
  
mL	
  anhydrous	
  ethyl	
  ether.	
  	
  Silver	
  cyanate	
  (234	
  mg,	
  
1.56	
  mmol)	
  was	
  added	
  and	
  the	
  reaction	
  flask	
  was	
  fitted	
  with	
  a	
  reaction	
  condenser,	
  
placed	
  under	
  an	
  atmosphere	
  of	
  nitrogen	
  and	
  the	
  solution	
  was	
  immediately	
  placed	
  
on	
  a	
  pre-­‐warmed	
  heating	
  mantle	
  where	
  the	
  heterogeneous	
  solution	
  was	
  refluxed	
  for	
  
5	
  minutes.	
  	
  After	
  this	
  time,	
  the	
  heat	
  was	
  removed	
  and	
  2-­‐nitrobenyl	
  alcohol	
  (228	
  mg,	
  
1.49	
  mmol)	
  was	
  added.	
  	
  The	
  reaction	
  was	
  stirred	
  at	
  room	
  temperature	
  for	
  one	
  hour	
  
under	
  nitrogen.	
  	
  The	
  remaining	
  solids	
  were	
  removed	
  using	
  vacuum	
  filtration,	
  and	
  
the	
  solids	
  were	
  washed	
  twice	
  with	
  10	
  mL	
  dichloromethane.	
  	
  The	
  organic	
  filtrates	
  
were	
  combined	
  and	
  all	
  volatiles	
  were	
  removed	
  under	
  reduced	
  pressure.	
  	
  The	
  crude	
  
solid	
  was	
  purified	
  using	
  recrystallization	
  from	
  hot	
  ethyl	
  ether	
  to	
  yield	
  342	
  mg	
  (78%)	
  
white	
  solid.	
  	
  1H-­‐NMR	
  δ	
  8.15	
  (dd,	
  J	
  =	
  8.2,	
  1.1	
  Hz,	
  9H),	
  7.98	
  (br,	
  1H),	
  7.68	
  (m,	
  2H),	
  7.53	
  
(dt,	
  J	
  =	
  7.6,	
  1.8	
  Hz,	
  9H),	
  5.62	
  (s,	
  2H),	
  2.75	
  (t	
  J	
  =	
  7.5	
  Hz,	
  2H);	
  1.67	
  (m,	
  2H),	
  1.34	
  (m,	
  
4H),	
  0.90	
  (t	
  J	
  =	
  7.0	
  Hz,	
  3H);	
  13C-­‐NMR	
  δ 175.0,	
  151.5,	
  147.9,	
  134.3,	
  131.7,	
  129.3,	
  129.2,	
  
125.5,	
  64.6,	
  36.4,	
  31.4,	
  24.1,	
  22.6,	
  14.1;	
  HRMS	
  calcd.	
  for	
  [C14H19N2O5	
  -­‐	
  M+H]	
  requires	
  
m/z	
  295.1294,	
  observed	
  295.1297.	
  
	
  
	
  
	
  
	
  
Acknowledgments.	
  	
  This	
  work	
  was	
  supported	
  by	
  the	
  National	
  Science	
  Foundation	
  
(CHE-­‐0852232)	
  and	
  by	
  the	
  American	
  Chemical	
  Society	
  Petroleum	
  Research	
  Fund.	
  
	
  
Supporting	
  Information.	
  	
  	
  
1
H and 13
C NMR spectra for all compounds. This material is available free of
charge via the Internet at http://pubs.acs.org.
	
  
	
  
O
N
H
O
O NO2
 
	
  
	
  References	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Bach,	
  A.;	
  Stuhr-­‐Hansen,	
  N.;	
  Thorsen,	
  T.	
  S.;	
  Bork,	
  N.;	
  Moreira,	
  I.	
  S.;	
  Frydenvang,	
  K.;	
  
Padrah,	
  S.;	
  Christensen,	
  B.;	
  Madsen,	
  K.	
  L.;	
  Weinstein,	
  H.;	
  Gether,	
  U.;	
  Strømgaard,	
  
K.	
  Org.	
  Biomol.	
  Chem.,	
  2010,	
  8,	
  4281-­‐4288.	
  	
  DeRisi,	
  C.;	
  Ferrano,	
  L.;	
  Pollini,	
  G.	
  P.;	
  
Tanganelli,	
  S.;	
  Valente,	
  F.;	
  Veronese,	
  A.	
  	
  Bioorg.	
  Med.	
  Chem.	
  2008,	
  16,	
  9904-­‐9910.	
  	
  
Yeung,	
  Y.-­‐Y.;	
  Corey,	
  E.	
  J.	
  Tetrahedron	
  Lett.,	
  2007,	
  48,	
  7567-­‐7570.	
  	
  Li,	
  K.;	
  Cheng,	
  X.;	
  
Hii,	
  K.	
  K.	
  Eur.	
  J.	
  Org.	
  Chem.,	
  	
  2004,	
  959-­‐964.	
  	
  Hayashi,	
  Y.;	
  Shoji,	
  M.;	
  Yamaguchi,	
  S.;	
  
Mukaiyama,	
  T.;	
  Yamaguchi,	
  J.;	
  Kakeya,	
  H.;	
  Osada,	
  H.	
  Org.	
  Lett.,	
  2003,	
  5,	
  2287-­‐
2290.	
  	
  	
  
2	
  For	
  a	
  review	
  of	
  acyl	
  isocyanate	
  chemistry	
  see:	
  Nuridzhanyan,	
  K.	
  A.	
  Russ.	
  Chem.	
  Rev.,	
  
1970,	
  39,	
  130-­‐139.	
  
3	
  Acyl-­‐isocyanates	
  have	
  also	
  been	
  synthesized	
  from	
  the	
  reaction	
  of	
  an	
  already-­‐
formed	
  primary	
  amide	
  and	
  oxalyl	
  chloride,	
  but	
  this	
  typically	
  requires	
  a	
  period	
  of	
  
elevated	
  reaction	
  temperatures.	
  	
  Speziale,	
  J.;	
  Smith,	
  L.	
  R.	
  	
  Org.	
  Synth.	
  Coll.	
  Vol.	
  V,	
  
1973,	
  46,	
  16-­‐17.	
  
4	
  Roos,	
  G.	
  H.	
  P.;	
  Donovan,	
  A.	
  R.	
  	
  Sci.	
  Tech,	
  2000,	
  5,	
  11-­‐23.	
  	
  Koppel,	
  I.;	
  Koppel,	
  J.;	
  
Koppel,	
  I.;	
  Leito,	
  I.;	
  Pihl,	
  V.;	
  Wallin,	
  A.;	
  Grehn,	
  L.;	
  Ragnarsson,	
  U.	
  J.	
  CHem.	
  Soc.	
  
Perkin	
  Trans	
  2,	
  1993,	
  655-­‐658.	
  	
