SlideShare a Scribd company logo
1 of 135
Download to read offline
Principles of Predictive Computational Science:
Predictive Models of Random Heterogenous
Materials and Tumor Growth
J. Tinsley Oden
Institute for Computational Engineering and Sciences
The University of Texas at Austin
Collaborators: Danial Faghihi (ICES), Laura Scarabosio (TUM),
Barbara Wohlmuth (TUM), Ernesto Lima (ICES)
MUMS: Model Uncertainty: Mathematical and Statistical – SAMSI
Duke University
August 20-24, 2018
ODEN MUMS August 20-24, 2018 1 / 102
Collaborators:
Danial Faghihi (ICES)
Barbara Wohlmuth (TUM)
Laura Scarabosio (TUM)
Ernesto Lima (ICES)
Supported by
• DOE-DESC009286 MMICC
• ICES: IGSSE
ODEN MUMS August 20-24, 2018 2 / 102
Outline
1. Foundations of predictive computational science
2. Predictive models of random materials
3. Model Selection and Occam Plausibility Algorithm (OPAL)
4. Concluding Comments
ODEN MUMS August 20-24, 2018 3 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1. Definitions
1.2. Sources of Uncertainty
1.3. The Imperfect Paths to Knowledge
1.4. Fundamental Principles
ODEN MUMS August 20-24, 2018 4 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1 Definitions
V V & UQ ⇒ Predictive Computational Science
The scientific discipline concerned with assessing the predictability of
mathematical and computational models of events in the physical
universe in the presence of uncertainty.
ODEN MUMS August 20-24, 2018 5 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1 Definitions
V V & UQ ⇒ Predictive Computational Science
The scientific discipline concerned with assessing the predictability of
mathematical and computational models of events in the physical
universe in the presence of uncertainty.
Prediction: Forecast, prophesy,
prognosis, prognostication, · · · guess
ODEN MUMS August 20-24, 2018 5 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1 Definitions
V V & UQ ⇒ Predictive Computational Science
The scientific discipline concerned with assessing the predictability of
mathematical and computational models of events in the physical
universe in the presence of uncertainty.
Prediction: Forecast, prophesy,
prognosis, prognostication, · · · guess
Science: The systematic acquisition
of knowledge through observations
(data) and theory (mathematical and
computational models)
ODEN MUMS August 20-24, 2018 5 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1 Definitions
V V & UQ ⇒ Predictive Computational Science
The scientific discipline concerned with assessing the predictability of
mathematical and computational models of events in the physical
universe in the presence of uncertainty.
Prediction: Forecast, prophesy,
prognosis, prognostication, · · · guess
Science: The systematic acquisition
of knowledge through observations
(data) and theory (mathematical and
computational models)
Uncertain: absence of complete
knowledge, indeterminate
ODEN MUMS August 20-24, 2018 5 / 102
Foundations of predictive computational science
1. Foundations of predictive computational science
1.1 Definitions
V V & UQ ⇒ Predictive Computational Science
The scientific discipline concerned with assessing the predictability of
mathematical and computational models of events in the physical
universe in the presence of uncertainty.
Prediction: Forecast, prophesy,
prognosis, prognostication, · · · guess
Science: The systematic acquisition
of knowledge through observations
(data) and theory (mathematical and
computational models)
Uncertain: absence of complete
knowledge, indeterminate
How do you “quantify uncertainty”?
ODEN MUMS August 20-24, 2018 5 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
P
Systemic Uncertainty
• Probability Theory
• Dempster–Schafer
• Possibility Theory
• Fuzzy Sets
...
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
P
Systemic Uncertainty
• Probability Theory
• Dempster–Schafer
• Possibility Theory
• Fuzzy Sets
...
Probability Theory:
But which one
The Logic of Science: Cox-
Jaynes Theory of Probability
• Every natural extension of
Aristotelian logic with
uncertainties is Bayesian
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
Y
y-uncertainty
y = {y(xi)}
y = f(g, ε)
truth
exp. noise
gi + εi = yi
εi ∼ pµ
Noise
Model
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
M
Model Uncertainty and
Model (in)adequacy
“All models are wrong but
some are useful” (Box (1978))
gi = di(θ) − ηi(θ)
gi = yi − εi
yi − di(θ) = εi − ηi(θ)
discrepancy model (GP)
or model validation
Pnoise+model(εi − ηi) =
Pnoise+model(yi − di(θ)) =
πlikelihood(yi|θ)
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
θ
θ-uncertainty
The Product Rule
P(A|B)P(B) = P(B|A)P(A)
⇓
π(θ|y) =
π(y|θ)π(θ)
π(y)
θ
θ-sensitivity
Y (θ) = output
STi = 1 −
Vθ∼i[Eθi
(Y |θi)]
V (Y )
A. Saltelli et. al. 2004, 2008.
M. D. Morris 1991.
I. M. Sobol 2006.
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameters
5. Discretization Error
h-uncertainty
goal-oriented
a-posterior
error estimator
ODEN MUMS August 20-24, 2018 6 / 102
Foundations of predictive computational science
1.2. Sources of Uncertainty in Predictive Science
1. System of Reasoning
(Epistemology)
2. Observational Data
3. Model Selection
4. Model Parameter
5. Discretization Error
Logical Probability-Cox-Jaynes
Aristotelian Logic + Uncertainty ⇔ Bayesian
y ∈ Y : yi = fi(gi, εi) ⇐ yi + εi =
gi, εi ∼ Pi( i)
gi = di(θ) − ηi(θ) ⇒ yi − di(θ) = εi − ηi(θ)
P(A|B)P(B) = P(B|A)P(A) ⇒
π(θ, y) ∝ π(y|θ)π(θ)
A posteriori error estimation
ODEN MUMS August 20-24, 2018 7 / 102
Foundations of predictive computational science
1.3. The Imperfect Paths to Knowledge
THE UNIVERSE
OF PHYSICAL
REALITIES
THEORY /
MATHEMATICAL
MODELS
OBSERVATIONS
COMPUTATIONAL
MODELS
KNOWLEDGE
PREDICTION
The Three Pillars of Science
VERIFICATION
Discretization
Errors
Modeling
Errors
Observational
Errors
VALIDATION
JTO, Moser, Ghattas – SIAM News, 2010
ODEN MUMS August 20-24, 2018 8 / 102
Foundations of predictive computational science
1.4. Fundamental Principles in V, V, & UQ
1. Jaynes’ Principle:
“The essence of honesty and objectivity demands that we take into account all
the evidence we have, not just some arbitrary chosen subset of it”.
E. T. Jaynes, Probability Theory, The Logic of Science, 2003
2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid:
P(A|B)P(B) = P(B|A)P(A)
⇓
π(θ|y) =
π(y|θ)π(θ)
π(y)
⇓
Ai(θ, S; ui(θ, S)) = 0
Reality
ODEN MUMS August 20-24, 2018 9 / 102
Foundations of predictive computational science
1.4. Fundamental Principles in V, V, & UQ
1. Jaynes’ Principle:
“The essence of honesty and objectivity demands that we take into account all
the evidence we have, not just some arbitrary chosen subset of it”.
E. T. Jaynes, Probability Theory, The Logic of Science, 2003
2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid:
P(A|B)P(B) = P(B|A)P(A)
⇓
π(θ|y) =
π(y|θ)π(θ)
π(y)
⇓
Ai(θ, S; ui(θ, S)) = 0
Reality
Bayes rule in terms of probability densities of
model parameters θ and observational data y.
ODEN MUMS August 20-24, 2018 9 / 102
Foundations of predictive computational science
1.4. Fundamental Principles in V, V, & UQ
1. Jaynes’ Principle:
“The essence of honesty and objectivity demands that we take into account all
the evidence we have, not just some arbitrary chosen subset of it”.
E. T. Jaynes, Probability Theory, The Logic of Science, 2003
2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid:
P(A|B)P(B) = P(B|A)P(A)
⇓
π(θ|y) =
π(y|θ)π(θ)
π(y)
⇓
Ai(θ, S; ui(θ, S)) = 0
Reality
Bayes rule in terms of probability densities of
model parameters θ and observational data y.
The forward problem for scenario S =
{Sc, Sv, Sp}.
ODEN MUMS August 20-24, 2018 9 / 102
Foundations of predictive computational science
Bayesian Model Calibration, Validation, and Prediction
Reality
Prior
π(θ)
Calibration (Sc, yc) ("Training data")
π(θ|yc) =
π(yc|θ)π(θ)
π(yc)
Validation (Sv, yv) ("Testing data")
π(θ|yv, yc) =
π(yv|θ, yc)π(θ|yc)
π(yv, yc)
Validation Forward Problem
A(θ, Sv; u(θ, Sv)) = 0
||d(u(θ, Sv)) − yv|| ≤ γtol
Prediction (Sp, QoI)
A(θ, Sp; u(θ, Sp)) = 0
Q(u(θ, Sp)) ∼ π(Q) = π(Q|θ, Sv, Sc, γtol)
JTO, Moser, Ghattas, 2010; JTO, Babuska, Faghihi, 2017
ODEN MUMS August 20-24, 2018 10 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
ODEN MUMS August 20-24, 2018 11 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
The QoI is NOT data; it is never observed: It is an extrapolation
outside the calibration and validation observational data.
ODEN MUMS August 20-24, 2018 11 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
The QoI is NOT data; it is never observed: It is an extrapolation
outside the calibration and validation observational data.
4. Jeffrey’s Principle:
“ Parameters in a law that make no contribution to the results of any observation
can be eliminated mathematically, leaving the observations to be described only
in terms of the relevant parameters. ”
(provided 0 ∈ Θ)
Sir Harold Jeffrey, Theory of Probability,
Oxford, 1936-1961
ODEN MUMS August 20-24, 2018 11 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
The QoI is NOT data; it is never observed: It is an extrapolation
outside the calibration and validation observational data.
4. Jeffrey’s Principle:
“ Parameters in a law that make no contribution to the results of any observation
can be eliminated mathematically, leaving the observations to be described only
in terms of the relevant parameters. ”
(provided 0 ∈ Θ)
Sir Harold Jeffrey, Theory of Probability,
Oxford, 1936-1961
5. A model can never be validated as a perfect portrayal of the truth; it can only
be deemed ‘not invalid’, contingent on its agreement with available observational
data for (subjective) choices of metrics and tolerances.
ODEN MUMS August 20-24, 2018 11 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
The QoI is NOT data; it is never observed: It is an extrapolation
outside the calibration and validation observational data.
4. Jeffrey’s Principle:
“ Parameters in a law that make no contribution to the results of any observation
can be eliminated mathematically, leaving the observations to be described only
in terms of the relevant parameters. ”
(provided 0 ∈ Θ)
Sir Harold Jeffrey, Theory of Probability,
Oxford, 1936-1961
5. A model can never be validated as a perfect portrayal of the truth; it can only
be deemed ‘not invalid’, contingent on its agreement with available observational
data for (subjective) choices of metrics and tolerances.
6. The CENTRAL PROBLEM of predictive computational science (UQ in CSE) is
the selection of a valid model and model parameters for a given QoI.
ODEN MUMS August 20-24, 2018 11 / 102
Foundations of predictive computational science
3. The central goal of a computer prediction is to evaluate the Quantity of
Interest (QoI), not simply to compute the solution of the stochastic forward
problem. [Q : Ω × U → R]
The QoI is NOT data; it is never observed: It is an extrapolation
outside the calibration and validation observational data.
4. Jeffrey’s Principle:
“ Parameters in a law that make no contribution to the results of any observation
can be eliminated mathematically, leaving the observations to be described only
in terms of the relevant parameters. ”
(provided 0 ∈ Θ)
Sir Harold Jeffrey, Theory of Probability,
Oxford, 1936-1961
5. A model can never be validated as a perfect portrayal of the truth; it can only
be deemed ‘not invalid’, contingent on its agreement with available observational
data for (subjective) choices of metrics and tolerances.
6. The CENTRAL PROBLEM of predictive computational science (UQ in CSE) is
the selection of a valid model and model parameters for a given QoI.
The design of appropriate validation experiment.
ODEN MUMS August 20-24, 2018 11 / 102
Predictive Models of Random Materials
2. Predictive Models of Random Materials
2.1. Mathematical Models and Modeling Error
2.2. Strategy 1 – Optimal Control of Modeling Error
2.3. An Old Example
2.4. Random Two-Phase Heterogeneous Media
2.5. Selection of the Most Plausible Models
2.6. Accelerated MLMC
2.7. The Inverse Problem: Machine Learning Methods
ODEN MUMS August 20-24, 2018 12 / 102
Predictive Models of Random Materials
2. Predictive Models of Random Materials
Returning to the Central Problem: M and θ Uncertainty
I. Model Adaptivity and Control:
• Model Reduction through
Surrogate Models
• Control (estimated) error in QoIs
⇒
II. Model Selection:
• Selection in the Bayesian VVUQ
Framework
• Select most plausible valid model
⇒
ODEN MUMS August 20-24, 2018 13 / 102
Predictive Models of Random Materials
2. Predictive Models of Random Materials
Returning to the Central Problem: M and θ Uncertainty
I. Model Adaptivity and Control:
• Model Reduction through
Surrogate Models
• Control (estimated) error in QoIs
⇒
Adaptive Control of
Goal-Oriented Esti-
mates of Error in QoIs
II. Model Selection:
• Selection in the Bayesian VVUQ
Framework
• Select most plausible valid model
⇒
OPAL: the Occam
Plausibility Algorithm
ODEN MUMS August 20-24, 2018 13 / 102
Predictive Models of Random Materials
2.1. Mathematical Models and Modeling Error
Mathematical Model: a mathematical description of a system – here a physical or engineered
system – representing mathematical abstractions of the functioning or behavior of the system,
characterized by mathematical constructions (e.g. equations, inequalities, etc.).
ODEN MUMS August 20-24, 2018 14 / 102
Predictive Models of Random Materials
Modeling Error
1 - “Ground Truth” is defined by a High-Fidelity Base Model but: The forward problem
A(θ, S, u(ω, S)) = 0 is intractable. Replace it by a surrogate model of lower dimension
and complexity
A0(θ0, S; u0(ω, S)) = 0
Q(u0(ω, Sp)) = surrogate QoI
The Strategy: Develop methods to choose surrogates so that the error
ε(u) = Q(u(ω, Sp)) − Q(u0(ω, Sp))
can be estimated and controlled1
.
2 - Error in the Choice of Model: Given a possibly large set M = M1, M2, · · · , Mm of
models, and (noisy) observational data y ∈ Y ⊂ Rn
, find the models(s) that best fit the
data for any parameters θk ∈ Θk, k = 1, 2, · · · , m. Then establish if the best-fit models is
valid through additional validation tests in Sv
2
.
1
JTO, Prudhomme 2001, JTO, Vemaganti 2000, 2001, JTO, Prudhomme, Romkes,
Bauman, 2000
2
JTO, Babuska, Faghihi 2018, JTO, Acta Numerica 2018.
ODEN MUMS August 20-24, 2018 15 / 102
Predictive Models of Random Materials
2.2. Strategy I: Optimal Control of Models
A : U → V
Au = F in V : The Forward Problem
V Au, v V := B(u; v) = V F, v V = F(v) ∀v ∈ V
Q : U → R = The Quantity of Interest
Q(u) = inf Q(w)
{w ∈ U : B(w; v) = F(v) ∀v ∈ V }
B(u; v) = F(v) ∀v ∈ V
B (u; w, v) = Q (u; v) ∀v ∈ V
ODEN MUMS August 20-24, 2018 16 / 102
Predictive Models of Random Materials
Theorem: If B(·; ·), Q(·) ∈ C3
(U) and (u, w) ∈ U × U is the solution pair of the
forward and adjoint problems, and if (u0, w0) is an arbitrary pair drawn from
U × U, then
ε = Q(u) − Q(u0) = R(u0, w) + ∆
where R(u0; ·, ·) is the residual functional
R(u0; v) = F(v) − B(u0, v)
and ∆ is a remainder: ∆ = O( u − u0
2
, w − w0
2
).
Strategy I:
1. Construct a Surrogate System:
B0(u0, v) = F(v)
B0(u0; w0, v) = Q (u0; v) ∀v ∈ V
such that
∆(u0, w0) ≈ 0
2. Pick u0, w0 so that w0 ≈ w and ε ≤ γtol
JTO, Prudhomme, JCP, 2002
ODEN MUMS August 20-24, 2018 17 / 102
Multiscale Modeling
Modeling of Polymeric Materials for Nanomanufacturing
Step-and-Flash
Imprint Lithography (SFIL)
∗Bailey, Johnson, Resnick, Eckerdt, and Willson, J. Photopolymer Sci. Tech. (2002)
∗Resnick, Sreenivasan, and Willson, Materials Today (2005)
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 27 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 18 / 102
Multiscale Modeling
Multi-Algorithm Coupling
Kinetic Monte Carlo (AA) Coarse-Graining (CG) RVE Averaging
UCG =
bond
kb(r − r0)2
+
angle
(θ − θ0)2
≈ −kBT log[P(r)/r2]
−kBT log[P(θ)/ sin θ]
∗Izvekov and Voth, J. Phys. Chem. B (2005)
∗Shinoda, Devane, and Klein, Mol. Sim. (2007)
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 28 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 19 / 102
Multiscale Modeling
Molecular Statics Model
Polymerization
Densification
Two-step approach:
1) Polymerization by Monte-Carlo Algorithm.
2) Densification by energy minimization:
u = argmin
v
N
i=1
Ni
k=1
Eik(vi, vk) − fi · vi
N
i=1
Ni
k=1
∂Eik
∂ui
· vi
B(u;v)
=
N
i=1
fi · vi
F (v)
where Eik(ui, uk) is the potential energy between particle
i and neighbor k. Use TAO & PETSc to solve problem.
∗P.T. Bauman, Ph.D. Dissertation, The University of Texas at Austin (2008).
∗Bauman, Oden, and Prudhomme, CMAME, 198, 799–818 (2009).
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 30 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 20 / 102
Multiscale Modeling
Multiscale Modeling
1. Molecular statics model (lattice)
2. Continuum model by homogenization
3. Coupling method by Arlequin
4. Adaptation of interface region
+ ⇒
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 29 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 21 / 102
Multiscale Modeling
Construction of Continuum Model
VIRTUAL EXPERIMENTS ON RVE’s:
1) Choose strain energy density function∗
W = W(I1, I2, I3)
2) Exploit isotropy and homogeneity
3) Use molecular RVE to fit parameters
FITTING PROCEDURE:
1) Relax RVE
2) Deform RVE
3) Measure E, V0, Ii
4) Compute W = E/V0
5) Fit W for model parameters
6) Repeat over several samples
∗e.g. Mooney-Rivlin: W = α(I1 − 3) + β(I2 − 3) + γ(J − 1)2 − (2α + 4β)lnJ
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 31 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 22 / 102
Multiscale Modeling
Atomic-to-Continuum Coupling Method
00000000000000000000000
0000000000000000000000000000000000000000000000
11111111111111111111111
1111111111111111111111111111111111111111111111
00
0000
00
11
1111
11 Ωc
domain
Overlap
f
Continuum model
Ωd
Particle model
Ωo
0
1
ααc d
ΩdoΩ
x
Constant
LinearCubic
Ωc
THE ARLEQUIN FRAMEWORK:
1) Partition of energies.
2) Weight coefficients may be
chosen constant, linear,
cubic in overlap region.
3) Coupling through Lagrange
multipliers.
4) Resulting mixed problem is
well-posed.
∗Ben Dhia, Comptes Rendus de l’Acad´emie des Sciences (1998)
∗Xiao and Belytschko, IJNME (2004)
∗Bauman, Ben Dhia, Elkhodja, Oden, and Prudhomme, CM (2008)
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 32 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 23 / 102
Multiscale Modeling
Atomic-to-Continuum Coupling Method
1) The particle model is replaced
with a continuum model far from
the zone of interest and coupled
to the lattice model via the
Arlequin framework∗.
⇓
Sequence of surrogate models
2) Computational study of solution
convergence with respect to QoI.
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 33 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 24 / 102
Multiscale Modeling
Example: Regular Lattice
E ≈ Ru(w0; p) ≈ Ru(w0; p0)
Step Er (%) η0 η
0 30.4 0.95 1.08
1 25.4 0.95 1.08
2 23.4 0.94 1.11
3 20.2 0.93 1.13
4 18.0 0.92 1.16
5 16.2 0.89 1.18
6 14.8 0.88 1.20
7 14.2 0.88 1.20
8 10.8 0.87 1.21
9 6.5 0.81 1.31
Relative error: Er = |E|/|Q(u)|
Eff. index: η0 = |R(u0, p0)|/|E|
Eff. index: η = |R(u0, p)|/|E|
