SlideShare a Scribd company logo
1 of 1
Download to read offline
BARREL/Van	
  Allen	
  probes	
  campaign	
  
	
  
Global-­‐scale	
  coherence	
  modula;on	
  of	
  radia;on-­‐belt	
  electron	
  
	
  loss	
  from	
  plasmaspheric	
  hiss:	
  a	
  further	
  analysis	
  
	
  
Sadie	
  Tetrick1,	
  Aaron	
  Breneman	
  2,	
  and	
  Cynthia	
  CaGell2	
  
1Augsburg	
  College,	
  MN,	
  2University	
  of	
  Minnesota,	
  MN	
  	
  
Summer	
  Sponsor:	
  UMN	
  Physics	
  REU	
  
	
  
	
  Abstract	
  
Enhancements	
  of	
  the	
  Earth’s	
  radiaDon	
  belts	
  during	
  geomagneDc	
  storms	
  –	
  an	
  important	
  
aspect	
  of	
  space	
  weather	
  –	
  strongly	
  effects	
  the	
  lifeDme	
  of	
  orbiDng	
  satellites	
  and	
  accuracy	
  
of	
  technologies,	
  such	
  as	
  GPS,	
  that	
  our	
  society	
  has	
  come	
  to	
  rely	
  upon.	
  In	
  the	
  high-­‐density	
  
plasma	
  region	
  that	
  overlaps	
  with	
  the	
  radiaDon	
  belts,	
  called	
  the	
  plasmasphere,	
  a	
  wave	
  
called	
  hiss	
  plays	
  a	
  dominant	
  role	
  in	
  reducing	
  radiaDon	
  belt	
  energy	
  levels	
  back	
  to	
  nominal	
  
levels	
  following	
  enhancements.	
  The	
  recent	
  Nature	
  arDcle	
  “Global-­‐scale	
  coherence	
  
modulaDon	
  of	
  radiaDon-­‐belt	
  electron	
  loss	
  from	
  plasmaspheric	
  hiss”	
  (Breneman	
  et.	
  al.,	
  
2015)	
  1	
  showed	
  that	
  changes	
  in	
  the	
  dynamics	
  of	
  electron	
  loss,	
  caused	
  by	
  hiss,	
  occur	
  on	
  
Dmescales	
  as	
  short	
  as	
  one	
  to	
  twenty	
  minutes,	
  and	
  that	
  these	
  loss	
  dynamics	
  are	
  coherent	
  
with	
  hiss	
  dynamics	
  on	
  a	
  global	
  scale.	
  The	
  cause	
  of	
  this	
  coherence	
  is	
  large-­‐scale	
  
modulaDon	
  of	
  hiss	
  caused	
  by	
  the	
  propagaDon	
  of	
  ultra	
  low	
  frequency	
  (ULF)	
  1-­‐20	
  min	
  
period	
  electromagneDc	
  waves,	
  originaDng	
  in	
  the	
  solar	
  wind.	
  This	
  discovery,	
  only	
  made	
  
possible	
  through	
  the	
  analysis	
  of	
  simultaneous	
  satellite	
  (Van	
  Allen	
  Probes)	
  and	
  Balloon	
  
Array	
  for	
  RadiaDon	
  Belt	
  RelaDvisDc	
  Electron	
  Losses	
  (BARREL)	
  datasets,	
  has	
  important	
  
implicaDons	
  for	
  simulaDon	
  and	
  predicDon	
  of	
  the	
  Earth’s	
  radiaDon	
  belt	
  environment	
  and	
  
its	
  effect	
  on	
  satellites.	
  This	
  project’s	
  goal	
  was	
  to	
  further	
  our	
  understanding	
  of	
  this	
  nearly	
  
global-­‐scale	
  coherence	
  by	
  analyzing	
  the	
  enDre	
  balloon	
  dataset.	
  We	
  start	
  by	
  presenDng	
  
observaDons	
  of	
  large	
  spaDal	
  scale	
  coherence	
  of	
  electron	
  loss	
  as	
  a	
  funcDon	
  of	
  MLT	
  and	
  
Lshell	
  for	
  a	
  single	
  payload	
  combinaDon	
  (balloons	
  K	
  and	
  L)	
  during	
  a	
  geomagneDcally	
  acDve	
  
Dme	
  on	
  January	
  7,	
  2014.	
  This	
  analysis	
  was	
  repeated	
  for	
  all	
  71	
  balloon	
  combinaDons.	
  We	
  
observe	
  significant	
  coherence	
  around	
  noon	
  MLT.	
  This	
  is	
  likely	
  caused	
  by	
  solar	
  wind	
  
structures	
  impacDng	
  the	
  bow	
  shock	
  and	
  then	
  affecDng	
  the	
  	
  magnetosheath,	
  creaDng	
  
compressional	
  waves	
  which	
  propagate	
  through	
  the	
  magnetosphere.	
  The	
  results	
  of	
  this	
  
project	
  will	
  be	
  compared	
  to	
  observaDons	
  of	
  ULF	
  wave	
  populaDons	
  in	
  the	
  solar	
  wind.	
  	