  Smith,	
  L.	
  R.;	
  Speziale,	
  A.	
  J.;	
  Fedder,	
  J.	
  E.,	
  J.	
  Org.	
  
Chem.,	
  1969,	
  34,	
  633-­‐637.	
  
5	
  Hill,	
  A.	
  J.;	
  Degnan,	
  W.	
  M.	
  	
  J.	
  Am.	
  Chem.	
  Soc.,	
  1940,	
  62,	
  1595-­‐1596.	
  	
  Steinman,	
  H.	
  G.;	
  
Doak,	
  G.	
  O.;	
  Eagle,	
  H.	
  	
  J.	
  Am.	
  Chem.	
  Soc.,	
  1944,	
  66,	
  192-­‐194.	
  	
  Ludek,	
  O.	
  R.;	
  Marquez,	
  
V.	
  E.	
  	
  Synthesis,	
  2007,	
  3451-­‐3460.	
  
6	
  Deng,	
  M.-­‐Z.;	
  Caubere,	
  P.;	
  Senet,	
  J.	
  P.;	
  Lecolier,	
  S.,	
  	
  Tetrahedron,	
  1988,	
  44,	
  6079-­‐6086.	
  

More Related Content

What's hot

Oxidation of carbonyl compounds
Oxidation of carbonyl compounds Oxidation of carbonyl compounds
Oxidation of carbonyl compounds ScifySolution
 
Carboxylic acid derivatives
Carboxylic acid  derivativesCarboxylic acid  derivatives
Carboxylic acid derivativesjagan vana
 
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7thNattawut Huayyai
 
Ankur organic presentation
Ankur organic presentationAnkur organic presentation
Ankur organic presentationANKUR CHHABRA
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesisPRUTHVIRAJ K
 
Aldehydes and Ketones Reactions
Aldehydes and Ketones ReactionsAldehydes and Ketones Reactions
Aldehydes and Ketones ReactionsPharmacy Universe
 
Chapter 6 Carboxylic acids Ssters and other derivatives
Chapter 6 Carboxylic acids Ssters and other derivativesChapter 6 Carboxylic acids Ssters and other derivatives
Chapter 6 Carboxylic acids Ssters and other derivativesGizel Santiago
 
Benzoin Condenstation Reaction
Benzoin Condenstation ReactionBenzoin Condenstation Reaction
Benzoin Condenstation ReactionPRUTHVIRAJ K
 
Carbonyl Compounds 2
Carbonyl Compounds 2Carbonyl Compounds 2
Carbonyl Compounds 2gueste4c39d
 
Carboxilic acids, amides and esters
Carboxilic acids, amides and estersCarboxilic acids, amides and esters
Carboxilic acids, amides and estersLaura Verastegui
 
carboxylic acid sem ii poc 1
carboxylic acid  sem ii poc 1 carboxylic acid  sem ii poc 1
carboxylic acid sem ii poc 1 AtulBendale2
 
Acidity of Carboxylic Acid Explanation - Organic Chemistry
Acidity of Carboxylic Acid Explanation - Organic Chemistry Acidity of Carboxylic Acid Explanation - Organic Chemistry
Acidity of Carboxylic Acid Explanation - Organic Chemistry SHUBHAM CARPENTAR
 

What's hot (20)

Oxidation of carbonyl compounds
Oxidation of carbonyl compounds Oxidation of carbonyl compounds
Oxidation of carbonyl compounds
 
Carboxylic acid derivatives
Carboxylic acid  derivativesCarboxylic acid  derivatives
Carboxylic acid derivatives
 
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th
21.1 - Part 1 Structure and Properties of Carboxylic Acid Derivatives - Wade 7th
 
Chapter 7 ester
Chapter 7 esterChapter 7 ester
Chapter 7 ester
 
Carboxylic acid
Carboxylic acidCarboxylic acid
Carboxylic acid
 
Carboxylic acid
Carboxylic acidCarboxylic acid
Carboxylic acid
 
Ankur organic presentation
Ankur organic presentationAnkur organic presentation
Ankur organic presentation
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesis
 
Chapter 4 carboxylic acid
Chapter 4 carboxylic acidChapter 4 carboxylic acid
Chapter 4 carboxylic acid
 
Aldehydes and Ketones Reactions
Aldehydes and Ketones ReactionsAldehydes and Ketones Reactions
Aldehydes and Ketones Reactions
 
Chapter 6 Carboxylic acids Ssters and other derivatives
Chapter 6 Carboxylic acids Ssters and other derivativesChapter 6 Carboxylic acids Ssters and other derivatives
Chapter 6 Carboxylic acids Ssters and other derivatives
 
summer
summersummer
summer
 
Reaction of carboxylic acid
Reaction of carboxylic acidReaction of carboxylic acid
Reaction of carboxylic acid
 
Benzoin Condenstation Reaction
Benzoin Condenstation ReactionBenzoin Condenstation Reaction
Benzoin Condenstation Reaction
 
Carbonyl Compounds 2
Carbonyl Compounds 2Carbonyl Compounds 2
Carbonyl Compounds 2
 
Carboxylic Acid.
Carboxylic Acid.Carboxylic Acid.
Carboxylic Acid.
 
Carboxilic acids, amides and esters
Carboxilic acids, amides and estersCarboxilic acids, amides and esters
Carboxilic acids, amides and esters
 
carboxylic acid sem ii poc 1
carboxylic acid  sem ii poc 1 carboxylic acid  sem ii poc 1
carboxylic acid sem ii poc 1
 
Acidity of Carboxylic Acid Explanation - Organic Chemistry
Acidity of Carboxylic Acid Explanation - Organic Chemistry Acidity of Carboxylic Acid Explanation - Organic Chemistry
Acidity of Carboxylic Acid Explanation - Organic Chemistry
 
pub1_gayan abeykoon
pub1_gayan abeykoonpub1_gayan abeykoon
pub1_gayan abeykoon
 

Viewers also liked

François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...
François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...
François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...infoclio.ch
 
Expanding your options with the MQ Appliance
Expanding your options with the MQ ApplianceExpanding your options with the MQ Appliance
Expanding your options with the MQ ApplianceAnthony Beardsmore
 
Building a Highly available messaging hub using the IBM MQ Appliance
Building a Highly available messaging hub using the IBM MQ ApplianceBuilding a Highly available messaging hub using the IBM MQ Appliance
Building a Highly available messaging hub using the IBM MQ ApplianceAnthony Beardsmore
 
A Parents Perspective
A  Parents PerspectiveA  Parents Perspective
A Parents PerspectiveKay Parkinson
 
IBM MQ Appliance - Administration simplified
IBM MQ Appliance - Administration simplifiedIBM MQ Appliance - Administration simplified
IBM MQ Appliance - Administration simplifiedAnthony Beardsmore
 
Untitled presentation
Untitled presentationUntitled presentation
Untitled presentationHimel Dey
 
John Heeder user guide sample 2
John Heeder user guide sample 2John Heeder user guide sample 2
John Heeder user guide sample 2John Heeder
 
Materi sanlat
Materi sanlatMateri sanlat
Materi sanlatelbasil
 
мария смирнова портфолио
мария смирнова портфолиомария смирнова портфолио
мария смирнова портфолиоMaria Smirnova
 
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...Andre Williams
 

Viewers also liked (19)

sunny and vaibhav
sunny and vaibhavsunny and vaibhav
sunny and vaibhav
 
François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...
François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...
François Vallotton, Professeur d’histoire contemporaine, Université de Lausan...
 
