SlideShare a Scribd company logo
1 of 22
Download to read offline
An Analysis of Desertification
With Particular Focus on the “Great Green Wall of China”
UP 232 Disaster Management and Response
Professor Commins
Ryan Sclar
June 15, 2015
1
Introduction
Humanity currently faces many challenges. Some of these problems are well publicized;
stories about terrorism, climate change, and disease outbreaks, for example, commonly make
the headlines. While these issues are important and often deserve the attention they receive,
equally monumental problems can frequently go unnoticed. Desertification is one of these
underestimated issues. Few people even know the meaning of the word, let alone its
implications. This paper provides an overview of desertification, describes the problems
associated with it, and analyzes some of the ways that countries are attempting mitigate its
impacts.
What is Desertification?
Definition
Desertification is a process of land degradation in dry climates. While there is debate
over exactly what constitutes desertified land, Agenda 21 provides one of the most accepted
definitions (Kassas, 1995). According to Agenda 21, desertification is, “land degradation in arid,
semi-arid and dry sub-humid areas resulting from various factors, including climatic variations
and human activities.” Terms like “desert encroachment” often conjure up images of expanding
deserts aggressively colonizing surrounding land; however, this notion is misguided (Kassas,
1995; Schleeter, 2013). While it is true that bodies of sand can extend past their climatic limits
(especially in China, as discussed later), most desertification is caused from the ground up, by
changes in climate, soil content, water levels, and vegetation (Abahussain et. al, 2002).
2
Water plays a crucial role in defining desertification. The expansion of deserts occurs in
drylands, areas with less water income (precipitation) than water expenditure (evaporation and
plant consumption) (Kassas, 1995). Drylands are commonly classified by their aridity, the
severity of the deficit in their water levels. Arid areas covers 12% of the land surface of the
earth, and total dryland ecosystems account for 33% of all land (Schlesinger, 1990). These
regions are disproportionally in Africa and Asia (Figure 1).
The Causes of Desertification
Desertification is caused by several factors. Essentially, any action which degrades dry
land leads to desertification. Human activities, such as livestock grazing, crop cultivation, and
mining can create desertified land if conducted in an unsustainable fashion (Schlesinger, 1990;
Africa Asia Australia Europe North America South America
Hyper-arid 672 277 0 0 3 26
Arid 504 626 303 11 82 45
Semi-arid 514 693 309 105 419 265
Dry sub-humid 269 353 51 184 232 207
DRYLAND BY CONTINENT (MILLION HECTARES)
Figure 1: Dryland by Continent (Million Hectares)
Source: Data from Kassas, 1995
3
Kassas, 1995; Runnström, 2000). In general, the classic “tragedy of the commons” scenario is
the main culprit for land degradation. Figure 2 shows the findings of Zha and Jay (1997)
describing how different human activities relate to desertification. While the preciseness of
these data is debated, most literature agrees that overgrazing and over cultivating as the chief
culprits in human-led desertification (Tan et. al, 2014; Schlesinger, 1990). These activities can
lower the water table, create erosion and degrade soil content.
Drylands can also succumb to desertification by natural causes. Periods of below
average rainfall can be just as detrimental to water tables as agriculture (Kassas, 1995). Arid
areas subjected to sandstorms1 and invasive desert shrubs can be exposed with thinner plant
coverage. This lowers bioproductivity and prevents soil development (Schlesinger, 1990).
Identifying which aspects of desertification are human-caused and which are natural is difficult.
1
For simplicities sake, this study assumes the terms “sandstorm” and “dust storm” to be equal and uses them
interchangeably.
Over Cultivation
Overgrazing
Excessive
Collection of
Wood
Mining and
Construction
Estimated Human Contributions to Desertification
Figure 2: Estimated Human Contributions to Desertification
Source: Zha et. al, 1997
4
Estimates range dramatically, however many researchers believe that human activities are to
blame for 60% to 90% of modern desertification (Zha et. al, 1997).
The Problem
Desertification has the potential to impact many people in several different parts of the
world. Drylands are home to over two billion people, about 30% of the human race (Stringer,
2008). As people conglomerate in cities in arid regions, development is often pushed forward
unsustainably, permanently degrading the productive capacity of that land (Schlesinger, 1990).
This results in ecological deterioration as well as economic loss. Abahussain et. al, (2002)
describe the downward spiral created by this problem. Reductions and fluctuations in yields
from woodlands, pastureland, and agriculture make farming less predictable, which can lead to
food insecurities. These uncertainties lead people to panic and overexploit their land even
more, which further exacerbates the desertification process. Every year 200,000 square
kilometers are claimed to be abandoned due to desertification (Abahussain et. al, 2002). 35% of
the world’s land surface is at risk for future degradation (Helldén, 1991). Through food
insecurities, desertification can cause malnutrition, diseases, social disorder, and even death
(Olsson, 1993).
In understanding the problems associated with desertification, it is important to note
the complicated relationship between desertification and food insecurity. Not all food
insecurity is caused by desertification and not all deserts disallow the cultivation of food. There
are some pastoral societies which have long lived and prospered in desert climates. Some
5
believe that policy makers place too much emphasis on the role of desertification, and often
use it as a scapegoat for other problems. Olsson (1993) claims, for example, that the 1984-1985
famine in Sudan was primarily caused not by a desert-led decline in food availability, but by a
broken relationship between people and food (there was enough food on the national level but
speculation and inadequate distribution brought on the famine). Desertification is responsible
for many ecological, economic, and health problems, but should be analyzed with the role of
exogenous variables in mind.
Efforts to Manage Desertification in the International Community
The first major attempts by the international community to study desertification took
place in the mid-20th century. The United Nations Educational Scientific and Cultural
Organization (UNESCO) initiated a program in 1950 to establish 200 arid zone research
institutions throughout the world. From this effort, over 30 volumes of scientific and technical
reports were published to allow the causes and effects of desertification to become better
understood by policy makers (Kassas, 1995). In the late 1960’s and early 1970’s prolonged
problems in the Sahel region of Africa intensified the discussion over desertification.
The United Nations (UN) began to think more critically about desertification in the
1970’s. In 1975, ecologist Huge Lamprey popularized the current “desert encroachment theory”
in a United Nations Environmental Program (UNEP) report on the African Sahel region (Yang et.
al, 2005). Lamprey’s claim that the southern boundary of the Sahara desert had shifted by 100
kilometers over the past two decades astounded many in the international community. Two
6
years later the UNEP held a Conference on Desertification, declaring it to be one of the major
environmental problems of our time (Helldén, 1991). This conference brought about much of
the existing research on desertification and on ways to rehabilitate land (Zha et. al, 1997).
The issue of desertification has been on the agenda of the UN General Assembly since
the 1970’s. The Plan to Action to Combat Desertification (PACD) funded projects and research
through the 1990’s, and the UN Convention to Combat Desertification ratified an additional
plan in 1996 (Kassas, 1995; Zha et. al, 1997). The UN General Assembly even named 2006 the
International Year of Deserts and Desertification. In doing so, the UN established four
objectives, although these did little to engage in concrete measures to mitigate desertification.
The UNEP recommends allocating $10 billion to $22 billion per year towards mitigating
desertification (although recent funds totaled less than $1 billion annually) (Stringer, 2008). The
UN recognizes desertification as a very serious issue, but international mitigation efforts have
been minimal.
Desertification in Africa
Most of the desertification related studies and programs initiated by the UN and others
have been specifically targeted towards the African Sahel Region. While the expansion of
deserts is a worldwide issue, Africa is home to some of the largest and harshest climates (Figure
1). The Sahel region has also hosted several infamous famines in past decades, drawing more
attention from world policy makers than other deserts in Asia and elsewhere (O’Connor and
Ford, 2014). Many of these endeavors center upon the management of droughts. Programs
7
through the UN and the World Meteorological Organization use satellite imagery to forecast
rainfall and drought prone areas, as does USAID’s Famine Early Warning System (Kassas, 1995).
Many programs have also aimed to increase societal preparedness, educating farmers on