  
	
  
Example	
  “coherence	
  event”	
  and	
  analysis	
  (Balloons	
  2K	
  and	
  2L,	
  Jan	
  7th,	
  
2014)	
   Figure	
  5.	
  Example	
  “coherence	
  event”	
  
between	
  balloon	
  payloads	
  2K	
  and	
  2L.	
  The	
  
first	
  two	
  plots	
  are	
  BARREL	
  X-­‐ray	
  count	
  
rate	
  (0	
  –	
  177.6	
  keV	
  energies)	
  detrended	
  
over	
  30	
  minutes.	
  The	
  boeom	
  plot	
  is	
  the	
  	
  
coherence	
  spectra	
  for	
  1-­‐20	
  min	
  periods.	
  
Only	
  coherence	
  values	
  >=	
  0.7	
  are	
  ploeed.	
  
High	
  coherence	
  values	
  indicate	
  a	
  
likelihood	
  that	
  the	
  fluctuaDons	
  on	
  the	
  
two	
  balloons	
  represent	
  the	
  same	
  
precipitaDon	
  event.	
  
	

References	
  
1A.	
  W.	
  Breneman,	
  A.	
  Halford,	
  R.	
  Millan,	
  M.	
  McCarthy,	
  J.	
  Fennell,	
  J.	
  
Sample,	
  L.	
  Woodger,	
  G.	
  Hospodarsky,	
  J.	
  R.	
  Wygant,	
  C.	
  A.	
  
Caeell,	
  J.	
  Goldstein,	
  D.	
  Malaspina	
  &	
  C.	
  A.	
  Kletzing	
  ,	
  ”	
  Global-­‐
scale	
  coherence	
  modulaDon	
  of	
  radiaDon-­‐belt	
  electron	
  loss	
  
from	
  plasmaspheric	
  hiss."	
  Nature,	
  2015.	
  
For	
  further	
  informa;on	
  
Please	
  contact	
  Sadie	
  Tetrick	
  at:	
  
	
  tetrick@augsburg.edu	
  
Acknowledgments:	
  I	
  acknowledge	
  the	
  University	
  of	
  Minnesota,	
  the	
  NaDonal	
  Science	
  FoundaDon,	
  and	
  the	
  BARREL	
  team	
  for	
  use	
  of	
  BARREL	
  data.	
  Also,	
  a	
  huge	
  thanks	
  goes	
  to	
  Aaron	
  Breneman	
  and	
  Cynthia	
  Caeell	
  for	
  their	
  support	
  and	
  help	
  
with	
  the	
  research	
  that	
  I	
  conducted.	
  I	
  also	
  would	
  like	
  to	
  thank	
  the	
  University	
  of	
  Minnesota	
  for	
  the	
  use	
  of	
  their	
  faciliDes.	
  	
  	
  
Observa;on	
  of	
  global	
  coherence	
  scale	
  (Jan	
  3rd,	
  
2014)	
  
	
  
	
  
Figure	
  3.	
  	
  (a)	
  Spectrogram	
  of	
  hiss	
  observed	
  on	
  Probe	
  A.	
  (b)	
  RMS	
  hiss	
  
amplitude	
  (black)	
  and	
  X-­‐ray	
  counts	
  (2I	
  in	
  red).	
  Despite	
  the	
  large	
  separaDon	
  in	
  
MLT	
  and	
  L,	
  both	
  2I	
  and	
  Probe	
  A	
  observe	
  similar	
  1-­‐20	
  min	
  modulaDons	
  of	
  hiss	
  
amplitude	
  and	
  X-­‐ray	
  counts	
  [Breneman	
  et	
  al.,	
  2015].	
  
	

Figure	
  4.	
  Google	
  Earth	
  mapping	
  of	
  
locaDon	
  of	
  balloons	
  2K	
  (leq)	
  and	
  
2L(right)	
  on	
  January	
  7,	
  2014	
  in	
  
AntarcDca.	
  	
  	
  
9	

However,	
  ULF	
  (1-­‐20	
  min)	
  fluctuaDons	
  of	
  
density	
  and	
  magneDc	
  field	
  cause	
  global-­‐
scale	
  coherence	
  of	
  the	
  hiss	
  source	
  
[Breneman	
  et	
  al.,	
  2015].	
  Thus	
  widely	
  spaced	
  
balloon	
  payloads	
  oqen	
  observe	
  the	
  same	
  
electron	
  loss	
  dynamics.	
  