Expanding your options with the MQ Appliance
Expanding your options with the MQ ApplianceExpanding your options with the MQ Appliance
Expanding your options with the MQ Appliance
 
La Paix
La PaixLa Paix
La Paix
 
Sainte Rita De Cascia
Sainte Rita De CasciaSainte Rita De Cascia
Sainte Rita De Cascia
 
City Ambulance Profile-June 2015
City Ambulance Profile-June 2015City Ambulance Profile-June 2015
City Ambulance Profile-June 2015
 
Estatic company profile
Estatic company profileEstatic company profile
Estatic company profile
 
Building a Highly available messaging hub using the IBM MQ Appliance
Building a Highly available messaging hub using the IBM MQ ApplianceBuilding a Highly available messaging hub using the IBM MQ Appliance
Building a Highly available messaging hub using the IBM MQ Appliance
 
A Parents Perspective
A  Parents PerspectiveA  Parents Perspective
A Parents Perspective
 
IBM MQ Appliance - Administration simplified
IBM MQ Appliance - Administration simplifiedIBM MQ Appliance - Administration simplified
IBM MQ Appliance - Administration simplified
 
Untitled presentation
Untitled presentationUntitled presentation
Untitled presentation
 
CAL Presentation-July 2015
CAL Presentation-July 2015CAL Presentation-July 2015
CAL Presentation-July 2015
 
Science
ScienceScience
Science
 
Ibm mq appliance slideshare
Ibm mq appliance slideshareIbm mq appliance slideshare
Ibm mq appliance slideshare
 
John Heeder user guide sample 2
John Heeder user guide sample 2John Heeder user guide sample 2
John Heeder user guide sample 2
 
Materi sanlat
Materi sanlatMateri sanlat
Materi sanlat
 
мария смирнова портфолио
мария смирнова портфолиомария смирнова портфолио
мария смирнова портфолио
 
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...
The Effect of RAT on Wages for Professional Basketball Players 0505.docx upda...
 
Google+your business.presentation
Google+your business.presentation Google+your business.presentation
Google+your business.presentation
 

Similar to Protected Primary Amides from Acyl Isocyanates

A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...fer18400
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reactionmariam1020
 
Class 12 Cbse Chemistry 2010 Sample Paper Model 2
Class 12 Cbse Chemistry 2010 Sample Paper Model 2 Class 12 Cbse Chemistry 2010 Sample Paper Model 2
Class 12 Cbse Chemistry 2010 Sample Paper Model 2 Sunaina Rawat
 
Synthesis of Oxazolidinones
Synthesis of OxazolidinonesSynthesis of Oxazolidinones
Synthesis of OxazolidinonesPeter ten Holte
 
Oxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavageOxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavagePallavi Kumbhar
 
Ch organic chemitry
Ch organic chemitryCh organic chemitry
Ch organic chemitryRajiv Jain
 
Notes on Aldehydes and Ketones - JEE Main 2014
Notes on Aldehydes and Ketones - JEE Main 2014 Notes on Aldehydes and Ketones - JEE Main 2014
Notes on Aldehydes and Ketones - JEE Main 2014 Ednexa
 
1. General mechanism Carboxylic acids can be esterified by alcohols .pdf
  1. General mechanism Carboxylic acids can be esterified by alcohols .pdf  1. General mechanism Carboxylic acids can be esterified by alcohols .pdf
1. General mechanism Carboxylic acids can be esterified by alcohols .pdfarasequ
 
Organic Chemistry Name Reaction with mechanisms 140
Organic Chemistry Name Reaction with mechanisms 140Organic Chemistry Name Reaction with mechanisms 140
Organic Chemistry Name Reaction with mechanisms 140TusharRanjanNath
 
Qiu_Lisa_CENTC_Poster_Final
Qiu_Lisa_CENTC_Poster_FinalQiu_Lisa_CENTC_Poster_Final
Qiu_Lisa_CENTC_Poster_FinalLisa Qiu
 
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...Dr Venkatesh P
 
Reduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOPReduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOPSowmya B U Jain
 
ORGANIC CHEMISTRY 1.2- AMINES
ORGANIC CHEMISTRY 1.2- AMINESORGANIC CHEMISTRY 1.2- AMINES
ORGANIC CHEMISTRY 1.2- AMINESshahzadebaujiti
 

Similar to Protected Primary Amides from Acyl Isocyanates (20)

org lett tbt
org lett tbtorg lett tbt
org lett tbt
 
Ch20
Ch20Ch20
Ch20
 
Paper
PaperPaper
Paper
 
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
 
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
 
Class 12 Cbse Chemistry 2010 Sample Paper Model 2
Class 12 Cbse Chemistry 2010 Sample Paper Model 2 Class 12 Cbse Chemistry 2010 Sample Paper Model 2
Class 12 Cbse Chemistry 2010 Sample Paper Model 2
 
Synthesis of Oxazolidinones
Synthesis of OxazolidinonesSynthesis of Oxazolidinones
Synthesis of Oxazolidinones
 
Oxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavageOxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond Cleavage
 
Ch organic chemitry
Ch organic chemitryCh organic chemitry
Ch organic chemitry
 
123713AB lecture10
123713AB lecture10123713AB lecture10
123713AB lecture10
 
Notes on Aldehydes and Ketones - JEE Main 2014
Notes on Aldehydes and Ketones - JEE Main 2014 Notes on Aldehydes and Ketones - JEE Main 2014
Notes on Aldehydes and Ketones - JEE Main 2014
 
Latha Chemistry ppt.pptx
Latha Chemistry ppt.pptxLatha Chemistry ppt.pptx
Latha Chemistry ppt.pptx
 
c2cy20438j
c2cy20438jc2cy20438j
c2cy20438j
 
1. General mechanism Carboxylic acids can be esterified by alcohols .pdf
  1. General mechanism Carboxylic acids can be esterified by alcohols .pdf  1. General mechanism Carboxylic acids can be esterified by alcohols .pdf
1. General mechanism Carboxylic acids can be esterified by alcohols .pdf
 
Organic Chemistry Name Reaction with mechanisms 140
Organic Chemistry Name Reaction with mechanisms 140Organic Chemistry Name Reaction with mechanisms 140
Organic Chemistry Name Reaction with mechanisms 140
 
Qiu_Lisa_CENTC_Poster_Final
Qiu_Lisa_CENTC_Poster_FinalQiu_Lisa_CENTC_Poster_Final
Qiu_Lisa_CENTC_Poster_Final
 
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...
Oxazole - Synthesis of Oxazole - Reactions of Oxazole - Medicinal uses of Oxa...
 
Reduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOPReduction with (S)-BINAL-H and (R,R)-DIOP
Reduction with (S)-BINAL-H and (R,R)-DIOP
 
ORGANIC CHEMISTRY 1.2- AMINES
ORGANIC CHEMISTRY 1.2- AMINESORGANIC CHEMISTRY 1.2- AMINES
ORGANIC CHEMISTRY 1.2- AMINES
 
rsc paper
rsc paperrsc paper
rsc paper
 

Protected Primary Amides from Acyl Isocyanates

  • 1. Protected  primary  amides  from  acyl  isocyanates   Stephen  C.  Hahneman,  Megan  M.  Hanly  and  Brian  R.  Linton   Department  of  Chemistry,  College  of  the  Holy  Cross,  Worcester,  MA  01610   Corresponding  Author:  blinton@holycross.edu     TOC  Graphic       Abstract:    A  procedure  has  been  developed  for  the  convenient   synthesis  of  primary  amides  from  carboxylic  acid  derivatives.    At  the   heart  of  this  approach  is  the  formation  of  acyl  isocyanates,  which  can   be  reacted  with  alcohols  to  produce  carbamoyl-­‐protected  primary   amides.    Different  alcohols  have  been  used  to  produce  amides  that   contain  Cbz,  Boc,  Fmoc,  Alloc,  Teoc  and  o-­‐nitrobenzyl  protecting   groups,  permitting  deprotection  using  a  variety  of  methods.       INTRODUCTION     A  variety  of  synthetic  methods  exist  for  the  production  of  primary  amides,   but  each  has  potential  downsides.    The  majority  of  approaches  require  the  use  of   gaseous   ammonia,   ammonium   hydroxide   or   other   ammonium   salts.     The   loss   of   reagent  ammonia  can  lead  to  reduced  yields,  and  the  highly  basic  nature  of  reaction   conditions   can   at   times   be   problematic.     Additionally,   traditional   organic   purification  techniques  can  be  less  successful  due  to  the  polar  nature  of  the  primary   amide   and   potential   insolubility   in   organic   solvents.     A   synthetic   scheme   that   smoothly  produces  a  primary  amide  with  a  protecting  group  that  maximizes  organic   solubility  would  be  attractive  for  a  variety  of  organic  and  peptide  targets.     Carbamate  protection  of  the  amide  nitrogen  would  be  ideal  due  to  the  well-­‐ established   methods   of   removal   and   purification,   but   few   literature   examples   of   acyl-­‐carbamates  exist.    They  have  been  synthesized  through  either  carbamoylation   of   an   amide   or   acylation   of   a   carbamate,   but   the   reduced   nucleophilicity   of   these   nitrogens  typically  requires  strongly  basic  conditions.1    Another  approach  towards  a   protected   primary   amide   is   to   introduce   the   nitrogen   atom   to   a   carboxylic   acid   derivative  using  the  cyanate  anion  (Figure  1).2,3    The  resulting  acyl  isocyanates  2  can   R Cl O O N H R O O R' R O NH2 1) AgNCO 2) R'OH deprotection
  • 2. react  with  an  appropriate  alcohol  to  lead  to  a  carbamate-­‐protected  primary  amide   3.4    The  method  of  deprotection  would  depend  on  the  choice  of  alcohol  and  should   lead  to  clean  isolation  of  the  primary  amide  4,  presumably  at  the  end  of  a  synthetic   sequence.     Figure  1.    Synthesis  and  deprotection  of  carbamate-­‐protected  primary  amides  via  acyl-­‐isocyanates.         RESULTS  AND  DISCUSSION     Our  investigation  began  with  the  conditions  to  form  acyl-­‐isocyanates  from   activated  carboxylic  acid  derivatives  and  silver  cyanate.5      After  several  attempts  to   isolate  the  acyl-­‐isocyanate  yielded  complex  mixtures,  it  became  obvious  that  the   best  approach  was  to  create  the  reactive  acyl-­‐isocyanate  2  in  situ,  and  proceed  with   a  one-­‐pot  addition  of  the  alcohol  to  ultimately  isolate  the  quite  stable  acyl-­‐ carbamates  3.    These  reactions  proved  to  be  highly  dependent  on  the  reaction   conditions  and  resulted  in  alternate  reaction  paths  (Figure  2)  that  created  varying   amounts  of  carboxylic  acid  5,  ester  6,  amide  7,  anhydride  8,  and  imide  9  side-­‐ products.    A  survey  of  reaction  conditions  and  resulting  product  ratios  can  be  seen   in  Table  1.     Figure  2.    Observed  side-­‐products  that  result  from  the  presence  of  water  in  the  reaction,  or   incomplete  consumption  of  acyl  halide.           R Cl O O NR O N H R O O R' R O NH2 C OAgNCO R'OH 1 2 3 4 deprotection R Cl O O NR O N H R O O R'C OAgNCO R'OH 1 2 3 R OH O 5 R OBn O 6 R O NH2 7 path a path b path c path d R O R O O 8 R N H R O O 9
  • 3.   Table  1.    Product  ratios  from  the  reaction  of  hexanoyl  chloride  with  AgNCO,  and  then  ethanol.     conditions       product  ratios     entry   solvent/reagents   temp   time   3   5   6   7   8   9   1   Et2O   reflux   10  min   0   79   0   14   7   0   2   Et2O   RT   5  hr   0   77   0   12   11   0   3   Et2O  (anhydrous)   RT   5  hr   50   2   4   16   4   24   4   Et2O  (anhydrous)   reflux   5  min   94   1   1   1   1   2   5   C6H6  (anhydrous)   reflux     5  min   85   4   0   1   7   3   6   PhCH3  (anhydrous)   reflux     5  min   83   2   0   2   7   6   7          NaNCO   Et2O  (anhydrous)   reflux   5  min   0   0   100   0   0   0         Hexanoyl  chloride  was  chosen  as  a  simple  carboxylic  acid  derivative  and  the   initial   reactions   (entries   1-­‐2)   began   to   show   the   unanticipated   reactivity   of   intermediates.    The  reaction  with  silver  cyanate  in  commercial  ethyl  ether  followed   by  addition  of  ethanol  resulted  in  the  isolation  of  carboxylic  acid  5  and  anhydride  8,   presumably  formed  from  the  reaction  of  the  acyl  halide  with  water  (path  a).    The   isolation  of  hexanamide  7  showed  that  acyl-­‐isocyanate  was  being  formed,  but  also   being  consumed  by  water  as  shown  in  path  d.    