Dual solution p for uz at center of top face.
G = continuum, R = particle, Y = overlap
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 34 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 25 / 102
Multiscale Modeling
Example: Polymer Lattice
Dual solution p for uz
at center of top face.
Error contributions in QoI
Sequence of adapted surrogate models
∗Bauman, Oden, and Prudhomme, CMAME, 2009.
J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 35 / 44
Predictive Models of Random Materials
ODEN MUMS August 20-24, 2018 26 / 102
Predictive Models of Random Materials
2.4. Random Two-Phase Heterogeneous Media
ODEN MUMS August 20-24, 2018 27 / 102
Predictive Models of Random Materials
Error in Surrogate Models: Goal-Oriented A Posteriori
Estimates of Modeling Error ∗
The Base (high-fidelity) Model
− · E(ω, x) u(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B(u, v) = F(v) ∀v ∈ H
B∗
(v, w) = Q(v) ∀v ∈ H
The Surrogate Model
− · E0(ω, x) u0(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B0(u0, v) = F(v) ∀v ∈ H
B∗
0 (v, w0) = Q(v) ∀v ∈ H
∗
JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000;
JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006
ODEN MUMS August 20-24, 2018 28 / 102
Predictive Models of Random Materials
Error in Surrogate Models: Goal-Oriented A Posteriori
Estimates of Modeling Error ∗
The Base (high-fidelity) Model
− · E(ω, x) u(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B(u, v) = F(v) ∀v ∈ H
B∗
(v, w) = Q(v) ∀v ∈ H
E
D
E u : vdx
H = L2
P Θ ⊗ H1
ΓD
(D)
The Surrogate Model
− · E0(ω, x) u0(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B0(u0, v) = F(v) ∀v ∈ H
B∗
0 (v, w0) = Q(v) ∀v ∈ H
E
D
E0 u : vdx
E
D
f · vdx +
Γ
t · vds
∗
JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000;
JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006
ODEN MUMS August 20-24, 2018 28 / 102
Predictive Models of Random Materials
Error in Surrogate Models: Goal-Oriented A Posteriori
Estimates of Modeling Error ∗
The Base (high-fidelity) Model
− · E(ω, x) u(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B(u, v) = F(v) ∀v ∈ H
B∗
(v, w) = Q(v) ∀v ∈ H
E
D
E u : vdx
H = L2
P Θ ⊗ H1
ΓD
(D)
The Surrogate Model
− · E0(ω, x) u0(ω, x) = f(ω, x)
ω ∈ Ω , x ∈ D ⊂ Rd
⇓
B0(u0, v) = F(v) ∀v ∈ H
B∗
0 (v, w0) = Q(v) ∀v ∈ H
E
D
E0 u : vdx
E
D
f · vdx +
Γ
t · vds
E · =
Ω
(·)dP(ω)
∗
JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000;
JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006
ODEN MUMS August 20-24, 2018 28 / 102
Predictive Models of Random Materials
Theorem
Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the
quantity of interest predicted by the surrogate model satisfies the two-sided
bounds,
ηlow ≤ Q(e0) ≤ ηupp
where ηlow and ηupp are computable using only properties of the surrogate and
A:
ηlow =
1
4
(η+
low)2
−
1
4
(η−
upp)2
+ Ru0 (w0)
ηupp =
1
4
(η+
upp)2
−
1
4
(η−
low)2
+ Ru0 (w0)
(η±
upp)2
= s2
I0u0
2
± 2B(I0u0, I0w0)B + s−2
I0w0
2
B, s ∈ R+
η±
low = Rsu0+s−1w0
(u0 + θ±
w0)/ u0 ± θ±
w + 0 B
ODEN MUMS August 20-24, 2018 29 / 102
Predictive Models of Random Materials
Theorem
Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the
quantity of interest predicted by the surrogate model satisfies the two-sided
bounds,
ηlow ≤ Q(e0) ≤ ηupp
where ηlow and ηupp are computable using only properties of the surrogate and
A:
ηlow =
1
4
(η+
low)2
−
1
4
(η−
upp)2
+ Ru0 (w0)
ηupp =
1
4
(η+
upp)2
−
1
4
(η−
low)2
+ Ru0 (w0)
(η±
upp)2
= s2
I0u0
2
± 2B(I0u0, I0w0)B + s−2
I0w0
2
B, s ∈ R+
η±
low = Rsu0+s−1w0
(u0 + θ±
w0)/ u0 ± θ±
w + 0 B
E
D
I0E0 u0 : ·w0dx
ODEN MUMS August 20-24, 2018 29 / 102
Predictive Models of Random Materials
Theorem
Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the
quantity of interest predicted by the surrogate model satisfies the two-sided
bounds,
ηlow ≤ Q(e0) ≤ ηupp
where ηlow and ηupp are computable using only properties of the surrogate and
A:
ηlow =
1
4
(η+
low)2
−
1
4
(η−
upp)2
+ Ru0 (w0)
ηupp =
1
4
(η+
upp)2
−
1
4
(η−
low)2
+ Ru0 (w0)
(η±
upp)2
= s2
I0u0
2
± 2B(I0u0, I0w0)B + s−2
I0w0
2
B, s ∈ R+
η±
low = Rsu0+s−1w0
(u0 + θ±
w0)/ u0 ± θ±
w + 0 B
E
D
I0E0 u0 : ·w0dx
= I − E−1
E0
ODEN MUMS August 20-24, 2018 29 / 102
Predictive Models of Random Materials
An Adaptive Modeling Algorithm for Materials
ηest =
N
j=1 η
(l)
est,j :
≥ αηmax , Dj → Dω
< αηmax , Dj → D/Dω
ODEN MUMS August 20-24, 2018 30 / 102
Predictive Models of Random Materials
Approximate Error Estimator
Given a nested sequence of solutions of the surrogate models
(u
(k)
0 , w
(k)
0 ) ∈ H × H, k = 1, 2, · · · , N such that
E |Q(u) − Q(u(k)
)| ≥ E |Q(u) − Q(u(k+1)
)|
and
Q(u
(N)
0 ) = Q(u), w
(N)
0 − w H = 0,
then ∀ε ∈ R+
there is a model k = k∗
≤ N
and a constant C = C(κ, κ0, u
(k∗
)
0 ) such that
|E[Q(u) − Q(u
(k∗
)
0 )]| ≤ η
(k∗
)
est + Cε
where
η
(k∗
)
est = E
D
(E − E0) u
(k∗
)
0 · w
(k∗
)
0 dx
ODEN MUMS August 20-24, 2018 31 / 102
Predictive Models of Random Materials
Accelerated MC with Surrogate Model
Figure: The geometry and one realization of the two phase material under elastic
deformation.
ODEN MUMS August 20-24, 2018 32 / 102
Predictive Models of Random Materials
Accelerated MC with Surrogate Model
Surrogate Models:
l = 1 l = 2 l = 3 l = 4
l = 5 l = 6 l = 7 l = 8
ODEN MUMS August 20-24, 2018 33 / 102
Predictive Models of Random Materials
Accelerated MC with Surrogate Model
Selecting the surrogate model given a tolerance γtol = 0.07
E[Q(u)] − E[Q(u0)] ≈ E[ηest] < γtol
surrogate model E[ηest]
l = 1 2.6334
l = 2 0.8857
l = 3 0.5910
l = 4 0.2868
l = 5 0.1966
l = 6 0.1402
l = 7 0.0892
l = 8 0.0460 < γtol
Results of MC simulation using the the base and surrogate models
QoI cost = realizations × dof
Surrogate (l = 8) E[Q(u
(l=8)
0 )] = 33.81040 ≈ 160 × 60532
Base E[Q(u)] = 33.75003 ≈ 160 × 105202
ODEN MUMS August 20-24, 2018 34 / 102
Predictive Models of Random Materials
2.5. Strategy II: Selection of Most Plausible Models
If training (or testing) data y ∈ Y is available.
M = set of parametric model classes = {M1, M2, . . . , Mm}
Each M has its own likelihood and parameters θj
Bayes’ rule in expanded form:
π(θj|y, Mj, M) =
π(y|θj, Mj, M)π(θj|Mj, M)
π(y|Mj, M)
, 1 ≤ j ≤ m
where π(y|Mj, M) = π(y|θj, Mj, M)π(θj|Mj, M) dθj
Now apply Bayes’ Rule to the evidence1
:
ρj = π(Mj|y, M) =
π(y|Mj, M)π(Mj|M)
π(y, M)
= model plausibility
m
j=1
ρj = 1
1
H. Jeffreys, 1961; Beck and Yuen, 2004;
E. E. Prudencio & H. Cheung, 2012; Farrel, JTO, Faghihi, 2015.
ODEN MUMS August 20-24, 2018 35 / 102
Predictive Models of Random Materials
2.6. Accelerated MLMC with Adaptive Modeling
(L. Scarabosio, B. Wohlmuth)
MLMC Philosophy: To accelerate MC by taking most samples from low accuracy
models (low cost) and very few at high accuracy model (high cost).
Approximate computational expensive QoI = E[Q] with
E[Q] ≈ E[QL] =
L
l=1
E[
Y l
Q(ul
0) − Q(ul−1
0 )]
≈ EL
[QL] =
L
l=1
1
Ml
Ml
j=1
Y l
j
E[Q] − EL
[QL] ≤ |E[Q − QL]| + E[QL] − EL
[QL]
requiring that
|E[Q − QL]| ≤ TOLmodel
E E[QL] − EL
[QL]
2
≤ TOL2
sampling
ODEN MUMS August 20-24, 2018 36 / 102
Predictive Models of Random Materials
Determining Sequence of Surrogate Models
Selecting surrogate models associated with each level guided by the
goal-oriented estimation of the modeling error:
1. Choosing possible models:
• Construct sequence of models {Mk}K
k=1 such that MK is the most
accurate among all surrogate models and
E Q(u) − Q(u
(K)
0 ) ≈ E η
(K)
est ≤ TOLmodel
2. Choose the MLMC levels:
• Select {Ml}L
l=1 ⊆ {Mk}K
k=1 that minimizes the computational cost, with
ML = MK
• Estimated work of MLMC estimator
E[W] = TOL−2
sampling
L
l=1
VlWl
where V l
= V[Y l
] and Wl
is the estimated cost of one realization of Y l
ODEN MUMS August 20-24, 2018 37 / 102
Predictive Models of Random Materials
Optimal Number of Samples per Level
classical MLMC
Determine number of samples per level: {Ml}L
l=1 to minimize total work,
subject to the constraint
E E[QL] − EL
[QL]
2
≤ TOL2
sampling
Ml = λ V l
W l with λ = 1
T OL2
sampling
L
l=1
√
V lWl
• V l
= V ar[Q(ul
0) − Q(ul−1
0 )]
• Wl
= average cost of computing Q(ul
0) − Q(ul−1
0 ) = sample average for the
number of degree of freedoms at level l
ODEN MUMS August 20-24, 2018 38 / 102
Predictive Models of Random Materials
Heat Conduction in Random Two Phase Materials
1m
1m
(0.4,0.4)
Figure: The geometry and one realization of the two phase material.
QoI: q(u) = 1
˜Aq D
χ(x)(−uy)(x) dx where uy is the derivative in y-direction.
ODEN MUMS August 20-24, 2018 39 / 102
Predictive Models of Random Materials
MLMC Selected Surrogate Models
Tolerance samples l = 1 samples l = 2 samples l = 3
0.05 7027.50 558.60 200 (80)
0.025 52269.20 4954.10 829.10
0.0125 111694.30 10367.40 1721.70
Table: Number of samples per level for the three-level MLMC.
ODEN MUMS August 20-24, 2018 40 / 102
Predictive Models of Random Materials
MLMC Speedup Comparing to MC
Figure: Convergence plot for the two-level and three level Monte Carlo comparing
with the estimated cost for the plain Monte Carlo on the fine scale model.
ODEN MUMS August 20-24, 2018 41 / 102
Predictive Models of Random Materials
Elastic Deformation in Random Two Phase Materials
Figure: The geometry and one realization of the two phase material for the elastic
deformation problem.
QoI: q(u) = 1
˜Aq D
χ(x)(−u2)(x) dx where u2 is the displacement in y-direction.
ODEN MUMS August 20-24, 2018 42 / 102
Predictive Models of Random Materials
Elasticity: MLMC Selected Surrogate Models
Figure: Selected models for two-level MLMC
ODEN MUMS August 20-24, 2018 43 / 102
Predictive Models of Random Materials
Elasticity: MLMC Speedup Comparing to MC
Figure: Convergence plot for the two-level Monte Carlo comparing with the
estimated cost for the plain Monte Carlo on the fine scale model.
ODEN MUMS August 20-24, 2018 44 / 102
Predictive Models of Random Materials
2.7. The Inverse Problem: Machine Learning Methods
Stochastic model: − κ(ω, x) u(ω, x) = f(ω, x)
+b.c. ω ∈ Ω, x ∈ D
Synthetic Models of Ω for two-phase random media:
• m(x) ∼= m(ω, x) = parameter field
(u(ω, x) = u(m(x)))
Assume linear parameter-to-observation map G:
G(m) = {G (u(ω, xj))}
Nsenario
j=1
dobs = G(m) + noise with
noise ∼ N(0, Γnoise)
sensors
𝑢 = 𝑔&
𝑢 = 𝑔%
dobs
• Prior
πprior(m) ∼ N(mpr, Cpr)
•
πpost(m) = π(m|dobs) ∝ πlike(dobs|m)πpr(m)
= exp −
1
2
dobs − G(m) 2
Γ−1
noise
−
1
2
m − mpr
2
C−1
pr
ODEN MUMS August 20-24, 2018 45 / 102
Predictive Models of Random Materials
Whipple-Matern Covariance
(k2
I − ∆)α/2
m(x) = σW
m(x) =
Rα
Cpr(x, x )dW(x ) = Gaussian Random Field w. Matern Covariance
C(x, x ) =
1
Γ(ν)2ν−1
2ν
k
|x − x |
ν
× Kν
√
2ν
k
|x − x |
= (k2
I − ∆)α/2
−1
κ(m) =
κI + κM
2
+
κI − κM
2
tanh
m − τ
h
size and density of the inclusions are controlled by τ = cut-off threshold,
1/k = correlation length
P. Whipple 1963, Matern, B. 1986, Simpson, D., Lindgren, F., and Rue, H. 2010,
2015, Alexanderian, A. Petra, N., Stadler, G. and Ghattas, O. 2016, Villa, U.,
Petra, N., and Ghattas, O. 2016.
ODEN MUMS August 20-24, 2018 46 / 102
Predictive Models of Random Materials
True parameters m(x) and state κ(m(x)):
κ(m(x)) obtained from samples drawn from the posterior distribution
πpost(m):
ODEN MUMS August 20-24, 2018 47 / 102
Predictive Models of Random Materials
Surrogate Models for Bayesian Inversion
M ∼ A(m, Sp; u(m, x)) = 0
Q(u) = E[q(u)] ∼ q(m) ∼ π(Q|m, M)
M0 ∼ A0(m0, Sp; u0(m, x)) = 0
Q(u0) = E[q(u0)] ∼ q(m0) ∼ π(Q|m0, M0)
Variational Bayes Method: Data ∼ Y(∈ Sv)
π(y|M) = π(y|m, M)πprior(m|M)dm
= evidence of model M
ln π(y|M) ≥ π(m0) ln
π(y, m|M)
π(m0)
dm
= DKL(π(m0) π(y|m, M))
= H(π(m0)) + m0 ln π(y|m, M)dm
π(m∗
0) = inf E(m0, y, M)
ODEN MUMS August 20-24, 2018 48 / 102
Model Selection and OPAL
3. Model Selection and OPAL: the Occam Plausibility
Algorithm
3.1. Bayesian Plausibility
3.2. OPAL: the Occam Plausibility Algorithm
3.3. An OPAL Scheme for Predictive Models of Tumor Growth
ODEN MUMS August 20-24, 2018 49 / 102
Model Selection and OPAL
3. Model Selection and OPAL: the Occam Plausibility
Algorithm
Instead of adapting a model to meet error con-
straints, select a model from a class of models
that best fits data – in the presence of uncertain-
ties.
• Bayesian Model Posterior Plausibilities
• OPAL – the Occam Plausibility Algorithm
ODEN MUMS August 20-24, 2018 50 / 102
Model Selection and OPAL
3.1. Bayesian Model Plausibilities
M = set of parametric model classes = {P1, P2, . . . , Pm}
Each P has its own likelihood and parameters θj
Bayes’ rule in expanded form:
π(θj|y, Pj, M) =
π(y|θj, Pj, M)π(θj|Pj, M)
π(y|Pj, M)
, 1 ≤ j ≤ m
where
π(y|Pj, M) = π(y|θj, Pj, M)π(θj|Pj, M) dθj
Now apply Bayes’ Rule to the evidence:
ρj = π(Pj|y, M) =
π(y|Pj, M)π(Pj|M)
π(y, M)
= model plausibility
m
j=1
ρj = 1
H. Jeffreys, 1961; Beck and Yuen, 2004;
E. E. Prudencio & H. Cheung, 2012; Farrel, JTO, Faghihi, 2015.
ODEN MUMS August 20-24, 2018 51 / 102
Model Selection and OPAL
3.2. OPAL: the Occam Plausibility Algorithm
Occam’s Razor
Among competing theories that lead to the same
prediction, the one that relies on the fewest
assumptions is the best.
When choosing among a set of models:
M = {P1(θ1), P2(θ2), · · · , Pm(θm)}
The simplest valid model is the best choice.
o simple ⇒ number of relevant parameters
o valid ⇒ passes Bayesian validation test
How do we choose a model that adheres to this principle?
ODEN MUMS August 20-24, 2018 52 / 102
Model Selection and OPAL
3.2. OPAL: the Occam Plausibility Algorithm
START
Identify a set of possible models
M = {P1(θ1), . . . , Pm(θm)}
SENSITIVITY ANALYSIS
Fix parameters for which model
output is insensitive, or eliminate
models with such parameters
OCCAM STEP
Choose model(s) in the
lowest Occam category
M∗
= {P∗
1 (θ∗
1), . . . , P∗
k (θ∗
k)}
CALIBRATION STEP
Calibrate all models in M∗
ITERATIVE OCCAM STEP
Choose models in
next Occam category
PLAUSIBILITY STEP
Compute plausibilities and
identify most plausible model P∗
j
Does P∗
j have the most
parameters in ¯M?
Identify a new set
of possible models
VALIDATION STEP
Submit P∗
j to validation test
Is P∗
j valid?
Use validated params
to predict QoI
Can additional calibration
data be accessed?
No Yes No
No
Yes
Yes
K. Farrell, JTO, D. Faghihi, 2015
ODEN MUMS August 20-24, 2018 53 / 102
Model Selection and OPAL
3.3. An OPAL Scheme for Predictive Models of Tumor
Growth
• Continuum Mixture
Theory (Balance
Laws of Physics)
• Hallmarks of
Cancer
@⇢↵ ↵
@t
+ r · (⇢↵v↵ ↵) =
⇢↵S↵ ⇢↵r · J↵
J↵ = M↵( )rµ↵
divT↵ + ˆp↵ = ⇢↵
dv↵
dt
1  ↵  N = no. of species
x
Mass density
of ⍺th species
Volume fraction
of ⍺th species
Species
velocity
Mass flux Partial
stress
Chemical
potential
Source
control
Represents Many Model Class M
S↵ = prof T (1 T )
apot
µ↵ =
c T ) Reaction Di↵ussion
( T ) + "|r T | · · · ) Phase Field
Represents Many Model Class M
S↵ = prof T (1 T )
apot
µ↵ =
c T ) Reaction Di↵ussion
( T ) + "|r T | · · · ) Phase Field
Represents Many Model Class M
S↵ = prof T (1 T )
apot
µ↵ =
c T ) Reaction Di↵ussion
( T ) + "|r T | · · · ) Phase Field
Represents Many Model Class M
S↵ = prof T (1 T )
apot
µ↵ =
c T ) Reaction Di↵ussion
( T ) + "|r T | · · · ) Phase Field
Represents Many Model Class M
S↵ = prof T (1 T )
apot
µ↵ =
c T ) Reaction Di↵ussion
( T ) + "|r T | · · · ) Phase Field
ODEN MUMS August 20-24, 2018 54 / 102
Model Selection and OPAL
Most Complete Phase-Field Model
Tumor: φT = φP + φH + φN
Hypoxic, φH
Proliferative (φP )
Necrotic, φN
Nutrient, φσ
φMDE
φECM Mechanical, u
φα = φα(x, t), x ∈ D, t > 0
α
φα = 1
ODEN MUMS August 20-24, 2018 55 / 102
Model Selection and OPAL
∂φT
∂t
= · MT (φT , φECM ) µ + λgrowφσφT (1 − φT ) − λapopφT
µ = Ψ (φT ) − 2
T ∆φT + λ · u − χ0φσ
∂φH
∂t
= · M(φH, φECM ) µ + λP HH (σP H − φσ) φP
− λHP H (φσ − σHP ) φH − λHN H (σHN − φσ) φH
∂φN
∂t
= · M(φN , φECM ) µ+λHN H (σHN − φσ) φH
0 = · G u +
G
1 − 2ν
( · u) + λ φT
∂φσ
∂t
= · Mσδ−1
σ φσ − · Mσχ0 φT − λconsφT φσ
dφECM
dt
= −λECM
decay (φMDE)φECM + λECM
rem φT (1 − φECM )
∂φMDE
∂t
= · MMDE φMDE + λMDE
prod (1 − φMDE)φT − λMDE
decay φMDE
− λECM
decay φECM φMDE
ODEN MUMS August 20-24, 2018 56 / 102
Model Selection and OPAL
Extracellular
matrix
Proliferative
tumor cell
Hypoxic
tumor cell
Healthy
cell
Endothelial
cell
Fibroblast
Macrophage
VEGF
VEGF receptor
Necrotic
tumor cell
ODEN MUMS August 20-24, 2018 57 / 102
Model Selection and OPAL
Data: Murine Subject-CMRI
Murine model implanted by tumor cells
Magnetic resonance
imaging (MRI)
Source: Huang, Jun, et al.
(2015) Molecular medicine
reports
ODEN MUMS August 20-24, 2018 58 / 102
Model Selection and OPAL
Glioma Data With 40Gy Radiotherapy
• MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22;
• Carrying capacity: 40761 cells;
• Voxel dimensions (dx×dy×dz): 250 × 250 × 1000 µm.
• Number of voxels: 41 × 61 × 16
10 12 14 16.5 18.5 20.5 22
Calibration
Validation
Prediction
Tumor area evolution at slice=11.
Hormuth II, Weis, Barnes, Miga, Rericha, Quaranta, and Yankeelov, 2015.
ODEN MUMS August 20-24, 2018 59 / 102
Model Selection and OPAL
Calibration
6
8
10
12
14
16
18
20
22
24
10 12 14 16 18 20 22
TumorArea(mm2)
Time (day)
Calibration
Likelihood Function
ln (π(yc|θ)) =
N
2
ln(2π) +
N
i=1
− ln(σi) −
1
2
yci − di(θ)
σi
2
• N: number of data points (days) used for calibration;
• di: tumor area/volume model prediction at day i;
• σ2
i : variance of the data (estimated);
ODEN MUMS August 20-24, 2018 60 / 102
Model Selection and OPAL
Glioma Data With 40 Gy Radiotherapy
• MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22;
6
8
10
12
14
16
18
20
22
24
10 12 14 16 18 20 22
TumorArea(mm2)
Time (day)
Calibration
π(θ|yc)
Invalid
Tumor area evolution at slice=11.
Lima, E., JTO, Wohlmuth, B., Shahmoradi, A., Hormuth II, D., Yankeelov, T.E., CMAME 2017.
ODEN MUMS August 20-24, 2018 61 / 102
Model Selection and OPAL
Glioma Data With 40 Gy Radiotherapy
• MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22;
6
8
10
12
14
16
18
20
22
24
10 12 14 16 18 20 22
TumorArea(mm2)
Time (day)
Calibration
π(θ|yc) π(θ|yv, yc)
Validation Prediction
Tumor area evolution at slice=11.
Lima, E., JTO, Wohlmuth, B., Shahmoradi, A., Hormuth II, D., Yankeelov, T.E., CMAME 2017.
ODEN MUMS August 20-24, 2018 61 / 102
Model Selection and OPAL
Model Derivation
• The tumor cell volume fraction must satisfy its own mass balance given
by
∂φT
∂t
= · MT (φT ) µ + λg
T φT (1 − φT ) −R(Ttreat, ˜Dt)φT
where the chemical potential is given by
µ(φT ) = DφT
E,
and DφT
(·) is the Gâteaux derivative with respect to φT .
• The choice of the total free energy E leads to different model classes:
PF ⇒ E = Ω
Ψ(φT ) +
2
T
2 | φT |2
+ W(φT , E(u)) dx;
RD ⇒ E = Ω
c
2 φ2
T dx;
MD ⇒ E = Ω
c
2 φ2
T + W(φT , E(u)) dx.
ODEN MUMS August 20-24, 2018 62 / 102
Model Selection and OPAL
Occam Categories
• PF# = phase-field model
• RD# = reaction-diffusion model without mechanical coupling
• MD# = reaction-diffusion model with mechanical coupling
Model
Variables Parameters (θ)
# θ
φT µ u MT M∗
T c λg
T
¯ET T G ν λ γ γg
RD01 2
PF01 4
RD02 6
RD03 6
MD01 6
RD04 7
MD02 7
MD03 7
PF02 7
MD04 8
PF03 8
PF04 8
PF05 9
E. A. B. F. Lima, JTO, D. A. Hormuth, T. E. Yankeelov, R. C. Almeida, 2016
ODEN MUMS August 20-24, 2018 63 / 102
Model Selection and OPAL
Radiotherapy Models
(T01) Memory model
R(Ttreat, ˜Dt) =
λk( ˜Dt)
1+λr(t−Ttreat) , for t ≥ Ttreat,
0, for t < Ttreat,
