SlideShare a Scribd company logo
1 of 34
Download to read offline









2
3
 (PCB)
 , FR-4 ,
/


 JKSimMet, Metsim, Modsim
 PCB

 Trial/Error
4

 ,
 Recycling
 Programming tool: MATLAB R2015a

 PCB
 2 (Copper, FR-4)

 (Dliberation ≒ 600 )
Zhang and Forssberg, 1997, Wen et al., 2005
5
2. :
(a) FR-4 PCB , (b)
(a) (b)
 Modeling

 Shredder, Cut crusher
Dmax = 4 mm

 , FR-4
 : 30%

 500
6
3.
graph
D50 Dmax
 Andrews-Mika diagram

 Beta distribution
modeling

7
4.
Andrews-Mika diagram
𝑝 𝑔 = (1 − 𝐿0 − 𝐿1)
𝑔 𝛼−1
1 − 𝑔 𝛽−1
Beta(𝛼, 𝛽)
𝑔: 품위
𝑝(𝑔) : 특정 입도에서 품위𝑔 의 질량분율
𝐿0: 품위가 0인 입자들의 질량분율
𝐿1: 품위가 1인 입자들의 질량분율
 /
 graph
Andrews-Mika diagram


 : 500
 : 10-60%
8
5.
/

1. Feed
2.
3. Screen size screen Product
4. Screen size
5. Screen size 3,4
Product
Grinding
Mill
Screen undersize
oversize
( - )
( + )
Feed
9
6.
𝑓: Feed (𝑛 × 1)
𝑝: Product (𝑛 × 1)
𝐵: Breakage matrix (𝑛 × 𝑛)
𝑆: Selective matrix (𝑛 × 𝑛)
𝐶: Screening matrix (𝑛 × 𝑛)
𝐼: Identity matrix (𝑛 × 𝑛)

 Grinding and screening matrix (1st stage)
 𝑝 = 𝐵𝑆 + 𝐼 − 𝑆 𝑓 = 𝐷𝑓
 𝑝1
∘
= 𝐶𝑝 = 𝐶𝐷𝑓 = 𝐶 𝐵𝑆 + 𝐼 − 𝑆 𝑓
 𝑝1
∗
= 𝐼 − 𝐶 𝑝 = 𝐼 − 𝐶 𝐷𝑓 = 𝐼 − 𝐶 𝐵𝑆 + 𝐼 − 𝑆 𝑓
 Circulation (nth stage)
 𝑝 𝑛
∘
= 𝐶𝐷𝑝 𝑛−1
∘
= 𝐶𝐷𝐶𝐷𝑝 𝑛−2
∘
= ⋯ = 𝐶𝐷 𝑛
𝑓
 𝑝 𝑛
∗
= 𝐼 − 𝐶 𝐷𝑝 𝑛−1
∘
 𝑝 𝑛 = σ 𝑘=1
𝑛
𝑝 𝑛
∗
 Run the circulation until; 𝑝 𝑛
∘ ≈ 0
oversize
undersize
10
 Matrix
 Breakage matrix: RR dist’n model (b=0.1, n=1)
 Selective matrix: GGS dist’n model (a=0.5, k=1)
 Screening matrix: Ideal partition curve
 * Both breakage and selective functions are size independent
11
7. Breakage, Selective, Screening function graphical expression
𝐹 𝑥 = 1 − 𝑒
−
𝑥
𝑏
𝑛
𝐹 𝑥 =
𝑥
𝜅
𝛼
Start
Stop
𝑝∘
≈ 0 ?
𝑝∘
← 𝐶𝐷𝑓
𝑝∗
← 𝐼 − 𝐶 𝐷𝑓
𝑝 ← 𝑝 + 𝑝∗
Enter 𝑓, 𝐵, 𝑆, 𝐶
Print 𝑝𝐷 ← 𝐵𝑆 + 𝐼 − 𝑆
Initialize 𝑝
𝑓 ← 𝑝∘
yes
no
 Algorithm
12
8. Algorithm
 Knelson concentrator
 5 chamber (fluidizing water)
 chamber
 chamber
13
𝑁
𝑄
PCB 분쇄물
FR-4
9. Knelson concentrator
 Knelson concentrator ( )
 (𝐹𝑑) (𝐹𝑐)
 𝐹𝑑 : , ,
 𝐹𝑐 : , , chamber ,
Fd
Particle properties (𝑑, 𝜌𝑠)
Operating condition (𝑄, 𝑁)
𝑓(𝑑, 𝜌 𝑓, 𝑄)
𝑁
r
𝑄 Fc
𝑓(𝑑, 𝜌𝑠, 𝑟, 𝑁)
14
10. Knelson concentrator