sustainable farming techniques and drought resistant practices. Most of the efforts to prevent
desertification in Africa take the form of predictions and preparation measures.
The largest and most ambitious plan to fight desertification in Africa is the so called
Great Green Wall (GGW)2. This project involves the planting of a continuous 15 kilometer-wide
row of trees, spanning 7,775 kilometers across the continent (Schleeter, 2013) (Figure 3). The
concept behind the GGW is that a “wall” of trees from Senegal to Djibouti will naturally
moderate temperatures, wind speed, soil erosion, and humidity. This GGW was initially
proposed in the early 1980’s, and recently subject to bolstered interest in the wake of
intensifying climate change discussions (O’Connor et. al, 2014). Despite controversy, this
2
This is also often referred to as the Green Great Wall; to avoid confusion, this paper will only use the term Great
Green Wall.
Figure 3: The Proposed Great Green Wall of Africa
Source: Constructed with data from O’Connor et. al, 2014
8
project was officially ratified at the World Day to Combat Desertification and Drought in 2002,
with the support of all of the 11 countries which the project would span.
Although the GGW is endorsed by every country in the Sahel, its implementation has
been squandered by a lack of both funds and coordination. Currently only $115 million of the
proposed multiple billion dollar3 project is securely financed (Schleeter, 2013). Most of this
money has been spent in Senegal and Niger, where work on the project has started in a
piecemeal fashion (O’Connor et. al, 2014). The lack of a powerful central authority has also
stunted the progress of the GGW. The UNEP has stressed the need for regional entities,
national governments, and local communities to better collaborate on the GGW in order to
make any real progress (O’Connor et. al, 2014).
Desertification in China
China’s Challenges
While most of the international anti-desertification efforts have been geared towards
Africa, China also faces a formidable task securing its arid land against degradation. By some
measures, China is the most severely desertified country in the world. 13% of China’s 9.6
million square kilometers is desert (Zha et. al, 1997). 23% of the country is classified as
drylands, vulnerable to desertification (Veste et. al, 2006). Northern China, home to both the
Takla Makan and Gobi deserts, also supports the world’s largest population of grazing animals
3
Due partially to the lack of cooperation, no agencies are able to provide an accurate estimate of the total cost of
constructing the GGW.
9
(Runnström, 2000). It is estimated that 2,460 square kilometers of land and $800 million in
Northern China are lost each year to overgrazing (Levin, 2005). The region also faces the
challenges of deforestation and drought. China has 7% of the world’s arable land to feed 22% of
the world’s population (Piao et. al, 2010). Desertification is a pressing issue in China.
China faces unique challenges due to the nature of their dust storms. In the 1950’s, the
country averaged 5 major sandstorms per year. In 2000, there were 8 such events in just a 45
day period (Veste et. al, 2006). Sand and dust storms cause more challenges in China than
anywhere else because of the country’s immense concentrations of people. These storms
impact large areas of the country, affecting many of the nation’s largest cities and hundreds of
millions of inhabitants.
These shifting sand
dunes and high winds
interfere with
irrigation, railway, and
highway
infrastructure, and can
severely impact the
economy. Dust storms are more than just an inconvenience; on just one day in 1993 a cloud a
dust injured 264 people and killed over 85 people and 100,000 livestock (Veste et. al, 2006).
These storms transport large enough quantities of sand that they can desertify areas which
otherwise have enough rainfall and temperature moderation to facilitate life. Many areas in the
Tengger desert, for example, are only classified as desert because their high wind speeds
Figure 4: Beijing during a sandstorm (left) and on a regular day (right)
Source: “China’s Great Green Wall,” 2015
10
transport layers of migratory sands. For all intents and purposes, Chinese sandstorms are just as
detrimental, if not more so, as conventional storms.
China also faces a challenging erosion problem. The Loess Plateau is commonly referred
to as the most erosion prone place on earth (Tian et. al, 2000). This region was once 15%
covered by forest during the Ming Dynastic several hundred years ago. During the early 20th
century, extensive logging accompanied rapid development in the region. By 1949, only 3% of
the Loess Plateau was forested (Veste et. al, 2006). Greenpeace estimates that now only 2% of
China’s original forests are still intact (“Afforestation in China,” 2014). This, combined with the
steep slopes of the terrain leads to large scale soil erosion. Estimates vary significantly, but it is
believed that between 1,100 and 9,600 tons of soil in every square kilometer are lost to erosion
each year on the Loess Plateau (Veste et. al, 2006). The Yellow River derives its name (and its
color) from the immense amount of eroded dirt that washes into it. In addition to the erosion
of soil, other types of erosion also play a nontrivial role in the degradation of land in northern
China (Figure 5). The erosion problems of China are arguably unrivaled by anywhere else in the
world.
0
0.5
1
1.5
2
Soil Physical/ Chemical Erosion Water Erosion Salinization
Area(MillionSquare
Kilometers)
Land Lost to Erosion in Northern China
Figure 5: Land Lost to Erosion in Northern China
Source: Zha et. al, 1997
11
Effort to Manage Desertification and the Great Green Wall
Given the detrimental effects that dust storms and erosion inflict on the stability of the
country, the Chinese government has taken several steps to mitigate desertification. As with
the UN, China began to think prudently about the impacts of desertification during the latter
half of the 20th century (Runnström, 2000). One of the earliest environmental laws in China was
a product of the negative impact that foresting was having on the Loess Plateau. By the late
1970’s there were several environmental acts drafted at the national level. The Household
Production Responsibility Act, introduced in the mid 1980’s, attempted to dramatically increase
the amount of fenced pasture areas to prevent overgrazing4 (Runnström, 2000). In 1991, the
Chinese government initiated the China Desertification Rehabilitation and Desert Reclamation
Action Program, which led to a round of comprehensive environmental laws and several
engineering projects aimed at combating sandstorms and erosion (especially along corridors
with major infrastructure connections) (Veste et. al, 2006).
4
This act was slightly controversial; some claim it was not properly implemented or enforced.
12
Without a doubt, the capstone in China’s fight against desertification is their Great
Green Wall Plan. Similar to plans in the African Sahel region, China proposed to obstruct
desertification with of a belt of vegetation. This plan was one of the first acts by the then new
leader of China, Deng Xiaoping (Levin, 2005). This comprehensive project detailed a series of
windbreaks, shelterbelts, and sand dune stabilization efforts in three stages of eight sections. At
the heart of this plan was the Three Norths5 Protective Forest System, also known colloquially
as the “Great Green Wall of China.” This barrier was proposed to span 4480 kilometers across
the country, acting as a primary line of defense against sand and dust storms (Veste et. al,
2006) (Figure 6). The Chinese government claims the project will afforest 4 million square
5
Three Norths refers to the three regions of the country the project would be constructed through – the
Northwest Region, the Northern Region, and the Northeast Region.
Figure 6: The Proposed Great Green Wall of China
Source: Constructed with data from Tan et. al, 2014
13
kilometers, 42% of all land in the country, by its completion in 2050. While this projection is
controversial and may need to be taken with a grain of salt, this is clearly an enormous
undertaking. In fact, the GGW is currently the largest ecological project in the history of
humankind (Levin, 2005). By almost all measures, this plan is ambitious.
Unlike the GGW in the Sahel, China’s GGW project has significant political and economic
backing. China has implemented this project with a very top down approach, with most of the
planning being done at the national level. The first of the three stages has already been
officially declared finished6 and the project continues to move forward. Government officials
state that 24 million hectares of trees and other vegetation have been planted so far as part of
6
The first stage was completed in 2001, however it was originally intended to be finished in 1985.
Figure 7: Typical Segment of the Great Green Wall
Source: Data from Levin, 2005
14
the Three Norths Protective Forest System (Levin, 2005). The State Forestry Administration
claims that a total of 50 million hectares of forests have been seeded across China throughout
all of their shelterbelt programs. This equates to roughly 66 billion trees (“Afforestation in
China,” 2014). Regardless of whether one thinks this plan is worthwhile, the GGW certainly
represents a very large political endeavor.
The Chinese government has also proven its willingness to invest monetarily in the
GGW. While the total price of completing the 73 year project is uncertain, the government
estimates that it costs roughly $1.9 billion per year7 (“China’s Great Green Wall,” 2001). China