(T02) Partial memory model
R(Ttreat, ˜Dt) =
αD, for t = Ttreat,
0, for t = Ttreat,
¯λg
T =
λg
T Rg
, for t ≥ Ttreat,
λg
T , for t < Ttreat,
(T03) No memory model
R(Ttreat, ˜Dt) =
κ(1 − exp(−α ˜Dt − β ˜D2
t )), for t = Ttreat,
0, for t = Ttreat,
ODEN MUMS August 20-24, 2018 64 / 102
Model Selection and OPAL
Radiotherapy Models
Model
Parameters (θ)
#θ
λr λk α β κ αD Rg
T01 2
T02 2
T03 3
• Ttreat = 14.5: treatment day;
• λr: recovery from the treatment;
• λk: death rate of tumor cells;
• αD: death by radiation;
• α: linear cell kill;
• β: quadratic cell kill;
• κ: positive parameter;
• Rg
: tumor growth reduction;
ODEN MUMS August 20-24, 2018 65 / 102
Model Selection and OPAL
Combining the 13 models × 3 treatment types
Model
Variables Parameters (θ)
#θ
Occam
CategoryφT µ u MT M∗
T c λg
T
¯ET T E ν λ γ γg λr λk α β κ αD Rg
RD01T01 4 1
RD01T02 4 1
RD01T03 5 2
PF01T01 6 3
PF01T02 6 3
PF01T03 7 4
RD02T01 8 5
RD02T02 8 5
RD03T01 8 5
RD03T02 8 5
MD01T01 8 5
MD01T02 8 5
RD02T03 9 6
RD03T03 9 6
MD01T03 9 6
RD04T01 9 6
RD04T02 9 6
MD02T01 9 6
MD02T02 9 6
MD03T01 9 6
ODEN MUMS August 20-24, 2018 66 / 102
Model Selection and OPAL
Combining the 13 models × 3 treatment types
Model
Variables Parameters (θ)
#θ
Occam
CategoryφT µ u MT M∗
T c λg
T
¯ET T E ν λ γ γg λr λk α β κ αD Rg
MD03T02 9 6
PF02T01 9 6
PF02T02 9 6
RD04T03 10 7
MD02T03 10 7
MD03T03 10 7
PF02T03 10 7
MD04T01 10 7
MD04T02 10 7
PF03T01 10 7
PF03T02 10 7
PF04T01 10 7
PF04T02 10 7
MD04T03 11 8
PF03T03 11 8
PF04T03 11 8
PF05T01 11 8
PF05T02 11 8
PF05T03 12 9
ODEN MUMS August 20-24, 2018 67 / 102
Model Selection and OPAL
Results - 40Gy
γ18.5
tol = 1.98mm2
γ20.5
tol = 2.33mm2
γ22.0
tol = 2.47mm2
Model
Occam
Category
Calibration Validation Prediction
Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2)
RD01T01 1 0.99 1.00 1.13 0.98 1.11
RD01T02 1 0.01 0.00 3.83 6.81 1.70
RD01T03 2 n/a n/a 3.74 6.58 1.64
PF01T01 3 1.00 1.00 1.31 1.72 1.06
PF01T02 3 0.00 0.00 2.55 2.81 1.23
PF01T03 4 n/a n/a 6.67 12.40 3.45
RD02T01 5 0.15 0.71 1.08 1.07 1.12
RD02T02 5 0.00 0.00 1.64 1.08 1.13
RD03T01 5 0.20 0.23 1.16 1.14 0.99
RD03T02 5 0.01 0.00 4.11 7.26 1.94
MD01T01 5 0.63 0.06 1.43 1.49 1.07
MD01T02 5 0.01 0.00 1.97 1.84 1.14
ODEN MUMS August 20-24, 2018 68 / 102
Model Selection and OPAL
Results - 40Gy
γ18.5
tol = 1.98mm2
γ20.5
tol = 2.33mm2
γ22.0
tol = 2.47mm2
Model
Occam
Category
Calibration Validation Prediction
Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2)
RD02T03 6 0.01 0.00 3.69 6.46 1.62
RD03T03 6 0.01 0.00 4.45 8.31 2.03
MD01T03 6 0.05 0.00 4.18 7.69 1.85
RD04T01 6 0.06 0.15 0.92 2.22 0.91
RD04T02 6 0.00 0.00 2.16 2.36 1.15
MD02T01 6 0.05 0.02 1.69 2.08 1.20
MD02T02 6 0.00 0.00 2.14 2.43 1.16
MD03T01 6 0.04 0.53 1.29 1.45 1.07
MD03T02 6 0.00 0.00 2.62 3.73 1.21
PF02T01 6 0.74 0.30 1.15 1.72 1.07
PF02T02 6 0.03 0.00 1.82 1.22 1.11
ODEN MUMS August 20-24, 2018 69 / 102
Model Selection and OPAL
Results - 40Gy
γ18.5
tol = 1.98mm2
γ20.5
tol = 2.33mm2
γ22.0
tol = 2.47mm2
Model
Occam
Category
Calibration Validation Prediction
Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2)
RD04T03 7 0.01 0.00 4.03 7.12 1.87
MD02T03 7 0.02 0.00 7.99 15.30 4.26
MD03T03 7 0.02 0.00 4.58 8.88 2.05
PF02T03 7 0.05 0.00 7.64 14.73 4.08
MD04T01 7 0.04 0.41 1.51 1.75 1.12
MD04T02 7 0.01 0.00 1.98 2.03 1.16
PF03T01 7 0.41 0.26 1.30 1.71 1.09
PF03T02 7 0.00 0.00 1.78 1.17 1.13
PF04T01 7 0.43 0.33 1.26 1.75 1.09
PF04T02 7 0.00 0.00 1.85 1.28 1.11
MD04T03 8 0.05 0.00 6.96 15.16 3.47
PF03T03 8 0.05 0.00 5.60 11.76 2.59
PF04T03 8 0.03 0.00 7.12 13.53 3.74
PF05T01 8 0.83 1.00 1.25 1.88 1.07
PF05T02 8 0.03 0.00 1.72 1.14 1.14
PF05T03 9 n/a n/a 7.39 14.12 3.92
ODEN MUMS August 20-24, 2018 70 / 102
Model Selection and OPAL
RD01 - 3D With 40 Gy Radiotherapy
Tumor at day t = 11, treatment at day t = 14.5.
ODEN MUMS August 20-24, 2018 71 / 102
Model Selection and OPAL
RD01 - 3D With 40 Gy Radiotherapy
Tumor at day t = 14, treatment at day t = 14.5.
ODEN MUMS August 20-24, 2018 72 / 102
Model Selection and OPAL
RD01 - 3D With 40 Gy Radiotherapy
Tumor at day t = 17, treatment at day t = 14.5.
ODEN MUMS August 20-24, 2018 73 / 102
Model Selection and OPAL
4. Concluding Comments
1. The Central Problem of Predictive Computational Science is the selection of
valid model and model parameters for a given QoI.
2. Bayesian setting provides a natural framework for handling all sources of
uncertainty in predictive modeling.
3. Goal-Oriented estimates of error in surrogate model approximations of QoIs
provide a basis for analyzing random heterogeneous media with reduced
models involving considerably fewer dofs than the high fidelity base model.
4. The adaptive modeling algorithm provides a framework for developing new
model-based Multilevel Monte Carlo methods that can often provide
considerable savings in cost over the traditional Monte Carlo method.
5. Predictive multiscale models of random heterogeneous materials and tumor
growth can be developed if sufficient relative data are available.
ODEN MUMS August 20-24, 2018 74 / 102
Model Selection and OPAL
General
Oden, J. T. (2018). Adaptive multiscale predictive modelling. Acta Numerica, 27, 353-450.
Goal Oriented Error Estimation
Oden, J. T., Prudhomme, S. (2002). Estimation of modeling error in computational mechanics.
Journal of Computational Physics, 182(2), 496-515.
Bauman, P. T., Oden, J. T., Prudhomme, S. (2009). Adaptive multiscale modeling of polymeric
materials with Arlequin coupling and Goals algorithms. Computer Methods in Applied
Mechanics and Engineering, 198(5-8), 799-818.
Oden, J. T., Prudhomme, S., Romkes, A.,Bauman, P. T. (2006). Multiscale modeling of physical
phenomena: Adaptive control of models. SIAM Journal on Scientific Computing, 28(6),
2359-2389.
Oden, J. T., Vemaganti, K. S. (2000). Estimation of local modeling error and goal-oriented
adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms.
Journal of Computational Physics, 164(1), 22-47.
Vemaganti, K. S., Oden, J. T. (2001). Estimation of local modeling error and goal-oriented
adaptive modeling of heterogeneous materials: Part II: a computational environment for
adaptive modeling of heterogeneous elastic solids. Computer Methods in Applied Mechanics
and Engineering, 190(46-47), 6089-6124.
ODEN MUMS August 20-24, 2018 75 / 102
Model Selection and OPAL
Tumor Growth Papers
Hawkins-Daarud, A., van der Zee, K. G., Tinsley Oden, J. (2012). Numerical simulation of a
thermodynamically consistent four?species tumor growth model. International journal for
numerical methods in biomedical engineering, 28(1), 3-24.
Oden, J. T., Hawkins, A., Prudhomme, S. (2010). General diffuse-interface theories and an
approach to predictive tumor growth modeling. Mathematical Models and Methods in Applied
Sciences, 20(03), 477-517.
Oden, J. T., Lima, E. A., Almeida, R. C., Feng, Y., Rylander, M. N., Fuentes, D., Faghihi, D.,
Rahman, M.M., DeWitt, M., Gadde, M., Zhou, J. C. (2016). Toward predictive multiscale
modeling of vascular tumor growth. Archives of Computational Methods in Engineering, 23(4),
735-779.
Lima, E. A. B. F., Oden, J. T., Almeida, R. C. (2014). A hybrid ten-species phase-field model of
tumor growth. Mathematical Models and Methods in Applied Sciences, 24(13), 2569-2599.
Lima, E. A. B. F., Oden, J. T., Hormuth, D. A., Yankeelov, T. E., Almeida, R. C. (2016). Selection,
calibration, and validation of models of tumor growth. Mathematical Models and Methods in
Applied Sciences, 26(12), 2341-2368.
Lima, E. A. B. F., Oden, J. T., Wohlmuth, B., Shahmoradi, A., Hormuth II, D. A., Yankeelov, T. E.,
Scarabosiob, L., Horger, T. (2017). Selection and validation of predictive models of radiation
effects on tumor growth based on noninvasive imaging data. Computer methods in applied
mechanics and engineering, 327, 277-305.
ODEN MUMS August 20-24, 2018 76 / 102
Model Selection and OPAL
Multiscale Models of Cancer
ODEN MUMS August 20-24, 2018 77 / 102
Model Selection and OPAL
Definition of Agent-Based Model
Agent-based model (ABM) is a method of
computational modeling that simulates inter-
actions and actions of autonomous agents
tumor and healthy cells
with the purpose of viewing their effects on
the system as a whole
tumor environment
.
ODEN MUMS August 20-24, 2018 78 / 102
Model Selection and OPAL
Avascular Tumor Growth Model
Avascular Tumor Growth Model
Nutrient
P D E
Tumor Cells
Quiescent, Proliferative,
Hypoxic, Apoptotic
and Necrotic
A B M
Healthy Cells
Homeostasis
A B M
Consumption
Consumption
Tissue Scale
Cell Scale
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 7 / 45
ODEN MUMS August 20-24, 2018 79 / 102
Model Selection and OPAL
Cell Representation
• Cell geometry is a perturbation of a spherical
(circular) core.
• Two neighbor cells may deform, which is cap-
tured by cytoplasm overlap.
• Cell nucleus is incompressible.
• Each cell has phenotypic and physical prop-
erties:
Phenotypic properties
cell state: Si
calcification: Ci
proliferation: αP,i
apoptosis: αA,i
Physical properties
cell radius: Ri
nucleus radio: Ri
N
action radius: Ri
A
position: xi
velocity: vi
Ri
Ri
N
Ri
A
xi
ODEN MUMS August 20-24, 2018 80 / 102
Model Selection and OPAL
Cell Forcesell Forces
Cell-cell adhesion and repulsion:
Fij
cca = cccar'(xj xi ; Ri
A + Rj
A),
Fij
ccr = cccr r (xj xi ; Ri
N + Rj
N, Ri + Rj ).
E↵ects of the compressive stress:
Fi
ct = cctK(V , t)r'(di
; Ri
A),
Fi
rct = crtcK(V , t)r (di
; Ri
N, Ri ).
Drag force: Fi
drag = ⌫vi .
K(V , t): a real function in [0, 1] depending on the tumor volume V at time t;
di
: the distance between the center of the cell and the domain boundary;
ccca, cccr , cct, crtc and ⌫: scale parameters;
' and : interaction potentials for adhesion and repulsion, respectively.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 9 /
• Cell-cell adhesion and repulsion:
Fij
cca = −ccca ϕ(xj − xi; Ri
A + Rj
A)
Fij
ccr = −cccr ϕ(xj − xi; Ri
N + Rj
N , Ri + Rj)
• Cell-cell adhesion and repulsion:
Fij
ct = −cctK(V, t) ϕ(di
; Ri
A)
Fij
rct = −crctK(V, t) ϕ(di
; Ri
N , Ri)
Macklin, P., Kim, J., Tomaiuolo, G., Edgerton, M. E., Cristini, V. Comp. Biology, 2009.
Rocha, H. L., Almeida, R. C., Lima, E. A. B. F., Resende, A. C. M., Oden, J. T., Yankeelov,
T. E., M3MS, 2018.
ODEN MUMS August 20-24, 2018 81 / 102
Model Selection and OPAL
Balance of Forces ⇒ cell movement
alance of forces ) cell movement
Balance of forces on cell i:
mi ˙vi =
cell-cell
z }| {
N(t)
X
j=1
j6=i
(Fij
cca + Fij
ccr ) +
cell-microenvironment
z }| {
(Fi
drag + Fi
ct + Fi
rct)
ODEN MUMS August 20-24, 2018 82 / 102
Model Selection and OPAL
Tumor Cell Transition
Tumor Cell Transition
P P
S and G2
⌧P ⌧G1
Q
G1⌧G1↵P( )
H
< H
< H
N
⌧N
A
↵A
Removed
⌧A
P
PTumor Cells:
P: Proliferative
Q: Quiescent
H: Hypoxic
N: Necrotic
A: Apoptotic
Nutrient:
⌧N, ⌧A, ⌧P and ⌧G1 : time for necrosis, apoptosis, cell cycle, and G1 phase, respectively;
H: hypoxic threshold;
↵P and ↵A: proliferation and apoptosis rate, respectively;
Red Arrows: stochastic process and Black Arrows: deterministic process.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 11 /
τs = time to phase change
αP , αA ∼ proliferation and apoptosis rate
ODEN MUMS August 20-24, 2018 83 / 102
Model Selection and OPAL
Stochastic Transition
Considering small time intervals [t, t + ∆t]
• The transition from quiescent (Q) to apoptotic (A) is given by
P(A|Q) = 1 − exp(αA∆t),
∆t is the time interval.
• The transition from quiescent (Q) to proliferative (P) is given by
P(P|Q) = 1 − exp(αP (σ)∆t),
αP (σ) = ¯αP
σ − σH
1 − σH
1 −
Nt
out
Nmax
out
,
Nt
out: is the number of cells outside the domain;
Nmax
out : is maximum number of cells that can leave the domain.
ODEN MUMS August 20-24, 2018 84 / 102
Model Selection and OPAL
Numerical Experiments
Tumor cells: 5 Nutrient
Numerical Experiments
Healthy
cells
Quiescent
tumor
cells
Proliferative
tumor
cells
Apoptotic
tumor
cells
Necrotic
tumor
cells
Figure: Day 0
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45
ODEN MUMS August 20-24, 2018 85 / 102
Model Selection and OPAL
Numerical Experiments
Tumor cells: 171 Nutrient
Numerical Experiments
Healthy
cells
Quiescent
tumor
cells
Proliferative
tumor
cells
Apoptotic
tumor
cells
Necrotic
tumor
cells
Figure: Day 8.33
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45
ODEN MUMS August 20-24, 2018 86 / 102
Model Selection and OPAL
Numerical Experiments
Tumor cells: 861 Nutrient
Numerical Experiments
Healthy
cells
Quiescent
tumor
cells
Proliferative
tumor
cells
Apoptotic
tumor
cells
Necrotic
tumor
cells
Figure: Day 16.67
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45
ODEN MUMS August 20-24, 2018 87 / 102
Model Selection and OPAL
IncuCyte Live Cell Analysis
Figure: Image of the whole well
with the mask for cell confluence
(area of the well 0.32cm2
.)
Live/death cell confluence time series
• 3 initial confluences (low, medium and
high);
• 4 glucose levels (1, 2, 5 and 10 mM);
• 4 replicas of each;
• 48 wells.
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0 50 100 150 200 250 300 350 400
Confluence
Time (hours)
10 mM glucose
The line represents the mean of 4 replicas.
ODEN MUMS August 20-24, 2018 88 / 102
Model Selection and OPAL
Avascular Model
Tumor Cell Transition
P P
S and G2
⌧P ⌧G1
Q
G1⌧G1↵P( )
D
↵D( )
Removed
⌧D
P
P
Tumor Cells:
P: Proliferative
Q: Quiescent
D: Dying
Nutrient:
⌧N, ⌧D, ⌧P and ⌧G1 : time for necrosis, to die, cell cycle, and G1 phase, respectively;
↵P and ↵D: proliferation and death rate, respectively.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 20 / 45
ODEN MUMS August 20-24, 2018 89 / 102
Model Selection and OPAL
Stochastic Transition
Considering small time intervals [t, t + ∆t]
• The transition from quiescent (Q) to dying (D) is given by
P(D|Q) = 1 − exp(αD(σ)∆t), αD(σ) = ¯αD (1 − σ) ,
∆t is the time interval.
• The transition from quiescent (Q) to proliferative (P) is given by
P(P|Q) = 1 − exp(αP (σ)∆t), αP (σ) = ¯αP σ.
ODEN MUMS August 20-24, 2018 90 / 102
Model Selection and OPAL
Numerical Experiments
Numerical Experiments
Figure: Agent-based model (left) and nutrient (right) evolution.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 22 / 45
ODEN MUMS August 20-24, 2018 91 / 102
Model Selection and OPAL
Numerical Experiments
Numerical Experiments
Figure: Agent-based model (left) and nutrient (right) evolution.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 22 / 45
ODEN MUMS August 20-24, 2018 92 / 102
Model Selection and OPAL
Stochastic Calibration
Stochastic Calibration
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0 50 100 150 200 250 300 350 400
Confluence
Time (hours)
10 mM glucose
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 20 40 60 80 100 120 140 160 180 200
Confluence
Time Steps
Generated Confluence
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0 2 4 6 8 10 12 14 16 18 20
Confluence
Time Steps
Generated Confluence
Figure: Mean of 4 in vitro experiments (top) and 10 model simulations (bottom).
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 23 / 45
ODEN MUMS August 20-24, 2018 93 / 102
Model Selection and OPAL
Stochastic Calibration: Likelihood Function
For both calibration and validation we assume:
Additive Noise :
Ωreal + ηdata = y,
Ωreal + ηmodel = d(θ).
• ηdata ∼ N(0N×1, σ2
dataIN×N ) → accounting for the data uncertainty;
• ηmodel ∼ N(0N×1, σ2
modelIN×N ) → accounting for the model inadequacy.
Considering the parameter σ such as σ2
= σ2
data + σ2
model:
Likelihood Function
π(ˆy|θ) =
Nt
i=1
1
2πσ2
i
e
−
(ˆyi − ˆdi(θ))2
2σ2
i ,
ˆdi(θ) is the mean of Mm realizations of the stochastic model;
ˆyi is the mean of 4 data points.
ODEN MUMS August 20-24, 2018 94 / 102
Model Selection and OPAL
Vascular Tumor Growth Model
Vascular Tumor Growth Model
Nutrient
P D E
VEGF
P D E
Tumor Cells
Quiescent, Proliferative,
Hypoxic, Apoptotic
and Necrotic
A B M
Endothelial Cells
Quiescent, Tip, Stalk
A B M
Consumption
Release Release
Consumption
Tissue Scale
Cell Scale
Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 33 / 45
ODEN MUMS August 20-24, 2018 95 / 102
Model Selection and OPAL
Tumor Cell Transition
Tumor Cell Transition
P P
S and G2
⌧P ⌧G1
Q
G1⌧G1↵P( )
H
< H
< H
N
⌧N
A
↵A
Removed
⌧A
P
PTumor Cells:
P: Proliferative
Q: Quiescent
H: Hypoxic
N: Necrotic
A: Apoptotic
Nutrient:
⌧N, ⌧A, ⌧P and ⌧G1 : time for necrosis, apoptosis, cell cycle, and G1 phase, respectively;
H: hypoxic threshold;
↵P and ↵A: proliferation and apoptosis rate, respectively;
Red Arrows: stochastic process and Black Arrows: deterministic process.
Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 11 / 45
ODEN MUMS August 20-24, 2018 96 / 102
Model Selection and OPAL
Endothelial Cell Transition
Endothelial Cell Transition
S S
⌧M > ⌧grow
⌧C
TQE
vegf < tip
dtip < D dtip < D
S
S
Endothelial Cells:
QE : Quiescent
T : Tip
S: Stalk
VEGF: vegf
⌧M, ⌧grow , and ⌧C : time to mature, grow, and endothelial cell cycle, respectively;
tip: VEGF threshold;
dtip: distance from the closest tip cell;
D: minimum distance required to become stalk cell.
Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 34 / 45
ODEN MUMS August 20-24, 2018 97 / 102
Model Selection and OPAL
Lumen Formation
Lumen Formation
QE
+
QE
+
QE
+
QE
+
S
+
S
+ T
Frep
Frep
Frep
Frep Frep Frep
QE
+
QE
+
QE
+
QE
+
S
+
S
+ T
Frep
Frep Frep
Frep
Frep Frep
Lumen repulsion:
Fij
rep = ceer (xj xi ; Ri
N + Rj
N, Ri + Rj ).
Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 35 / 45
ODEN MUMS August 20-24, 2018 98 / 102
Model Selection and OPAL
Tip Cell Movement
Tip Cell Movement
QE
QE
QE
QE
S
S
T Fvegf
VEGF Force:
Fi
vegf = cvegf r vegf .
Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 36 / 45
ODEN MUMS August 20-24, 2018 99 / 102
Model Selection and OPAL
Numerical Simulation
Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution.
ODEN MUMS August 20-24, 2018 100 / 102
Model Selection and OPAL
Numerical Simulation
Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution.
ODEN MUMS August 20-24, 2018 100 / 102
Model Selection and OPAL
Numerical Simulation
Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution.
ODEN MUMS August 20-24, 2018 100 / 102
Model Selection and OPAL
Numerical Simulation
Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution.
ODEN MUMS August 20-24, 2018 100 / 102
Model Selection and OPAL
Numerical Simulation
Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution.
ODEN MUMS August 20-24, 2018 100 / 102
Model Selection and OPAL
Unbreakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 101 / 102
Model Selection and OPAL
Unbreakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 101 / 102
Model Selection and OPAL
Unbreakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 101 / 102
Model Selection and OPAL
Unbreakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 101 / 102
Model Selection and OPAL
Breakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 102 / 102
Model Selection and OPAL
Breakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 102 / 102
Model Selection and OPAL
Breakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 102 / 102
Model Selection and OPAL
Breakable Vessel
Figure: Agent-based model evolution.
ODEN MUMS August 20-24, 2018 102 / 102

