SlideShare a Scribd company logo
1 of 46
22
GOVERNMENT OF INDIA
DEPARTMENT OF ATOMIC ENERGY
NUCLEAR FUEL COMPLEX
HYDERABAD-500062
IN PLANT TRAINING
ZIRCONIUM OXIDE PRODUCTION
AT
NEW ZIRCONIUM OXIDE PLANT AND ZIRCONIUM OXIDE PLANT
AND
DESIGNING OF DOUBLE PIPE HEAT EXCHANGERS
SUBMITTED BY: RATAN MONDAL (B.TECH,CHEMICAL ENGG.)
SHUBHAM SINGH (B.TECH,CHEMICAL ENGG.)
KANCHI AKSHITH (B.TECH,CHEMICAL ENGG.)
SUBMITTED ON:JUNE 16, 2015
INSTITUTE OF TECHNOLOGY, GURU GHASIDAS VISHWAVIDYALAYA
BILASPUR
1
GOVERNMENT OF INDIA
DEPARTMENT OF ATOMIC ENERGY
NUCLEAR FUEL COMPLEX
BONAFIDE CERTIFICATE
This is to certify that MR.RATAN MONDAL has done his Project Work under
my guidance during the period from 18th May 2015 to 17th June 2015 on the topic
entitled ZIRCONIUM OXIDE PRODUCTION AND DESIGNING OF
DOUBLE PIPE HEAT EXCHANGERS. During this period his conductwas
found to be _________________
It is ensured that the report does not contain classified or Plant operational live data
in any form.
HEYDERABAD SIGNATURE:
DATE:
APPROVED BY, JOHNSON D’SOUZA
THE MANAGER OF PLANT SENIOR MANAGER
ZOP, NFC
2
ACKNOWLEDGEMENTS
First of all I am extremely thankful to Shri N. Saibaba, Chairman ,NFC Board &
Chief Executive, NFC for giving me opportunity to carry out Project Work at
Nuclear Fuel Complex.
I would like to express my sincere thanks to Mr. JohnsonD’souza(Senior
manager) for accepting to be our Guide and helping us throughout our Project
Work.
I would like to thank Mr. Charan(S.O) and Mr. Arun Anand (T.O) for helping
us throughout our Project Work.
I express my sincere thanks to Shri H. R. Ravindra, DGM (HR) & Dr. B. N.
Murty, AGM (HRD, Q. Cir., & QIS) for helping me throughout our training
period at NFC and also conducting Awareness Programme on DAE/NFC activities
at HRD.
We are indebted to our director Dr. Shailendra Kumar and the Head of the
Department of Chemical Engineering Mr.NeerajChandrakar, for making it
possible to undergo in-plant training in NuclearFuel Complex, Hyderabad.
I am grateful to my parents who have given me constant encouragement and
inspiration to pursue my graduation.
Finally I would like to thank everyone who have directly or indirectly help me in
the successfulcompletion of this Project.
3
CONTENTS
Error! Bookmark not defined.
1. INTRODUCTION _________________________________________________________ 4
2. PRODUCTION OF ZIRCALLOYCOMPONENTS _______________________________ 5
3.ABOUT ZIRCONIUM AND HAFNIUM ________________________________________ 6
4. FLOW SHEET OF ZIRCONIUM OXIDE PRODUCTION__________________________11
5. PROCESS OF PRODUCTION _______________________________________________11
5.1 DISSOLUTION __________________________________________________________13
5.2 SOLVENT EXTRACTION _________________________________________________15
I. SLURRYEXTRACTION____________________________________________________17
II. SCRUBBING ____________________________________________________________18
III. STRIPPING_____________________________________________________________20
TREATMENT WITH SODA SOLUTION: ________________________________________21
5.3 PRECIPITATION ________________________________________________________21
5.4 REPULPING ____________________________________________________________23
5.5 VACUUM FILTRATION ___________________________________________________23
5.6 DRYING _______________________________________________________________25
5.7 CALCINATION__________________________________________________________26
5.8 GRINDING _____________________________________________________________28
5.9 BLENDING _____________________________________________________________29
6. PROPERTIESAND USES OF ZIRCONIUM OXIDE______________________________30
7.HEAT EXCHANGERS ANDITS CLASSIFICATION_________________________________30
8. TYPES OF HEAT EXCHANGERS ________________________________________________32
9. DESIGNING OF DOUBLEPIPE HEAT EXCHANGERS ______________________________35
10. NUMERICAL ON DESIGNING DOUBLE PIPE HEAT EXCHANGERS________________40
4
1. INTRODUCTION
NEED OF NUCLEAR POWER
From the dawn of civilization, mankind has depended upon nature’s gifts such as solar energy
and wind energy, in addition to firewood as fuel. However, the discovery of coal and petroleum
as fuels sparked the industrial development of humanity, and helped it grow by leaps and
bounds. As a result, man became overly dependent on these, and exploited these resources
greatly, unaware of sustainability issues, all well as environmental issues. In the present world,
where all these issues are persisting as a cancerous growth, it is obvious that one must look for a
cleaner source of power, which does not only save the environment, but is sustainable, and is
available to us at a reasonable cost. Solar, wind and hydro energy satisfy most of these criteria,
but fail terribly on certain counts. Considering all of this, one may wonder, what is the true
solution to mankind’s problems?