has also poured an additional $1.2 billion into an oversight system to map, survey, and protect
the project8 (Levin, 2005). Backers of the GGW say it’s worth the steep price tag because it will
protect 8.5 million hectares of farmland and increase grain yield by 5.5 million tons (Zha et. al,
1997). Some Chinese politicians have claimed the project has already paid off, crediting
Beijing’s successful 2008 Olympic bid in part to the GGW showing China’s commitment to
prevent dust storms in Beijing (“China’s Great Green Wall,” 2001). Zha et. al (1997) take a
slightly more cynical perspective, declaring that, “The history of rehabilitating desertified land
in China is essentially the history of converting it into productive uses in sandy areas” (Zha et.
al, 1997). Either way, the Chinese government has provided significant financial backing to their
GGW.
7
This number comes from a reference published in 2001 and has been adjusted for inflation to 2015 dollars.
8
Part of this money comes from foreign investors, including the World Bank, the UN Development Program, and
the UN Food and Agricultural Organization.
15
Does the Great Green Wall Work?
There is significant debate regarding the overall worthwhileness of China’s GGW; the
project has successfully achieved some promising results and unequivocally failed to deliver on
other objectives. Opinions, both inside and outside of China, are still very much divided on the
outcomes and fate of this project. Given the proposed completion year of 2050, discussions
surrounding the GGW are ongoing and prone to change.
Pros
There is little doubt that China has more vegetation now than it did when the project
commenced in 1978. Runnström (2000) analyzed satellite imagery and the Normalized
Difference Vegetation Index determining that the GGW was successful in increasing the amount
of nearby vegetation. The study concluded by optimistically noting, “…the extensive land
reclamation activities throughout China that are hoped to reverse decades of environmental
misuse are beginning to pay off” (Runnström, 2000). Nevertheless, this study was cautious,
disclaiming that this increase in vegetation did not necessarily correspond to an increase in the
carrying capacity of the land. Zha et. al (1997) corroborated this finding that vegetation had
increased, stating that forest coverage in China increased form 5.05% to 7.09% of total land
area during the first decade of the project. Other literature comes to similar conclusions; the
drylands in China are generally getting greener.
16
Perhaps the most significant achievement of the GGW is that it does seem to be abating
dust storms. These storms can clog infrastructure, lead to respiratory problems, and carry the
desert past the natural boundaries of its ecosystem. Storms of dust and sand are the only real
aspect of desertification that directly impact the big cities population centers. Not only does
this make the eradication of these storms important, but also politically pressing. For these
reasons, mitigating the severity and frequency of dust storms was one of the primary objectives
of the GGW project. Tan et. al (2014) analyzed dust storms data from the past four decades and
concluded that these storms have been diminishing in intensity and frequency since the late
1970’s. “…The implementation of the GGW programme has effectively decreased [dust storm
Figure 8: Before (Top) and After (Bottom) GGW Implementation
Source: United Nations Convention to Combat Desertification Website
17
intensity] by improving the vegetation conditions” (Tan et. al, 2014). Zhang et. al (2008) came
to similar conclusions. Whether or not this drop in dust storms is related to the GGW or some
other factor, dust storms are currently less problematic than they have been in years past.
Cons
While vegetation has increased overall, much of the planted forests are not surviving.
The Chinese government refuses to publicize information on tree survival rates, even to
international agencies funding its oversight efforts (Levin, 2005). Estimates range wildly, and
most likely depend on the specifics of the location. Runnström (2000) estimates that only 40%
of trees survive. Others think less than a quarter of the trees live to maturity. These low survival
rates are often blamed on China’s use of monocultures, which are more vulnerable to climate
change, disease, herbivory, and pests (Veste et. al, 2006). In 2000, a pest in the northwest
region was able to kill 1 billion trees, representing several years of planting efforts. Lack of
water is another reason the trees do not survive. Critics claim that these artificial forests can
deplete groundwater sources, killing themselves off, as well as any previously existing
vegetation. Even when the trees do survive, the natural life cycle of most of these trees is only
40 years – about half the time that the GGW will likely take to complete (“Afforestation in
China,” 2014). By the time the project is finished in 2050, it is possible that half of the trees will
already be dead of natural causes. It is uncertain that China will ever be able to actually
complete the GGW project.
18
The GGW may benefit the land on the fringe of the desert, but its impact on the people
who live in these regions is not particularly positive. The decision-making process for
implementing the GGW is very top down, and the locals, who are the most directly affected,
often have little to no say. Although residents are offered cash incentives to help plant the
trees, several of the areas with higher levels of precipitation are planted by aerial drops,
bypassing the locals. Some farmers have seen their agricultural land and pastures turned into
giant tree monocultures, with little visible benefit to them (O’Connor et. al, 2014). These trees
can also drain the water table, drying out wells and making it more difficult to irrigate crops. In
some extreme cases, China has even forcibly relocated people in areas with extreme erosion
(“Afforestation in China,” 2014). If one of the main goals of the GGW is to provide stability for
people living in desertification-prone regions, the GGW is arguably failing at this task.
Conclusion
Desertification is a problem which affects many areas of the world, especially in Africa
and Asia. Since the late 1970’s, countries have attempted to abate this problem, with China
leading the charge with their GGW - the largest ecological project in the history of humankind.
At this time, there is no consensus on the level of success the GGW has achieved. As the plan
moves closer to its 2050 finish date, the lessons learned from the GGW will likely become more
obvious. The world will be eagerly watching to see if China’s ambitious fight against
desertification pays off. If it does, the implications would be momentous, and perhaps one day
19
the Great Green Wall of China could carry more historical significance than the actual Great
Wall of China itself.
20
Bibliography
Abahussain, Asma Ali, et al. "Desertification in the Arab Region: analysis of current status and
trends." Journal of Arid Environments 51.4 (2002): 521-545.
"Afforestation in China: Great Green Wall." The Economist. 23 Aug. 2014. Web. 12 May 2015.
“China’s Great Green Wall.” BBB News. 3 March 2001. Web. 19 May 2015.
Helldén, Ulf. "Desertification: time for an assessment?" Ambio (1991): 372-383.
Kassas, Mohammad. "Desertification: a general review." Journal of Arid Environments 30.2
(1995): 115-128.
Levin, Elius. "Growing China's great green wall." ECOS 2005.127 (2005): 13-13.
O'Connor, David, and James Ford. "Increasing the Effectiveness of the “Great Green Wall” as an
Adaptation to the Effects of Climate Change and Desertification in the
Sahel." Sustainability 6.10 (2014): 7142-7154.
Olsson, Lennart. "On the causes of famine: drought, desertification and market failure in the
Sudan." Ambio (1993): 395-403.
Piao, Shilong, et al. "The impacts of climate change on water resources and agriculture in
China." Nature 467.7311 (2010): 43-51.
Runnström, Micael C. "Is northern China winning the battle against desertification? Satellite
remote sensing as a tool to study biomass trends on the Ordos Plateau in semiarid
China." AMBIO: A Journal of the Human Environment 29.8 (2000): 468-476.
Schleeter, Ryan. "The Great Green Wall." National Geographic. 4 Nov. 2013. Web. 11 May 2015.
Schlesinger, William H., et al. "Biological feedbacks in global desertification." Science 247.4946
(1990): 1043-1048.
Stringer, L. C. "Reviewing the International Year of Deserts and Desertification 2006: What
contribution towards combating global desertification and implementing the United
Nations Convention to Combat Desertification?" Journal of Arid Environments 72.11
(2008): 2065-2074.
Tan, Minghong, Xiubin Li, and Liangjie Xin. "Intensity of dust storms in China from 1980 to 2007:
A new definition." Atmospheric Environment 85 (2014): 215-222.
Tian, Junliang, and Chi-Hua Huang, eds. Soil erosion and dryland farming. CRC press, 2000.
21
Veste, Maik, et al. "The Green Great Wall–combating desertification in China." Geogr Rundsch
Int Edn 2.3 (2006): 14-20.
Yang, X., et al. "Desertification assessment in China: An overview." Journal of Arid
Environments 63.2 (2005): 517-531.
Zha, Yong, and Jay Gao. "Characteristics of desertification and its rehabilitation in
China." Journal of Arid Environments 37.3 (1997): 419-432.
Zhang, Baolin, Atsushi Tsunekawa, and Mitsuru Tsubo. "Contributions of sandy lands and stony
deserts to long-distance dust emission in China and Mongolia during 2000–
2006." Global and Planetary Change 60.3 (2008): 487-504.