1. Feed Knelson concentrator ( KC)
2. KC chamber /
3. 2.
4. 2. 3. Product1, Product2
15
Feed
Knelson
Concentrator
Operating Condition
Product1
Product2
11.
 Mathematical expression
 𝐹𝑑 =
1
2
𝜌 𝑓 𝑣2 𝐴 𝑠 𝐶 𝐷 =
𝜋
8
𝜌 𝑓 𝐷2 𝑄
𝐴
2
𝐶 𝐷
 𝐹𝑐 =
𝑚𝑉2
𝑟
=
4
6
𝜋3
𝜌𝑠 𝐷3
𝑅𝑁2
 𝑋 =
𝐹 𝑑
𝐹𝑐
=
241
𝜋2 ×
1
𝐴2 𝑅
×
𝜌 𝑓
𝜌 𝑠
×
𝐶 𝐷
𝐷
×
𝑄
𝑁
2
 𝑋 > 1: overflow (tailings)
 𝑋 < 1: underflow (concentrate)
시료의 변수
𝜌𝑠: 입자, 유체의 밀도
𝐷: 입자의 직경
공정 변수
𝑄: 유동수의 유입량
𝑁: chamber의 회전 수
기타 상수
𝐶 𝐷: 입자의 저항계수 (Drag coefficient)
𝐴: 유동수(fluidizing water)의 유입 면적
𝑅: 입자의 회전반경
1st
chamberFeed
2nd
chamber
3rd
chamber
4th
chamber
5th
chamber Tailings
o/f o/f o/f o/f
u/f
o/f
u/f u/f u/f u/f
Concentrate
16
12. Knelson concentrator u/f, o/f
 Algorithm
17
Start
𝑗 ← 1
(grade class)
Enter 𝑄, 𝑁, 𝜌 𝑓, 𝑓
𝑖 ← 1
(particle size)
Initiate 𝑝1, 𝑝2
𝑝1 ← 𝑝1 + 𝑓𝑖,𝑗
𝑋𝑓 𝑖,𝑗
< 1 ?
calc. 𝑋𝑓 𝑖,𝑗
in nth chmb.
𝑛 ← 1
(chamber no.)
End of 𝑗?
End of 𝑖?
𝑛 ← 𝑛 + 1
𝑗 ← 𝑗 + 1
𝑝2 ← 𝑝2 + 𝑓𝑖,𝑗
𝑛 = 5 ?
𝑖 ← 𝑖 + 1
Print 𝑝1, 𝑝2
Stop
no
no
no
no
yes yes
yes
yes
13.
algorithm
 Simulation
 stream
 (Particle size distribution)
 / (Particle size / grade distribution)
 /
 (Grade) vs. (Recovery)
 (Newton’s efficiency)

18
Grinding Mill
Knelson
Concentrator
Product1
Feed
Product2
14.
 Screen size
 Feed
 D80: 2,000 → 110
 D50: 1,800 → 100
 Feed
 Screen size 500
19
15. screen size
simulation
 /
20
16. / / simulation
(aperture size: 500 )
 Fluidizing water /
 Q = 6, 12 L/min ,
/
 u/f o/f
 Fluidizing water
o/f
Yield, Recovery
21
17. Fluidizing water
u/f, o/f / (N=1,000 rpm)
Q = 6 L/min, overflow Q = 12 L/min, overflow
Q = 6 L/min, underflow Q = 12 L/min, underflow
 Fluidizing water
22
18. Fluidizing water
Recovery vs. Grade graph (N = 1,000 rpm)
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
Recovery
Grade of concentrate
Q = 3 L/min
Q = 6 L/min
Q = 9 L/min
Q = 12 L/min
27%
63%
11%
5%
0%
10%
20%
30%
40%
50%
60%
70%
Newton's efficiency
3 L/min 6 L/min 9 L/min 12 L/min
19. Fluidizing water
Newton’s efficiency (N = 1,000 rpm)
 Chamber /
 N=500, 1,000 rpm
/
 Chamber
, u/f
23
20. Chamber
u/f, o/f (Q=6 L/min)
N = 500 rpm, overflow N = 1,000 rpm, overflow
N = 500 rpm, underflow N = 1,000 rpm, underflow
 Chamber /
24
21. Chamber
Recovery vs. Grade graph (Q = 6 L/min)
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
Recovery
Grade of concentrate
N = 1,250 rpm
N = 1,000 rpm
5%
30%
63%
59%
0%
10%
20%
30%
40%
50%
60%
70%
Newton's efficiency
500 rpm 750 rpm 1,000 rpm 1,250 rpm
22. Chamber
Newton’s efficiency (Q = 6 L/min)
N = 750 rpm
N = 500 rpm
←N