The answer is NUCLEAR POWER. Nuclear power is a clean power source. With proper and
sustainable implementation it is virtually an inexhaustible source of energy. The same mass of
nuclear fuel is capable of producing millions of times more energy than coal. In India, the second
most populous country of the world, there is an exceeding increase in the need of power. Our
coal is limited. So what do we do? The answer once again, is nuclear power.
India’s approach to nuclear power production is unique, owing to the lesser uranium deposits in
comparison to the thorium deposits. India is pursuing a three stage nuclear power program
linking the fuel cycle of pressurized Heavy water plant reactor (PHWR) &liquid metal
cooled fast breeder reactor (LMFBR). In addition light water reactor (LWR) has also seen
included in program. The program is currently completing the second stage of its
implementation, and once fully implemented can supply up to 30% of India’s power needs by
2050.
The driving force behind nuclear energy is nuclear fuel. And this is where the Nuclear Fuel
Complex comes into play.
THE NUCLEAR FUEL COMPLEX(NFC)
Nuclear Fuel Complex (NFC) is an industrial unit under the Department of Atomic Energy (DAE). It
manufactures enriched Uranium Oxide Fuels and zirconium alloy structural components for water-cooled
nuclear power reactors in India.
NFC is perhaps the only facility in the world where in under the same roof, both Uranium Oxide fuels and
Zirconium alloy components are fabricated starting from the basic raw materials namely Magnesium
diuranate and zircon sand respectively. Indian Rare Earth Ltd. (IREL) supplies zircon sand in the
manufacture of reactor grade zirconium oxide, zirconium sponge and finished zirconium alloy mill
products.
5
NFC manufactures seamless stainless steel and special alloy tubes, high purity and advanced materials for
various high tech applications in Atomic Energy, Defence, Space, and other industries and zirconium
alloy components for non-nucleus appliances in fertilizers and heavy chemical industries.
NFC, practicing continuous in-house technology up gradation in the manufacture of strategic material
meeting stringent quality requirements, has developed expertise and built a number of sophisticated
equipment as special chemical process reactors, high temperature sintering furnaces and filter mills which
made rapid strides in the field of mechanized material handling processes and automation.
”. A production activity in its various plants was started in early 1970’s and today it has a strong work
force of about 3600 people comprising of scientists, engineers, supervisors, workmen and the
administrative staff.
2. PRODUCTION OF ZIRCALLOY COMPONENTS
ZIRCONIUM OXIDE PLANT (ZOP)
Zirconium oxide powder is produced in ZOP. The basic raw material for producing zirconium is
zircon sand. Zircon sand has silicates as major impurities and hafnium as critical impurity.
Zircon is subjected to fusion process with caustic soda (at 6500C), and frit is formed is sent to a
series of three leaching tanks for removing sodium silicate. After leaching zirconate is washed
again in plate and frame filter press, to remove the impurities and reduce the alkalinity.
The obtained hydrated zirconia product is dried in turbo dryer and subjected to dissolution with
nitric acid. The crude zirconium nitrate solution is then sent for solvent extraction process and
pure zirconium nitrate is produced. The obtained zirconium nitrate is then precipitated and
subjected to drying and calcinations to obtain granules, which are pulverized to get fine powder
of zirconium oxide. This is packed and sent to zirconium sponge plant.
ZIRCONIUM SPONGE PLANT (ZSP)
Anhydrous zirconium tetrachloride is the preferred intermediate for the production of reactor
grade sponge. It is produced by the chlorination of pure zirconium oxide. Thermodynamically
ZrO2 is more stable than ZrCl4 as evident from the free energy values -216kcal mol-1 and -178
kcal mol-1 respectively at 1000oC. Direct chlorination of ZrO2 is not possible because the net
change of free energy is positive.
ZrO2 + 2Cl2 ZrCl4
For the production of zirconium sponge, ZrO2, petroleum coke and starch solution are mixed
thoroughly and the mixture so formed is extruded to produce briquettes. The briquettes are
subjected to coking to remove starch in a furnace with continuous supply of cooling water and
N2. This briquette is chlorinated at high temperature to obtain zirconium chloride. ZrCl4 is
converted to zirconium metal by Kroll’s reduction reaction. In these the ZrCl4 vapours react with
molten magnesium to form zirconium metal.
ZrCl4 (g) + 2Mg (l) Zr (s) + 2MgCl2 + 76 Calmole-1 at 11500C
6
The reduced mass is vacuum treated at high temperature to distil out MgCl2 and
magnesium leaving out pure zirconium in the crucible. Before exposing the pure
pyrophoric metal to the atmosphere, the metal is conditioned with argon, the air mixture
progressively, enriched with air, to form a protective film of oxide on the metal surface
thus prevent spontaneous of reactive metal.
ZIRCALLOY FABRICATION PLANT (ZFP)
The activities of this plant can be divided into three categories: Ingot making, Hot extrusion and
finishing operations.
 INGOT MAKING
The alloys made in the melt shop are Zircalloy-2 for BWR fuel, zircalloy-4 for PHWR fuel and
structural, Zr-2.5% Nb for pressure tubes, Zr-1% Nb for special application and Zr-Nb-Cu for a
special PHWR component. The process involves mixing of alloying elements during briquetting
these are welded in electro-beam welding equipment to form electrode. The electrode melted in
furnace vacuum arc melting to make the primary ingots. These ingots are subjected to re-melting
to make a homogeneous melt. For certain special application four times re-melting is also carried
out.
 HOT EXTRUSION
The ingots are melted in two sizes viz., 300mm diameter and 350mm diameter, which are broken
down in hot extrusion press to either rounds or slabs depending on the end products.