More Related Content

Similar to MUMS Opening Workshop - Principles of Predictive Computational Science: Predictive Models of Random Heterogeneous Materials and Tumor Growth - Tinsley Oden, August 20, 2018

Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptxAdvanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
MohammedAbdela7
 
Survival Analysis With Generalized Additive Models
Survival Analysis With Generalized Additive ModelsSurvival Analysis With Generalized Additive Models
Survival Analysis With Generalized Additive Models
Christos Argyropoulos
 
TPCMFinalACone
TPCMFinalAConeTPCMFinalACone
TPCMFinalACone
Adam Cone
 
V.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
V.8.0-Emerging Frontiers and Future Directions for Predictive AnalyticsV.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
V.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
Elinor Velasquez
 

Similar to MUMS Opening Workshop - Principles of Predictive Computational Science: Predictive Models of Random Heterogeneous Materials and Tumor Growth - Tinsley Oden, August 20, 2018 (20)

Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pdf
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pdfAdvanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pdf
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pdf
 
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptxAdvanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
Advanced Biostatistics Course Note_Summer_Tadesse Awoke 2018.pptx
 
advanced_statistics.pdf
advanced_statistics.pdfadvanced_statistics.pdf
advanced_statistics.pdf
 
Predictive Modeling in Insurance in the context of (possibly) big data
Predictive Modeling in Insurance in the context of (possibly) big dataPredictive Modeling in Insurance in the context of (possibly) big data
Predictive Modeling in Insurance in the context of (possibly) big data
 
Foundations of Statistics for Ecology and Evolution. 1 Introduction.
Foundations of Statistics for Ecology and Evolution. 1 Introduction.Foundations of Statistics for Ecology and Evolution. 1 Introduction.
Foundations of Statistics for Ecology and Evolution. 1 Introduction.
 