More Related Content

What's hot

Africa - Up in Smoke - Global Warming Vulnerability
Africa - Up in Smoke - Global Warming Vulnerability Africa - Up in Smoke - Global Warming Vulnerability
Africa - Up in Smoke - Global Warming Vulnerability Z3P
 
politics of the environment
politics of the environmentpolitics of the environment
politics of the environmentSadie Normoyle
 
Vision presentation (Updated)
Vision presentation (Updated)Vision presentation (Updated)
Vision presentation (Updated)KKM Architects
 
Desrtificatiom presentation_oraib
Desrtificatiom presentation_oraibDesrtificatiom presentation_oraib
Desrtificatiom presentation_oraibOraib Nawash
 
2019 welcome to the anthropocene cemus
2019 welcome to the anthropocene cemus2019 welcome to the anthropocene cemus
2019 welcome to the anthropocene cemusOwen Gaffney
 
Disaster risk reduction as a pillar of a national adaptation strategy: experi...
Disaster risk reduction as a pillar of a national adaptation strategy: experi...Disaster risk reduction as a pillar of a national adaptation strategy: experi...
Disaster risk reduction as a pillar of a national adaptation strategy: experi...NAP Events
 
Pb climatechange web
Pb climatechange webPb climatechange web
Pb climatechange webcenafrica
 
Climate change & population
Climate change & populationClimate change & population
Climate change & populationPiyushKumar621
 
Impacts of climate change on livelihood by zewde alemayehu tilahun
Impacts of climate change on livelihood by zewde alemayehu tilahunImpacts of climate change on livelihood by zewde alemayehu tilahun
Impacts of climate change on livelihood by zewde alemayehu tilahunzewde alemayehu
 
Environmentalpsycology powerpoint
Environmentalpsycology powerpointEnvironmentalpsycology powerpoint
Environmentalpsycology powerpointHenry Carballo
 
Envi scn intro-q1wk1 (1)
Envi scn intro-q1wk1 (1)Envi scn intro-q1wk1 (1)
Envi scn intro-q1wk1 (1)Geekoid
 
Climate change and migration, 2009
Climate change and migration, 2009Climate change and migration, 2009
Climate change and migration, 2009Charles Ehrhart
 

What's hot (19)

Africa - Up in Smoke - Global Warming Vulnerability
Africa - Up in Smoke - Global Warming Vulnerability Africa - Up in Smoke - Global Warming Vulnerability
Africa - Up in Smoke - Global Warming Vulnerability
 
politics of the environment
politics of the environmentpolitics of the environment
politics of the environment
 
Vision presentation (Updated)
Vision presentation (Updated)Vision presentation (Updated)
Vision presentation (Updated)
 
Desrtificatiom presentation_oraib
Desrtificatiom presentation_oraibDesrtificatiom presentation_oraib
Desrtificatiom presentation_oraib
 
'Integrated solutions for multiple global problems through applying the Susta...
'Integrated solutions for multiple global problems through applying the Susta...'Integrated solutions for multiple global problems through applying the Susta...
'Integrated solutions for multiple global problems through applying the Susta...
 
2019 welcome to the anthropocene cemus
2019 welcome to the anthropocene cemus2019 welcome to the anthropocene cemus
2019 welcome to the anthropocene cemus
 
CDLS 2015 Report
CDLS 2015 ReportCDLS 2015 Report
CDLS 2015 Report
 
Disaster risk reduction as a pillar of a national adaptation strategy: experi...
Disaster risk reduction as a pillar of a national adaptation strategy: experi...Disaster risk reduction as a pillar of a national adaptation strategy: experi...
Disaster risk reduction as a pillar of a national adaptation strategy: experi...
 
BIO320 CHAPTER 11
BIO320 CHAPTER 11BIO320 CHAPTER 11
BIO320 CHAPTER 11
 
Pb climatechange web
Pb climatechange webPb climatechange web
Pb climatechange web
 
Climate change & population
Climate change & populationClimate change & population
Climate change & population
 
Impacts of climate change on livelihood by zewde alemayehu tilahun
Impacts of climate change on livelihood by zewde alemayehu tilahunImpacts of climate change on livelihood by zewde alemayehu tilahun
Impacts of climate change on livelihood by zewde alemayehu tilahun
 
EJFsample3
EJFsample3EJFsample3
EJFsample3
 
Environmentalpsycology powerpoint
Environmentalpsycology powerpointEnvironmentalpsycology powerpoint
Environmentalpsycology powerpoint
 
Envi scn intro-q1wk1 (1)
Envi scn intro-q1wk1 (1)Envi scn intro-q1wk1 (1)
Envi scn intro-q1wk1 (1)
 
Learning from Global Disaster Laboratories: A Framework For Global Dialogue
Learning from Global Disaster Laboratories: A Framework For Global Dialogue Learning from Global Disaster Laboratories: A Framework For Global Dialogue
Learning from Global Disaster Laboratories: A Framework For Global Dialogue
 
environment
environmentenvironment
environment
 
Climate change and migration, 2009
Climate change and migration, 2009Climate change and migration, 2009
Climate change and migration, 2009
 
Presentation (PL 209)
Presentation (PL 209)Presentation (PL 209)
Presentation (PL 209)
 

Viewers also liked

Irmandade Santa Casa de Misericordia de Sao Paulo
Irmandade Santa Casa de Misericordia de Sao PauloIrmandade Santa Casa de Misericordia de Sao Paulo
Irmandade Santa Casa de Misericordia de Sao Pauloomar_a_larrosa
 
Proyecto estalmat bis
Proyecto estalmat bisProyecto estalmat bis
Proyecto estalmat bisangelramosp
 
Declaration of Independence
Declaration of IndependenceDeclaration of Independence
Declaration of Independencemodernmediamgt
 
Great Escape 2016- DPC
Great Escape 2016- DPCGreat Escape 2016- DPC
Great Escape 2016- DPCdtownpc
 