Simply  switching  to  anhydrous  ethyl   ether  resulted  in  formation  of  the  desired  acyl-­‐carbamate,  but  time  and  temperature   were   also   important   factors.     Extended   reaction   at   room   temperature   (entry   3)   showed  the  side-­‐products  seen  above,  but  also  showed  ester  6  that  resulted  from   unreacted  acyl  halide  via  path  b,  and  the  symmetric  imide  9  that  presumably  forms   from  an  additional  acylation  of  amide  7.    Raising  the  temperature  to  reflux  for  five   minutes  (entry  4)  produced  the  best  product  ratios  for  these  substrates,  with  near   complete  conversion  from  acyl  halide  to  acyl-­‐isocyanate  but  limited  side-­‐products.     Acceptable  results  were  also  obtained  with  refluxing  anhydrous  benzene  or  toluene   (entries   5   and   6),   with   complete   consumption   of   starting   material   but   greater   production  of  side-­‐products  at  these  elevated  temperatures.      Replacement  of  the   silver  salt  with  sodium  cyanate  (entry  7)  resulted  in  no  detectable  acyl-­‐carbamate  4,   but   rather   only   ester   6   was   observed   suggesting   that   there   was   no   reaction   of   cyanate  without  the  assistance  of  the  silver  ion.6    
  • 4.   This   approach   has   been   shown   to   be   successful   for   other   acyl   halide   derivatives,   with   the   ideal   reaction   conditions   dependent   on   the   reactivity   of   the   carboxylic  acid  derivative  (see  Table  2).    Application  of  the  experimental  conditions   above  for  hexanoyl  chloride,  silver  cyanate  and  benzyl  alcohol  produced  the  CBZ-­‐ protected  amide  11  in  excellent  isolated  yield  (entry  1).    Under  identical  conditions,   isobutyryl  chloride  showed  some  reduction  in  the  yield  of  12  (entry  2),  but  pivaloyl   chloride  produced  only  ester  6.    This  suggests  that  when  the  attack  by  the  cyanate   was  hindered,  the  reaction  followed  alternate  path  b  with  the  alcohol  attacking  the   unreacted   acyl   halide.     These   competing   reaction   paths   could   be   attenuated   by   changing   the   reaction   conditions.     Increasing   the   reflux   time   to   ten   minutes   and   adding  two  equivalents  of  silver  cyanate  produced  the  CBZ-­‐pivalamide  13  with  an   acceptable  yield.    A  similar  effect  was  observed  with  benzoyl  chloride,  where  ester   was   the   major   product   under   the   conditions   above,   but   five   equivalents   of   silver   cyanate  and  an  hour  reflux  led  to  a  good  yield  of  the  CBZ-­‐benzamide  14.    Even  under   the   most   strenuous   conditions,   similar   reactions   of   the   hexanoyl-­‐N-­‐hydroxy-­‐ succinimide  ester  (entry  5)  led  to  only  the  ester  6,  again  suggesting  that  the  cyanate   ion  was  unable  to  add  to  the  carbonyl  without  the  concomitant  formation  of  silver   chloride.   Table  2.    Isolated  yields  for  Cbz-­‐protected  amide  3  in  refluxing  ethyl  ether.   entry   electrophile   major  product   yield  of  3   Eq.   AgNCO   reflux   time   1   hexanoyl   chloride    11   91   1.1   5  min   2   isobutyryl   chloride    12   77   1.1   5  min   3   pivaloyl   chloride    13   67   2   10  min   4   benzoyl   chloride    14   78   5   1  hr   5   hexanoyl-­‐OSu             0   5   1  hr   O N H O O O N H O O O N H O O O N H O O O O ester only
  • 5.     Since  the  identity  of  the  protecting  group  is  entirely  dependent  on  the  alcohol   chosen,  numerous  protecting  groups  can  be  employed  using  this  approach.    Table  3   demonstrates   that   synthetic   flexibility,   with   the   five   minute   reflux   of   hexanoyl   chloride   and   silver   cyanate,   followed   by   the   addition   of   various   alcohols.     All   six   alcohols  tested  led  to  good  yields  of  acyl-­‐carbamates  15-­‐19  regardless  of  differing   chemical  characteristics.    All  crude  reactions  showed  product  ratios  similar  to  the   best   conditions   in   Table   1,   and   reduced   yields   are   largely   a   result   of   purification   conditions  rather  than  restrictions  on  the  reaction  itself.    Examples  that  use  alcohols   that   could   be   more   easily   removed   during   purification   tended   to   lead   to   higher   isolated   yields.     The   chosen   alcohols   permit   deprotection   using   respectively   hydrogenation,  acid,  base,  Pd,  fluoride,  and  photolytic  cleavage,  and  certainly  other   alcohols  should  be  applicable  as  well.         Table  3.    Isolated  yields  for  the  reaction  of  hexanoyl  chloride  with  AgNCO,  and  then  alcohol.   entry   alcohol  (R’OH)   product   protecting   group   yield  3   1   benzyl  alcohol          11   Cbz   91   2   tert-­‐butanol                          15   Boc   92   3   9-­‐fluorenyl   methanol   16   Fmoc   83   4   allyl  alcohol                    17   Alloc   86   5   2-­‐TMS-­‐ethanol            18   Teoc   89   6   o-­‐nitrobenzyl     alcohol          19   oNb   78       O N H O O O N H O O O N H O O O N H O O O N H O O Si O N H O O NO2
