3 

2019-02-13

Data Pipeline Casual Talk #DPCT @ 

presented by @yuzutas0


https://www.pexels.com/photo/grayscale-photo-of-metal-building-185039/
WEB #DPCT



KKD 









( / ) 

Tableau
1.
2. 3
3.
4.
5.
@yuzutas0














※


DB id id id etc… ≠ ? 

x : y :SUM( ) ≠ ? 

is ( )






※ 1 PdM & TL 


 



1.
2. 3
3.
4.
5.
3







 
 
 
 

Data Lake
1 



Data Lake














ML 

Data Lake
S3 GCS 





DB Dump 


 
 
 
 

Data Warehouse
Data Warehouse
















Data Warehouse
Hadoop hdfs Redshift BigQuery








 
 
 
 

Data Mart




Data Mart










Data Mart
Re:dash Tableau BI 





Excel 

Excel
※ Excel 

※ / BI 

※

 
 
 
 

1.
2. 3
3.
4.
5.
3
3



 



Q.
A.
PC Excel 

Excel
※
raw 











3 



1
Airflow 

1 Air flow


” ” 

Data


Excel 

Ops






T Data




Ops
Data Ops 

※ n=1
……

→ Hadoop
→ Fluentd


……

→ Excel 

→
Data Ops 

3 

3


or



1.
2. 3
3.
4.
5.



 



3
3 



10 Excel 





1 



※


※



 









/ 









BigQuery
BigQuery 3
BigQuery - Google Cloud Platform
Source

Warehouse



Mart



IF
myapp__source__db
2 

BEM CSS
source
warehouse
mart
DB
WITH 1 1 

WITH
SQL
SQL on
SQL +


+ SQL → grep 

:Cloud Composer (GCP Full Managed Airflow)
1. Tableau 

2. SQL on 

3
No 

→ 

→


Yes 

→ 

→ BigQuery + SQL + Composer
1.
2. 3
3.
4.
5.


→ 





→
Q. 

A.


3 







SRE 

not
Tableau 



Tableau 









Tableau Server CSV → 

S3 

- “Big ball of mud”
SRE 

BigQuery + SQL 











AsIs
S3 → Hadoop → Tableau






1 



ToBe …?
Dev 

Ops 






 



10 SQL 

https://www.sbcr.jp/products/4797376272.html




https://www.shoeisha.co.jp/book/detail/9784798145143


Neal Ford ― 

https://www.oreilly.co.jp/books/9784873118567/


2018 version by @fetarodc

https://www.slideshare.net/tetsutarowatanabe/2018version-115735455
DataOps p165-p168 

268 4 

presented by @yuzutas0

https://www.pexels.com/photo/grayscale-photo-of-metal-building-185039/

データ基盤の3分類と進化的データモデリング #DPCT