 Q: 3, 6, 9, 12 L/min
 N: 500, 750, 1,000 1,250 rpm
 Max. Newton effi.: 63%
#1. Q: 3 L/min, N: 500 rpm
#2. Q: 6 L/min, N: 1,000 rpm
25
63%
5%
0% 0%
43%
30%
5%
1%
27%
63%
11%
5%
0%
59%
44%
11%
0%
10%
20%
30%
40%
50%
60%
70%
3 L/min 6 L/min 9 L/min 12 L/min
500 rpm
750 rpm
1,000 rpm
1,250 rpm
23. Fluidizing water
Chamber
Newton’s efficiency
𝑋 =
𝐹𝑑
𝐹𝑐
=
241
𝜋2
×
1
𝐴2 𝑅
×
𝜌 𝑓
𝜌𝑠
×
𝐶 𝐷
𝐷
×
𝑄
𝑁
2

 : 34.56%
 : 89.29 %
 : 67.74%
26
Grinding Mill
Knelson
Concentrator
Product1
Feed
Product2
Feed Ground product Concentrate Tailings
24. /
① ②
③
④
① ② ③ ④
 ,

 ,
 Knelson concentrator (Newton efficiency)
#1. Q: 3 L/min, N: 500 rpm
#2. Q: 6 L/min, N: 1,000 rpm
 : 34.56%
 : 89.29 %
 : 67.74%
27




28
29
30
 Particle
 (Flowrate) FlowRate 1 x 1
 ( )
 (Components) Componentsi 1 x 2
 i ( ), text
ex> {‘Copper’, ‘FR-4’}
 (Density) Densityi 1 x 2
 i
ex> [2 9]
 (Particle size range) PSRi 1 x 13
 i (Nominal size)
ex> [45 62.5, 90, 125, … 2,800]
31
 Particle ( )
 (Particle size distribution) PSDi 1 x 13
 i
ex> [0.1, 0.15, … 0.1]
 (Grade distribution) GDi,j 13 x 12
 i j
ex> [0 0.1 0.12, … 0.1]
 (Drag coefficient) C_D 1 x 1

ex> 0.47
32
 /

 Particle size, Particle size distribution of feed
 Breakage, Selective and Screening matrix of grinding mill

 Particle size distribution of product
Product
Grinding
Mill
Screen undersize
oversize
( - )
( + )
Feed
33
6.


 Flowrate, Density of solid, Particle size, Particle size distribution,
Drag coefficient of feed
 Rotating number, Flowrate of fluidizing water, Density of the fluid

 Flowrate, Particle size distribution of concentrate and tailings
34
Feed
Knelson
Concentrator
Operating Condition
Product1
Product2
11.

More Related Content

Viewers also liked

Source Citation & Credibility
Source Citation & CredibilitySource Citation & Credibility
Source Citation & Credibilitywarc2015
 
Contributing - Behind the Scenes of the Joomla! Project
Contributing - Behind the Scenes of the Joomla! ProjectContributing - Behind the Scenes of the Joomla! Project
Contributing - Behind the Scenes of the Joomla! ProjectTessa Mero
 
09e02236 101015112940-phpapp02
09e02236 101015112940-phpapp0209e02236 101015112940-phpapp02
09e02236 101015112940-phpapp02MarrCenllon Hia
 
Insurance Sector in 2015
Insurance Sector in 2015Insurance Sector in 2015
Insurance Sector in 2015Baibhav Agrawal
 
01 gdl-nimadearth-40-1-nimade-i
01 gdl-nimadearth-40-1-nimade-i01 gdl-nimadearth-40-1-nimade-i
01 gdl-nimadearth-40-1-nimade-iFajar Deilova
 
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com Lusani Dias
 

Viewers also liked (7)