  • 6.   Acyl-­‐isocyanates   have   proven   to   be   an   exceptional   intermediates   in   the   formation  of  carbamate-­‐protected  primary  amides.    Acyl  chloride  derivatives  can  be   cleanly   converted   to   acyl-­‐isocyanates   with   silver   cyanate   in   refluxing   ethyl   ether,   and   addition   of   an   appropriate   alcohol   leads   to   the   carbamate-­‐protected   primary   amide.     Each   electrophile   provides   a   different   balance   of   competing   pathways,   so   each  new  substrate  requires  optimization  of  reaction  times,  equivalents  of  reagents   and  potentially  solvent.    Since  the  protecting  group  is  purely  a  consequence  of  the   alcohol  chosen,  a  variety  of  orthogonal  protecting  groups  can  be  utilized.    With  this   in  mind,  primary  amides  can  be  synthesized  in  a  straightforward  fashion,  remain   protected   through   a   synthetic   sequence,   and   be   subjected   to   facile   deprotection   through  a  variety  of  methods.           Experimental     General information. Anhydrous solvents (ethyl ether, benene, toluene) used in moisture sensitive reactions were obtained from an MBraun solvent purification system (MB-SPS). Glassware in these reactions was oven-dried overnight. Ethyl ether for non-anhydrous conditions was purchased from Fisher Scientific and used directly. Silver cyanate was placed under high-vacuum for several hours in an effort to remove any residual moisture. Reagent quality hexanoyl chloride, benzoyl chloride, isobutyryl chloride, pivaloyl chloride, benzyl alcohol, 9- fluorenylmethanol, allyl alcohol, 2-(trimethylsilyl)ethanol, 2-nitrobenzyl alcohol, hexanoic acid, hexanoic anhydride, and hexanoamide were obtained from Aldrich and used directly. Anhydrous tert-butanol was obtained from Aldrich.   N-­‐hexanoylhexamide  (9)    Hexanoamide  (90  mg,   0.78  mmol)  was  dissolved  in  15  mL  anhydrous  THF.     Sodium  hydride  was  added  as  a  60%  suspension  in   mineral  oil  (65mg,  1.63  mmol).    The  solution  formed  a  slush  and  was  stirred  for  30   min.    Hexanoyl  chloride  (108  mg,  0.80mmol)  was  added  and  the  solution  was  stirred   O N H O
  • 7. for  an  additional  hour.    A  solution  of  10%  aqueous  HCl  (30  mL)  was  slowly  added,   followed  by  50  mL  of  dichloromethane.    The  organic  layer  was  separated,  dried  with   sodium  sulfate  and  evaporated  to  dryness.    The  resulting  pale  solid  with  obvious   liquid  was  triturated  with  diethyl  ether.    The  soluble  fraction  contained  unreacted   hexanoamide,  hexanoic  acid  and  product,  while  the  insoluble  fraction  contained   only  product  (21  mg).      1H-­‐NMR  δ  8.72  (br,  1H),  2.59  (t,  J  =  7.5  Hz,  4H),  1.65  (m,  4H),   1.33  (m,  4H),  0.90  (t,  7.1  Hz);  13C-­‐NMR  δ  175.8,  150.9,  135.0,  128.7,  67.6,  40.2,  27.0;   HRMS  calcd.  for  [C12H23NO2  -­‐  M+Na]  requires  m/z  236.1626,  observed  236.1632.      ethyl  hexanoylcarbamate  (10)    The  general  procedure   for  the  evaluation  of  reaction  conditions  shown  in  Table   1  started  by  dissolving  hexanoyl  chloride  (100  mg,  0.74   mmol)  in  5  mL  anhydrous  ethyl  ether.    Silver  cyanate  (122  mg,  0.81  mmol)  was   added  at  which  point  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed   under  an  atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐ warmed  heating  mantle.    The  heterogeneous  solution  was  refluxed  for  the  indicated   time.    The  heat  was  then  removed  and  ethanol  (45  mg,  0.98  mmol)  was  added.    The   reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.    The   insoluble  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.    NMR  product  ratios  were  reported  from  the   integrations  of  the  alpha-­‐methylene  signals,  which  were  distinguishable  for  each   side-­‐product.    An  analytical  sample  was  obtained  by  recrystallizing  the  white  solid   in  dichloromethane/hexanes  at  -­‐20˚C.    1H-­‐NMR  δ  7.89  (br,  1H),  4.21  (q,  J  =  7.1  Hz,   2H),  2.75  (t,  J  =  7.6  Hz,  2H),  1.66  (m,  2H),  1.33  (m,  4H),  1.31  (t,  J  =  7.1  Hz,  3H),    0.90   (t,  7.1  Hz);  13C-­‐NMR  δ  175.3,  152.1,  62.,  36.3,  31.5,  24.2,  22.6,  14.4,  14.1;  HRMS  calcd.   for  [C9H18NO3  -­‐  M+H]  requires  m/z  188.1287,  observed  188.1286.      benzyl  hexanoylcarbamate  (11)    Hexanoyl   chloride  (200  mg,  1.49  mmol)  was  dissolved  in  5  mL   anhydrous  ethyl  ether.    Silver  cyanate  (245  mg,  1.63   O N H O O O N H O O
  • 8. mmol)  was  added  and  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed   under  an  atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐ warmed  heating  mantle  where  the  heterogeneous  solution  was  refluxed  for  five   minutes.    After  this  time,  the  heat  was  removed  and  benzyl  alcohol  (177  mg,  1.64   mmol)  was  added.    The  reaction  was  stirred  at  room  temperature  for  one  hour   under  nitrogen.    The  insoluble  solids  were  removed  using  vacuum  filtration,  and  the   solvent  was  removed  under  reduced  pressure.  yielding  337  mg  (91%)  of  white   solid.    1H-­‐NMR  δ  7.84  (br,  1H),  7.36  (m,  5H),  5.17  (s,  2H),  2.73  (t,  J  =  7.6  Hz,  4H),  1.64   (m,  2H),  1.32  (m,  4H),  0.89  (t,  7.1  Hz);  13C-­‐NMR  δ  175.0,  151.9,  135.2,  128.9,  128.8,   128.5,  67.9,  36.3,  31.5,  24.1,  22.6,  14.1;    HRMS  calcd.  for  [C14H19NO3  -­‐  M+H]  requires   m/z  250.1443,  observed  250.1445.     benzyl  isobutyrylcarbamate  (12)    Isobutyryl  chloride   (211  mg,  1.98  mmol)  was  dissolved  in  5  mL  anhydrous   ethyl  ether.    Silver  cyanate  (366  mg,  2.44  mmol)  was  added   and  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an   atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed   heating  mantle  where  the  heterogeneous  solution  was  refluxed  for  five  minutes.     After  this  time,  the  heat  was  removed  and  benzyl  alcohol  (214  mg,  1.98  mmol)  was   added.    The  reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.     The  insoluble  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.  yielding  338  mg  (77%)  of  white  solid.    1H-­‐NMR  δ   8.19  (br,  1H),  7.33  (m,  5H),  5.14  (s,  2H),  3.12  (m,  1H),  1.14  (d,  J  =  7.2  Hz,  9H);  13C-­‐ NMR  δ 178.1,  151.5,  135.1,  128.6,  128.6,  128.3,  67.6,  34.4,  18.8,  18.7;  HRMS  calcd.   for  [C12H15NO3  -­‐  M+Na]  requires  m/z  244.0950,  observed  244.0951.     benzyl  pivaloylcarbamate  (13)    Pivaloyl  chloride  (210   mg,  1.74  mmol)  was  dissolved  in  5  mL  anhydrous  ethyl   ether.    Silver  cyanate  (536  mg,  3.59  mmol)  was  added  and   the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an  atmosphere   O N H O O O N H O O