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...Robin
 

Viewers also liked (14)

alexis reco letter
alexis reco letteralexis reco letter
alexis reco letter
 
Req. 006
Req. 006Req. 006
Req. 006
 
Irmandade Santa Casa de Misericordia de Sao Paulo
Irmandade Santa Casa de Misericordia de Sao PauloIrmandade Santa Casa de Misericordia de Sao Paulo
Irmandade Santa Casa de Misericordia de Sao Paulo
 
Req. 076
Req. 076Req. 076
Req. 076
 
Req. 025
Req. 025Req. 025
Req. 025
 
Inconel 625
Inconel 625Inconel 625
Inconel 625
 
Proyecto estalmat bis
Proyecto estalmat bisProyecto estalmat bis
Proyecto estalmat bis
 
Emilyc
EmilycEmilyc
Emilyc
 
Communication
CommunicationCommunication
Communication
 
Req. 101
Req. 101Req. 101
Req. 101
 
Επίσκεψη Λήδας Βαρβαρούση
Επίσκεψη Λήδας ΒαρβαρούσηΕπίσκεψη Λήδας Βαρβαρούση
Επίσκεψη Λήδας Βαρβαρούση
 
Declaration of Independence
Declaration of IndependenceDeclaration of Independence
Declaration of Independence
 
Great Escape 2016- DPC
Great Escape 2016- DPCGreat Escape 2016- DPC
Great Escape 2016- DPC
 
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...
Wie kann ich gelöschte Bilder auf dem Sony Xperia Z5/Z3 +/Z3/Z2/Z wiederherst...
 

Similar to Ryan Sclar 232 Term Paper Desertification

Investigating Environmental Degradation
Investigating Environmental DegradationInvestigating Environmental Degradation
Investigating Environmental DegradationManasa Guntaka
 
Environmental and natural resources economics
Environmental and natural resources economicsEnvironmental and natural resources economics
Environmental and natural resources economicsMWAIZAVUZYA
 
A Case Study of the Desertification of Haiti.pdf
A Case Study of the Desertification of Haiti.pdfA Case Study of the Desertification of Haiti.pdf
A Case Study of the Desertification of Haiti.pdfRhonda Cetnar
 
Scientific Facts on Desertification
Scientific Facts on DesertificationScientific Facts on Desertification
Scientific Facts on DesertificationGreenFacts
 
T12 erian wadid vegetation economics losses due to agriculture drought haza...
T12 erian wadid   vegetation economics losses due to agriculture drought haza...T12 erian wadid   vegetation economics losses due to agriculture drought haza...
T12 erian wadid vegetation economics losses due to agriculture drought haza...NENAwaterscarcity
 
The Endangered GlobalCommonsThe Effects of Climate and T.docx
The Endangered GlobalCommonsThe Effects of Climate and T.docxThe Endangered GlobalCommonsThe Effects of Climate and T.docx
The Endangered GlobalCommonsThe Effects of Climate and T.docxcherry686017
 
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...Z3P
 
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...P8P
 
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...Z3P
 
Risk and Disaster - Challenge from a Global Perspective
Risk and Disaster - Challenge from a Global PerspectiveRisk and Disaster - Challenge from a Global Perspective
Risk and Disaster - Challenge from a Global PerspectiveGlobal Risk Forum GRFDavos
 
A Review Of Flood Risk Assessment
A Review Of Flood Risk AssessmentA Review Of Flood Risk Assessment
A Review Of Flood Risk AssessmentChristine Maffla
 
“Tertiary” health effects of climate and other forms of adverse environmental...
“Tertiary” health effects of climate and other forms of adverse environmental...“Tertiary” health effects of climate and other forms of adverse environmental...
“Tertiary” health effects of climate and other forms of adverse environmental...Australian National University
 
Human Population and the Environment
Human Population and the EnvironmentHuman Population and the Environment
Human Population and the EnvironmentWhitney
 

Similar to Ryan Sclar 232 Term Paper Desertification (17)

Desertification Assignment
Desertification AssignmentDesertification Assignment
Desertification Assignment
 
Investigating Environmental Degradation
Investigating Environmental DegradationInvestigating Environmental Degradation
Investigating Environmental Degradation
 
Climate change, Health and Conflict
Climate change, Health and ConflictClimate change, Health and Conflict
Climate change, Health and Conflict
 
Environmental and natural resources economics
Environmental and natural resources economicsEnvironmental and natural resources economics
Environmental and natural resources economics
 
A Case Study of the Desertification of Haiti.pdf
A Case Study of the Desertification of Haiti.pdfA Case Study of the Desertification of Haiti.pdf
A Case Study of the Desertification of Haiti.pdf
 
ٍEbrahim Asadi Golmei 6187408
ٍEbrahim Asadi Golmei 6187408ٍEbrahim Asadi Golmei 6187408
ٍEbrahim Asadi Golmei 6187408
 
Scientific Facts on Desertification
Scientific Facts on DesertificationScientific Facts on Desertification
Scientific Facts on Desertification
 
T12 erian wadid vegetation economics losses due to agriculture drought haza...
T12 erian wadid   vegetation economics losses due to agriculture drought haza...T12 erian wadid   vegetation economics losses due to agriculture drought haza...
T12 erian wadid vegetation economics losses due to agriculture drought haza...
 
The Endangered GlobalCommonsThe Effects of Climate and T.docx
The Endangered GlobalCommonsThe Effects of Climate and T.docxThe Endangered GlobalCommonsThe Effects of Climate and T.docx
The Endangered GlobalCommonsThe Effects of Climate and T.docx
 
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...
Global Warming Impacts - Destruction of Africa Forest-Dependent Rural Livelih...
 
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...
Climate Change Impacts: Destruction of Africa Forest-Dependent Rural Liveliho...
 
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...
Climate Impacts, Forest Dependent Rural Livelihoods and Adaptation Strategies...
 
Risk and Disaster - Challenge from a Global Perspective
Risk and Disaster - Challenge from a Global PerspectiveRisk and Disaster - Challenge from a Global Perspective
Risk and Disaster - Challenge from a Global Perspective
 
A Review Of Flood Risk Assessment
A Review Of Flood Risk AssessmentA Review Of Flood Risk Assessment
A Review Of Flood Risk Assessment
 
“Tertiary” health effects of climate and other forms of adverse environmental...
“Tertiary” health effects of climate and other forms of adverse environmental...“Tertiary” health effects of climate and other forms of adverse environmental...
“Tertiary” health effects of climate and other forms of adverse environmental...
 
Natural hazards
Natural hazardsNatural hazards
Natural hazards
 
Human Population and the Environment
Human Population and the EnvironmentHuman Population and the Environment
Human Population and the Environment
 