MS-Intro.pptx
MS-Intro.pptxMS-Intro.pptx
MS-Intro.pptx
 
因果関係の推論
因果関係の推論因果関係の推論
因果関係の推論
 
Regression shrinkage: better answers to causal questions
Regression shrinkage: better answers to causal questionsRegression shrinkage: better answers to causal questions
Regression shrinkage: better answers to causal questions
 
Charleston Conference 2016
Charleston Conference 2016Charleston Conference 2016
Charleston Conference 2016
 
Peer Review Filters.pptx
Peer Review Filters.pptxPeer Review Filters.pptx
Peer Review Filters.pptx
 
APS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor RhoneAPS GDS data science talk by Trevor Rhone
APS GDS data science talk by Trevor Rhone
 
Varese italie #2
Varese italie #2Varese italie #2
Varese italie #2
 
Survival Analysis With Generalized Additive Models
Survival Analysis With Generalized Additive ModelsSurvival Analysis With Generalized Additive Models
Survival Analysis With Generalized Additive Models
 
M Sc Thesis Presentation Eitan Lavi
M Sc Thesis Presentation   Eitan LaviM Sc Thesis Presentation   Eitan Lavi
M Sc Thesis Presentation Eitan Lavi
 
Statistical Inference as Severe Testing: Beyond Performance and Probabilism
Statistical Inference as Severe Testing: Beyond Performance and ProbabilismStatistical Inference as Severe Testing: Beyond Performance and Probabilism
Statistical Inference as Severe Testing: Beyond Performance and Probabilism
 
TPCMFinalACone
TPCMFinalAConeTPCMFinalACone
TPCMFinalACone
 
05 astrostat feigelson
05 astrostat feigelson05 astrostat feigelson
05 astrostat feigelson
 
Scientific software engineering methods and their validity
Scientific software engineering methods and their validityScientific software engineering methods and their validity
Scientific software engineering methods and their validity
 
Scientific problems and philosophical questions about causality. Why we need ...
Scientific problems and philosophical questions about causality. Why we need ...Scientific problems and philosophical questions about causality. Why we need ...
Scientific problems and philosophical questions about causality. Why we need ...
 
V.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
V.8.0-Emerging Frontiers and Future Directions for Predictive AnalyticsV.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
V.8.0-Emerging Frontiers and Future Directions for Predictive Analytics
 

More from The Statistical and Applied Mathematical Sciences Institute

Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
The Statistical and Applied Mathematical Sciences Institute
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
The Statistical and Applied Mathematical Sciences Institute
 

More from The Statistical and Applied Mathematical Sciences Institute (20)

Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
Causal Inference Opening Workshop - Latent Variable Models, Causal Inference,...
 
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
2019 Fall Series: Special Guest Lecture - 0-1 Phase Transitions in High Dimen...
 
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
Causal Inference Opening Workshop - Causal Discovery in Neuroimaging Data - F...
 
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
Causal Inference Opening Workshop - Smooth Extensions to BART for Heterogeneo...
 
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
Causal Inference Opening Workshop - A Bracketing Relationship between Differe...
 
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
Causal Inference Opening Workshop - Testing Weak Nulls in Matched Observation...
 
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...Causal Inference Opening Workshop - Difference-in-differences: more than meet...
Causal Inference Opening Workshop - Difference-in-differences: more than meet...
 
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
Causal Inference Opening Workshop - New Statistical Learning Methods for Esti...
 
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
Causal Inference Opening Workshop - Bipartite Causal Inference with Interfere...
 
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
Causal Inference Opening Workshop - Bridging the Gap Between Causal Literatur...
 
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
Causal Inference Opening Workshop - Some Applications of Reinforcement Learni...
 
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
Causal Inference Opening Workshop - Bracketing Bounds for Differences-in-Diff...
 
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
Causal Inference Opening Workshop - Assisting the Impact of State Polcies: Br...
 
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
Causal Inference Opening Workshop - Experimenting in Equilibrium - Stefan Wag...
 
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
Causal Inference Opening Workshop - Targeted Learning for Causal Inference Ba...
 
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
Causal Inference Opening Workshop - Bayesian Nonparametric Models for Treatme...
 
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
2019 Fall Series: Special Guest Lecture - Adversarial Risk Analysis of the Ge...
 
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
2019 Fall Series: Professional Development, Writing Academic Papers…What Work...
 
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
2019 GDRR: Blockchain Data Analytics - Machine Learning in/for Blockchain: Fu...
 
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
2019 GDRR: Blockchain Data Analytics - QuTrack: Model Life Cycle Management f...
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 

MUMS Opening Workshop - Principles of Predictive Computational Science: Predictive Models of Random Heterogeneous Materials and Tumor Growth - Tinsley Oden, August 20, 2018