Figure	
  2.	
  LocaDon	
  of	
  BARREL	
  balloon	
  2I	
  
and	
  Van	
  Allen	
  Probe	
  A	
  at	
  20,	
  21,	
  and	
  22	
  
UT	
  showing	
  a	
  large	
  MLT	
  and	
  L	
  
separaDon.	
  
BARREL	
  consists	
  of	
  two	
  ~6	
  week	
  campaigns	
  (each	
  with	
  18	
  balloons)	
  in	
  AntarcDca.	
  
The	
  balloons	
  measure	
  bremsstrahlung	
  X-­‐rays	
  produced	
  by	
  precipitaDng	
  
relaDvisDc	
  electrons	
  as	
  they	
  collide	
  with	
  neutrals	
  in	
  Earth's	
  atmosphere.	
  Van	
  
Allen	
  probes	
  (labeled	
  A	
  and	
  B)	
  pass	
  through	
  the	
  hiss	
  source	
  region	
  on	
  field	
  lines	
  
that	
  connect	
  to	
  the	
  BARREL	
  balloons.	
  	
  
Figure	
  1.	
  An	
  example	
  magneDc	
  conjuncDon	
  between	
  a	
  balloon	
  and	
  probe	
  A,	
  shown	
  as	
  
the	
  shaded	
  green	
  area.	
  Electron	
  loss	
  caused	
  by	
  hiss	
  near	
  A	
  will	
  be	
  observed	
  as	
  
enhanced	
  X-­‐rays	
  on	
  the	
  balloon.	
  Probe	
  B	
  is	
  not	
  in	
  conjuncDon	
  with	
  the	
  balloon,	
  and	
  a-­‐
priori	
  we	
  wouldn’t	
  expect	
  loss	
  near	
  B	
  to	
  be	
  observed	
  on	
  the	
  balloon.	
  	
  	
  
	

100
0.01
0.1
1
10
-20
-10
0
10
20
30
2000 2100 2200hhmm
2014 Jan 03
30
Frequency(Hz)
500
DetrendedhissRMSintensity
from30-500Hz(pT)
VanAllenProbeA
3
2
1
|MLT|(hrs)MLT(hrs)L
20
16
12
6
4
2
Magneticfieldspectralpower
(pT2
/Hz)
DetrendedballoonI
X-raycounts/sec
750
500
250
0
-250
-500
-750
Balloon I
Van Allen Probe A
Slot region
Outer plasmasphere
(a)
(b)
(c)
(e)
(d)
3
2
1
0
|L|(RE
)
20:00	

21:00	

22:00	

Conclusion	
  
	
  ObservaDons	
  of	
  large	
  spaDal	
  scale	
  coherence	
  of	
  electron	
  loss	
  have	
  been	
  presented	
  as	
  a	
  funcDon	
  of	
  MLT	
  and	
  L	
  for	
  the	
  enDre	
  balloon	
  data	
  
set	
  for	
  clear	
  “coherence	
  events”.	
  We	
  expected	
  to	
  see	
  larger	
  coherence	
  at	
  noon	
  MLT	
  and	
  possibly	
  at	
  the	
  flanks	
  (occur	
  a	
  few	
  hours	
  before	
  
and	
  aqer	
  noon)	
  which	
  may	
  correspond	
  to	
  Kelvin-­‐Helmholz	
  waves.	
  Our	
  findings	
  reflect	
  the	
  expected	
  results	
  for	
  coherence	
  at	
  noon	
  MLT.	
  
This	
  study	
  will	
  be	
  conDnued	
  to	
  improve	
  the	
  quality	
  of	
  recorded	
  coherence	
  events	
  throughout	
  the	
  enDre	
  mission.	
  The	
  results	
  will	
  then	
  be	
  
compared	
  to	
  ULF	
  wave	
  populaDons	
  in	
  the	
  solar	
  wind,	
  illuminaDng	
  which	
  wave	
  populaDons	
  are	
  “geoeffecDve”,	
  i.e.	
  have	
  a	
  significant	
  effect	
  
on	
  radiaDon	
  belt	
  electron	
  loss	
  dynamics.	
  These	
  results	
  will	
  be	
  expanded	
  to	
  all	
  balloon	
  payload	
  combinaDons	
  to	
  provide	
  the	
  first	
  ever	
  
survey	
  of	
  the	
  large	
  scale	
  coherence	
  of	
  electron	
  loss	
  in	
  the	
  magnetosphere.	
  	