Ryan Sclar 232 Term Paper Desertification

  • 1. An Analysis of Desertification With Particular Focus on the “Great Green Wall of China” UP 232 Disaster Management and Response Professor Commins Ryan Sclar June 15, 2015
  • 2. 1 Introduction Humanity currently faces many challenges. Some of these problems are well publicized; stories about terrorism, climate change, and disease outbreaks, for example, commonly make the headlines. While these issues are important and often deserve the attention they receive, equally monumental problems can frequently go unnoticed. Desertification is one of these underestimated issues. Few people even know the meaning of the word, let alone its implications. This paper provides an overview of desertification, describes the problems associated with it, and analyzes some of the ways that countries are attempting mitigate its impacts. What is Desertification? Definition Desertification is a process of land degradation in dry climates. While there is debate over exactly what constitutes desertified land, Agenda 21 provides one of the most accepted definitions (Kassas, 1995). According to Agenda 21, desertification is, “land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, including climatic variations and human activities.” Terms like “desert encroachment” often conjure up images of expanding deserts aggressively colonizing surrounding land; however, this notion is misguided (Kassas, 1995; Schleeter, 2013). While it is true that bodies of sand can extend past their climatic limits (especially in China, as discussed later), most desertification is caused from the ground up, by changes in climate, soil content, water levels, and vegetation (Abahussain et. al, 2002).
  • 3. 2 Water plays a crucial role in defining desertification. The expansion of deserts occurs in drylands, areas with less water income (precipitation) than water expenditure (evaporation and plant consumption) (Kassas, 1995). Drylands are commonly classified by their aridity, the severity of the deficit in their water levels. Arid areas covers 12% of the land surface of the earth, and total dryland ecosystems account for 33% of all land (Schlesinger, 1990). These regions are disproportionally in Africa and Asia (Figure 1). The Causes of Desertification Desertification is caused by several factors. Essentially, any action which degrades dry land leads to desertification. Human activities, such as livestock grazing, crop cultivation, and mining can create desertified land if conducted in an unsustainable fashion (Schlesinger, 1990; Africa Asia Australia Europe North America South America Hyper-arid 672 277 0 0 3 26 Arid 504 626 303 11 82 45 Semi-arid 514 693 309 105 419 265 Dry sub-humid 269 353 51 184 232 207 DRYLAND BY CONTINENT (MILLION HECTARES) Figure 1: Dryland by Continent (Million Hectares) Source: Data from Kassas, 1995
  • 4. 3 Kassas, 1995; Runnström, 2000). In general, the classic “tragedy of the commons” scenario is the main culprit for land degradation. Figure 2 shows the findings of Zha and Jay (1997) describing how different human activities relate to desertification. While the preciseness of these data is debated, most literature agrees that overgrazing and over cultivating as the chief culprits in human-led desertification (Tan et. al, 2014; Schlesinger, 1990). These activities can lower the water table, create erosion and degrade soil content. Drylands can also succumb to desertification by natural causes. Periods of below average rainfall can be just as detrimental to water tables as agriculture (Kassas, 1995). Arid areas subjected to sandstorms1 and invasive desert shrubs can be exposed with thinner plant coverage. This lowers bioproductivity and prevents soil development (Schlesinger, 1990). Identifying which aspects of desertification are human-caused and which are natural is difficult. 1 For simplicities sake, this study assumes the terms “sandstorm” and “dust storm” to be equal and uses them interchangeably. Over Cultivation Overgrazing Excessive Collection of Wood Mining and Construction Estimated Human Contributions to Desertification Figure 2: Estimated Human Contributions to Desertification Source: Zha et. al, 1997
  • 5. 4 Estimates range dramatically, however many researchers believe that human activities are to blame for 60% to 90% of modern desertification (Zha et. al, 1997). The Problem Desertification has the potential to impact many people in several different parts of the world. Drylands are home to over two billion people, about 30% of the human race (Stringer, 2008). As people conglomerate in cities in arid regions, development is often pushed forward unsustainably, permanently degrading the productive capacity of that land (Schlesinger, 1990). This results in ecological deterioration as well as economic loss. Abahussain et. al, (2002) describe the downward spiral created by this problem. Reductions and fluctuations in yields from woodlands, pastureland, and agriculture make farming less predictable, which can lead to food insecurities. These uncertainties lead people to panic and overexploit their land even more, which further exacerbates the desertification process. Every year 200,000 square kilometers are claimed to be abandoned due to desertification (Abahussain et. al, 2002). 35% of the world’s land surface is at risk for future degradation (Helldén, 1991). Through food insecurities, desertification can cause malnutrition, diseases, social disorder, and even death (Olsson, 1993). In understanding the problems associated with desertification, it is important to note the complicated relationship between desertification and food insecurity. Not all food insecurity is caused by desertification and not all deserts disallow the cultivation of food. There are some pastoral societies which have long lived and prospered in desert climates. Some
  • 6. 5 believe that policy makers place too much emphasis on the role of desertification, and often use it as a scapegoat for other problems. Olsson (1993) claims, for example, that the 1984-1985 famine in Sudan was primarily caused not by a desert-led decline in food availability, but by a broken relationship between people and food (there was enough food on the national level but speculation and inadequate distribution brought on the famine). Desertification is responsible for many ecological, economic, and health problems, but should be analyzed with the role of exogenous variables in mind. Efforts to Manage Desertification in the International Community The first major attempts by the international community to study desertification took place in the mid-20th century. The United Nations Educational Scientific and Cultural Organization (UNESCO) initiated a program in 1950 to establish 200 arid zone research institutions throughout the world. From this effort, over 30 volumes of scientific and technical reports were published to allow the causes and effects of desertification to become better understood by policy makers (Kassas, 1995). In the late 1960’s and early 1970’s prolonged problems in the Sahel region of Africa intensified the discussion over desertification. The United Nations (UN) began to think more critically about desertification in the 1970’s. In 1975, ecologist Huge Lamprey popularized the current “desert encroachment theory” in a United Nations Environmental Program (UNEP) report on the African Sahel region (Yang et. al, 2005). Lamprey’s claim that the southern boundary of the Sahara desert had shifted by 100 kilometers over the past two decades astounded many in the international community. Two
  • 7. 6 years later the UNEP held a Conference on Desertification, declaring it to be one of the major environmental problems of our time (Helldén, 1991). This conference brought about much of the existing research on desertification and on ways to rehabilitate land (Zha et. al, 1997). The issue of desertification has been on the agenda of the UN General Assembly since the 1970’s. The Plan to Action to Combat Desertification (PACD) funded projects and research through the 1990’s, and the UN Convention to Combat Desertification ratified an additional plan in 1996 (Kassas, 1995; Zha et. al, 1997). The UN General Assembly even named 2006 the International Year of Deserts and Desertification. In doing so, the UN established four objectives, although these did little to engage in concrete measures to mitigate desertification. The UNEP recommends allocating $10 billion to $22 billion per year towards mitigating desertification (although recent funds totaled less than $1 billion annually) (Stringer, 2008). The UN recognizes desertification as a very serious issue, but international mitigation efforts have been minimal. Desertification in Africa Most of the desertification related studies and programs initiated by the UN and others have been specifically targeted towards the African Sahel Region. While the expansion of deserts is a worldwide issue, Africa is home to some of the largest and harshest climates (Figure 1). The Sahel region has also hosted several infamous famines in past decades, drawing more attention from world policy makers than other deserts in Asia and elsewhere (O’Connor and Ford, 2014). Many of these endeavors center upon the management of droughts. Programs