[IJET-V1I4P9] Author :Su Hlaing Win
[IJET-V1I4P9] Author :Su Hlaing Win[IJET-V1I4P9] Author :Su Hlaing Win
[IJET-V1I4P9] Author :Su Hlaing Win
 
Source Citation & Credibility
Source Citation & CredibilitySource Citation & Credibility
Source Citation & Credibility
 
Contributing - Behind the Scenes of the Joomla! Project
Contributing - Behind the Scenes of the Joomla! ProjectContributing - Behind the Scenes of the Joomla! Project
Contributing - Behind the Scenes of the Joomla! Project
 
09e02236 101015112940-phpapp02
09e02236 101015112940-phpapp0209e02236 101015112940-phpapp02
09e02236 101015112940-phpapp02
 
Insurance Sector in 2015
Insurance Sector in 2015Insurance Sector in 2015
Insurance Sector in 2015
 
01 gdl-nimadearth-40-1-nimade-i
01 gdl-nimadearth-40-1-nimade-i01 gdl-nimadearth-40-1-nimade-i
01 gdl-nimadearth-40-1-nimade-i
 
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com
Herbalife Catálogo julho 2016 - ENCOMENDAS> lu.pegorini@hotmail.com
 

Similar to 150507 2015년 춘계 한국자원리싸이클링학회 발표자료 (박승수)

Water Treatment Plant Design by Damora, Waite, Yu, Maroofian
Water Treatment Plant Design by Damora, Waite, Yu, MaroofianWater Treatment Plant Design by Damora, Waite, Yu, Maroofian
Water Treatment Plant Design by Damora, Waite, Yu, MaroofianJonathan Damora
 
Chapter-2-Size-Reduction.pdf
Chapter-2-Size-Reduction.pdfChapter-2-Size-Reduction.pdf
Chapter-2-Size-Reduction.pdfetay0457
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxmohammeed3
 
Math problem of combing machine
Math problem of combing machineMath problem of combing machine
Math problem of combing machineA Liar
 
Final design of-karr extractor
Final design of-karr extractorFinal design of-karr extractor
Final design of-karr extractorAli Hassan
 
Computer architecture, a quantitative approach (solution for 5th edition)
Computer architecture, a quantitative approach (solution for 5th edition)Computer architecture, a quantitative approach (solution for 5th edition)
Computer architecture, a quantitative approach (solution for 5th edition)Zohaib Ali
 
Plating Broken Wafer
Plating Broken WaferPlating Broken Wafer
Plating Broken WaferLee Kin Nan
 
Yarn calculations-130804183138-phpapp02
Yarn calculations-130804183138-phpapp02Yarn calculations-130804183138-phpapp02
Yarn calculations-130804183138-phpapp02Md Rakibuzzaman
 
Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreportHaris Ahmed
 
Spe yp monthly session hydraulic fracturing technology - april 2021
Spe yp monthly session   hydraulic fracturing technology - april 2021Spe yp monthly session   hydraulic fracturing technology - april 2021
Spe yp monthly session hydraulic fracturing technology - april 2021mohamed atwa
 
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...Komandur Sunder Raj, P.E.
 

Similar to 150507 2015년 춘계 한국자원리싸이클링학회 발표자료 (박승수) (20)

B012420715
B012420715B012420715
B012420715
 
Water Treatment Plant Design by Damora, Waite, Yu, Maroofian
Water Treatment Plant Design by Damora, Waite, Yu, MaroofianWater Treatment Plant Design by Damora, Waite, Yu, Maroofian
Water Treatment Plant Design by Damora, Waite, Yu, Maroofian
 
Chapter-2-Size-Reduction.pdf
Chapter-2-Size-Reduction.pdfChapter-2-Size-Reduction.pdf
Chapter-2-Size-Reduction.pdf
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptx
 
Math problem of combing machine
Math problem of combing machineMath problem of combing machine
Math problem of combing machine
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Final design of-karr extractor
Final design of-karr extractorFinal design of-karr extractor
Final design of-karr extractor
 
Computer architecture, a quantitative approach (solution for 5th edition)
Computer architecture, a quantitative approach (solution for 5th edition)Computer architecture, a quantitative approach (solution for 5th edition)
Computer architecture, a quantitative approach (solution for 5th edition)
 
Plating Broken Wafer
Plating Broken WaferPlating Broken Wafer
Plating Broken Wafer
 
Yarn calculations-130804183138-phpapp02
Yarn calculations-130804183138-phpapp02Yarn calculations-130804183138-phpapp02
Yarn calculations-130804183138-phpapp02
 