  
	

“Coherence	
  events”	
  final	
  results	
  over	
  en;re	
  mission	
  	
  
	

Figures	
  6	
  and	
  7.	
  ObservaDons	
  of	
  large	
  spaDal	
  scale	
  coherence	
  of	
  
electron	
  loss	
  as	
  a	
  funcDon	
  of	
  MLT	
  for	
  when	
  payload	
  combinaDons	
  
are	
  inside	
  the	
  plasmasphere	
  (top	
  plot)	
  and	
  outside	
  (middle	
  plot)	
  for	
  
balloons	
  2K	
  and	
  2L.	
  Maximum	
  coherence	
  values	
  (0.7	
  or	
  greater)	
  for	
  
each	
  Dme	
  in	
  1	
  –	
  20	
  min.	
  periods	
  (total	
  of	
  118	
  coherence	
  values	
  per	
  
Dme	
  sampled)	
  were	
  ploeed.	
  	
  
	
  
Figure	
  8.	
  Histogram	
  of	
  the	
  number	
  of	
  samples	
  at	
  each	
  MLT	
  value.	
  	
  	
  
Figures	
  9	
  and	
  10.	
  ObservaDons	
  of	
  large	
  spaDal	
  scale	
  coherence	
  of	
  
electron	
  loss	
  as	
  a	
  funcDon	
  of	
  L	
  for	
  when	
  payload	
  combinaDons	
  are	
  
inside	
  the	
  plasmasphere	
  (top	
  plot)	
  and	
  outside	
  (middle	
  plot)	
  for	
  
balloons	
  2K	
  and	
  2L.	
  Maximum	
  coherence	
  values	
  (0.7	
  or	
  greater)	
  for	
  
each	
  Dme	
  in	
  1	
  –	
  20	
  min.	
  periods	
  (total	
  of	
  118	
  coherence	
  values	
  per	
  
Dme	
  sampled)	
  were	
  ploeed.	
  	
  
	
  
Figure	
  11.	
  Histogram	
  of	
  the	
  number	
  of	
  samples	
  at	
  each	
  Lshell	
  value.	
  	
  
There	
  are	
  71	
  balloon	
  combinaDons	
  that	
  will	
  be	
  used	
  to	
  calculate	
  large	
  spaDal	
  scale	
  coherence.	
  Results	
  below	
  include	
  combinaDons	
  IK,	
  IL,	
  
IW,	
  KL,	
  and	
  KW	
  over	
  the	
  enDre	
  mission.	
  	
  
MLT	

 Lshell	

Number of Samples vs. MLT	

 Number of Samples vs. Lshell	

Maximum coherence (outside plasmasphere) vs. MLT	

 Maximum coherence (outside plasmasphere) vs. Lshell	

Maximum coherence (inside plasmasphere) vs. MLT	

 Maximum coherence (inside plasmasphere) vs. Lshell	

MaximumCoherence	

MaximumCoherence	

NumberofSamples	

MaximumCoherence	

MaximumCoherence	

NumberofSamples	

KLCoherence
Logarithmic	

16:00	

17:00	

18:00	

2K	

2L	

20
40
60
80
100
120
140
BARREL
PeakDetector
2L
0000
Jan 07
0800 1600 0000
Jan 08
hhmm
2014
Flowpressure
(nPa)
Figure	
  12.	
  ULF	
  wave	
  populaDons	
  in	
  the	
  solar	
  wind	
  
(black)	
  compared	
  to	
  BARREL	
  peak	
  detector	
  on	
  payload	
  
2L	
  (red)	
  for	
  Jan.	
  7,	
  2014.	
  	
  	
  	
  
6.	
  
7.	
  
8.	
  
9.	
  
10.	
  
11.	
  

More Related Content

What's hot

Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...
Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...
Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...mecgerman
 
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphereHuman and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphereSérgio Sacani
 
Since the introduction of co2
Since the introduction of co2Since the introduction of co2
Since the introduction of co2Attili1996
 
Dynamics of Current, Charge and Mass
 Dynamics of Current, Charge and Mass Dynamics of Current, Charge and Mass
Dynamics of Current, Charge and MassBob Eisenberg
 

What's hot (6)

Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...
Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...
Coordinated Frequency Control of Wind Turbines in Power Systems with High Win...
 
CNRS presentation
CNRS presentationCNRS presentation
CNRS presentation
 
Long term trends of solar radiation
Long term trends of solar radiationLong term trends of solar radiation
Long term trends of solar radiation
 
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphereHuman and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
Human and natural_influences_on_the_changing_thermal_structure_of_the_atmosphere
 
Since the introduction of co2
Since the introduction of co2Since the introduction of co2
Since the introduction of co2
 
Dynamics of Current, Charge and Mass
 Dynamics of Current, Charge and Mass Dynamics of Current, Charge and Mass
Dynamics of Current, Charge and Mass
 

Viewers also liked

Space exploration
Space explorationSpace exploration
Space explorationVisheshV
 
Space science powerpoint
Space science powerpointSpace science powerpoint
Space science powerpointLaura Smith
 
