SlideShare a Scribd company logo
1 of 15
NONLINEAR BACKSTEPPING CONTROL WITH
OBSERVER DESIGN FOR A 4 ROTORS HELICOPTER
L. Mederreg, F. Diaz and N. K. M’sirdi
LRV
Laboratoire de Robotique de Versailles,
Université de Versailles Saint Quentin en Yvelines,
10, avenue de l’Europe 78140, Vélizy, France.
1 Introduction.
2 4 rotors Helicopter model Presentation
3 Back stepping controller synthesis
4 Back stepping controller synthesis with observer
5 Simulation and results
6 Conclusion.
OUTLINE
Introduction
• Thanks to its special configuration, the 4 rotor helicopter allows to
achieve many tasks in different fields.
 Symmetry of the platform geometry
 Low weight
Low cost
•Autonomous flight  Non linear control law Synthesis.
 Complexity of the dynamical system
 Presence of Perturbations due to the wind
 Unavailability of some state variables
4 rotors Helicopter model Presentation
0 0 0
( , , )T
u v w Absolute velocities / Earth frame
( , , )T
   Orientation angels: Yaw, Roll, Pitch.
State vector:
0 0 0 0 0 0
( , , , , , , , , , , , )T
x x y z u v w p q r
  

Gravity center coordinates
0 0 0
( , , )T
x y z
( , , )T
p q r Angular velocities / Helicopter frame
( , , )T
x y z
A A A Aero dynamical forces
( , , )T
p q z
A A A Aero dynamical Momentums
0
0
0
0
0
x
y
z
x u
w
p
q
r





 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
The state representation is given by:
0
0
0
1
2
3
4
sin sec cos sec
cos sin
sin tan cos tan
1
( )(cos cos sin sin sin )
1
( )(cos sin sin cos sin )
( ) 1
( )( , , )
( )
( )
( ) 1
y z
x x
z x
y y
x y
y y
u
v
w
q r
q r
p q r
m
m
F x
g
m
u
qr I I d
u
I I
pr I I d
u
I I
qp I I
u
I I
   
 
   
     
     
   





 

 

 

 
























 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
x F x

2
( )
1
2
d
E y y
V E
 

System of 4 equations 4 unknowns
0
i j i j i j i j j
a u bu cu d u h
     , :1 4
i j 
System outputs: 0 0 0
( , , , )
y x y z 

Desired outputs: ( , , , )
d d d d
y x y z 

Control laws: 1 2 3 4
( , , , )
u u u u u

Back stepping controller synthesis
We consider that all the state vector is measurable
SIMULINK bloc diagram of the controller
2
( )
1
2
d
E y y
V E
 

• We include in the expression of V the observing errors to be
cancelled
Back stepping controller synthesis with
observer
• We shall observe the absolute velocity vector
0 0 0
ˆ ˆ ˆ
( , , )T
u v w : Difficult to measure
• We consider that all the other parameters are measurable
Where V is a LYAPUNOV
candidate function
System 4 equations
4 unknowns
Convergence of the tracking errors
Convergence of observing errors
Simulation and results
Simulation of a vertical helix trajectory flight in presence of
perturbations (7 newton front wind blowing)
 The controller gains are adjusted by doing intensive simulations
cos( )
sin( )
2
10
3
d
d
d
d
x t
t
y
t
z




 

Tracking Trajectory : Initiales positions:
0
0
0
0
0
0
0
x
y
z





3D Tracking trajectory
Tracking errors for the BACKSTEPPING controller
Observation Errors for the BACKSTEPPING Observer
Tracking Errors for the BACKSTEPPING controller
with Observer
Conclusion :
This approach has shown :
 Good robustness of the Controller
 Good convergence of the couple controller observer
 allows to decrease the number of the required
sensors

More Related Content

Similar to backstepping ppt.ppt

2012 University of Dayton .docx
2012   University of Dayton                   .docx2012   University of Dayton                   .docx
2012 University of Dayton .docx
eugeniadean34240
 

Similar to backstepping ppt.ppt (20)

The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
Anti-Synchronization Of Four-Scroll Chaotic Systems Via Sliding Mode Control
 
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
SLIDING CONTROLLER DESIGN FOR THE GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL H...
 
Ips csmc 14.06.2016
Ips csmc 14.06.2016Ips csmc 14.06.2016
Ips csmc 14.06.2016
 
Neural Network Control Based on Adaptive Observer for Quadrotor Helicopter
Neural Network Control Based on Adaptive Observer for Quadrotor HelicopterNeural Network Control Based on Adaptive Observer for Quadrotor Helicopter
Neural Network Control Based on Adaptive Observer for Quadrotor Helicopter
 
Optimal and Pid Controller for Controlling Camera's Position InUnmanned Aeria...
Optimal and Pid Controller for Controlling Camera's Position InUnmanned Aeria...Optimal and Pid Controller for Controlling Camera's Position InUnmanned Aeria...
Optimal and Pid Controller for Controlling Camera's Position InUnmanned Aeria...
 
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS HYBRID SLIDING SYNCHRONIZER DESIGN OF  IDENTICAL HYPERCHAOTIC XU SYSTEMS
HYBRID SLIDING SYNCHRONIZER DESIGN OF IDENTICAL HYPERCHAOTIC XU SYSTEMS
 
2012 University of Dayton .docx
2012   University of Dayton                   .docx2012   University of Dayton                   .docx
2012 University of Dayton .docx
 
Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...
 
Lectures upto block diagram reduction
Lectures upto block diagram reductionLectures upto block diagram reduction
Lectures upto block diagram reduction
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
 
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
SLIDING MODE CONTROLLER DESIGN FOR SYNCHRONIZATION OF SHIMIZU-MORIOKA CHAOTIC...
 