  • 1. Principles of Predictive Computational Science: Predictive Models of Random Heterogenous Materials and Tumor Growth J. Tinsley Oden Institute for Computational Engineering and Sciences The University of Texas at Austin Collaborators: Danial Faghihi (ICES), Laura Scarabosio (TUM), Barbara Wohlmuth (TUM), Ernesto Lima (ICES) MUMS: Model Uncertainty: Mathematical and Statistical – SAMSI Duke University August 20-24, 2018 ODEN MUMS August 20-24, 2018 1 / 102
  • 2. Collaborators: Danial Faghihi (ICES) Barbara Wohlmuth (TUM) Laura Scarabosio (TUM) Ernesto Lima (ICES) Supported by • DOE-DESC009286 MMICC • ICES: IGSSE ODEN MUMS August 20-24, 2018 2 / 102
  • 3. Outline 1. Foundations of predictive computational science 2. Predictive models of random materials 3. Model Selection and Occam Plausibility Algorithm (OPAL) 4. Concluding Comments ODEN MUMS August 20-24, 2018 3 / 102
  • 4. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1. Definitions 1.2. Sources of Uncertainty 1.3. The Imperfect Paths to Knowledge 1.4. Fundamental Principles ODEN MUMS August 20-24, 2018 4 / 102
  • 5. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1 Definitions V V & UQ ⇒ Predictive Computational Science The scientific discipline concerned with assessing the predictability of mathematical and computational models of events in the physical universe in the presence of uncertainty. ODEN MUMS August 20-24, 2018 5 / 102
  • 6. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1 Definitions V V & UQ ⇒ Predictive Computational Science The scientific discipline concerned with assessing the predictability of mathematical and computational models of events in the physical universe in the presence of uncertainty. Prediction: Forecast, prophesy, prognosis, prognostication, · · · guess ODEN MUMS August 20-24, 2018 5 / 102
  • 7. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1 Definitions V V & UQ ⇒ Predictive Computational Science The scientific discipline concerned with assessing the predictability of mathematical and computational models of events in the physical universe in the presence of uncertainty. Prediction: Forecast, prophesy, prognosis, prognostication, · · · guess Science: The systematic acquisition of knowledge through observations (data) and theory (mathematical and computational models) ODEN MUMS August 20-24, 2018 5 / 102
  • 8. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1 Definitions V V & UQ ⇒ Predictive Computational Science The scientific discipline concerned with assessing the predictability of mathematical and computational models of events in the physical universe in the presence of uncertainty. Prediction: Forecast, prophesy, prognosis, prognostication, · · · guess Science: The systematic acquisition of knowledge through observations (data) and theory (mathematical and computational models) Uncertain: absence of complete knowledge, indeterminate ODEN MUMS August 20-24, 2018 5 / 102
  • 9. Foundations of predictive computational science 1. Foundations of predictive computational science 1.1 Definitions V V & UQ ⇒ Predictive Computational Science The scientific discipline concerned with assessing the predictability of mathematical and computational models of events in the physical universe in the presence of uncertainty. Prediction: Forecast, prophesy, prognosis, prognostication, · · · guess Science: The systematic acquisition of knowledge through observations (data) and theory (mathematical and computational models) Uncertain: absence of complete knowledge, indeterminate How do you “quantify uncertainty”? ODEN MUMS August 20-24, 2018 5 / 102
  • 10. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error ODEN MUMS August 20-24, 2018 6 / 102
  • 11. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error P Systemic Uncertainty • Probability Theory • Dempster–Schafer • Possibility Theory • Fuzzy Sets ... ODEN MUMS August 20-24, 2018 6 / 102
  • 12. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error P Systemic Uncertainty • Probability Theory • Dempster–Schafer • Possibility Theory • Fuzzy Sets ... Probability Theory: But which one The Logic of Science: Cox- Jaynes Theory of Probability • Every natural extension of Aristotelian logic with uncertainties is Bayesian ODEN MUMS August 20-24, 2018 6 / 102
  • 13. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error Y y-uncertainty y = {y(xi)} y = f(g, ε) truth exp. noise gi + εi = yi εi ∼ pµ Noise Model ODEN MUMS August 20-24, 2018 6 / 102
  • 14. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error M Model Uncertainty and Model (in)adequacy “All models are wrong but some are useful” (Box (1978)) gi = di(θ) − ηi(θ) gi = yi − εi yi − di(θ) = εi − ηi(θ) discrepancy model (GP) or model validation Pnoise+model(εi − ηi) = Pnoise+model(yi − di(θ)) = πlikelihood(yi|θ) ODEN MUMS August 20-24, 2018 6 / 102
  • 15. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error θ θ-uncertainty The Product Rule P(A|B)P(B) = P(B|A)P(A) ⇓ π(θ|y) = π(y|θ)π(θ) π(y) θ θ-sensitivity Y (θ) = output STi = 1 − Vθ∼i[Eθi (Y |θi)] V (Y ) A. Saltelli et. al. 2004, 2008. M. D. Morris 1991. I. M. Sobol 2006. ODEN MUMS August 20-24, 2018 6 / 102
  • 16. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameters 5. Discretization Error h-uncertainty goal-oriented a-posterior error estimator ODEN MUMS August 20-24, 2018 6 / 102
  • 17. Foundations of predictive computational science 1.2. Sources of Uncertainty in Predictive Science 1. System of Reasoning (Epistemology) 2. Observational Data 3. Model Selection 4. Model Parameter 5. Discretization Error Logical Probability-Cox-Jaynes Aristotelian Logic + Uncertainty ⇔ Bayesian y ∈ Y : yi = fi(gi, εi) ⇐ yi + εi = gi, εi ∼ Pi( i) gi = di(θ) − ηi(θ) ⇒ yi − di(θ) = εi − ηi(θ) P(A|B)P(B) = P(B|A)P(A) ⇒ π(θ, y) ∝ π(y|θ)π(θ) A posteriori error estimation ODEN MUMS August 20-24, 2018 7 / 102
  • 18. Foundations of predictive computational science 1.3. The Imperfect Paths to Knowledge THE UNIVERSE OF PHYSICAL REALITIES THEORY / MATHEMATICAL MODELS OBSERVATIONS COMPUTATIONAL MODELS KNOWLEDGE PREDICTION The Three Pillars of Science VERIFICATION Discretization Errors Modeling Errors Observational Errors VALIDATION JTO, Moser, Ghattas – SIAM News, 2010 ODEN MUMS August 20-24, 2018 8 / 102
  • 19. Foundations of predictive computational science 1.4. Fundamental Principles in V, V, & UQ 1. Jaynes’ Principle: “The essence of honesty and objectivity demands that we take into account all the evidence we have, not just some arbitrary chosen subset of it”. E. T. Jaynes, Probability Theory, The Logic of Science, 2003 2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid: P(A|B)P(B) = P(B|A)P(A) ⇓ π(θ|y) = π(y|θ)π(θ) π(y) ⇓ Ai(θ, S; ui(θ, S)) = 0 Reality ODEN MUMS August 20-24, 2018 9 / 102
  • 20. Foundations of predictive computational science 1.4. Fundamental Principles in V, V, & UQ 1. Jaynes’ Principle: “The essence of honesty and objectivity demands that we take into account all the evidence we have, not just some arbitrary chosen subset of it”. E. T. Jaynes, Probability Theory, The Logic of Science, 2003 2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid: P(A|B)P(B) = P(B|A)P(A) ⇓ π(θ|y) = π(y|θ)π(θ) π(y) ⇓ Ai(θ, S; ui(θ, S)) = 0 Reality Bayes rule in terms of probability densities of model parameters θ and observational data y. ODEN MUMS August 20-24, 2018 9 / 102
  • 21. Foundations of predictive computational science 1.4. Fundamental Principles in V, V, & UQ 1. Jaynes’ Principle: “The essence of honesty and objectivity demands that we take into account all the evidence we have, not just some arbitrary chosen subset of it”. E. T. Jaynes, Probability Theory, The Logic of Science, 2003 2. Model Scenarios, Ultra Cross-Validation, The Prediction Pyramid: P(A|B)P(B) = P(B|A)P(A) ⇓ π(θ|y) = π(y|θ)π(θ) π(y) ⇓ Ai(θ, S; ui(θ, S)) = 0 Reality Bayes rule in terms of probability densities of model parameters θ and observational data y. The forward problem for scenario S = {Sc, Sv, Sp}. ODEN MUMS August 20-24, 2018 9 / 102
  • 22. Foundations of predictive computational science Bayesian Model Calibration, Validation, and Prediction Reality Prior π(θ) Calibration (Sc, yc) ("Training data") π(θ|yc) = π(yc|θ)π(θ) π(yc) Validation (Sv, yv) ("Testing data") π(θ|yv, yc) = π(yv|θ, yc)π(θ|yc) π(yv, yc) Validation Forward Problem A(θ, Sv; u(θ, Sv)) = 0 ||d(u(θ, Sv)) − yv|| ≤ γtol Prediction (Sp, QoI) A(θ, Sp; u(θ, Sp)) = 0 Q(u(θ, Sp)) ∼ π(Q) = π(Q|θ, Sv, Sc, γtol) JTO, Moser, Ghattas, 2010; JTO, Babuska, Faghihi, 2017 ODEN MUMS August 20-24, 2018 10 / 102
  • 23. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] ODEN MUMS August 20-24, 2018 11 / 102
  • 24. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] The QoI is NOT data; it is never observed: It is an extrapolation outside the calibration and validation observational data. ODEN MUMS August 20-24, 2018 11 / 102
  • 25. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] The QoI is NOT data; it is never observed: It is an extrapolation outside the calibration and validation observational data. 4. Jeffrey’s Principle: “ Parameters in a law that make no contribution to the results of any observation can be eliminated mathematically, leaving the observations to be described only in terms of the relevant parameters. ” (provided 0 ∈ Θ) Sir Harold Jeffrey, Theory of Probability, Oxford, 1936-1961 ODEN MUMS August 20-24, 2018 11 / 102
  • 26. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] The QoI is NOT data; it is never observed: It is an extrapolation outside the calibration and validation observational data. 4. Jeffrey’s Principle: “ Parameters in a law that make no contribution to the results of any observation can be eliminated mathematically, leaving the observations to be described only in terms of the relevant parameters. ” (provided 0 ∈ Θ) Sir Harold Jeffrey, Theory of Probability, Oxford, 1936-1961 5. A model can never be validated as a perfect portrayal of the truth; it can only be deemed ‘not invalid’, contingent on its agreement with available observational data for (subjective) choices of metrics and tolerances. ODEN MUMS August 20-24, 2018 11 / 102
  • 27. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] The QoI is NOT data; it is never observed: It is an extrapolation outside the calibration and validation observational data. 4. Jeffrey’s Principle: “ Parameters in a law that make no contribution to the results of any observation can be eliminated mathematically, leaving the observations to be described only in terms of the relevant parameters. ” (provided 0 ∈ Θ) Sir Harold Jeffrey, Theory of Probability, Oxford, 1936-1961 5. A model can never be validated as a perfect portrayal of the truth; it can only be deemed ‘not invalid’, contingent on its agreement with available observational data for (subjective) choices of metrics and tolerances. 6. The CENTRAL PROBLEM of predictive computational science (UQ in CSE) is the selection of a valid model and model parameters for a given QoI. ODEN MUMS August 20-24, 2018 11 / 102
  • 28. Foundations of predictive computational science 3. The central goal of a computer prediction is to evaluate the Quantity of Interest (QoI), not simply to compute the solution of the stochastic forward problem. [Q : Ω × U → R] The QoI is NOT data; it is never observed: It is an extrapolation outside the calibration and validation observational data. 4. Jeffrey’s Principle: “ Parameters in a law that make no contribution to the results of any observation can be eliminated mathematically, leaving the observations to be described only in terms of the relevant parameters. ” (provided 0 ∈ Θ) Sir Harold Jeffrey, Theory of Probability, Oxford, 1936-1961 5. A model can never be validated as a perfect portrayal of the truth; it can only be deemed ‘not invalid’, contingent on its agreement with available observational data for (subjective) choices of metrics and tolerances. 6. The CENTRAL PROBLEM of predictive computational science (UQ in CSE) is the selection of a valid model and model parameters for a given QoI. The design of appropriate validation experiment. ODEN MUMS August 20-24, 2018 11 / 102
  • 29. Predictive Models of Random Materials 2. Predictive Models of Random Materials 2.1. Mathematical Models and Modeling Error 2.2. Strategy 1 – Optimal Control of Modeling Error 2.3. An Old Example 2.4. Random Two-Phase Heterogeneous Media 2.5. Selection of the Most Plausible Models 2.6. Accelerated MLMC 2.7. The Inverse Problem: Machine Learning Methods ODEN MUMS August 20-24, 2018 12 / 102
  • 30. Predictive Models of Random Materials 2. Predictive Models of Random Materials Returning to the Central Problem: M and θ Uncertainty I. Model Adaptivity and Control: • Model Reduction through Surrogate Models • Control (estimated) error in QoIs ⇒ II. Model Selection: • Selection in the Bayesian VVUQ Framework • Select most plausible valid model ⇒ ODEN MUMS August 20-24, 2018 13 / 102
  • 31. Predictive Models of Random Materials 2. Predictive Models of Random Materials Returning to the Central Problem: M and θ Uncertainty I. Model Adaptivity and Control: • Model Reduction through Surrogate Models • Control (estimated) error in QoIs ⇒ Adaptive Control of Goal-Oriented Esti- mates of Error in QoIs II. Model Selection: • Selection in the Bayesian VVUQ Framework • Select most plausible valid model ⇒ OPAL: the Occam Plausibility Algorithm ODEN MUMS August 20-24, 2018 13 / 102
  • 32. Predictive Models of Random Materials 2.1. Mathematical Models and Modeling Error Mathematical Model: a mathematical description of a system – here a physical or engineered system – representing mathematical abstractions of the functioning or behavior of the system, characterized by mathematical constructions (e.g. equations, inequalities, etc.). ODEN MUMS August 20-24, 2018 14 / 102
  • 33. Predictive Models of Random Materials Modeling Error 1 - “Ground Truth” is defined by a High-Fidelity Base Model but: The forward problem A(θ, S, u(ω, S)) = 0 is intractable. Replace it by a surrogate model of lower dimension and complexity A0(θ0, S; u0(ω, S)) = 0 Q(u0(ω, Sp)) = surrogate QoI The Strategy: Develop methods to choose surrogates so that the error ε(u) = Q(u(ω, Sp)) − Q(u0(ω, Sp)) can be estimated and controlled1 . 2 - Error in the Choice of Model: Given a possibly large set M = M1, M2, · · · , Mm of models, and (noisy) observational data y ∈ Y ⊂ Rn , find the models(s) that best fit the data for any parameters θk ∈ Θk, k = 1, 2, · · · , m. Then establish if the best-fit models is valid through additional validation tests in Sv 2 . 1 JTO, Prudhomme 2001, JTO, Vemaganti 2000, 2001, JTO, Prudhomme, Romkes, Bauman, 2000 2 JTO, Babuska, Faghihi 2018, JTO, Acta Numerica 2018. ODEN MUMS August 20-24, 2018 15 / 102
  • 34. Predictive Models of Random Materials 2.2. Strategy I: Optimal Control of Models A : U → V Au = F in V : The Forward Problem V Au, v V := B(u; v) = V F, v V = F(v) ∀v ∈ V Q : U → R = The Quantity of Interest Q(u) = inf Q(w) {w ∈ U : B(w; v) = F(v) ∀v ∈ V } B(u; v) = F(v) ∀v ∈ V B (u; w, v) = Q (u; v) ∀v ∈ V ODEN MUMS August 20-24, 2018 16 / 102
  • 35. Predictive Models of Random Materials Theorem: If B(·; ·), Q(·) ∈ C3 (U) and (u, w) ∈ U × U is the solution pair of the forward and adjoint problems, and if (u0, w0) is an arbitrary pair drawn from U × U, then ε = Q(u) − Q(u0) = R(u0, w) + ∆ where R(u0; ·, ·) is the residual functional R(u0; v) = F(v) − B(u0, v) and ∆ is a remainder: ∆ = O( u − u0 2 , w − w0 2 ). Strategy I: 1. Construct a Surrogate System: B0(u0, v) = F(v) B0(u0; w0, v) = Q (u0; v) ∀v ∈ V such that ∆(u0, w0) ≈ 0 2. Pick u0, w0 so that w0 ≈ w and ε ≤ γtol JTO, Prudhomme, JCP, 2002 ODEN MUMS August 20-24, 2018 17 / 102
  • 36. Multiscale Modeling Modeling of Polymeric Materials for Nanomanufacturing Step-and-Flash Imprint Lithography (SFIL) ∗Bailey, Johnson, Resnick, Eckerdt, and Willson, J. Photopolymer Sci. Tech. (2002) ∗Resnick, Sreenivasan, and Willson, Materials Today (2005) J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 27 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 18 / 102
  • 37. Multiscale Modeling Multi-Algorithm Coupling Kinetic Monte Carlo (AA) Coarse-Graining (CG) RVE Averaging UCG = bond kb(r − r0)2 + angle (θ − θ0)2 ≈ −kBT log[P(r)/r2] −kBT log[P(θ)/ sin θ] ∗Izvekov and Voth, J. Phys. Chem. B (2005) ∗Shinoda, Devane, and Klein, Mol. Sim. (2007) J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 28 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 19 / 102
  • 38. Multiscale Modeling Molecular Statics Model Polymerization Densification Two-step approach: 1) Polymerization by Monte-Carlo Algorithm. 2) Densification by energy minimization: u = argmin v N i=1 Ni k=1 Eik(vi, vk) − fi · vi N i=1 Ni k=1 ∂Eik ∂ui · vi B(u;v) = N i=1 fi · vi F (v) where Eik(ui, uk) is the potential energy between particle i and neighbor k. Use TAO & PETSc to solve problem. ∗P.T. Bauman, Ph.D. Dissertation, The University of Texas at Austin (2008). ∗Bauman, Oden, and Prudhomme, CMAME, 198, 799–818 (2009). J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 30 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 20 / 102
  • 39. Multiscale Modeling Multiscale Modeling 1. Molecular statics model (lattice) 2. Continuum model by homogenization 3. Coupling method by Arlequin 4. Adaptation of interface region + ⇒ J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 29 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 21 / 102
  • 40. Multiscale Modeling Construction of Continuum Model VIRTUAL EXPERIMENTS ON RVE’s: 1) Choose strain energy density function∗ W = W(I1, I2, I3) 2) Exploit isotropy and homogeneity 3) Use molecular RVE to fit parameters FITTING PROCEDURE: 1) Relax RVE 2) Deform RVE 3) Measure E, V0, Ii 4) Compute W = E/V0 5) Fit W for model parameters 6) Repeat over several samples ∗e.g. Mooney-Rivlin: W = α(I1 − 3) + β(I2 − 3) + γ(J − 1)2 − (2α + 4β)lnJ J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 31 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 22 / 102
  • 41. Multiscale Modeling Atomic-to-Continuum Coupling Method 00000000000000000000000 0000000000000000000000000000000000000000000000 11111111111111111111111 1111111111111111111111111111111111111111111111 00 0000 00 11 1111 11 Ωc domain Overlap f Continuum model Ωd Particle model Ωo 0 1 ααc d ΩdoΩ x Constant LinearCubic Ωc THE ARLEQUIN FRAMEWORK: 1) Partition of energies. 2) Weight coefficients may be chosen constant, linear, cubic in overlap region. 3) Coupling through Lagrange multipliers. 4) Resulting mixed problem is well-posed. ∗Ben Dhia, Comptes Rendus de l’Acad´emie des Sciences (1998) ∗Xiao and Belytschko, IJNME (2004) ∗Bauman, Ben Dhia, Elkhodja, Oden, and Prudhomme, CM (2008) J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 32 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 23 / 102
  • 42. Multiscale Modeling Atomic-to-Continuum Coupling Method 1) The particle model is replaced with a continuum model far from the zone of interest and coupled to the lattice model via the Arlequin framework∗. ⇓ Sequence of surrogate models 2) Computational study of solution convergence with respect to QoI. J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 33 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 24 / 102