Space Explorations Around the World
Space Explorations Around the WorldSpace Explorations Around the World
Space Explorations Around the WorldMaps of World
 
Chapter 10 space exploration
Chapter 10 space explorationChapter 10 space exploration
Chapter 10 space explorationHazwani Alias
 
Solar wind hybrid power system ppt
Solar wind hybrid power system pptSolar wind hybrid power system ppt
Solar wind hybrid power system pptVihar Modi
 
ppt on LIFI TECHNOLOGY
ppt on LIFI TECHNOLOGYppt on LIFI TECHNOLOGY
ppt on LIFI TECHNOLOGYtanshu singh
 
Best topics for seminar
Best topics for seminarBest topics for seminar
Best topics for seminarshilpi nagpal
 

Viewers also liked (11)

Space exploration
Space explorationSpace exploration
Space exploration
 
Space science powerpoint
Space science powerpointSpace science powerpoint
Space science powerpoint
 
Li fi
Li fiLi fi
Li fi
 
Space Explorations Around the World
Space Explorations Around the WorldSpace Explorations Around the World
Space Explorations Around the World
 
Chapter 10 space exploration
Chapter 10 space explorationChapter 10 space exploration
Chapter 10 space exploration
 
Skinput technology
Skinput technologySkinput technology
Skinput technology
 
Space powerpoint
Space powerpointSpace powerpoint
Space powerpoint
 
Space Exploration
Space ExplorationSpace Exploration
Space Exploration
 
Solar wind hybrid power system ppt
Solar wind hybrid power system pptSolar wind hybrid power system ppt
Solar wind hybrid power system ppt
 
ppt on LIFI TECHNOLOGY
ppt on LIFI TECHNOLOGYppt on LIFI TECHNOLOGY
ppt on LIFI TECHNOLOGY
 
Best topics for seminar
Best topics for seminarBest topics for seminar
Best topics for seminar
 

Similar to Newest_REUposter

Space Weather and Solar Flare Activity Research at Suffolk County Community C...
Space Weather and Solar Flare Activity Research at Suffolk County Community C...Space Weather and Solar Flare Activity Research at Suffolk County Community C...
Space Weather and Solar Flare Activity Research at Suffolk County Community C...Thomas Madigan
 
SolarSID(Final Draft7)
SolarSID(Final Draft7)SolarSID(Final Draft7)
SolarSID(Final Draft7)Thomas Madigan
 
14.06.01_LEOPARD_Viena_2014_ok
14.06.01_LEOPARD_Viena_2014_ok14.06.01_LEOPARD_Viena_2014_ok
14.06.01_LEOPARD_Viena_2014_okMARIUS EUGEN OPRAN
 
Long term power transmission failures in southeastern brazil and the geophysi...
Long term power transmission failures in southeastern brazil and the geophysi...Long term power transmission failures in southeastern brazil and the geophysi...
Long term power transmission failures in southeastern brazil and the geophysi...Carlos Bella
 
Solar wind magnetosphere coupling effect on radio refractivity
Solar wind magnetosphere coupling effect on radio refractivitySolar wind magnetosphere coupling effect on radio refractivity
Solar wind magnetosphere coupling effect on radio refractivityAlexander Decker
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Sérgio Sacani
 
A review of progress in modelling induced geoelectric and
A review of progress in modelling induced geoelectric andA review of progress in modelling induced geoelectric and
A review of progress in modelling induced geoelectric andoilandgas24
 
Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Sérgio Sacani
 
GRIPS_first_flight_2016
GRIPS_first_flight_2016GRIPS_first_flight_2016
GRIPS_first_flight_2016Nicole Duncan
 
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...Sérgio Sacani
 
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...Lewis Larsen
 
Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Ahmed Ammar Rebai PhD
 
Herald1303001 avakyankor
Herald1303001 avakyankorHerald1303001 avakyankor
Herald1303001 avakyankoreconadin
 
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...ecij
 
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...ecij
 
Mars surface radiation_environment_measured_with_curiosity
Mars surface radiation_environment_measured_with_curiosityMars surface radiation_environment_measured_with_curiosity
Mars surface radiation_environment_measured_with_curiositySérgio Sacani
 
Role of Magnetic Reconnection in Coronal Heating
Role of Magnetic Reconnection in Coronal HeatingRole of Magnetic Reconnection in Coronal Heating
Role of Magnetic Reconnection in Coronal Heatingijtsrd
 
Larson_REU_2015_Poster
Larson_REU_2015_PosterLarson_REU_2015_Poster
Larson_REU_2015_PosterTalin Larson
 
abstract of power transmission via solar power satellite
abstract of power transmission via solar power satelliteabstract of power transmission via solar power satellite
abstract of power transmission via solar power satelliteDoddoji Adharvana
 

Similar to Newest_REUposter (20)

Space Weather and Solar Flare Activity Research at Suffolk County Community C...
Space Weather and Solar Flare Activity Research at Suffolk County Community C...Space Weather and Solar Flare Activity Research at Suffolk County Community C...
Space Weather and Solar Flare Activity Research at Suffolk County Community C...
 