 FINISHING OPERATIONS
Hot extruded rounds are subjected to pulgering to produce fuel tubes. Slabs are rolled into sheets
and further cold rolled to get the final dimensions. These sheets are hot rolled into sheets and
further cold rolled to get the final dimensions. These sheets are used for making PHWR/BWR
fuel component or calandria tubes by steam making.
3. ABOUT ZIRCONIUM AND HAFNIUM
Zirconium occurs widely in the earth’s crust, but not in concentrated deposits. The mineral
zircon, ZrSiO4 (zirconium silicate) that is alluvial deposits in streambeds, ocean beaches, old
lakebeds, is the only commercial source of zirconium oxide. ZrSiO4 is the only important
zirconium mineral. These zirconium minerals generally have hafnium contents that vary from a
few tenths of 1 percent to several percent. For some purposes separation of these two elements is
not important. Zirconium containing about 1 percent of hafnium is accepted as pure zirconium.
In the case of largest single use of zirconium, however, namely, as a structural & cladding
material in atomic reactors, it is essentially free of hafnium, absorption cross section of neutrons
(0.18 barn). Hafnium on the other hand has an exceptionally high cross section (115barn) (1 barn
= 10-24 cm2), & accordingly even slight hafnium contaminants nullify the intrinsic advantage of
7
zirconium. Pure hafnium is in fact used in some atomic reactors as control element materials
because of high neutron-capture cross-section.
The atomic radii of zirconium & hafnium are 1.45 0A & 1.44 0A respectively. While the radii of
the ions are Zr4+ ---0.74 0A & Hf4+ ---0.74 0A. The virtual identity of atomic & ionic sizes,
resulting from the lanthanide contraction, has the effect of making the chemical behaviour of
these two elements more similar than for any other pair of elements known. Although the
chemistry of hafnium has been studied less than that of zirconium, the two are similar that only
very small quantity differences for e.g. in solubility’s & volatilities of compounds would be
expected in cases that have not been actually investigated. The most important aspect in which
these two elements differ from titanium is that lower oxidation states are of minor importance,
they are relatively few compounds of hafnium or zirconium in other than their tetravalent states
compounds.
ZIRCONIUM
Zirconium, a chemical element, metal of group IV B of the periodic table, is used as structural
material for nuclear reactors.
Properties-
Zirconium and hafnium are chemical elements of the IV B group of the periodic table. Zirconium
was discovered in 1789 by German chemist Martin Heinrich Klaproth, and the metal was
isolated (1824) in impure form by the Swedish chemist Johns Jacob Berzeius. The impure metal,
even when 99% pure is brittle. The white, soft malleable, and ductile metal of high purity was
first produced in quantity (1925) by the Dutch chemists Anton E. Van Arkel and J.H. Boer by the
thermal decomposition of zirconium tetrachloride, ZrCl4. It has several valuable chemical and
physical properties. It has small thermal neutron capture cross section and remarkable
anticorrosion and mechanical properties, and is therefore widely used in atomic and chemical
engineering and metallurgy. In the early 1940’s William Justin Kroll, of Luxemburg developed
his cheaper process of making metal based on the reduction of zirconium tetrachloride, ZrCl4, by
magnesium. It is relatively abundant in the earth’s crust and is characteristically observed in ‘S’
type stars. Zirconium is commercially obtained principally from the minerals, zircon and
baddelyite.
Occurrence
The most important use of zirconium is in nuclear reactors for cladding fuel rods, for alloying
with uranium and for reactor core structures because of its unique properties. Zirconium has
strength at elevated temperatures, resists corrosion from the rapidly circulating coolants, does not
form highly radioactive isotopes and withstands mechanical damage from neutron bombardment.
Zirconium absorbs oxygen, nitrogen and hydrogen in astonishing amounts at about 8000C. It
combines chemically with oxygen to yield the oxide (ZrO2); zirconium reduces such refractory
crucible materials as the oxides of magnesium, beryllium and thorium. This strong affinity for
oxygen and other gases accounts for its use as a getter for removing residual gases in electron
tubes. At normal temperature in air, zirconium is passive because of the formation of protective
film of oxide or nitrate. Even without this film, the metal is resistant to the action of weak acids,
acidic salts.
8
Because of its high corrosion resistance, zirconium has found wide spread used in the fabrication
of pumps, tubes, valves and heat exchangers. Zirconium is also used as an alloying agent in the
production of magnesium alloys and as an additive in the manufacture of certain steels.
Applications:
The properties of zirconium are such as to indicate that it may find several uses in modern
industry. It possesses a combination of physical, chemical and nuclear properties, which are
unique.
The zirconium chemicals have a wide range of applications, including automotive catalysts,
electro-ceramics, structural ceramics, thermal barrier coatings, optical glass fibre/fibre optics,
paints/pigments and solid oxide fuel cells.
HAFNIUM
Until 1922, it was not known that zirconium and its compounds always contain small amounts of
chemical elements of atomic number 72. In 1922, Hevesy and Coster, while carrying out X-ray
spectroscopic investigation of zirconium, discovered new X-ray lines, which coincided with the
characteristic lines that had been calculated for the element of atomic number 72. It was named
hafnium. The simultaneous occurrence of zirconium and hafnium is because of the effect
“Lanthanide contraction” in hafnium.
Hafnium is a ductile metal with brilliant silvery lustre. Hafnium is dispersed in the earth’s crust
to 3ppm and is invariably found in zirconium minerals up to a few % compared with Zirconium,
altered Zircons, and some other zircon compounds.