  • 9. of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed  heating   mantle  where  the  heterogeneous  solution  was  refluxed  for  ten  minutes.    After  this   time,  the  heat  was  removed  and  benzyl  alcohol  (197  mg,  1.82  mmol)  was  added.     The  reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.    The   insoluble  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.  yielding  276  mg  (67%)  of  white  solid.      1H-­‐NMR  δ   7.99  (br,  1H),  7.36  (m,  5H),  5.16  (s,  2H),  1.21  (s,  9H);  13C-­‐NMR   δ 174.8, 37.6, 31.5, 24.3, 22.6, 14.1;  HRMS  calcd.  for  [C13H18NO3  -­‐  M+H]  requires  m/z   236.1287,  observed  236.1292.     benzyl  benzoylcarbamate  (14)    Benzoyl  chloride  (200   mg,  1.42  mmol)  was  dissolved  in  5  mL  anhydrous  ethyl   ether.    Silver  cyanate  (1.07  g,  7.14  mmol)  was  added  and   the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an  atmosphere   of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed  heating   mantle  where  the  heterogeneous  solution  was  refluxed  for  one  hour.    After  this  time,   the  heat  was  removed  and  benzyl  alcohol  (150  µL,  1.45  mmol)  was  added.    The   reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.    The   remaining  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.    The  crude  oil  was  recrystallized  using  diethyl   ether/hexanes  to  yield  283  mg  (78%)  white  solid.      1H-­‐NMR  δ  8.43  (br,  1H),  7.81  (d,  ,   J  =  8.2,  2H),  7.56  (t,  J  =  7.4,  1H),  7.44  (t,  J  =  7.4,  1.4  Hz  2H),  7.34  (m,  5H),  5.20  (s,  2H);   13C-­‐NMR  δ  165.2,  151.2,  135.1,  133.2,  133.0,  129.0,  128.9,  128.8,  127.9,  68.1;  HRMS   calcd.  for  [C15H14NO3  -­‐  M+H]  requires  m/z  256.0974,  observed  256.0974.     tert-­‐butyl  hexanoylcarbamate  (15)    Hexanoyl  chloride   (200  mg,  1.49  mmol)  was  dissolved  in  5  mL  anhydrous   ethyl  ether.    Silver  cyanate  (234  mg,  1.56  mmol)  was   added  and  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an   atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed   O N H O O O N H O O
  • 10. heating  mantle  where  the  heterogeneous  solution  was  refluxed  for  5  minutes.    After   this  time,  the  heat  was  removed  and  tert-­‐butanol  (212  µL,  2.23  mmol)  was  added.     The  reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.    The   remaining  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.    The  crude  oil  was  purified  using  column   chromatography  (silica:  dichloromethane)  to  yield  294  mg  (92%)  clear  oil.      1H-­‐NMR   δ  7.44  (br,  1H),  2.71  (t,  J  =  7.5  Hz,  4H),  1.65  (m,  2H),  1.50  (s,  9H),  1.32  (m,  4H),  0.90   (t,  7.1  Hz);    13C-­‐NMR  δ  175.3,  150.8,  82.4,  36.2,  31.4,  28.1,  24.1,22.5,14.0;  HRMS   calcd.  for  [C11H21NO3  -­‐  M+Na]  requires  m/z  238.1419,  observed  238.1427.      fluorenylmethyl  hexanoylcarbamate  (16)     Hexanoyl  chloride  (203  mg,  1.51  mmol)  was   dissolved  in  5  mL  anhydrous  ethyl  ether.    Silver   cyanate  (248  mg,  1.65  mmol)  was  added  and  the   reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an  atmosphere  of   nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed  heating  mantle   where  the  heterogeneous  solution  was  refluxed  for  5  minutes.    After  this  time,  the   heat  was  removed  and  9-­‐fluorenylmethanol  (300mg,  1.53  mmol)  was  added.    The   reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen,  during   which  time  an  obvious  white  precipitate  formed.    The  remaining  solids  were   removed  using  vacuum  filtration  and  washed  with  dichloromethane,  after  which  the   solvents  were  removed  under  reduced  pressure.    The  crude  white  solid  was   recrystallized  using  dichloromethane/hexanes  to  yield  422  mg  (83%)  white  solid.       1H-­‐NMR  δ  7.82  (br,  1H),  7.77  (d,  J  =  7.6  Hz,  2H),  7.59  (d,  J  =  7.6  Hz,  2H),  7.42  (t,  J  =  7.6   Hz,  1H),  7.32  (t,  J  =  7.6  Hz,  2H),  4.49  (d,  J  =  6.8  Hz,  2H),  4.24  (t,  J  =  6.8  Hz,  1H),  2.72  (t,   J  =  7.5  Hz,  2H),  1.66  (m,  2H),  1.32  (m,  4H),  0.89  (t,  J  =  7.1  Hz,  3H);    13C-­‐NMR   δ 175.4,  152.0,  143.4,  141.6,  128.2,  127.4,  125.2,  120.4,  67.9,  46.9,  36.3,  31.5,  24.1,  2 2.6,  14.1;  HRMS  calcd.  for  [C21H24NO3  -­‐  M+H]  requires  m/z  338.1756,  observed   338.1756.   O N H O O