SolarSID(Final Draft7)
SolarSID(Final Draft7)SolarSID(Final Draft7)
SolarSID(Final Draft7)
 
14.06.01_LEOPARD_Viena_2014_ok
14.06.01_LEOPARD_Viena_2014_ok14.06.01_LEOPARD_Viena_2014_ok
14.06.01_LEOPARD_Viena_2014_ok
 
Long term power transmission failures in southeastern brazil and the geophysi...
Long term power transmission failures in southeastern brazil and the geophysi...Long term power transmission failures in southeastern brazil and the geophysi...
Long term power transmission failures in southeastern brazil and the geophysi...
 
Solar wind magnetosphere coupling effect on radio refractivity
Solar wind magnetosphere coupling effect on radio refractivitySolar wind magnetosphere coupling effect on radio refractivity
Solar wind magnetosphere coupling effect on radio refractivity
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
 
A review of progress in modelling induced geoelectric and
A review of progress in modelling induced geoelectric andA review of progress in modelling induced geoelectric and
A review of progress in modelling induced geoelectric and
 
Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...
 
GRIPS_first_flight_2016
GRIPS_first_flight_2016GRIPS_first_flight_2016
GRIPS_first_flight_2016
 
F037033035
F037033035F037033035
F037033035
 
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...
Interior Heating of Rocky Exoplanets from Stellar Flares with Application to ...
 
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...Lattice Energy LLC -  Two Facets of W-L Theorys LENR-active Sites Supported b...
Lattice Energy LLC - Two Facets of W-L Theorys LENR-active Sites Supported b...
 
Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...
 
Herald1303001 avakyankor
Herald1303001 avakyankorHerald1303001 avakyankor
Herald1303001 avakyankor
 
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
 
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
UNION OF GRAVITATIONAL AND ELECTROMAGNETIC FIELDS ON THE BASIS OF NONTRADITIO...
 
Mars surface radiation_environment_measured_with_curiosity
Mars surface radiation_environment_measured_with_curiosityMars surface radiation_environment_measured_with_curiosity
Mars surface radiation_environment_measured_with_curiosity
 
Role of Magnetic Reconnection in Coronal Heating
Role of Magnetic Reconnection in Coronal HeatingRole of Magnetic Reconnection in Coronal Heating
Role of Magnetic Reconnection in Coronal Heating
 
Larson_REU_2015_Poster
Larson_REU_2015_PosterLarson_REU_2015_Poster
Larson_REU_2015_Poster
 
abstract of power transmission via solar power satellite
abstract of power transmission via solar power satelliteabstract of power transmission via solar power satellite
abstract of power transmission via solar power satellite
 