Zirconium and hafnium are extremely similar in physiochemical properties. Hafnium’s large
thermal neutron capture cross section, high resistance to corrosion in hot water and good
chemical properties make hafnium an excellent material for the manufacture of control rods for
thermal nuclear reactors. Hafnium can also be alloyed or composite with other materials, which
can be used in the outlet nozzle of a rocket.
Hafnium is used for fabricating nuclear control rods because it easily absorbs thermal neutrons
and has excellent mechanical properties. Hafnium produces a protective film of oxides or nitride
upon contact with air and thus has high corrosion resistance. It forms alloys with Iron, Tantalum
and other transition metals. The alloy Tantalum Hafnium Carbide (Ta4 HfC5), with a melting
point of 41250C (76190F) is one of the most refractory substances known.
SEPARATION OF ZIRCONIUM AND HAFNIUM:
Separation of Hafnium & Zirconium is generally accomplished by liquid-liquid counter current
extraction process. In this procedure, crude Zirconium oxide is dissolved in a nitric acid solution
& tri butyl phosphate is passed counter current to the aqueous mixture, with the result that the
Zirconium nitrate is perfectly extracted.
For reactor grade zirconium (<50 ppm) the solvent extraction method using tri butyl phosphate is
appropriate with high purity hafnium (0.1 % Zr) can be obtained efficiently (42% recovery) by
ion exchange using Dowex-50 cation exchanger. A pure grade of Hf (0.02 % Zr) may be
obtained by less efficient process (20-30 % yield) using solvent extraction with
trifluroacetylacetone.
9
PHYSICAL CONSTANTSFOR ZIRCONIUM AND HAFNIUM
Properties Zr Hf
Atomic number 40 72
Atomic weight 91.22 178.49
Melting point, 0C 1830 2222
Density, g/cc 6.49 13.01-13.09
Boiling point, 0C 2900 3100
Transition temperature,0C 862 1670
CHEMICAL PROPERTIES:
Natural Zr is a mixture of five stable isotopes and natural Hf is a mixture of six isotopes. The
thermal neutron capture cross section of zirconium metal (0.18 barn) is very small when
compared with that of other metals, iron (2.53 barn), nickel (4.60 barn) or copper (3.69 barn). In
contrast to Zr, Hf has a large thermal neutron capture cross section of 115 barns.
Hf in Zr plays a decisive part, which is about 1-2% in impure Zr. The presence of this amount of
Hf in Zr causes a considerable rise in the value of thermal neutron capture cross section from
0.18 barn to 1 barn.
The valency of Zr&Hf may be 2, 3 or 4. The stability of their compounds increases at high
valencies. Compounds of bi- and trivalent Zr&Hf are known, but they are unstable & have strong
reducing properties. The characteristic oxidation state of the two elements is +4.
Zr&Hf are highly resistant to corrosion. Zr is practically unaffected by water, HCl, HNO3 or dil.
H2SO4 and alkali solutions even on heating. However both metals are readily dissolved by H2F2
Property Zr Hf
Atomic radius,0A 1.452 1.442
Ionic radius, 0A 0.74 0.75
10
and by a mixture of HCl& HNO3, and at high temperature vigorously combine with O2, N2, H2,
halogens S, C, Si, and B; with the last mentioned compounds, Zr&Hf form refractor compounds.
The basic properties increase in the sequence Ti<Zr<Hf<Th, Hf being slightly more basic than
Zr.
FEATURES OF IMPORTANCE IN NUCLEAR INDUSTRY:
 Ready availability
 Low cross-sectional absorption of thermal neutron
 Resistance to radiation damage
 Excellent corrosion resistance in pressurizes hot water up to 3500C
OTHER SALIENT FEATURES:
 Good guttering
 Highly pyrophoric
 Super conductive at low temperature with niobium
 High refractive index in oxide form
 Good refractive properties in oxide form
ZIRCALLOY USED IN INDIAN NUCLEAR REACTORS:
ZIRCALLOY -2(FUEL TUBES BWR’S)
Zircalloy -4(fuel tubes and calandria tubes of PHWR’s, coolant channels of BWR’s)
Zr- Nb (pressure tubes of PHWR’s)
Zr-Nb-Cu (garter springs PHWR’s)
Uses:
a) Fuel clad and structural material in alloy form for core components of Detonators and
Pyrotechnics.
b) Corrosion resistance applications as components in chemical industry.
c) Getter in vacuum tubes.
d) Refractory material in the form of oxide in lass and ceramic industries.
e) Lining of metallurgical furnaces in the form of oxide.
f) Artificial gems.
Deposits of zircon are high along the coastline of Needakara and Kayamkulum in Kerala.
Chavara mineral division near Kollam in Kerala, Manavalakurichi mineral division near
11
Kanyakumari in Tamil Nadu and OSCOM at Chatrapur in Orissa are the Indian Rate Earth
Division (IREL) units exploiting the huge zircon deposits in India.