  • 8. 7 through the UN and the World Meteorological Organization use satellite imagery to forecast rainfall and drought prone areas, as does USAID’s Famine Early Warning System (Kassas, 1995). Many programs have also aimed to increase societal preparedness, educating farmers on sustainable farming techniques and drought resistant practices. Most of the efforts to prevent desertification in Africa take the form of predictions and preparation measures. The largest and most ambitious plan to fight desertification in Africa is the so called Great Green Wall (GGW)2. This project involves the planting of a continuous 15 kilometer-wide row of trees, spanning 7,775 kilometers across the continent (Schleeter, 2013) (Figure 3). The concept behind the GGW is that a “wall” of trees from Senegal to Djibouti will naturally moderate temperatures, wind speed, soil erosion, and humidity. This GGW was initially proposed in the early 1980’s, and recently subject to bolstered interest in the wake of intensifying climate change discussions (O’Connor et. al, 2014). Despite controversy, this 2 This is also often referred to as the Green Great Wall; to avoid confusion, this paper will only use the term Great Green Wall. Figure 3: The Proposed Great Green Wall of Africa Source: Constructed with data from O’Connor et. al, 2014
  • 9. 8 project was officially ratified at the World Day to Combat Desertification and Drought in 2002, with the support of all of the 11 countries which the project would span. Although the GGW is endorsed by every country in the Sahel, its implementation has been squandered by a lack of both funds and coordination. Currently only $115 million of the proposed multiple billion dollar3 project is securely financed (Schleeter, 2013). Most of this money has been spent in Senegal and Niger, where work on the project has started in a piecemeal fashion (O’Connor et. al, 2014). The lack of a powerful central authority has also stunted the progress of the GGW. The UNEP has stressed the need for regional entities, national governments, and local communities to better collaborate on the GGW in order to make any real progress (O’Connor et. al, 2014). Desertification in China China’s Challenges While most of the international anti-desertification efforts have been geared towards Africa, China also faces a formidable task securing its arid land against degradation. By some measures, China is the most severely desertified country in the world. 13% of China’s 9.6 million square kilometers is desert (Zha et. al, 1997). 23% of the country is classified as drylands, vulnerable to desertification (Veste et. al, 2006). Northern China, home to both the Takla Makan and Gobi deserts, also supports the world’s largest population of grazing animals 3 Due partially to the lack of cooperation, no agencies are able to provide an accurate estimate of the total cost of constructing the GGW.
  • 10. 9 (Runnström, 2000). It is estimated that 2,460 square kilometers of land and $800 million in Northern China are lost each year to overgrazing (Levin, 2005). The region also faces the challenges of deforestation and drought. China has 7% of the world’s arable land to feed 22% of the world’s population (Piao et. al, 2010). Desertification is a pressing issue in China. China faces unique challenges due to the nature of their dust storms. In the 1950’s, the country averaged 5 major sandstorms per year. In 2000, there were 8 such events in just a 45 day period (Veste et. al, 2006). Sand and dust storms cause more challenges in China than anywhere else because of the country’s immense concentrations of people. These storms impact large areas of the country, affecting many of the nation’s largest cities and hundreds of millions of inhabitants. These shifting sand dunes and high winds interfere with irrigation, railway, and highway infrastructure, and can severely impact the economy. Dust storms are more than just an inconvenience; on just one day in 1993 a cloud a dust injured 264 people and killed over 85 people and 100,000 livestock (Veste et. al, 2006). These storms transport large enough quantities of sand that they can desertify areas which otherwise have enough rainfall and temperature moderation to facilitate life. Many areas in the Tengger desert, for example, are only classified as desert because their high wind speeds Figure 4: Beijing during a sandstorm (left) and on a regular day (right) Source: “China’s Great Green Wall,” 2015
  • 11. 10 transport layers of migratory sands. For all intents and purposes, Chinese sandstorms are just as detrimental, if not more so, as conventional storms. China also faces a challenging erosion problem. The Loess Plateau is commonly referred to as the most erosion prone place on earth (Tian et. al, 2000). This region was once 15% covered by forest during the Ming Dynastic several hundred years ago. During the early 20th century, extensive logging accompanied rapid development in the region. By 1949, only 3% of the Loess Plateau was forested (Veste et. al, 2006). Greenpeace estimates that now only 2% of China’s original forests are still intact (“Afforestation in China,” 2014). This, combined with the steep slopes of the terrain leads to large scale soil erosion. Estimates vary significantly, but it is believed that between 1,100 and 9,600 tons of soil in every square kilometer are lost to erosion each year on the Loess Plateau (Veste et. al, 2006). The Yellow River derives its name (and its color) from the immense amount of eroded dirt that washes into it. In addition to the erosion of soil, other types of erosion also play a nontrivial role in the degradation of land in northern China (Figure 5). The erosion problems of China are arguably unrivaled by anywhere else in the world. 0 0.5 1 1.5 2 Soil Physical/ Chemical Erosion Water Erosion Salinization Area(MillionSquare Kilometers) Land Lost to Erosion in Northern China Figure 5: Land Lost to Erosion in Northern China Source: Zha et. al, 1997
  • 12. 11 Effort to Manage Desertification and the Great Green Wall Given the detrimental effects that dust storms and erosion inflict on the stability of the country, the Chinese government has taken several steps to mitigate desertification. As with the UN, China began to think prudently about the impacts of desertification during the latter half of the 20th century (Runnström, 2000). One of the earliest environmental laws in China was a product of the negative impact that foresting was having on the Loess Plateau. By the late 1970’s there were several environmental acts drafted at the national level. The Household Production Responsibility Act, introduced in the mid 1980’s, attempted to dramatically increase the amount of fenced pasture areas to prevent overgrazing4 (Runnström, 2000). In 1991, the Chinese government initiated the China Desertification Rehabilitation and Desert Reclamation Action Program, which led to a round of comprehensive environmental laws and several engineering projects aimed at combating sandstorms and erosion (especially along corridors with major infrastructure connections) (Veste et. al, 2006). 4 This act was slightly controversial; some claim it was not properly implemented or enforced.
  • 13. 12 Without a doubt, the capstone in China’s fight against desertification is their Great Green Wall Plan. Similar to plans in the African Sahel region, China proposed to obstruct desertification with of a belt of vegetation. This plan was one of the first acts by the then new leader of China, Deng Xiaoping (Levin, 2005). This comprehensive project detailed a series of windbreaks, shelterbelts, and sand dune stabilization efforts in three stages of eight sections. At the heart of this plan was the Three Norths5 Protective Forest System, also known colloquially as the “Great Green Wall of China.” This barrier was proposed to span 4480 kilometers across the country, acting as a primary line of defense against sand and dust storms (Veste et. al, 2006) (Figure 6). The Chinese government claims the project will afforest 4 million square 5 Three Norths refers to the three regions of the country the project would be constructed through – the Northwest Region, the Northern Region, and the Northeast Region. Figure 6: The Proposed Great Green Wall of China Source: Constructed with data from Tan et. al, 2014
  • 14. 13 kilometers, 42% of all land in the country, by its completion in 2050. While this projection is controversial and may need to be taken with a grain of salt, this is clearly an enormous undertaking. In fact, the GGW is currently the largest ecological project in the history of humankind (Levin, 2005). By almost all measures, this plan is ambitious. Unlike the GGW in the Sahel, China’s GGW project has significant political and economic backing. China has implemented this project with a very top down approach, with most of the planning being done at the national level. The first of the three stages has already been officially declared finished6 and the project continues to move forward. Government officials state that 24 million hectares of trees and other vegetation have been planted so far as part of 6 The first stage was completed in 2001, however it was originally intended to be finished in 1985. Figure 7: Typical Segment of the Great Green Wall Source: Data from Levin, 2005