  • 43. Multiscale Modeling Example: Regular Lattice E ≈ Ru(w0; p) ≈ Ru(w0; p0) Step Er (%) η0 η 0 30.4 0.95 1.08 1 25.4 0.95 1.08 2 23.4 0.94 1.11 3 20.2 0.93 1.13 4 18.0 0.92 1.16 5 16.2 0.89 1.18 6 14.8 0.88 1.20 7 14.2 0.88 1.20 8 10.8 0.87 1.21 9 6.5 0.81 1.31 Relative error: Er = |E|/|Q(u)| Eff. index: η0 = |R(u0, p0)|/|E| Eff. index: η = |R(u0, p)|/|E| Dual solution p for uz at center of top face. G = continuum, R = particle, Y = overlap J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 34 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 25 / 102
  • 44. Multiscale Modeling Example: Polymer Lattice Dual solution p for uz at center of top face. Error contributions in QoI Sequence of adapted surrogate models ∗Bauman, Oden, and Prudhomme, CMAME, 2009. J.T. Oden von Neumann Symposium 2011 July 4–7, 2011 35 / 44 Predictive Models of Random Materials ODEN MUMS August 20-24, 2018 26 / 102
  • 45. Predictive Models of Random Materials 2.4. Random Two-Phase Heterogeneous Media ODEN MUMS August 20-24, 2018 27 / 102
  • 46. Predictive Models of Random Materials Error in Surrogate Models: Goal-Oriented A Posteriori Estimates of Modeling Error ∗ The Base (high-fidelity) Model − · E(ω, x) u(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B(u, v) = F(v) ∀v ∈ H B∗ (v, w) = Q(v) ∀v ∈ H The Surrogate Model − · E0(ω, x) u0(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B0(u0, v) = F(v) ∀v ∈ H B∗ 0 (v, w0) = Q(v) ∀v ∈ H ∗ JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000; JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006 ODEN MUMS August 20-24, 2018 28 / 102
  • 47. Predictive Models of Random Materials Error in Surrogate Models: Goal-Oriented A Posteriori Estimates of Modeling Error ∗ The Base (high-fidelity) Model − · E(ω, x) u(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B(u, v) = F(v) ∀v ∈ H B∗ (v, w) = Q(v) ∀v ∈ H E D E u : vdx H = L2 P Θ ⊗ H1 ΓD (D) The Surrogate Model − · E0(ω, x) u0(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B0(u0, v) = F(v) ∀v ∈ H B∗ 0 (v, w0) = Q(v) ∀v ∈ H E D E0 u : vdx E D f · vdx + Γ t · vds ∗ JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000; JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006 ODEN MUMS August 20-24, 2018 28 / 102
  • 48. Predictive Models of Random Materials Error in Surrogate Models: Goal-Oriented A Posteriori Estimates of Modeling Error ∗ The Base (high-fidelity) Model − · E(ω, x) u(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B(u, v) = F(v) ∀v ∈ H B∗ (v, w) = Q(v) ∀v ∈ H E D E u : vdx H = L2 P Θ ⊗ H1 ΓD (D) The Surrogate Model − · E0(ω, x) u0(ω, x) = f(ω, x) ω ∈ Ω , x ∈ D ⊂ Rd ⇓ B0(u0, v) = F(v) ∀v ∈ H B∗ 0 (v, w0) = Q(v) ∀v ∈ H E D E0 u : vdx E D f · vdx + Γ t · vds E · = Ω (·)dP(ω) ∗ JTO/Vemaganti, JCP, 2000; Vemaganti, JTO, CMAME 2001 ; JTO, Prudhomme, JCP, 2000; JTO, Prudhomme, Baumann, Romkes, SIAM J. Sc. Comp., 2006 ODEN MUMS August 20-24, 2018 28 / 102
  • 49. Predictive Models of Random Materials Theorem Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the quantity of interest predicted by the surrogate model satisfies the two-sided bounds, ηlow ≤ Q(e0) ≤ ηupp where ηlow and ηupp are computable using only properties of the surrogate and A: ηlow = 1 4 (η+ low)2 − 1 4 (η− upp)2 + Ru0 (w0) ηupp = 1 4 (η+ upp)2 − 1 4 (η− low)2 + Ru0 (w0) (η± upp)2 = s2 I0u0 2 ± 2B(I0u0, I0w0)B + s−2 I0w0 2 B, s ∈ R+ η± low = Rsu0+s−1w0 (u0 + θ± w0)/ u0 ± θ± w + 0 B ODEN MUMS August 20-24, 2018 29 / 102
  • 50. Predictive Models of Random Materials Theorem Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the quantity of interest predicted by the surrogate model satisfies the two-sided bounds, ηlow ≤ Q(e0) ≤ ηupp where ηlow and ηupp are computable using only properties of the surrogate and A: ηlow = 1 4 (η+ low)2 − 1 4 (η− upp)2 + Ru0 (w0) ηupp = 1 4 (η+ upp)2 − 1 4 (η− low)2 + Ru0 (w0) (η± upp)2 = s2 I0u0 2 ± 2B(I0u0, I0w0)B + s−2 I0w0 2 B, s ∈ R+ η± low = Rsu0+s−1w0 (u0 + θ± w0)/ u0 ± θ± w + 0 B E D I0E0 u0 : ·w0dx ODEN MUMS August 20-24, 2018 29 / 102
  • 51. Predictive Models of Random Materials Theorem Under the assumptions laid down thus far, the error e0 = Q(u) − Q(u0) in the quantity of interest predicted by the surrogate model satisfies the two-sided bounds, ηlow ≤ Q(e0) ≤ ηupp where ηlow and ηupp are computable using only properties of the surrogate and A: ηlow = 1 4 (η+ low)2 − 1 4 (η− upp)2 + Ru0 (w0) ηupp = 1 4 (η+ upp)2 − 1 4 (η− low)2 + Ru0 (w0) (η± upp)2 = s2 I0u0 2 ± 2B(I0u0, I0w0)B + s−2 I0w0 2 B, s ∈ R+ η± low = Rsu0+s−1w0 (u0 + θ± w0)/ u0 ± θ± w + 0 B E D I0E0 u0 : ·w0dx = I − E−1 E0 ODEN MUMS August 20-24, 2018 29 / 102
  • 52. Predictive Models of Random Materials An Adaptive Modeling Algorithm for Materials ηest = N j=1 η (l) est,j : ≥ αηmax , Dj → Dω < αηmax , Dj → D/Dω ODEN MUMS August 20-24, 2018 30 / 102
  • 53. Predictive Models of Random Materials Approximate Error Estimator Given a nested sequence of solutions of the surrogate models (u (k) 0 , w (k) 0 ) ∈ H × H, k = 1, 2, · · · , N such that E |Q(u) − Q(u(k) )| ≥ E |Q(u) − Q(u(k+1) )| and Q(u (N) 0 ) = Q(u), w (N) 0 − w H = 0, then ∀ε ∈ R+ there is a model k = k∗ ≤ N and a constant C = C(κ, κ0, u (k∗ ) 0 ) such that |E[Q(u) − Q(u (k∗ ) 0 )]| ≤ η (k∗ ) est + Cε where η (k∗ ) est = E D (E − E0) u (k∗ ) 0 · w (k∗ ) 0 dx ODEN MUMS August 20-24, 2018 31 / 102
  • 54. Predictive Models of Random Materials Accelerated MC with Surrogate Model Figure: The geometry and one realization of the two phase material under elastic deformation. ODEN MUMS August 20-24, 2018 32 / 102
  • 55. Predictive Models of Random Materials Accelerated MC with Surrogate Model Surrogate Models: l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 ODEN MUMS August 20-24, 2018 33 / 102
  • 56. Predictive Models of Random Materials Accelerated MC with Surrogate Model Selecting the surrogate model given a tolerance γtol = 0.07 E[Q(u)] − E[Q(u0)] ≈ E[ηest] < γtol surrogate model E[ηest] l = 1 2.6334 l = 2 0.8857 l = 3 0.5910 l = 4 0.2868 l = 5 0.1966 l = 6 0.1402 l = 7 0.0892 l = 8 0.0460 < γtol Results of MC simulation using the the base and surrogate models QoI cost = realizations × dof Surrogate (l = 8) E[Q(u (l=8) 0 )] = 33.81040 ≈ 160 × 60532 Base E[Q(u)] = 33.75003 ≈ 160 × 105202 ODEN MUMS August 20-24, 2018 34 / 102
  • 57. Predictive Models of Random Materials 2.5. Strategy II: Selection of Most Plausible Models If training (or testing) data y ∈ Y is available. M = set of parametric model classes = {M1, M2, . . . , Mm} Each M has its own likelihood and parameters θj Bayes’ rule in expanded form: π(θj|y, Mj, M) = π(y|θj, Mj, M)π(θj|Mj, M) π(y|Mj, M) , 1 ≤ j ≤ m where π(y|Mj, M) = π(y|θj, Mj, M)π(θj|Mj, M) dθj Now apply Bayes’ Rule to the evidence1 : ρj = π(Mj|y, M) = π(y|Mj, M)π(Mj|M) π(y, M) = model plausibility m j=1 ρj = 1 1 H. Jeffreys, 1961; Beck and Yuen, 2004; E. E. Prudencio & H. Cheung, 2012; Farrel, JTO, Faghihi, 2015. ODEN MUMS August 20-24, 2018 35 / 102
  • 58. Predictive Models of Random Materials 2.6. Accelerated MLMC with Adaptive Modeling (L. Scarabosio, B. Wohlmuth) MLMC Philosophy: To accelerate MC by taking most samples from low accuracy models (low cost) and very few at high accuracy model (high cost). Approximate computational expensive QoI = E[Q] with E[Q] ≈ E[QL] = L l=1 E[ Y l Q(ul 0) − Q(ul−1 0 )] ≈ EL [QL] = L l=1 1 Ml Ml j=1 Y l j E[Q] − EL [QL] ≤ |E[Q − QL]| + E[QL] − EL [QL] requiring that |E[Q − QL]| ≤ TOLmodel E E[QL] − EL [QL] 2 ≤ TOL2 sampling ODEN MUMS August 20-24, 2018 36 / 102
  • 59. Predictive Models of Random Materials Determining Sequence of Surrogate Models Selecting surrogate models associated with each level guided by the goal-oriented estimation of the modeling error: 1. Choosing possible models: • Construct sequence of models {Mk}K k=1 such that MK is the most accurate among all surrogate models and E Q(u) − Q(u (K) 0 ) ≈ E η (K) est ≤ TOLmodel 2. Choose the MLMC levels: • Select {Ml}L l=1 ⊆ {Mk}K k=1 that minimizes the computational cost, with ML = MK • Estimated work of MLMC estimator E[W] = TOL−2 sampling L l=1 VlWl where V l = V[Y l ] and Wl is the estimated cost of one realization of Y l ODEN MUMS August 20-24, 2018 37 / 102
  • 60. Predictive Models of Random Materials Optimal Number of Samples per Level classical MLMC Determine number of samples per level: {Ml}L l=1 to minimize total work, subject to the constraint E E[QL] − EL [QL] 2 ≤ TOL2 sampling Ml = λ V l W l with λ = 1 T OL2 sampling L l=1 √ V lWl • V l = V ar[Q(ul 0) − Q(ul−1 0 )] • Wl = average cost of computing Q(ul 0) − Q(ul−1 0 ) = sample average for the number of degree of freedoms at level l ODEN MUMS August 20-24, 2018 38 / 102
  • 61. Predictive Models of Random Materials Heat Conduction in Random Two Phase Materials 1m 1m (0.4,0.4) Figure: The geometry and one realization of the two phase material. QoI: q(u) = 1 ˜Aq D χ(x)(−uy)(x) dx where uy is the derivative in y-direction. ODEN MUMS August 20-24, 2018 39 / 102
  • 62. Predictive Models of Random Materials MLMC Selected Surrogate Models Tolerance samples l = 1 samples l = 2 samples l = 3 0.05 7027.50 558.60 200 (80) 0.025 52269.20 4954.10 829.10 0.0125 111694.30 10367.40 1721.70 Table: Number of samples per level for the three-level MLMC. ODEN MUMS August 20-24, 2018 40 / 102
  • 63. Predictive Models of Random Materials MLMC Speedup Comparing to MC Figure: Convergence plot for the two-level and three level Monte Carlo comparing with the estimated cost for the plain Monte Carlo on the fine scale model. ODEN MUMS August 20-24, 2018 41 / 102
  • 64. Predictive Models of Random Materials Elastic Deformation in Random Two Phase Materials Figure: The geometry and one realization of the two phase material for the elastic deformation problem. QoI: q(u) = 1 ˜Aq D χ(x)(−u2)(x) dx where u2 is the displacement in y-direction. ODEN MUMS August 20-24, 2018 42 / 102
  • 65. Predictive Models of Random Materials Elasticity: MLMC Selected Surrogate Models Figure: Selected models for two-level MLMC ODEN MUMS August 20-24, 2018 43 / 102
  • 66. Predictive Models of Random Materials Elasticity: MLMC Speedup Comparing to MC Figure: Convergence plot for the two-level Monte Carlo comparing with the estimated cost for the plain Monte Carlo on the fine scale model. ODEN MUMS August 20-24, 2018 44 / 102
  • 67. Predictive Models of Random Materials 2.7. The Inverse Problem: Machine Learning Methods Stochastic model: − κ(ω, x) u(ω, x) = f(ω, x) +b.c. ω ∈ Ω, x ∈ D Synthetic Models of Ω for two-phase random media: • m(x) ∼= m(ω, x) = parameter field (u(ω, x) = u(m(x))) Assume linear parameter-to-observation map G: G(m) = {G (u(ω, xj))} Nsenario j=1 dobs = G(m) + noise with noise ∼ N(0, Γnoise) sensors 𝑢 = 𝑔& 𝑢 = 𝑔% dobs • Prior πprior(m) ∼ N(mpr, Cpr) • πpost(m) = π(m|dobs) ∝ πlike(dobs|m)πpr(m) = exp − 1 2 dobs − G(m) 2 Γ−1 noise − 1 2 m − mpr 2 C−1 pr ODEN MUMS August 20-24, 2018 45 / 102
  • 68. Predictive Models of Random Materials Whipple-Matern Covariance (k2 I − ∆)α/2 m(x) = σW m(x) = Rα Cpr(x, x )dW(x ) = Gaussian Random Field w. Matern Covariance C(x, x ) = 1 Γ(ν)2ν−1 2ν k |x − x | ν × Kν √ 2ν k |x − x | = (k2 I − ∆)α/2 −1 κ(m) = κI + κM 2 + κI − κM 2 tanh m − τ h size and density of the inclusions are controlled by τ = cut-off threshold, 1/k = correlation length P. Whipple 1963, Matern, B. 1986, Simpson, D., Lindgren, F., and Rue, H. 2010, 2015, Alexanderian, A. Petra, N., Stadler, G. and Ghattas, O. 2016, Villa, U., Petra, N., and Ghattas, O. 2016. ODEN MUMS August 20-24, 2018 46 / 102
  • 69. Predictive Models of Random Materials True parameters m(x) and state κ(m(x)): κ(m(x)) obtained from samples drawn from the posterior distribution πpost(m): ODEN MUMS August 20-24, 2018 47 / 102
  • 70. Predictive Models of Random Materials Surrogate Models for Bayesian Inversion M ∼ A(m, Sp; u(m, x)) = 0 Q(u) = E[q(u)] ∼ q(m) ∼ π(Q|m, M) M0 ∼ A0(m0, Sp; u0(m, x)) = 0 Q(u0) = E[q(u0)] ∼ q(m0) ∼ π(Q|m0, M0) Variational Bayes Method: Data ∼ Y(∈ Sv) π(y|M) = π(y|m, M)πprior(m|M)dm = evidence of model M ln π(y|M) ≥ π(m0) ln π(y, m|M) π(m0) dm = DKL(π(m0) π(y|m, M)) = H(π(m0)) + m0 ln π(y|m, M)dm π(m∗ 0) = inf E(m0, y, M) ODEN MUMS August 20-24, 2018 48 / 102
  • 71. Model Selection and OPAL 3. Model Selection and OPAL: the Occam Plausibility Algorithm 3.1. Bayesian Plausibility 3.2. OPAL: the Occam Plausibility Algorithm 3.3. An OPAL Scheme for Predictive Models of Tumor Growth ODEN MUMS August 20-24, 2018 49 / 102
  • 72. Model Selection and OPAL 3. Model Selection and OPAL: the Occam Plausibility Algorithm Instead of adapting a model to meet error con- straints, select a model from a class of models that best fits data – in the presence of uncertain- ties. • Bayesian Model Posterior Plausibilities • OPAL – the Occam Plausibility Algorithm ODEN MUMS August 20-24, 2018 50 / 102
  • 73. Model Selection and OPAL 3.1. Bayesian Model Plausibilities M = set of parametric model classes = {P1, P2, . . . , Pm} Each P has its own likelihood and parameters θj Bayes’ rule in expanded form: π(θj|y, Pj, M) = π(y|θj, Pj, M)π(θj|Pj, M) π(y|Pj, M) , 1 ≤ j ≤ m where π(y|Pj, M) = π(y|θj, Pj, M)π(θj|Pj, M) dθj Now apply Bayes’ Rule to the evidence: ρj = π(Pj|y, M) = π(y|Pj, M)π(Pj|M) π(y, M) = model plausibility m j=1 ρj = 1 H. Jeffreys, 1961; Beck and Yuen, 2004; E. E. Prudencio & H. Cheung, 2012; Farrel, JTO, Faghihi, 2015. ODEN MUMS August 20-24, 2018 51 / 102
  • 74. Model Selection and OPAL 3.2. OPAL: the Occam Plausibility Algorithm Occam’s Razor Among competing theories that lead to the same prediction, the one that relies on the fewest assumptions is the best. When choosing among a set of models: M = {P1(θ1), P2(θ2), · · · , Pm(θm)} The simplest valid model is the best choice. o simple ⇒ number of relevant parameters o valid ⇒ passes Bayesian validation test How do we choose a model that adheres to this principle? ODEN MUMS August 20-24, 2018 52 / 102
  • 75. Model Selection and OPAL 3.2. OPAL: the Occam Plausibility Algorithm START Identify a set of possible models M = {P1(θ1), . . . , Pm(θm)} SENSITIVITY ANALYSIS Fix parameters for which model output is insensitive, or eliminate models with such parameters OCCAM STEP Choose model(s) in the lowest Occam category M∗ = {P∗ 1 (θ∗ 1), . . . , P∗ k (θ∗ k)} CALIBRATION STEP Calibrate all models in M∗ ITERATIVE OCCAM STEP Choose models in next Occam category PLAUSIBILITY STEP Compute plausibilities and identify most plausible model P∗ j Does P∗ j have the most parameters in ¯M? Identify a new set of possible models VALIDATION STEP Submit P∗ j to validation test Is P∗ j valid? Use validated params to predict QoI Can additional calibration data be accessed? No Yes No No Yes Yes K. Farrell, JTO, D. Faghihi, 2015 ODEN MUMS August 20-24, 2018 53 / 102
  • 76. Model Selection and OPAL 3.3. An OPAL Scheme for Predictive Models of Tumor Growth • Continuum Mixture Theory (Balance Laws of Physics) • Hallmarks of Cancer @⇢↵ ↵ @t + r · (⇢↵v↵ ↵) = ⇢↵S↵ ⇢↵r · J↵ J↵ = M↵( )rµ↵ divT↵ + ˆp↵ = ⇢↵ dv↵ dt 1  ↵  N = no. of species x Mass density of ⍺th species Volume fraction of ⍺th species Species velocity Mass flux Partial stress Chemical potential Source control Represents Many Model Class M S↵ = prof T (1 T ) apot µ↵ = c T ) Reaction Di↵ussion ( T ) + "|r T | · · · ) Phase Field Represents Many Model Class M S↵ = prof T (1 T ) apot µ↵ = c T ) Reaction Di↵ussion ( T ) + "|r T | · · · ) Phase Field Represents Many Model Class M S↵ = prof T (1 T ) apot µ↵ = c T ) Reaction Di↵ussion ( T ) + "|r T | · · · ) Phase Field Represents Many Model Class M S↵ = prof T (1 T ) apot µ↵ = c T ) Reaction Di↵ussion ( T ) + "|r T | · · · ) Phase Field Represents Many Model Class M S↵ = prof T (1 T ) apot µ↵ = c T ) Reaction Di↵ussion ( T ) + "|r T | · · · ) Phase Field ODEN MUMS August 20-24, 2018 54 / 102
  • 77. Model Selection and OPAL Most Complete Phase-Field Model Tumor: φT = φP + φH + φN Hypoxic, φH Proliferative (φP ) Necrotic, φN Nutrient, φσ φMDE φECM Mechanical, u φα = φα(x, t), x ∈ D, t > 0 α φα = 1 ODEN MUMS August 20-24, 2018 55 / 102
  • 78. Model Selection and OPAL ∂φT ∂t = · MT (φT , φECM ) µ + λgrowφσφT (1 − φT ) − λapopφT µ = Ψ (φT ) − 2 T ∆φT + λ · u − χ0φσ ∂φH ∂t = · M(φH, φECM ) µ + λP HH (σP H − φσ) φP − λHP H (φσ − σHP ) φH − λHN H (σHN − φσ) φH ∂φN ∂t = · M(φN , φECM ) µ+λHN H (σHN − φσ) φH 0 = · G u + G 1 − 2ν ( · u) + λ φT ∂φσ ∂t = · Mσδ−1 σ φσ − · Mσχ0 φT − λconsφT φσ dφECM dt = −λECM decay (φMDE)φECM + λECM rem φT (1 − φECM ) ∂φMDE ∂t = · MMDE φMDE + λMDE prod (1 − φMDE)φT − λMDE decay φMDE − λECM decay φECM φMDE ODEN MUMS August 20-24, 2018 56 / 102
  • 79. Model Selection and OPAL Extracellular matrix Proliferative tumor cell Hypoxic tumor cell Healthy cell Endothelial cell Fibroblast Macrophage VEGF VEGF receptor Necrotic tumor cell ODEN MUMS August 20-24, 2018 57 / 102
  • 80. Model Selection and OPAL Data: Murine Subject-CMRI Murine model implanted by tumor cells Magnetic resonance imaging (MRI) Source: Huang, Jun, et al. (2015) Molecular medicine reports ODEN MUMS August 20-24, 2018 58 / 102
  • 81. Model Selection and OPAL Glioma Data With 40Gy Radiotherapy • MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22; • Carrying capacity: 40761 cells; • Voxel dimensions (dx×dy×dz): 250 × 250 × 1000 µm. • Number of voxels: 41 × 61 × 16 10 12 14 16.5 18.5 20.5 22 Calibration Validation Prediction Tumor area evolution at slice=11. Hormuth II, Weis, Barnes, Miga, Rericha, Quaranta, and Yankeelov, 2015. ODEN MUMS August 20-24, 2018 59 / 102
  • 82. Model Selection and OPAL Calibration 6 8 10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 TumorArea(mm2) Time (day) Calibration Likelihood Function ln (π(yc|θ)) = N 2 ln(2π) + N i=1 − ln(σi) − 1 2 yci − di(θ) σi 2 • N: number of data points (days) used for calibration; • di: tumor area/volume model prediction at day i; • σ2 i : variance of the data (estimated); ODEN MUMS August 20-24, 2018 60 / 102
  • 83. Model Selection and OPAL Glioma Data With 40 Gy Radiotherapy • MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22; 6 8 10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 TumorArea(mm2) Time (day) Calibration π(θ|yc) Invalid Tumor area evolution at slice=11. Lima, E., JTO, Wohlmuth, B., Shahmoradi, A., Hormuth II, D., Yankeelov, T.E., CMAME 2017. ODEN MUMS August 20-24, 2018 61 / 102
  • 84. Model Selection and OPAL Glioma Data With 40 Gy Radiotherapy • MRI at days: 10, 12, 14, 16.5, 18.5, 20.5, 22; 6 8 10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 TumorArea(mm2) Time (day) Calibration π(θ|yc) π(θ|yv, yc) Validation Prediction Tumor area evolution at slice=11. Lima, E., JTO, Wohlmuth, B., Shahmoradi, A., Hormuth II, D., Yankeelov, T.E., CMAME 2017. ODEN MUMS August 20-24, 2018 61 / 102
  • 85. Model Selection and OPAL Model Derivation • The tumor cell volume fraction must satisfy its own mass balance given by ∂φT ∂t = · MT (φT ) µ + λg T φT (1 − φT ) −R(Ttreat, ˜Dt)φT where the chemical potential is given by µ(φT ) = DφT E, and DφT (·) is the Gâteaux derivative with respect to φT . • The choice of the total free energy E leads to different model classes: PF ⇒ E = Ω Ψ(φT ) + 2 T 2 | φT |2 + W(φT , E(u)) dx; RD ⇒ E = Ω c 2 φ2 T dx; MD ⇒ E = Ω c 2 φ2 T + W(φT , E(u)) dx. ODEN MUMS August 20-24, 2018 62 / 102
  • 86. Model Selection and OPAL Occam Categories • PF# = phase-field model • RD# = reaction-diffusion model without mechanical coupling • MD# = reaction-diffusion model with mechanical coupling Model Variables Parameters (θ) # θ φT µ u MT M∗ T c λg T ¯ET T G ν λ γ γg RD01 2 PF01 4 RD02 6 RD03 6 MD01 6 RD04 7 MD02 7 MD03 7 PF02 7 MD04 8 PF03 8 PF04 8 PF05 9 E. A. B. F. Lima, JTO, D. A. Hormuth, T. E. Yankeelov, R. C. Almeida, 2016 ODEN MUMS August 20-24, 2018 63 / 102