EQUIPMENT
EQUIPMENTEQUIPMENT
EQUIPMENT
 
Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreport
 
Plaxis Report.pdf
Plaxis Report.pdfPlaxis Report.pdf
Plaxis Report.pdf
 
Spe yp monthly session hydraulic fracturing technology - april 2021
Spe yp monthly session   hydraulic fracturing technology - april 2021Spe yp monthly session   hydraulic fracturing technology - april 2021
Spe yp monthly session hydraulic fracturing technology - april 2021
 
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
2006 ASME Power Conference Last Stage Performance Considerations in LP Turbin...
 
Prez Baljaa09
Prez Baljaa09Prez Baljaa09
Prez Baljaa09
 
Wtp design
Wtp designWtp design
Wtp design
 
Measurement_and_Units.pptx
Measurement_and_Units.pptxMeasurement_and_Units.pptx
Measurement_and_Units.pptx
 
Drill.pptx
Drill.pptxDrill.pptx
Drill.pptx
 
Eee498 assignment
Eee498 assignmentEee498 assignment
Eee498 assignment
 

150507 2015년 춘계 한국자원리싸이클링학회 발표자료 (박승수)

  • 1.
  • 3. 3  (PCB)  , FR-4 , /    JKSimMet, Metsim, Modsim  PCB   Trial/Error
  • 4. 4   ,  Recycling  Programming tool: MATLAB R2015a 
  • 5.  PCB  2 (Copper, FR-4)   (Dliberation ≒ 600 ) Zhang and Forssberg, 1997, Wen et al., 2005 5 2. : (a) FR-4 PCB , (b) (a) (b)
  • 6.  Modeling   Shredder, Cut crusher Dmax = 4 mm   , FR-4  : 30%   500 6 3. graph D50 Dmax
  • 7.  Andrews-Mika diagram   Beta distribution modeling  7 4. Andrews-Mika diagram 𝑝 𝑔 = (1 − 𝐿0 − 𝐿1) 𝑔 𝛼−1 1 − 𝑔 𝛽−1 Beta(𝛼, 𝛽) 𝑔: 품위 𝑝(𝑔) : 특정 입도에서 품위𝑔 의 질량분율 𝐿0: 품위가 0인 입자들의 질량분율 𝐿1: 품위가 1인 입자들의 질량분율
  • 8.  /  graph Andrews-Mika diagram    : 500  : 10-60% 8 5. /
  • 9.  1. Feed 2. 3. Screen size screen Product 4. Screen size 5. Screen size 3,4 Product Grinding Mill Screen undersize oversize ( - ) ( + ) Feed 9 6.
  • 10. 𝑓: Feed (𝑛 × 1) 𝑝: Product (𝑛 × 1) 𝐵: Breakage matrix (𝑛 × 𝑛) 𝑆: Selective matrix (𝑛 × 𝑛) 𝐶: Screening matrix (𝑛 × 𝑛) 𝐼: Identity matrix (𝑛 × 𝑛)   Grinding and screening matrix (1st stage)  𝑝 = 𝐵𝑆 + 𝐼 − 𝑆 𝑓 = 𝐷𝑓  𝑝1 ∘ = 𝐶𝑝 = 𝐶𝐷𝑓 = 𝐶 𝐵𝑆 + 𝐼 − 𝑆 𝑓  𝑝1 ∗ = 𝐼 − 𝐶 𝑝 = 𝐼 − 𝐶 𝐷𝑓 = 𝐼 − 𝐶 𝐵𝑆 + 𝐼 − 𝑆 𝑓  Circulation (nth stage)  𝑝 𝑛 ∘ = 𝐶𝐷𝑝 𝑛−1 ∘ = 𝐶𝐷𝐶𝐷𝑝 𝑛−2 ∘ = ⋯ = 𝐶𝐷 𝑛 𝑓  𝑝 𝑛 ∗ = 𝐼 − 𝐶 𝐷𝑝 𝑛−1 ∘  𝑝 𝑛 = σ 𝑘=1 𝑛 𝑝 𝑛 ∗  Run the circulation until; 𝑝 𝑛 ∘ ≈ 0 oversize undersize 10
  • 11.  Matrix  Breakage matrix: RR dist’n model (b=0.1, n=1)  Selective matrix: GGS dist’n model (a=0.5, k=1)  Screening matrix: Ideal partition curve  * Both breakage and selective functions are size independent 11 7. Breakage, Selective, Screening function graphical expression 𝐹 𝑥 = 1 − 𝑒 − 𝑥 𝑏 𝑛 𝐹 𝑥 = 𝑥 𝜅 𝛼