  • 15. 14 the Three Norths Protective Forest System (Levin, 2005). The State Forestry Administration claims that a total of 50 million hectares of forests have been seeded across China throughout all of their shelterbelt programs. This equates to roughly 66 billion trees (“Afforestation in China,” 2014). Regardless of whether one thinks this plan is worthwhile, the GGW certainly represents a very large political endeavor. The Chinese government has also proven its willingness to invest monetarily in the GGW. While the total price of completing the 73 year project is uncertain, the government estimates that it costs roughly $1.9 billion per year7 (“China’s Great Green Wall,” 2001). China has also poured an additional $1.2 billion into an oversight system to map, survey, and protect the project8 (Levin, 2005). Backers of the GGW say it’s worth the steep price tag because it will protect 8.5 million hectares of farmland and increase grain yield by 5.5 million tons (Zha et. al, 1997). Some Chinese politicians have claimed the project has already paid off, crediting Beijing’s successful 2008 Olympic bid in part to the GGW showing China’s commitment to prevent dust storms in Beijing (“China’s Great Green Wall,” 2001). Zha et. al (1997) take a slightly more cynical perspective, declaring that, “The history of rehabilitating desertified land in China is essentially the history of converting it into productive uses in sandy areas” (Zha et. al, 1997). Either way, the Chinese government has provided significant financial backing to their GGW. 7 This number comes from a reference published in 2001 and has been adjusted for inflation to 2015 dollars. 8 Part of this money comes from foreign investors, including the World Bank, the UN Development Program, and the UN Food and Agricultural Organization.
  • 16. 15 Does the Great Green Wall Work? There is significant debate regarding the overall worthwhileness of China’s GGW; the project has successfully achieved some promising results and unequivocally failed to deliver on other objectives. Opinions, both inside and outside of China, are still very much divided on the outcomes and fate of this project. Given the proposed completion year of 2050, discussions surrounding the GGW are ongoing and prone to change. Pros There is little doubt that China has more vegetation now than it did when the project commenced in 1978. Runnström (2000) analyzed satellite imagery and the Normalized Difference Vegetation Index determining that the GGW was successful in increasing the amount of nearby vegetation. The study concluded by optimistically noting, “…the extensive land reclamation activities throughout China that are hoped to reverse decades of environmental misuse are beginning to pay off” (Runnström, 2000). Nevertheless, this study was cautious, disclaiming that this increase in vegetation did not necessarily correspond to an increase in the carrying capacity of the land. Zha et. al (1997) corroborated this finding that vegetation had increased, stating that forest coverage in China increased form 5.05% to 7.09% of total land area during the first decade of the project. Other literature comes to similar conclusions; the drylands in China are generally getting greener.
  • 17. 16 Perhaps the most significant achievement of the GGW is that it does seem to be abating dust storms. These storms can clog infrastructure, lead to respiratory problems, and carry the desert past the natural boundaries of its ecosystem. Storms of dust and sand are the only real aspect of desertification that directly impact the big cities population centers. Not only does this make the eradication of these storms important, but also politically pressing. For these reasons, mitigating the severity and frequency of dust storms was one of the primary objectives of the GGW project. Tan et. al (2014) analyzed dust storms data from the past four decades and concluded that these storms have been diminishing in intensity and frequency since the late 1970’s. “…The implementation of the GGW programme has effectively decreased [dust storm Figure 8: Before (Top) and After (Bottom) GGW Implementation Source: United Nations Convention to Combat Desertification Website
  • 18. 17 intensity] by improving the vegetation conditions” (Tan et. al, 2014). Zhang et. al (2008) came to similar conclusions. Whether or not this drop in dust storms is related to the GGW or some other factor, dust storms are currently less problematic than they have been in years past. Cons While vegetation has increased overall, much of the planted forests are not surviving. The Chinese government refuses to publicize information on tree survival rates, even to international agencies funding its oversight efforts (Levin, 2005). Estimates range wildly, and most likely depend on the specifics of the location. Runnström (2000) estimates that only 40% of trees survive. Others think less than a quarter of the trees live to maturity. These low survival rates are often blamed on China’s use of monocultures, which are more vulnerable to climate change, disease, herbivory, and pests (Veste et. al, 2006). In 2000, a pest in the northwest region was able to kill 1 billion trees, representing several years of planting efforts. Lack of water is another reason the trees do not survive. Critics claim that these artificial forests can deplete groundwater sources, killing themselves off, as well as any previously existing vegetation. Even when the trees do survive, the natural life cycle of most of these trees is only 40 years – about half the time that the GGW will likely take to complete (“Afforestation in China,” 2014). By the time the project is finished in 2050, it is possible that half of the trees will already be dead of natural causes. It is uncertain that China will ever be able to actually complete the GGW project.
  • 19. 18 The GGW may benefit the land on the fringe of the desert, but its impact on the people who live in these regions is not particularly positive. The decision-making process for implementing the GGW is very top down, and the locals, who are the most directly affected, often have little to no say. Although residents are offered cash incentives to help plant the trees, several of the areas with higher levels of precipitation are planted by aerial drops, bypassing the locals. Some farmers have seen their agricultural land and pastures turned into giant tree monocultures, with little visible benefit to them (O’Connor et. al, 2014). These trees can also drain the water table, drying out wells and making it more difficult to irrigate crops. In some extreme cases, China has even forcibly relocated people in areas with extreme erosion (“Afforestation in China,” 2014). If one of the main goals of the GGW is to provide stability for people living in desertification-prone regions, the GGW is arguably failing at this task. Conclusion Desertification is a problem which affects many areas of the world, especially in Africa and Asia. Since the late 1970’s, countries have attempted to abate this problem, with China leading the charge with their GGW - the largest ecological project in the history of humankind. At this time, there is no consensus on the level of success the GGW has achieved. As the plan moves closer to its 2050 finish date, the lessons learned from the GGW will likely become more obvious. The world will be eagerly watching to see if China’s ambitious fight against desertification pays off. If it does, the implications would be momentous, and perhaps one day
  • 20. 19 the Great Green Wall of China could carry more historical significance than the actual Great Wall of China itself.
  • 21. 20 Bibliography Abahussain, Asma Ali, et al. "Desertification in the Arab Region: analysis of current status and trends." Journal of Arid Environments 51.4 (2002): 521-545. "Afforestation in China: Great Green Wall." The Economist. 23 Aug. 2014. Web. 12 May 2015. “China’s Great Green Wall.” BBB News. 3 March 2001. Web. 19 May 2015. Helldén, Ulf. "Desertification: time for an assessment?" Ambio (1991): 372-383. Kassas, Mohammad. "Desertification: a general review." Journal of Arid Environments 30.2 (1995): 115-128. Levin, Elius. "Growing China's great green wall." ECOS 2005.127 (2005): 13-13. O'Connor, David, and James Ford. "Increasing the Effectiveness of the “Great Green Wall” as an Adaptation to the Effects of Climate Change and Desertification in the Sahel." Sustainability 6.10 (2014): 7142-7154. Olsson, Lennart. "On the causes of famine: drought, desertification and market failure in the Sudan." Ambio (1993): 395-403. Piao, Shilong, et al. "The impacts of climate change on water resources and agriculture in China." Nature 467.7311 (2010): 43-51. Runnström, Micael C. "Is northern China winning the battle against desertification? Satellite remote sensing as a tool to study biomass trends on the Ordos Plateau in semiarid China." AMBIO: A Journal of the Human Environment 29.8 (2000): 468-476. Schleeter, Ryan. "The Great Green Wall." National Geographic. 4 Nov. 2013. Web. 11 May 2015. Schlesinger, William H., et al. "Biological feedbacks in global desertification." Science 247.4946 (1990): 1043-1048. Stringer, L. C. "Reviewing the International Year of Deserts and Desertification 2006: What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification?" Journal of Arid Environments 72.11 (2008): 2065-2074. Tan, Minghong, Xiubin Li, and Liangjie Xin. "Intensity of dust storms in China from 1980 to 2007: A new definition." Atmospheric Environment 85 (2014): 215-222. Tian, Junliang, and Chi-Hua Huang, eds. Soil erosion and dryland farming. CRC press, 2000.
  • 22. 21 Veste, Maik, et al. "The Green Great Wall–combating desertification in China." Geogr Rundsch Int Edn 2.3 (2006): 14-20. Yang, X., et al. "Desertification assessment in China: An overview." Journal of Arid Environments 63.2 (2005): 517-531. Zha, Yong, and Jay Gao. "Characteristics of desertification and its rehabilitation in China." Journal of Arid Environments 37.3 (1997): 419-432. Zhang, Baolin, Atsushi Tsunekawa, and Mitsuru Tsubo. "Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000– 2006." Global and Planetary Change 60.3 (2008): 487-504.