4. FLOW SHEET OF ZIRCONIUM OXIDE
PRODUCTION
12
5. PROCESS OF PRODUCTION
LIST OF UNIT OPERATIONS AND UNIT PROCESSES CARRIED OUT IN ZOP:
5.1 DISSOLUTION OF DRYPOWDER
5.2 SOLVENT EXTRACTION
I. SLURRY EXTRACTION
II. SCRUBBING
III. STRIPPING
IV. SODA SOLUTION TREATMENT
5.3 PRECIPITATION
5.4 REPULPING
5.5 VACUUM FILTRATION
5.6 DRYING
5.7 CALCINATION
5.8 GRINDING
5. 9 BLENDING
13
5.1 DISSOLUTION
Raw materials:
 Dry powder
 NitricAcid(60% concentrated)
Storage ofnitric acid:
Nitric acid is received in a horizontal SS tank. The receiving tank is placed below the ground level, so as
to receive the nitric acid from the tankers by the force of gravity. There are two vertical storage tanks each
of 150KL capacity. The vertical tanks are filled from the horizontal tank by the use of vertical pumps. The
specialty of the vertical pumps is that they are inside the horizontal tank, so the chance of nitric acid to
leak or spill is eliminated. To measure the level of nitric acid in the vertical tank, the float and weight
method is used. The tanks are made of stainless steel. The nitric acid from storage tanks is pumped to the
dozing tanks from where the required amount of nitric acid is fed into the reactor.
Storage ofdry powder:
The dry powder is procured in 50 kg bags. The dry powder is mainly tested for the above required
compositions of the compound mainly zirconium before being charged into the reactor. It is tested in the
control lab, which plays a pivotal role in each and every part of production of zirconium. The dry powder
is taken to level above that of the height of the reactor and is charged into the reactor from conical
opening, because of which the chances of the powder being wasted is reduced and the handlings becomes
easier. The dry powder is taken to the required height by using a 2-ton hoist.
Materialof construction:
Dissolution is done in SS tanks. It consists of an agitator and the feed is heated by steam.
Chemicalreaction:
ZrO2 + 4HNO3  Zr (NO3)4 + 2H2O
14
PROCESSDESCRIPTION
The requisite amount of nitric acid (12N) is charged into a reactor made of stainless steel. It is agitated
using an impeller and moderately heated using direct contact steam at a pressure of 3 kg/cm2
. Then the
calculated amount of dry powder is added to the reactor and it is agitated for 2 hrs. This DP is dissolved in
12N (60%) Nitric acid, which is already present in the dissolution tank to produce Zirconium Nitrate
solution, which is the feed material for purification by solvent extraction. It is an exothermic reaction so
the temperature rises .The solution is diluted with scrub raffinate and allowed to settle for 2 hrs. After 2
hrs. The insoluble solids settle down and a clear layer of zirconium nitrate is formed above the solids. The
solids are drained off once a week in order to prevent choking of lines. The nitrate solution is checked for
the required qualities such as free acidity, total acidity and the composition of zirconium and hafnium
values. The nitrate solution is then sent to feed tanks, which is made of SS by means of centrifugal pump
whose impeller is also made of stainless steel. The feed tanks have a conical bottom to ensure free
draining of the silt that settles in due course time. The silt is cleaned once in 20 days. Large care is taken
while handling nitric acid since it corrodes materials like Mild Steel, so, only Stainless Steel components
are used while handling nitric acid. Here the material of construction of the reactor is SS-304L.
Some safety precautions that must be taken while dissolution, is that the temperature must not rise
abruptly to high value. If the temperature rises above this range then nitrate Fumes are released and the
batch gets wasted. Usually sodium carbonate is sprinkled on the floor to neutralize the nitric acid that
HN03
STEAM
m
DRY POWDER
Baffles
Acidic slit
Feed
slurry
SCRUB
RAFFINATE
15
leaks from pipelines. The other main factor is the concentration of nitric acid: if a higher concentration is
used then the required acidity cannot be maintained. If the free acidity of the nitrate solution is above the
required value then in slurry extraction even hafnium is extracted and if free acidity is less than the
required value then some amount of zirconium is lost, so it is very necessary to maintain the free acid. If
free acidity is less than the required value acid is added to increase the free acidity and if the free acidity
exceeds the required value then acid addition is stopped.
The foremost and the important chemical unit operation of zirconium oxide is “solvent
extraction”. This process takes place as slurry extraction, scrubbing and stripping.
5.2 SOLVENT EXTRACTION
The process of separation of the components of a solution depends upon the unequal distribution of the
components between two immiscible liquids is known as “LIQUID – LIQUID EXTRACTION” or more
simply “Liquid Extraction”. Liquid extraction is sometimes called as “SOLVENT EXTRACTION”.
Solvent extraction is a chemical engineering separation that has many variations and many applications in
that process industries and uses many types of equipment.
Solvent extraction is based on the principle that a solute can distribute itself in a ratio between two
immiscible solvents, one of which is usually water and the other an organic solvent such as benzene,
carbon tetrachloride, etc. in certain cases the solute can be more or less completely transferred into the
organic phase.
For a given metal, present in various species M1, M2, and so on up to Mi and distributed between an
organic and aqueous phase, the extraction can be defined in the following terms.
Distribution ratio or extraction coefficient, E
E = Morg/Maq
Where Morg = M1org + M2org + …….
Maq = M1aq + M2aq + ………
The above expression is valid for a simple system in which only one species is distributed and exists in
the same form in both phases. Under ideal conditions, where the solute exists in the same form in both
phases, interactions between solute and solvent are absent and association and dissociation reactions do
not occur.
When separation by distillation is ineffective or very difficult, liquid extraction is one of the main
alternatives to consider. Close boiling mixtures or substances that cannot withstand the temperature of
distillation, even under a vacuum, may often be separated from impurities by extraction, which utilizes
chemical potential difference instead of vapour pressure difference. Separations done by solvent
extractions are essentially physical in character and the various components are unchanged chemically.