  • 12. Start Stop 𝑝∘ ≈ 0 ? 𝑝∘ ← 𝐶𝐷𝑓 𝑝∗ ← 𝐼 − 𝐶 𝐷𝑓 𝑝 ← 𝑝 + 𝑝∗ Enter 𝑓, 𝐵, 𝑆, 𝐶 Print 𝑝𝐷 ← 𝐵𝑆 + 𝐼 − 𝑆 Initialize 𝑝 𝑓 ← 𝑝∘ yes no  Algorithm 12 8. Algorithm
  • 13.  Knelson concentrator  5 chamber (fluidizing water)  chamber  chamber 13 𝑁 𝑄 PCB 분쇄물 FR-4 9. Knelson concentrator
  • 14.  Knelson concentrator ( )  (𝐹𝑑) (𝐹𝑐)  𝐹𝑑 : , ,  𝐹𝑐 : , , chamber , Fd Particle properties (𝑑, 𝜌𝑠) Operating condition (𝑄, 𝑁) 𝑓(𝑑, 𝜌 𝑓, 𝑄) 𝑁 r 𝑄 Fc 𝑓(𝑑, 𝜌𝑠, 𝑟, 𝑁) 14 10. Knelson concentrator
  • 15.  1. Feed Knelson concentrator ( KC) 2. KC chamber / 3. 2. 4. 2. 3. Product1, Product2 15 Feed Knelson Concentrator Operating Condition Product1 Product2 11.
  • 16.  Mathematical expression  𝐹𝑑 = 1 2 𝜌 𝑓 𝑣2 𝐴 𝑠 𝐶 𝐷 = 𝜋 8 𝜌 𝑓 𝐷2 𝑄 𝐴 2 𝐶 𝐷  𝐹𝑐 = 𝑚𝑉2 𝑟 = 4 6 𝜋3 𝜌𝑠 𝐷3 𝑅𝑁2  𝑋 = 𝐹 𝑑 𝐹𝑐 = 241 𝜋2 × 1 𝐴2 𝑅 × 𝜌 𝑓 𝜌 𝑠 × 𝐶 𝐷 𝐷 × 𝑄 𝑁 2  𝑋 > 1: overflow (tailings)  𝑋 < 1: underflow (concentrate) 시료의 변수 𝜌𝑠: 입자, 유체의 밀도 𝐷: 입자의 직경 공정 변수 𝑄: 유동수의 유입량 𝑁: chamber의 회전 수 기타 상수 𝐶 𝐷: 입자의 저항계수 (Drag coefficient) 𝐴: 유동수(fluidizing water)의 유입 면적 𝑅: 입자의 회전반경 1st chamberFeed 2nd chamber 3rd chamber 4th chamber 5th chamber Tailings o/f o/f o/f o/f u/f o/f u/f u/f u/f u/f Concentrate 16 12. Knelson concentrator u/f, o/f
  • 17.  Algorithm 17 Start 𝑗 ← 1 (grade class) Enter 𝑄, 𝑁, 𝜌 𝑓, 𝑓 𝑖 ← 1 (particle size) Initiate 𝑝1, 𝑝2 𝑝1 ← 𝑝1 + 𝑓𝑖,𝑗 𝑋𝑓 𝑖,𝑗 < 1 ? calc. 𝑋𝑓 𝑖,𝑗 in nth chmb. 𝑛 ← 1 (chamber no.) End of 𝑗? End of 𝑖? 𝑛 ← 𝑛 + 1 𝑗 ← 𝑗 + 1 𝑝2 ← 𝑝2 + 𝑓𝑖,𝑗 𝑛 = 5 ? 𝑖 ← 𝑖 + 1 Print 𝑝1, 𝑝2 Stop no no no no yes yes yes yes 13. algorithm
  • 18.  Simulation  stream  (Particle size distribution)  / (Particle size / grade distribution)  /  (Grade) vs. (Recovery)  (Newton’s efficiency)  18 Grinding Mill Knelson Concentrator Product1 Feed Product2 14.
  • 19.  Screen size  Feed  D80: 2,000 → 110  D50: 1,800 → 100  Feed  Screen size 500 19 15. screen size simulation
  • 20.  / 20 16. / / simulation (aperture size: 500 )
  • 21.  Fluidizing water /  Q = 6, 12 L/min , /  u/f o/f  Fluidizing water o/f Yield, Recovery 21 17. Fluidizing water u/f, o/f / (N=1,000 rpm) Q = 6 L/min, overflow Q = 12 L/min, overflow Q = 6 L/min, underflow Q = 12 L/min, underflow
  • 22.  Fluidizing water 22 18. Fluidizing water Recovery vs. Grade graph (N = 1,000 rpm) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recovery Grade of concentrate Q = 3 L/min Q = 6 L/min Q = 9 L/min Q = 12 L/min 27% 63% 11% 5% 0% 10% 20% 30% 40% 50% 60% 70% Newton's efficiency 3 L/min 6 L/min 9 L/min 12 L/min 19. Fluidizing water Newton’s efficiency (N = 1,000 rpm)