Newest_REUposter

  • 1. BARREL/Van  Allen  probes  campaign     Global-­‐scale  coherence  modula;on  of  radia;on-­‐belt  electron    loss  from  plasmaspheric  hiss:  a  further  analysis     Sadie  Tetrick1,  Aaron  Breneman  2,  and  Cynthia  CaGell2   1Augsburg  College,  MN,  2University  of  Minnesota,  MN     Summer  Sponsor:  UMN  Physics  REU      Abstract   Enhancements  of  the  Earth’s  radiaDon  belts  during  geomagneDc  storms  –  an  important   aspect  of  space  weather  –  strongly  effects  the  lifeDme  of  orbiDng  satellites  and  accuracy   of  technologies,  such  as  GPS,  that  our  society  has  come  to  rely  upon.  In  the  high-­‐density   plasma  region  that  overlaps  with  the  radiaDon  belts,  called  the  plasmasphere,  a  wave   called  hiss  plays  a  dominant  role  in  reducing  radiaDon  belt  energy  levels  back  to  nominal   levels  following  enhancements.  The  recent  Nature  arDcle  “Global-­‐scale  coherence   modulaDon  of  radiaDon-­‐belt  electron  loss  from  plasmaspheric  hiss”  (Breneman  et.  al.,   2015)  1  showed  that  changes  in  the  dynamics  of  electron  loss,  caused  by  hiss,  occur  on   Dmescales  as  short  as  one  to  twenty  minutes,  and  that  these  loss  dynamics  are  coherent   with  hiss  dynamics  on  a  global  scale.  The  cause  of  this  coherence  is  large-­‐scale   modulaDon  of  hiss  caused  by  the  propagaDon  of  ultra  low  frequency  (ULF)  1-­‐20  min   period  electromagneDc  waves,  originaDng  in  the  solar  wind.  This  discovery,  only  made   possible  through  the  analysis  of  simultaneous  satellite  (Van  Allen  Probes)  and  Balloon   Array  for  RadiaDon  Belt  RelaDvisDc  Electron  Losses  (BARREL)  datasets,  has  important   implicaDons  for  simulaDon  and  predicDon  of  the  Earth’s  radiaDon  belt  environment  and   its  effect  on  satellites.  This  project’s  goal  was  to  further  our  understanding  of  this  nearly   global-­‐scale  coherence  by  analyzing  the  enDre  balloon  dataset.  We  start  by  presenDng   observaDons  of  large  spaDal  scale  coherence  of  electron  loss  as  a  funcDon  of  MLT  and   Lshell  for  a  single  payload  combinaDon  (balloons  K  and  L)  during  a  geomagneDcally  acDve   Dme  on  January  7,  2014.  This  analysis  was  repeated  for  all  71  balloon  combinaDons.  We   observe  significant  coherence  around  noon  MLT.  This  is  likely  caused  by  solar  wind   structures  impacDng  the  bow  shock  and  then  affecDng  the    magnetosheath,  creaDng   compressional  waves  which  propagate  through  the  magnetosphere.  The  results  of  this   project  will  be  compared  to  observaDons  of  ULF  wave  populaDons  in  the  solar  wind.       Example  “coherence  event”  and  analysis  (Balloons  2K  and  2L,  Jan  7th,   2014)   Figure  5.  Example  “coherence  event”   between  balloon  payloads  2K  and  2L.  The   first  two  plots  are  BARREL  X-­‐ray  count   rate  (0  –  177.6  keV  energies)  detrended   over  30  minutes.  The  boeom  plot  is  the     coherence  spectra  for  1-­‐20  min  periods.   Only  coherence  values  >=  0.7  are  ploeed.   High  coherence  values  indicate  a   likelihood  that  the  fluctuaDons  on  the   two  balloons  represent  the  same   precipitaDon  event.   References   1A.  W.  Breneman,  A.  Halford,  R.  Millan,  M.  McCarthy,  J.  Fennell,  J.   Sample,  L.  Woodger,  G.  Hospodarsky,  J.  R.  Wygant,  C.  A.   Caeell,  J.  Goldstein,  D.  Malaspina  &  C.  A.  Kletzing  ,  ”  Global-­‐ scale  coherence  modulaDon  of  radiaDon-­‐belt  electron  loss   from  plasmaspheric  hiss."  Nature,  2015.   For  further  informa;on   Please  contact  Sadie  Tetrick  at:    tetrick@augsburg.edu   Acknowledgments:  I  acknowledge  the  University  of  Minnesota,  the  NaDonal  Science  FoundaDon,  and  the  BARREL  team  for  use  of  BARREL  data.  Also,  a  huge  thanks  goes  to  Aaron  Breneman  and  Cynthia  Caeell  for  their  support  and  help   with  the  research  that  I  conducted.  I  also  would  like  to  thank  the  University  of  Minnesota  for  the  use  of  their  faciliDes.       Observa;on  of  global  coherence  scale  (Jan  3rd,   2014)       Figure  3.    (a)  Spectrogram  of  hiss  observed  on  Probe  A.  (b)  RMS  hiss   amplitude  (black)  and  X-­‐ray  counts  (2I  in  red).  Despite  the  large  separaDon  in   MLT  and  L,  both  2I  and  Probe  A  observe  similar  1-­‐20  min  modulaDons  of  hiss   amplitude  and  X-­‐ray  counts  [Breneman  et  al.,  2015].   Figure  4.  Google  Earth  mapping  of   locaDon  of  balloons  2K  (leq)  and   2L(right)  on  January  7,  2014  in   AntarcDca.       