Nevertheless, the chemical nature of the liquids influences the extent of solutions involved. The minimum
requirement for liquid extraction is the intimate contact of the two immiscible liquids for the purpose of
mass transfer of the constituents from one liquid to the other, followed by physical separation of the two
immiscible liquids.
16
The solvent extraction contains three units i.e., Extraction, scrubbing, stripping to produce the pure
solution. During the extraction process, the organic solvent (TBP+Kerosene) is contained with the
inorganic zirconium nitrate solution counter currently. Calculated amount of nitric acid is also added to
maintain free acidity. The ZrO2 is then loaded into the organic solvent by contact, which is again loaded
back into the pure solution (inorganic) as pre extract in the scrubbing unit.
The function of a stage is to contact the liquids, allow equilibrium to be approached and to make a
mechanical separation of the liquids. The contacting and separating correspond to mixing the liquids and
settling the resultant dispersion, so these devices are usually called “MIXER SETTLERS”.
Over the past many years, various designs of mixers settlers have been with general aim to decrease the
required while maintaining high throughput and efficiency. Mixers are relatively easy to operate, reliable,
flexible and fairly simple to design, are free of back mixing and the stage efficiencies are usually greater
than 90%. With sufficient residence time and power in the mixer, and sufficient residence time in the
settler, practically 100% stage efficiencies can be reached. Uncertainties in operation are considerably
decreased by high stage efficiencies.
A mixer settler transfers a solute from one liquid phase into another immiscible, or only partially miscible
liquid phase. It consists essentially of a chamber where two liquids are mixed by stirring or some other
means of agitation and a settler where two liquids are separated by gravity. Each stage consists of mixing
and settling chambers, which alternate along the box so that mixers and settlers of adjacent stages are in
juxtaposition. The liquids are brought into intimate contact in a mixing chamber and pass together, in the
form of an unstable emulsion, to the settler through a port or slot placed about midway up the dividing
wall. In the settler the phases disengage, the heavy phase on to the mixer of the next stage through a port
plated low in the wall, while the lighter passes over a weir to the next adjacent mixer in the opposite
direction. It will be seen that this flow pattern represents co current flow in each stage and counter current
flow overall. These mixer settlers thus show little change in performance with moderate variations in
through put and phase ratio, resulting in flexibility and ease of design.
The settler size is a critical factor in mixer settler designs. The size is governed by the throughput
limitations imposed by the rate of coalescence of the dispersed phase. The power input to the mixer has
apparently little effect on the specific settling rate, but the rate was found to vary in a
TBP/HNO3/Kerosene system with chemical composition, phase ratio and temperature.
Advantages of mixer settlers:
 Good contacting of phases
 Handles wide range of flow ratio (with recycle)
 Low head room
 High efficiency
 Many stages can be accommodated
 Reliable scale up
 Low cost and maintenance
Disadvantagesofmixer settlers:
 Large holdup
 High power costs
 High solvent inventory
 Large floor space
17
 Inter stage pumping may be necessary
I. SLURRY EXTRACTION
Raw materials:
 Zirconium nitrate solution from the feed tanks
 Lean solvent (TBP + Kerosene)
 Nitric acid (to maintain free acidity)
Extraction:
In extraction, a solvent that preferentially dissolves one or more components in the
mixture treats a mixture of two or more components. Mixer-settler is the most common type of
extractor.
Objective:
For continuous operation a battery of mixer-settlers is used. Slurry extractor is multistage
equipment. Except the last stage, all the other stages contain small settling tanks where no interphase is
maintained between organic and aqueous. The last stage consists bigger settler tank (raffinate tank) where
well defined inter-phase is maintained between organic and aqueous. Each stage is provided with an airlift
for effective zirconium extraction and inter-stage pumping. Compressed air is used for operating airlift
pumps. A long vertical disengagement section is followed by an airlift for separating compressed air from
the mixed phases. A tangential entry is given from air disengagement section to settling tank for a better
phase separation in settling tank. Each disengagement section is provided with a mist-eliminator where
left out solvent in air is entrained and remaining air is vented out to a duct.
Materialof construction:
A typical slurry extraction unit consists of mixers and settlers that are made up of SS-304. In this unit a
mixer and a settler comprises a stage.
Processdescription:
The nitrate solution (feed) is pumped through a digital rota meter (which is used for slurries) into the first
stage and the lean solvent (TBP+ Kerosene) is passed in a counter current fashion into the last stage. A
float rota meter cannot be used for slurries because the solids present in the slurry accumulate on the
surface of the float and tend to increase the weight of the float thereby faltering the flow rate reading of
the feed solution, so a digital rota meter is used.
Initially all the stages are filed up with the lean solvent before starting the extraction. The solvent TBP is
selected because of its tendency to extract only zirconium at a given acidity in the nitrate medium. The
principle behind this type of extraction is that the zirconium in the aqueous phase is extracted in the
organic phase. Nitric acid is added accordingly to maintain the free acidity. The extraction equipment
used by ZOP is the new mixer-settler (made of SS316/304L) that has been indigenously developed by
NFC. It mainly consists of a mixing section and a disengaging section. The main merit of this equipment
is that the mixing and propagation is done by means of compressed air. The airlift mechanism follows the
principle that when air mixes with the solution the density of the solution decreases and thereby it causes
18
the solution to rise and also it enhances the mixing operation. The disengaging section’s primary use is to
disengage the air from the solution after it has been propagated. The primary advantage of using such
airlift mechanism is that unlike the conventional mixer-settler it does not use any mechanical parts, which
can develop various types of mechanical problems, which is absent in airlift since there is no use of
mechanical components.