  • 23.  Chamber /  N=500, 1,000 rpm /  Chamber , u/f 23 20. Chamber u/f, o/f (Q=6 L/min) N = 500 rpm, overflow N = 1,000 rpm, overflow N = 500 rpm, underflow N = 1,000 rpm, underflow
  • 24.  Chamber / 24 21. Chamber Recovery vs. Grade graph (Q = 6 L/min) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Recovery Grade of concentrate N = 1,250 rpm N = 1,000 rpm 5% 30% 63% 59% 0% 10% 20% 30% 40% 50% 60% 70% Newton's efficiency 500 rpm 750 rpm 1,000 rpm 1,250 rpm 22. Chamber Newton’s efficiency (Q = 6 L/min) N = 750 rpm N = 500 rpm ←N
  • 25.   Q: 3, 6, 9, 12 L/min  N: 500, 750, 1,000 1,250 rpm  Max. Newton effi.: 63% #1. Q: 3 L/min, N: 500 rpm #2. Q: 6 L/min, N: 1,000 rpm 25 63% 5% 0% 0% 43% 30% 5% 1% 27% 63% 11% 5% 0% 59% 44% 11% 0% 10% 20% 30% 40% 50% 60% 70% 3 L/min 6 L/min 9 L/min 12 L/min 500 rpm 750 rpm 1,000 rpm 1,250 rpm 23. Fluidizing water Chamber Newton’s efficiency 𝑋 = 𝐹𝑑 𝐹𝑐 = 241 𝜋2 × 1 𝐴2 𝑅 × 𝜌 𝑓 𝜌𝑠 × 𝐶 𝐷 𝐷 × 𝑄 𝑁 2
  • 26.   : 34.56%  : 89.29 %  : 67.74% 26 Grinding Mill Knelson Concentrator Product1 Feed Product2 Feed Ground product Concentrate Tailings 24. / ① ② ③ ④ ① ② ③ ④
  • 27.  ,   ,  Knelson concentrator (Newton efficiency) #1. Q: 3 L/min, N: 500 rpm #2. Q: 6 L/min, N: 1,000 rpm  : 34.56%  : 89.29 %  : 67.74% 27
  • 29. 29
  • 30. 30
  • 31.  Particle  (Flowrate) FlowRate 1 x 1  ( )  (Components) Componentsi 1 x 2  i ( ), text ex> {‘Copper’, ‘FR-4’}  (Density) Densityi 1 x 2  i ex> [2 9]  (Particle size range) PSRi 1 x 13  i (Nominal size) ex> [45 62.5, 90, 125, … 2,800] 31
  • 32.  Particle ( )  (Particle size distribution) PSDi 1 x 13  i ex> [0.1, 0.15, … 0.1]  (Grade distribution) GDi,j 13 x 12  i j ex> [0 0.1 0.12, … 0.1]  (Drag coefficient) C_D 1 x 1  ex> 0.47 32
  • 33.  /   Particle size, Particle size distribution of feed  Breakage, Selective and Screening matrix of grinding mill   Particle size distribution of product Product Grinding Mill Screen undersize oversize ( - ) ( + ) Feed 33 6.
  • 34.    Flowrate, Density of solid, Particle size, Particle size distribution, Drag coefficient of feed  Rotating number, Flowrate of fluidizing water, Density of the fluid   Flowrate, Particle size distribution of concentrate and tailings 34 Feed Knelson Concentrator Operating Condition Product1 Product2 11.