9 However,  ULF  (1-­‐20  min)  fluctuaDons  of   density  and  magneDc  field  cause  global-­‐ scale  coherence  of  the  hiss  source   [Breneman  et  al.,  2015].  Thus  widely  spaced   balloon  payloads  oqen  observe  the  same   electron  loss  dynamics.   Figure  2.  LocaDon  of  BARREL  balloon  2I   and  Van  Allen  Probe  A  at  20,  21,  and  22   UT  showing  a  large  MLT  and  L   separaDon.   BARREL  consists  of  two  ~6  week  campaigns  (each  with  18  balloons)  in  AntarcDca.   The  balloons  measure  bremsstrahlung  X-­‐rays  produced  by  precipitaDng   relaDvisDc  electrons  as  they  collide  with  neutrals  in  Earth's  atmosphere.  Van   Allen  probes  (labeled  A  and  B)  pass  through  the  hiss  source  region  on  field  lines   that  connect  to  the  BARREL  balloons.     Figure  1.  An  example  magneDc  conjuncDon  between  a  balloon  and  probe  A,  shown  as   the  shaded  green  area.  Electron  loss  caused  by  hiss  near  A  will  be  observed  as   enhanced  X-­‐rays  on  the  balloon.  Probe  B  is  not  in  conjuncDon  with  the  balloon,  and  a-­‐ priori  we  wouldn’t  expect  loss  near  B  to  be  observed  on  the  balloon.       100 0.01 0.1 1 10 -20 -10 0 10 20 30 2000 2100 2200hhmm 2014 Jan 03 30 Frequency(Hz) 500 DetrendedhissRMSintensity from30-500Hz(pT) VanAllenProbeA 3 2 1 |MLT|(hrs)MLT(hrs)L 20 16 12 6 4 2 Magneticfieldspectralpower (pT2 /Hz) DetrendedballoonI X-raycounts/sec 750 500 250 0 -250 -500 -750 Balloon I Van Allen Probe A Slot region Outer plasmasphere (a) (b) (c) (e) (d) 3 2 1 0 |L|(RE ) 20:00 21:00 22:00 Conclusion    ObservaDons  of  large  spaDal  scale  coherence  of  electron  loss  have  been  presented  as  a  funcDon  of  MLT  and  L  for  the  enDre  balloon  data   set  for  clear  “coherence  events”.  We  expected  to  see  larger  coherence  at  noon  MLT  and  possibly  at  the  flanks  (occur  a  few  hours  before   and  aqer  noon)  which  may  correspond  to  Kelvin-­‐Helmholz  waves.  Our  findings  reflect  the  expected  results  for  coherence  at  noon  MLT.   This  study  will  be  conDnued  to  improve  the  quality  of  recorded  coherence  events  throughout  the  enDre  mission.  The  results  will  then  be   compared  to  ULF  wave  populaDons  in  the  solar  wind,  illuminaDng  which  wave  populaDons  are  “geoeffecDve”,  i.e.  have  a  significant  effect   on  radiaDon  belt  electron  loss  dynamics.  These  results  will  be  expanded  to  all  balloon  payload  combinaDons  to  provide  the  first  ever   survey  of  the  large  scale  coherence  of  electron  loss  in  the  magnetosphere.     “Coherence  events”  final  results  over  en;re  mission     Figures  6  and  7.  ObservaDons  of  large  spaDal  scale  coherence  of   electron  loss  as  a  funcDon  of  MLT  for  when  payload  combinaDons   are  inside  the  plasmasphere  (top  plot)  and  outside  (middle  plot)  for   balloons  2K  and  2L.  Maximum  coherence  values  (0.7  or  greater)  for   each  Dme  in  1  –  20  min.  periods  (total  of  118  coherence  values  per   Dme  sampled)  were  ploeed.       Figure  8.  Histogram  of  the  number  of  samples  at  each  MLT  value.       Figures  9  and  10.  ObservaDons  of  large  spaDal  scale  coherence  of   electron  loss  as  a  funcDon  of  L  for  when  payload  combinaDons  are   inside  the  plasmasphere  (top  plot)  and  outside  (middle  plot)  for   balloons  2K  and  2L.  Maximum  coherence  values  (0.7  or  greater)  for   each  Dme  in  1  –  20  min.  periods  (total  of  118  coherence  values  per   Dme  sampled)  were  ploeed.       Figure  11.  Histogram  of  the  number  of  samples  at  each  Lshell  value.     There  are  71  balloon  combinaDons  that  will  be  used  to  calculate  large  spaDal  scale  coherence.  Results  below  include  combinaDons  IK,  IL,   IW,  KL,  and  KW  over  the  enDre  mission.     MLT Lshell Number of Samples vs. MLT Number of Samples vs. Lshell Maximum coherence (outside plasmasphere) vs. MLT Maximum coherence (outside plasmasphere) vs. Lshell Maximum coherence (inside plasmasphere) vs. MLT Maximum coherence (inside plasmasphere) vs. Lshell MaximumCoherence MaximumCoherence NumberofSamples MaximumCoherence MaximumCoherence NumberofSamples KLCoherence Logarithmic 16:00 17:00 18:00 2K 2L 20 40 60 80 100 120 140 BARREL PeakDetector 2L 0000 Jan 07 0800 1600 0000 Jan 08 hhmm 2014 Flowpressure (nPa) Figure  12.  ULF  wave  populaDons  in  the  solar  wind   (black)  compared  to  BARREL  peak  detector  on  payload   2L  (red)  for  Jan.  7,  2014.         6.   7.   8.   9.   10.   11.