  • 87. Model Selection and OPAL Radiotherapy Models (T01) Memory model R(Ttreat, ˜Dt) = λk( ˜Dt) 1+λr(t−Ttreat) , for t ≥ Ttreat, 0, for t < Ttreat, (T02) Partial memory model R(Ttreat, ˜Dt) = αD, for t = Ttreat, 0, for t = Ttreat, ¯λg T = λg T Rg , for t ≥ Ttreat, λg T , for t < Ttreat, (T03) No memory model R(Ttreat, ˜Dt) = κ(1 − exp(−α ˜Dt − β ˜D2 t )), for t = Ttreat, 0, for t = Ttreat, ODEN MUMS August 20-24, 2018 64 / 102
  • 88. Model Selection and OPAL Radiotherapy Models Model Parameters (θ) #θ λr λk α β κ αD Rg T01 2 T02 2 T03 3 • Ttreat = 14.5: treatment day; • λr: recovery from the treatment; • λk: death rate of tumor cells; • αD: death by radiation; • α: linear cell kill; • β: quadratic cell kill; • κ: positive parameter; • Rg : tumor growth reduction; ODEN MUMS August 20-24, 2018 65 / 102
  • 89. Model Selection and OPAL Combining the 13 models × 3 treatment types Model Variables Parameters (θ) #θ Occam CategoryφT µ u MT M∗ T c λg T ¯ET T E ν λ γ γg λr λk α β κ αD Rg RD01T01 4 1 RD01T02 4 1 RD01T03 5 2 PF01T01 6 3 PF01T02 6 3 PF01T03 7 4 RD02T01 8 5 RD02T02 8 5 RD03T01 8 5 RD03T02 8 5 MD01T01 8 5 MD01T02 8 5 RD02T03 9 6 RD03T03 9 6 MD01T03 9 6 RD04T01 9 6 RD04T02 9 6 MD02T01 9 6 MD02T02 9 6 MD03T01 9 6 ODEN MUMS August 20-24, 2018 66 / 102
  • 90. Model Selection and OPAL Combining the 13 models × 3 treatment types Model Variables Parameters (θ) #θ Occam CategoryφT µ u MT M∗ T c λg T ¯ET T E ν λ γ γg λr λk α β κ αD Rg MD03T02 9 6 PF02T01 9 6 PF02T02 9 6 RD04T03 10 7 MD02T03 10 7 MD03T03 10 7 PF02T03 10 7 MD04T01 10 7 MD04T02 10 7 PF03T01 10 7 PF03T02 10 7 PF04T01 10 7 PF04T02 10 7 MD04T03 11 8 PF03T03 11 8 PF04T03 11 8 PF05T01 11 8 PF05T02 11 8 PF05T03 12 9 ODEN MUMS August 20-24, 2018 67 / 102
  • 91. Model Selection and OPAL Results - 40Gy γ18.5 tol = 1.98mm2 γ20.5 tol = 2.33mm2 γ22.0 tol = 2.47mm2 Model Occam Category Calibration Validation Prediction Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2) RD01T01 1 0.99 1.00 1.13 0.98 1.11 RD01T02 1 0.01 0.00 3.83 6.81 1.70 RD01T03 2 n/a n/a 3.74 6.58 1.64 PF01T01 3 1.00 1.00 1.31 1.72 1.06 PF01T02 3 0.00 0.00 2.55 2.81 1.23 PF01T03 4 n/a n/a 6.67 12.40 3.45 RD02T01 5 0.15 0.71 1.08 1.07 1.12 RD02T02 5 0.00 0.00 1.64 1.08 1.13 RD03T01 5 0.20 0.23 1.16 1.14 0.99 RD03T02 5 0.01 0.00 4.11 7.26 1.94 MD01T01 5 0.63 0.06 1.43 1.49 1.07 MD01T02 5 0.01 0.00 1.97 1.84 1.14 ODEN MUMS August 20-24, 2018 68 / 102
  • 92. Model Selection and OPAL Results - 40Gy γ18.5 tol = 1.98mm2 γ20.5 tol = 2.33mm2 γ22.0 tol = 2.47mm2 Model Occam Category Calibration Validation Prediction Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2) RD02T03 6 0.01 0.00 3.69 6.46 1.62 RD03T03 6 0.01 0.00 4.45 8.31 2.03 MD01T03 6 0.05 0.00 4.18 7.69 1.85 RD04T01 6 0.06 0.15 0.92 2.22 0.91 RD04T02 6 0.00 0.00 2.16 2.36 1.15 MD02T01 6 0.05 0.02 1.69 2.08 1.20 MD02T02 6 0.00 0.00 2.14 2.43 1.16 MD03T01 6 0.04 0.53 1.29 1.45 1.07 MD03T02 6 0.00 0.00 2.62 3.73 1.21 PF02T01 6 0.74 0.30 1.15 1.72 1.07 PF02T02 6 0.03 0.00 1.82 1.22 1.11 ODEN MUMS August 20-24, 2018 69 / 102
  • 93. Model Selection and OPAL Results - 40Gy γ18.5 tol = 1.98mm2 γ20.5 tol = 2.33mm2 γ22.0 tol = 2.47mm2 Model Occam Category Calibration Validation Prediction Plausibility Plausibility d18.5 ( mm2) d20.5 ( mm2) d22 ( mm2) RD04T03 7 0.01 0.00 4.03 7.12 1.87 MD02T03 7 0.02 0.00 7.99 15.30 4.26 MD03T03 7 0.02 0.00 4.58 8.88 2.05 PF02T03 7 0.05 0.00 7.64 14.73 4.08 MD04T01 7 0.04 0.41 1.51 1.75 1.12 MD04T02 7 0.01 0.00 1.98 2.03 1.16 PF03T01 7 0.41 0.26 1.30 1.71 1.09 PF03T02 7 0.00 0.00 1.78 1.17 1.13 PF04T01 7 0.43 0.33 1.26 1.75 1.09 PF04T02 7 0.00 0.00 1.85 1.28 1.11 MD04T03 8 0.05 0.00 6.96 15.16 3.47 PF03T03 8 0.05 0.00 5.60 11.76 2.59 PF04T03 8 0.03 0.00 7.12 13.53 3.74 PF05T01 8 0.83 1.00 1.25 1.88 1.07 PF05T02 8 0.03 0.00 1.72 1.14 1.14 PF05T03 9 n/a n/a 7.39 14.12 3.92 ODEN MUMS August 20-24, 2018 70 / 102
  • 94. Model Selection and OPAL RD01 - 3D With 40 Gy Radiotherapy Tumor at day t = 11, treatment at day t = 14.5. ODEN MUMS August 20-24, 2018 71 / 102
  • 95. Model Selection and OPAL RD01 - 3D With 40 Gy Radiotherapy Tumor at day t = 14, treatment at day t = 14.5. ODEN MUMS August 20-24, 2018 72 / 102
  • 96. Model Selection and OPAL RD01 - 3D With 40 Gy Radiotherapy Tumor at day t = 17, treatment at day t = 14.5. ODEN MUMS August 20-24, 2018 73 / 102
  • 97. Model Selection and OPAL 4. Concluding Comments 1. The Central Problem of Predictive Computational Science is the selection of valid model and model parameters for a given QoI. 2. Bayesian setting provides a natural framework for handling all sources of uncertainty in predictive modeling. 3. Goal-Oriented estimates of error in surrogate model approximations of QoIs provide a basis for analyzing random heterogeneous media with reduced models involving considerably fewer dofs than the high fidelity base model. 4. The adaptive modeling algorithm provides a framework for developing new model-based Multilevel Monte Carlo methods that can often provide considerable savings in cost over the traditional Monte Carlo method. 5. Predictive multiscale models of random heterogeneous materials and tumor growth can be developed if sufficient relative data are available. ODEN MUMS August 20-24, 2018 74 / 102
  • 98. Model Selection and OPAL General Oden, J. T. (2018). Adaptive multiscale predictive modelling. Acta Numerica, 27, 353-450. Goal Oriented Error Estimation Oden, J. T., Prudhomme, S. (2002). Estimation of modeling error in computational mechanics. Journal of Computational Physics, 182(2), 496-515. Bauman, P. T., Oden, J. T., Prudhomme, S. (2009). Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms. Computer Methods in Applied Mechanics and Engineering, 198(5-8), 799-818. Oden, J. T., Prudhomme, S., Romkes, A.,Bauman, P. T. (2006). Multiscale modeling of physical phenomena: Adaptive control of models. SIAM Journal on Scientific Computing, 28(6), 2359-2389. Oden, J. T., Vemaganti, K. S. (2000). Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms. Journal of Computational Physics, 164(1), 22-47. Vemaganti, K. S., Oden, J. T. (2001). Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids. Computer Methods in Applied Mechanics and Engineering, 190(46-47), 6089-6124. ODEN MUMS August 20-24, 2018 75 / 102
  • 99. Model Selection and OPAL Tumor Growth Papers Hawkins-Daarud, A., van der Zee, K. G., Tinsley Oden, J. (2012). Numerical simulation of a thermodynamically consistent four?species tumor growth model. International journal for numerical methods in biomedical engineering, 28(1), 3-24. Oden, J. T., Hawkins, A., Prudhomme, S. (2010). General diffuse-interface theories and an approach to predictive tumor growth modeling. Mathematical Models and Methods in Applied Sciences, 20(03), 477-517. Oden, J. T., Lima, E. A., Almeida, R. C., Feng, Y., Rylander, M. N., Fuentes, D., Faghihi, D., Rahman, M.M., DeWitt, M., Gadde, M., Zhou, J. C. (2016). Toward predictive multiscale modeling of vascular tumor growth. Archives of Computational Methods in Engineering, 23(4), 735-779. Lima, E. A. B. F., Oden, J. T., Almeida, R. C. (2014). A hybrid ten-species phase-field model of tumor growth. Mathematical Models and Methods in Applied Sciences, 24(13), 2569-2599. Lima, E. A. B. F., Oden, J. T., Hormuth, D. A., Yankeelov, T. E., Almeida, R. C. (2016). Selection, calibration, and validation of models of tumor growth. Mathematical Models and Methods in Applied Sciences, 26(12), 2341-2368. Lima, E. A. B. F., Oden, J. T., Wohlmuth, B., Shahmoradi, A., Hormuth II, D. A., Yankeelov, T. E., Scarabosiob, L., Horger, T. (2017). Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data. Computer methods in applied mechanics and engineering, 327, 277-305. ODEN MUMS August 20-24, 2018 76 / 102
  • 100. Model Selection and OPAL Multiscale Models of Cancer ODEN MUMS August 20-24, 2018 77 / 102
  • 101. Model Selection and OPAL Definition of Agent-Based Model Agent-based model (ABM) is a method of computational modeling that simulates inter- actions and actions of autonomous agents tumor and healthy cells with the purpose of viewing their effects on the system as a whole tumor environment . ODEN MUMS August 20-24, 2018 78 / 102
  • 102. Model Selection and OPAL Avascular Tumor Growth Model Avascular Tumor Growth Model Nutrient P D E Tumor Cells Quiescent, Proliferative, Hypoxic, Apoptotic and Necrotic A B M Healthy Cells Homeostasis A B M Consumption Consumption Tissue Scale Cell Scale Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 7 / 45 ODEN MUMS August 20-24, 2018 79 / 102
  • 103. Model Selection and OPAL Cell Representation • Cell geometry is a perturbation of a spherical (circular) core. • Two neighbor cells may deform, which is cap- tured by cytoplasm overlap. • Cell nucleus is incompressible. • Each cell has phenotypic and physical prop- erties: Phenotypic properties cell state: Si calcification: Ci proliferation: αP,i apoptosis: αA,i Physical properties cell radius: Ri nucleus radio: Ri N action radius: Ri A position: xi velocity: vi Ri Ri N Ri A xi ODEN MUMS August 20-24, 2018 80 / 102
  • 104. Model Selection and OPAL Cell Forcesell Forces Cell-cell adhesion and repulsion: Fij cca = cccar'(xj xi ; Ri A + Rj A), Fij ccr = cccr r (xj xi ; Ri N + Rj N, Ri + Rj ). E↵ects of the compressive stress: Fi ct = cctK(V , t)r'(di ; Ri A), Fi rct = crtcK(V , t)r (di ; Ri N, Ri ). Drag force: Fi drag = ⌫vi . K(V , t): a real function in [0, 1] depending on the tumor volume V at time t; di : the distance between the center of the cell and the domain boundary; ccca, cccr , cct, crtc and ⌫: scale parameters; ' and : interaction potentials for adhesion and repulsion, respectively. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 9 / • Cell-cell adhesion and repulsion: Fij cca = −ccca ϕ(xj − xi; Ri A + Rj A) Fij ccr = −cccr ϕ(xj − xi; Ri N + Rj N , Ri + Rj) • Cell-cell adhesion and repulsion: Fij ct = −cctK(V, t) ϕ(di ; Ri A) Fij rct = −crctK(V, t) ϕ(di ; Ri N , Ri) Macklin, P., Kim, J., Tomaiuolo, G., Edgerton, M. E., Cristini, V. Comp. Biology, 2009. Rocha, H. L., Almeida, R. C., Lima, E. A. B. F., Resende, A. C. M., Oden, J. T., Yankeelov, T. E., M3MS, 2018. ODEN MUMS August 20-24, 2018 81 / 102
  • 105. Model Selection and OPAL Balance of Forces ⇒ cell movement alance of forces ) cell movement Balance of forces on cell i: mi ˙vi = cell-cell z }| { N(t) X j=1 j6=i (Fij cca + Fij ccr ) + cell-microenvironment z }| { (Fi drag + Fi ct + Fi rct) ODEN MUMS August 20-24, 2018 82 / 102
  • 106. Model Selection and OPAL Tumor Cell Transition Tumor Cell Transition P P S and G2 ⌧P ⌧G1 Q G1⌧G1↵P( ) H < H < H N ⌧N A ↵A Removed ⌧A P PTumor Cells: P: Proliferative Q: Quiescent H: Hypoxic N: Necrotic A: Apoptotic Nutrient: ⌧N, ⌧A, ⌧P and ⌧G1 : time for necrosis, apoptosis, cell cycle, and G1 phase, respectively; H: hypoxic threshold; ↵P and ↵A: proliferation and apoptosis rate, respectively; Red Arrows: stochastic process and Black Arrows: deterministic process. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 11 / τs = time to phase change αP , αA ∼ proliferation and apoptosis rate ODEN MUMS August 20-24, 2018 83 / 102
  • 107. Model Selection and OPAL Stochastic Transition Considering small time intervals [t, t + ∆t] • The transition from quiescent (Q) to apoptotic (A) is given by P(A|Q) = 1 − exp(αA∆t), ∆t is the time interval. • The transition from quiescent (Q) to proliferative (P) is given by P(P|Q) = 1 − exp(αP (σ)∆t), αP (σ) = ¯αP σ − σH 1 − σH 1 − Nt out Nmax out , Nt out: is the number of cells outside the domain; Nmax out : is maximum number of cells that can leave the domain. ODEN MUMS August 20-24, 2018 84 / 102
  • 108. Model Selection and OPAL Numerical Experiments Tumor cells: 5 Nutrient Numerical Experiments Healthy cells Quiescent tumor cells Proliferative tumor cells Apoptotic tumor cells Necrotic tumor cells Figure: Day 0 Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45 ODEN MUMS August 20-24, 2018 85 / 102
  • 109. Model Selection and OPAL Numerical Experiments Tumor cells: 171 Nutrient Numerical Experiments Healthy cells Quiescent tumor cells Proliferative tumor cells Apoptotic tumor cells Necrotic tumor cells Figure: Day 8.33 Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45 ODEN MUMS August 20-24, 2018 86 / 102
  • 110. Model Selection and OPAL Numerical Experiments Tumor cells: 861 Nutrient Numerical Experiments Healthy cells Quiescent tumor cells Proliferative tumor cells Apoptotic tumor cells Necrotic tumor cells Figure: Day 16.67 Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 15 / 45 ODEN MUMS August 20-24, 2018 87 / 102
  • 111. Model Selection and OPAL IncuCyte Live Cell Analysis Figure: Image of the whole well with the mask for cell confluence (area of the well 0.32cm2 .) Live/death cell confluence time series • 3 initial confluences (low, medium and high); • 4 glucose levels (1, 2, 5 and 10 mM); • 4 replicas of each; • 48 wells. 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0 50 100 150 200 250 300 350 400 Confluence Time (hours) 10 mM glucose The line represents the mean of 4 replicas. ODEN MUMS August 20-24, 2018 88 / 102
  • 112. Model Selection and OPAL Avascular Model Tumor Cell Transition P P S and G2 ⌧P ⌧G1 Q G1⌧G1↵P( ) D ↵D( ) Removed ⌧D P P Tumor Cells: P: Proliferative Q: Quiescent D: Dying Nutrient: ⌧N, ⌧D, ⌧P and ⌧G1 : time for necrosis, to die, cell cycle, and G1 phase, respectively; ↵P and ↵D: proliferation and death rate, respectively. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 20 / 45 ODEN MUMS August 20-24, 2018 89 / 102
  • 113. Model Selection and OPAL Stochastic Transition Considering small time intervals [t, t + ∆t] • The transition from quiescent (Q) to dying (D) is given by P(D|Q) = 1 − exp(αD(σ)∆t), αD(σ) = ¯αD (1 − σ) , ∆t is the time interval. • The transition from quiescent (Q) to proliferative (P) is given by P(P|Q) = 1 − exp(αP (σ)∆t), αP (σ) = ¯αP σ. ODEN MUMS August 20-24, 2018 90 / 102
  • 114. Model Selection and OPAL Numerical Experiments Numerical Experiments Figure: Agent-based model (left) and nutrient (right) evolution. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 22 / 45 ODEN MUMS August 20-24, 2018 91 / 102
  • 115. Model Selection and OPAL Numerical Experiments Numerical Experiments Figure: Agent-based model (left) and nutrient (right) evolution. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 22 / 45 ODEN MUMS August 20-24, 2018 92 / 102
  • 116. Model Selection and OPAL Stochastic Calibration Stochastic Calibration 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0 50 100 150 200 250 300 350 400 Confluence Time (hours) 10 mM glucose 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 20 40 60 80 100 120 140 160 180 200 Confluence Time Steps Generated Confluence 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0 2 4 6 8 10 12 14 16 18 20 Confluence Time Steps Generated Confluence Figure: Mean of 4 in vitro experiments (top) and 10 model simulations (bottom). Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 23 / 45 ODEN MUMS August 20-24, 2018 93 / 102
  • 117. Model Selection and OPAL Stochastic Calibration: Likelihood Function For both calibration and validation we assume: Additive Noise : Ωreal + ηdata = y, Ωreal + ηmodel = d(θ). • ηdata ∼ N(0N×1, σ2 dataIN×N ) → accounting for the data uncertainty; • ηmodel ∼ N(0N×1, σ2 modelIN×N ) → accounting for the model inadequacy. Considering the parameter σ such as σ2 = σ2 data + σ2 model: Likelihood Function π(ˆy|θ) = Nt i=1 1 2πσ2 i e − (ˆyi − ˆdi(θ))2 2σ2 i , ˆdi(θ) is the mean of Mm realizations of the stochastic model; ˆyi is the mean of 4 data points. ODEN MUMS August 20-24, 2018 94 / 102
  • 118. Model Selection and OPAL Vascular Tumor Growth Model Vascular Tumor Growth Model Nutrient P D E VEGF P D E Tumor Cells Quiescent, Proliferative, Hypoxic, Apoptotic and Necrotic A B M Endothelial Cells Quiescent, Tip, Stalk A B M Consumption Release Release Consumption Tissue Scale Cell Scale Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 33 / 45 ODEN MUMS August 20-24, 2018 95 / 102
  • 119. Model Selection and OPAL Tumor Cell Transition Tumor Cell Transition P P S and G2 ⌧P ⌧G1 Q G1⌧G1↵P( ) H < H < H N ⌧N A ↵A Removed ⌧A P PTumor Cells: P: Proliferative Q: Quiescent H: Hypoxic N: Necrotic A: Apoptotic Nutrient: ⌧N, ⌧A, ⌧P and ⌧G1 : time for necrosis, apoptosis, cell cycle, and G1 phase, respectively; H: hypoxic threshold; ↵P and ↵A: proliferation and apoptosis rate, respectively; Red Arrows: stochastic process and Black Arrows: deterministic process. Ernesto A. B. F. Lima Avascular Tumor Growth Model February 14, 2018 11 / 45 ODEN MUMS August 20-24, 2018 96 / 102
  • 120. Model Selection and OPAL Endothelial Cell Transition Endothelial Cell Transition S S ⌧M > ⌧grow ⌧C TQE vegf < tip dtip < D dtip < D S S Endothelial Cells: QE : Quiescent T : Tip S: Stalk VEGF: vegf ⌧M, ⌧grow , and ⌧C : time to mature, grow, and endothelial cell cycle, respectively; tip: VEGF threshold; dtip: distance from the closest tip cell; D: minimum distance required to become stalk cell. Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 34 / 45 ODEN MUMS August 20-24, 2018 97 / 102
  • 121. Model Selection and OPAL Lumen Formation Lumen Formation QE + QE + QE + QE + S + S + T Frep Frep Frep Frep Frep Frep QE + QE + QE + QE + S + S + T Frep Frep Frep Frep Frep Frep Lumen repulsion: Fij rep = ceer (xj xi ; Ri N + Rj N, Ri + Rj ). Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 35 / 45 ODEN MUMS August 20-24, 2018 98 / 102
  • 122. Model Selection and OPAL Tip Cell Movement Tip Cell Movement QE QE QE QE S S T Fvegf VEGF Force: Fi vegf = cvegf r vegf . Ernesto A. B. F. Lima Vascular Tumor Growth Model February 14, 2018 36 / 45 ODEN MUMS August 20-24, 2018 99 / 102
  • 123. Model Selection and OPAL Numerical Simulation Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution. ODEN MUMS August 20-24, 2018 100 / 102
  • 124. Model Selection and OPAL Numerical Simulation Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution. ODEN MUMS August 20-24, 2018 100 / 102
  • 125. Model Selection and OPAL Numerical Simulation Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution. ODEN MUMS August 20-24, 2018 100 / 102
  • 126. Model Selection and OPAL Numerical Simulation Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution. ODEN MUMS August 20-24, 2018 100 / 102
  • 127. Model Selection and OPAL Numerical Simulation Figure: Agent-based model (left), nutrient (middle) and VEGF (right) evolution. ODEN MUMS August 20-24, 2018 100 / 102
  • 128. Model Selection and OPAL Unbreakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 101 / 102
  • 129. Model Selection and OPAL Unbreakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 101 / 102
  • 130. Model Selection and OPAL Unbreakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 101 / 102
  • 131. Model Selection and OPAL Unbreakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 101 / 102
  • 132. Model Selection and OPAL Breakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 102 / 102
  • 133. Model Selection and OPAL Breakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 102 / 102
  • 134. Model Selection and OPAL Breakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 102 / 102
  • 135. Model Selection and OPAL Breakable Vessel Figure: Agent-based model evolution. ODEN MUMS August 20-24, 2018 102 / 102