The problems relating to the slurry extraction are:
1) The build-up of aqueous and organic phases.
2) This build up is mainly caused due to presence of excessive amount of either feed or organic in
one stage.
3) This excessive amount of either feed or organic is mainly due to the presence of some amount of
unreacted silica in the feed.
4) This unreacted silica forms a coating inside the pipeline and tends decrease the diameter of flow.
5) The reduced diameter of flow reduces the flow rate and thereby creates a build-up.
6) Thus this coating is root cause for the above said problems, so it has to be cleared. It is cleared by
purging the equipment with steam, which melts the silica coating and thereby clears all the above
said problems.
II. SCRUBBING
Raw materials:
 Organic(extract) fromthe slurryextraction
 Pure solutionfromstripping
 Nitricacid
Material of construction:
The material of construction is SS316.
Processdescription:
The extract from slurry extraction that contains minimum amount of hafnium compounds is sent for
scrubbing into the conventional mixer-settler where it is scrubbed with pure solution, which is the
aqueous solution of pure zirconium nitrate obtained from the stripping process. The scrubbing operation
is a counter current operation. Both the phases are mixed in a mixer, which essentially consists of an
agitator, side baffles and two inlets for organic and aqueous phases.
The side baffles are provided in order to provide turbulence, which in turn provides good mass-transfer. If
there is no side baffle then the liquid moves in a circular motion without mixing with the bulk of the
solution. After the solution is mixed it is allowed to settle through an opening in the side. The settling
compartment is comparatively longer than that of the mixing chamber. The settled solution is again
transferred to the next stages by means of the density differences and again mixed and settled. This is
carried out repeatedly and finally we obtain the scrub raffinate and the extract pure (which is the feed for
stripping).
The salient problems encountered here are those of the mechanical parts or the moving parts, so regular
maintenance has to be made in order to keep the unit efficiently working.
19
The main importance of this unit is that the hafnium composition is totally eliminated (<50 ppm). The
other point to be noted is that the some amount of zirconium is associated in the scrub raffinate, which is
used for dilution in the reactor, and some part is again sent into another extraction chamber to get back the
zirconium.
Other than Lean solvent (TBP+Kerosene),the use of methyl isobutyl ketone (MIBP) in a cyanide medium
can be used as solvent for extraction. The main drawbacks of using MIBK are that it has a low flash point,
it is toxic and corrosive.
EXTRACTION:
The scrub raffinate is the feed and it counter currently extracted with lean solvent (TBP+ Kerosene). The
zirconium left out in the scrub raffinate is extracted in the acidic medium (nitric acid), which is again sent
to the scrubbingunit. The product obtained here is “Extract”.
20
III. STRIPPING
Raw materials:
 Extract pure from the scrubbingsection
 De Mineralizedwater
Processdescription:
The stripping unit is the same as the scrubbing and the extraction units, the only difference lies in that of
the minerals used. Here the extract pure from the scrubbing unit is counter currently mixed with
demineralized water. Here the zirconium in the organic phase is transferred to the aqueous phase. The
stripped organic solvent is sent for treatment with soda solution. The zirconium that is in the aqueous
phase is known as pure solution. Some part of the pure solution is transferred to the storage tanks and the
other part is recycled to the scrubbing section.
21
TREATMENT WITH SODA SOLUTION:
Raw materials:
 Lean solventfromthe strippingunit
 Soda solution
 DM water
ProcessDescription:
The Lean solvent from the stripping section is sent to mixer-settler unit in which soda solution is passed
in a counter current flow. The lean solution i.e., tri butyl phosphate degrades into mono butyl phosphate
and di butyl phosphate. The main use of this treatment is to remove the mono butyl phosphate and di
butyl phosphate, which dissolve in soda solution thereby producing free tri butyl phosphate. MBP and
DBP have higher solubility in aqueous medium than that of TBP. So, it always betters to treat the
degraded TBP before sending it for extraction.
The most important point to be noted here is that the plant does not consume excess TBP as it can be
treated and recycled back to the extraction process. There is certainly some wastage but it is minor.
TBP has 0.39g/l solubility in water
DBP has 0.64g/l solubility in water
MBP has complete solubility in water
Safetyprecautions:
o Use personal protection accessories like gloves, masks etc.
o Avoid chemical spillage.
o TBP and kerosene are flammable. Hence all fire prevention measures must be taken.
o Wall and local exhaust must be on.
o Emulsion formation should be avoided.
o Ensure clear phase separation such that entrainment is avoided in organic aqueous streams.
o Maintain correct inter phase levels.
o Check airlift pump also for sufficient pressure.
o In this we should check the pulleys, belts and agitators before starting the operation.
o The silica coming from the slurry extraction may cause problems. So we have to check for
scaling.
5.3 PRECIPITATION
Raw materials:
 Pure solutionfromthe strippingunit
 Ammoniumhydroxide
 Sulphuricacid
22
Materialof construction:
Precipitation tank is made up of SS-304. An agitator is provided for mixing.