  • 11. allyl  hexanoylcarbamate  (17)    Hexanoyl  chloride   (200  mg,  1.49  mmol)  was  dissolved  in  5  mL  anhydrous   ethyl  ether.    Silver  cyanate  (234  mg,  1.56  mmol)  was   added  and  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an   atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed   heating  mantle  where  the  heterogeneous  solution  was  refluxed  for  5  minutes.    After   this  time,  the  heat  was  removed  and  allyl  alcohol  (110  µL,  1.62  mmol)  was  added.     The  reaction  was  stirred  at  room  temperature  for  one  hour  under  nitrogen.    The   remaining  solids  were  removed  using  vacuum  filtration,  and  the  solvent  was   removed  under  reduced  pressure.    The  crude  oil  was  recrystallized  using   dichloromethane/hexanes  to  yield  255  mg  (86%)  white  solid.    1H-­‐NMR  δ  8.00  (br,   1H),  7.33  (m,  5H),  5.92  (ddt,  J  =  17.2,  10.4,  5.7  Hz  1H),  5.37  (dq,  J  =  17.2,  1.4  Hz  1H),   5.29  (dq,  J  =  10.4,  1.4  Hz  1H),  4.65  (dt,  J  =  5.7,  1.4  Hz  1H),  2.75  (t,  J  =  7.6  Hz,  2H),  1.65   (m,  2H),  1.33  (m,  4H),  0.89  (t,  J  =  7.2  Hz,  3H);  13C-­‐NMR  δ  175.3,  151.8,  131.6,  119.2,   66.8,  36.3,  31.5,  24.1,  22.6,  14.1;  HRMS  calcd.  for  [C10H17NO3  -­‐  M+Na]  requires  m/z   222.1106,  observed  222.1108.     2-­‐(trimethylsilyl)ethyl  hexanoylcarbamate  (18)   Hexanoyl  chloride  (200  mg,  1.49  mmol)  was   dissolved  in  5  mL  anhydrous  ethyl  ether.    Silver  cyanate  (234  mg,  1.56  mmol)  was   added  and  the  reaction  flask  was  fitted  with  a  reaction  condenser,  placed  under  an   atmosphere  of  nitrogen  and  the  solution  was  immediately  placed  on  a  pre-­‐warmed   heating  mantle  where  the  heterogeneous  solution  was  refluxed  for  5  minutes.    After   this  time,  the  heat  was  removed  and  2-­‐(trimethylsilyl)ethanol  (194  mg,  1.64  mmol)   was  added.    The  reaction  was  stirred  at  room  temperature  for  one  hour  under   nitrogen.    The  remaining  solids  were  removed  using  vacuum  filtration,  and  the   solvent  was  removed  under  reduced  pressure.    The  crude  oil  was  purified  using   column  chromatography  (silica:  dichloromethane)  to  yield  342  mg  (89%)  clear  oil.         1H-­‐NMR  δ  7.85  (br,  1H),  4.22  (m,  2H),  2.72  (t,  J  =  7.6  Hz,  2H),  1.63  (m,  2H),  1.31  (m,   4H),  1.01  (m,  2H),  0.87  (t  J  =  7.0  Hz,  3H),  0.03  (s,  9H);  13C-­‐NMR  δ  175.4,  152.2,  64.9,   O N H O O Si O N H O O
  • 12. 36.3,  31.5,  24.2,  22.6,  17.7,  14.1,  -­‐1.3;  HRMS  calcd.  for  [C12H25NO3Si  -­‐  M+Na]  requires   m/z  282.1501,  observed  282.1500.     2-­‐nitrobenzyl  hexanoylcarbamate  (19)  Hexanoyl   chloride  (200  mg,  1.49  mmol)  was  dissolved  in  5   mL  anhydrous  ethyl  ether.    Silver  cyanate  (234  mg,   1.56  mmol)  was  added  and  the  reaction  flask  was  fitted  with  a  reaction  condenser,   placed  under  an  atmosphere  of  nitrogen  and  the  solution  was  immediately  placed   on  a  pre-­‐warmed  heating  mantle  where  the  heterogeneous  solution  was  refluxed  for   5  minutes.    After  this  time,  the  heat  was  removed  and  2-­‐nitrobenyl  alcohol  (228  mg,   1.49  mmol)  was  added.    The  reaction  was  stirred  at  room  temperature  for  one  hour   under  nitrogen.    The  remaining  solids  were  removed  using  vacuum  filtration,  and   the  solids  were  washed  twice  with  10  mL  dichloromethane.    The  organic  filtrates   were  combined  and  all  volatiles  were  removed  under  reduced  pressure.    The  crude   solid  was  purified  using  recrystallization  from  hot  ethyl  ether  to  yield  342  mg  (78%)   white  solid.    1H-­‐NMR  δ  8.15  (dd,  J  =  8.2,  1.1  Hz,  9H),  7.98  (br,  1H),  7.68  (m,  2H),  7.53   (dt,  J  =  7.6,  1.8  Hz,  9H),  5.62  (s,  2H),  2.75  (t  J  =  7.5  Hz,  2H);  1.67  (m,  2H),  1.34  (m,   4H),  0.90  (t  J  =  7.0  Hz,  3H);  13C-­‐NMR  δ 175.0,  151.5,  147.9,  134.3,  131.7,  129.3,  129.2,   125.5,  64.6,  36.4,  31.4,  24.1,  22.6,  14.1;  HRMS  calcd.  for  [C14H19N2O5  -­‐  M+H]  requires   m/z  295.1294,  observed  295.1297.           Acknowledgments.    This  work  was  supported  by  the  National  Science  Foundation   (CHE-­‐0852232)  and  by  the  American  Chemical  Society  Petroleum  Research  Fund.     Supporting  Information.       1 H and 13 C NMR spectra for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.     O N H O O NO2
  • 13.      References                                                                                                                   1  Bach,  A.;  Stuhr-­‐Hansen,  N.;  Thorsen,  T.  S.;  Bork,  N.;  Moreira,  I.  S.;  Frydenvang,  K.;   Padrah,  S.;  Christensen,  B.;  Madsen,  K.  L.;  Weinstein,  H.;  Gether,  U.;  Strømgaard,   K.  Org.  Biomol.  Chem.,  2010,  8,  4281-­‐4288.    DeRisi,  C.;  Ferrano,  L.;  Pollini,  G.  P.;   Tanganelli,  S.;  Valente,  F.;  Veronese,  A.    Bioorg.  Med.  Chem.  2008,  16,  9904-­‐9910.     Yeung,  Y.-­‐Y.;  Corey,  E.  J.  Tetrahedron  Lett.,  2007,  48,  7567-­‐7570.    Li,  K.;  Cheng,  X.;   Hii,  K.  K.  Eur.  J.  Org.  Chem.,    2004,  959-­‐964.    Hayashi,  Y.;  Shoji,  M.;  Yamaguchi,  S.;   Mukaiyama,  T.;  Yamaguchi,  J.;  Kakeya,  H.;  Osada,  H.  Org.  Lett.,  2003,  5,  2287-­‐ 2290.       2  For  a  review  of  acyl  isocyanate  chemistry  see:  Nuridzhanyan,  K.  A.  Russ.  Chem.  Rev.,   1970,  39,  130-­‐139.   3  Acyl-­‐isocyanates  have  also  been  synthesized  from  the  reaction  of  an  already-­‐ formed  primary  amide  and  oxalyl  chloride,  but  this  typically  requires  a  period  of   elevated  reaction  temperatures.    Speziale,  J.;  Smith,  L.  R.    Org.  Synth.  Coll.  Vol.  V,   1973,  46,  16-­‐17.   4  Roos,  G.  H.  P.;  Donovan,  A.  R.    Sci.  Tech,  2000,  5,  11-­‐23.    Koppel,  I.;  Koppel,  J.;   Koppel,  I.;  Leito,  I.;  Pihl,  V.;  Wallin,  A.;  Grehn,  L.;  Ragnarsson,  U.  J.  CHem.  Soc.   Perkin  Trans  2,  1993,  655-­‐658.    Smith,  L.  R.;  Speziale,  A.  J.;  Fedder,  J.  E.,  J.  Org.   Chem.,  1969,  34,  633-­‐637.   5  Hill,  A.  J.;  Degnan,  W.  M.    J.  Am.  Chem.  Soc.,  1940,  62,  1595-­‐1596.    Steinman,  H.  G.;   Doak,  G.  O.;  Eagle,  H.    J.  Am.  Chem.  Soc.,  1944,  66,  192-­‐194.    Ludek,  O.  R.;  Marquez,   V.  E.    Synthesis,  2007,  3451-­‐3460.   6  Deng,  M.-­‐Z.;  Caubere,  P.;  Senet,  J.  P.;  Lecolier,  S.,    Tetrahedron,  1988,  44,  6079-­‐6086.