Design and Implementation of a Quadrotor Helicopter
Design and Implementation of a Quadrotor HelicopterDesign and Implementation of a Quadrotor Helicopter
Design and Implementation of a Quadrotor Helicopter
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
SLIDING MODE CONTROLLER DESIGN FOR GLOBAL CHAOS SYNCHRONIZATION OF COULLET SY...
 
Servo systems-integral-state-feedback-lecture-2020
Servo systems-integral-state-feedback-lecture-2020Servo systems-integral-state-feedback-lecture-2020
Servo systems-integral-state-feedback-lecture-2020
 
The Control Structure for DC Motor based on the Flatness Control
The Control Structure for DC Motor based on the Flatness ControlThe Control Structure for DC Motor based on the Flatness Control
The Control Structure for DC Motor based on the Flatness Control
 
hossain.ppt
hossain.ppthossain.ppt
hossain.ppt
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSORINTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
TanishkaHira1
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Overview of Transformation in Computer Graphics
Overview of Transformation in Computer GraphicsOverview of Transformation in Computer Graphics
Overview of Transformation in Computer Graphics
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Fundamentals of Structure in C Programming
Fundamentals of Structure in C ProgrammingFundamentals of Structure in C Programming
Fundamentals of Structure in C Programming
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdf
 
TMU_GDSC_20240509.pdfTMU_GDSC_20240509.pdf
TMU_GDSC_20240509.pdfTMU_GDSC_20240509.pdfTMU_GDSC_20240509.pdfTMU_GDSC_20240509.pdf
TMU_GDSC_20240509.pdfTMU_GDSC_20240509.pdf
 
Danikor Product Catalog- Screw Feeder.pdf
Danikor Product Catalog- Screw Feeder.pdfDanikor Product Catalog- Screw Feeder.pdf
Danikor Product Catalog- Screw Feeder.pdf
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSORINTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Dr Mrs A A Miraje C Programming PPT.pptx
Dr Mrs A A Miraje C Programming PPT.pptxDr Mrs A A Miraje C Programming PPT.pptx
Dr Mrs A A Miraje C Programming PPT.pptx
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 

backstepping ppt.ppt

  • 1. NONLINEAR BACKSTEPPING CONTROL WITH OBSERVER DESIGN FOR A 4 ROTORS HELICOPTER L. Mederreg, F. Diaz and N. K. M’sirdi LRV Laboratoire de Robotique de Versailles, Université de Versailles Saint Quentin en Yvelines, 10, avenue de l’Europe 78140, Vélizy, France.
  • 2. 1 Introduction. 2 4 rotors Helicopter model Presentation 3 Back stepping controller synthesis 4 Back stepping controller synthesis with observer 5 Simulation and results 6 Conclusion. OUTLINE
  • 3. Introduction • Thanks to its special configuration, the 4 rotor helicopter allows to achieve many tasks in different fields.  Symmetry of the platform geometry  Low weight Low cost •Autonomous flight  Non linear control law Synthesis.  Complexity of the dynamical system  Presence of Perturbations due to the wind  Unavailability of some state variables
  • 4. 4 rotors Helicopter model Presentation
  • 5. 0 0 0 ( , , )T u v w Absolute velocities / Earth frame ( , , )T    Orientation angels: Yaw, Roll, Pitch. State vector: 0 0 0 0 0 0 ( , , , , , , , , , , , )T x x y z u v w p q r     Gravity center coordinates 0 0 0 ( , , )T x y z ( , , )T p q r Angular velocities / Helicopter frame ( , , )T x y z A A A Aero dynamical forces ( , , )T p q z A A A Aero dynamical Momentums
  • 6. 0 0 0 0 0 x y z x u w p q r                                               The state representation is given by: 0 0 0 1 2 3 4 sin sec cos sec cos sin sin tan cos tan 1 ( )(cos cos sin sin sin ) 1 ( )(cos sin sin cos sin ) ( ) 1 ( )( , , ) ( ) ( ) ( ) 1 y z x x z x y y x y y y u v w q r q r p q r m m F x g m u qr I I d u I I pr I I d u I I qp I I u I I                                                                                                          ( ) x F x 
  • 7. 2 ( ) 1 2 d E y y V E    System of 4 equations 4 unknowns 0 i j i j i j i j j a u bu cu d u h      , :1 4 i j  System outputs: 0 0 0 ( , , , ) y x y z   Desired outputs: ( , , , ) d d d d y x y z   Control laws: 1 2 3 4 ( , , , ) u u u u u  Back stepping controller synthesis We consider that all the state vector is measurable
  • 8. SIMULINK bloc diagram of the controller
  • 9. 2 ( ) 1 2 d E y y V E    • We include in the expression of V the observing errors to be cancelled Back stepping controller synthesis with observer • We shall observe the absolute velocity vector 0 0 0 ˆ ˆ ˆ ( , , )T u v w : Difficult to measure • We consider that all the other parameters are measurable Where V is a LYAPUNOV candidate function System 4 equations 4 unknowns Convergence of the tracking errors Convergence of observing errors
  • 10. Simulation and results Simulation of a vertical helix trajectory flight in presence of perturbations (7 newton front wind blowing)  The controller gains are adjusted by doing intensive simulations cos( ) sin( ) 2 10 3 d d d d x t t y t z        Tracking Trajectory : Initiales positions: 0 0 0 0 0 0 0 x y z     
  • 12. Tracking errors for the BACKSTEPPING controller
  • 13. Observation Errors for the BACKSTEPPING Observer
  • 14. Tracking Errors for the BACKSTEPPING controller with Observer
  • 15. Conclusion : This approach has shown :  Good robustness of the Controller  Good convergence of the couple controller observer  allows to decrease the number of the required sensors