Chemicalreaction:
The required amount of pure solution, ammonium hydroxide and sulphuric acid are taken into the
precipitation tank and are agitated. The temperature is maintained around 600
C. The following reaction
takes place: -
Zr (NO3)4 + 6NH4OH + H2SO4Zr (OH)4 + 4NH4NO3 + (NH4)2SO4
Sulphuric acid is added to the solution in order to make the cake fluffier and to reduce the
density of the zirconium oxide. Ammonium hydroxide is added to precipitate zirconium
hydroxide from zirconium nitrate.
23
Processdescription:
The solution coming from the precipitation tank is sent to a vacuum rotary drum filter. We have to
maintain vacuum of around 450 mm Hg. The filter cloth we are using here is polypropylene. The drum
rotates with a speed of 1.33 revolutions per minute. The cake coming out contains 80-85% moisture
which consists of water,ammonium nitrate and ammonium sulphate.
This wet cake is sent for repulping. In repulping the wet cake is mixed with water where ammonium
nitrate will dissolve in water and again sent it for filtration. The slurry free of solids transferred to
scrubbing unit where alkalinity changes to neutralization.
We have to agitate the slurry during the filtration to avoid settling of any solids in the equipment and also
we should maintain 600
C with manual controlled steam valve.
Safetyprecautions:
1. Use personal protective appliances.
2. Check for any damage to the polypropylene cloth.
3. Avoid spillage of slurry by overflow.
Note:pH of the slurry is maintained at 7 before filtration.
5.4 REPULPING
Raw materials:
 Filteredcake
 Demineralizedwater
ProcessDescription:
The slurry from the precipitation tank is passed through a rotary vacuum drum filter. The cake thus
obtained is mixed with demineralized water in a tank. This process is called repulping. The importance of
repulping is that is ammonium compounds dissolve in demineralized water thereby reducing the
possibility of explosion in the drying chamber.
5.5 VACUUM FILTRATION
Raw materials:
Filtered cake from repulping
24
Filtration:
Filtration is the removal of solid particles from a fluid passing the fluid through a filtering medium, or
septum, on which solids are deposited.
Objective:
It consists of a cylindrical drum mounted horizontally. Their outer surface of the drum is formed of
perforated plate. A filter medium such as polypropylene cloth covers the outer surface of the drum, which
turns at 0.1-2 rpm in an agitated slurry trough. The annular surface between the two drums is dividing into
number of compartments/sectors (12) by radial partition through a rotary valve (12 holes).
Here in ZOP a continuous vacuum drum filter is used, in which filtration & discharge of cake takes place
continuously.
Materialof construction:
Apart from cast iron, other materials of construction include stainless steel, titanium and plastics such as
poly vinyl chloride etc. These materials give much improved corrosion resistance for many types of
slurry.
ProcessDescription:
The slurry from the repulping is sent for vacuum filter. As the drum rotates, vacuum is applied to all
compartments except the one at which the cake has to be released,air is applied.
The solution coming from the precipitation tank is sent to a vacuum rotary drum filter we have to
maintain the vacuum of around 450mmHg. The filter cloth here we are using is polypropylene. The drum
rotates with a speed of 1.33 revolutions per minute. The cake coming out contains 80-85% moisture
which consists of water,ammonium nitrate and ammonium sulphate.
We have to agitate the slurry during the filtration to avoid settling of any solids in the equipment and also
we should maintain 60c with manual controlled steam valve.
When the drum dips into the slurry vacuum is applied because of which the slurry is sucked into the
drum. The vacuum drum filter essentially consists of a boot in which the slurry is allowed. The drum is
placed inside the boot. There is a factor known as submergence, which affects the rate of formation of
cake. The submergence is about 30% in this case. When the drum comes out of the boot then air is
applied to blow out the filter cloth thereby helping the easy scraping of the cake. The cake is scraped
using a doctor blade. The drum has a filter cloth, which is used to retain the solid, and the liquid passes
through the cloth and it goes into a receiver. The liquid in the receiver is then drained into a waste storage
tank, from where it is taken away by other companies for the production of ammonium nitrate.
25
ADVANTAGES
 The filter is continuous in operation, as the rotary drum is rotated by electric motor. So the
manpower requirement is very low.
 With cake consisting of coarse solids, it is possible to remove most of the liquids from the cake
before discharging.
DISADVANTAGES
 The maximum available pressure difference is limited as it being a vacuum filter.
5.6 DRYING
To bring the moisture content of wet cake from 85% to 30%, to make the material free flowing and to
remove ammonium nitrate from the cake,high temperature drying is done.
26
Materialof construction:
Processdescription:
The cake obtained from the filtration section is collected in bunkers and is collected in bunkers
and is charged in the static bed dryers. The bunkers are lifted by means of a hoist. The material is
dried for about 12-16 hours at high temperature with intermittent baking of the material. Raking
is done to distribute the heat uniformly in the material. Later the oven is checked for every 4
hours to level the surface for faster drying.
The dryer has shutters through which the material is charged. After completion of drying, the
shutters are opened by means of rotating wheels provided. The dried product is collected in
containers and is taken to the charging section and transported into calcinations hopper. Then the
oven is available for next cycle.
5.7 CALCINATION
It is the process of removing volatile impurities to specified limits, present in the substance. This
type of furnace that is indirect heated and is adopted for drying of free granular material on a
large scale.
Exhaust
Discharge
BLOWER
Heating
elements
FEED POINT
HOT TEMPERATURE OVEN
27
Objective:
It consists of hollow cylindrical shell of diameter 350mm-500mm and a length of 5m-8m with it
axis at a slight angle of horizontal. So that the material is consequently advances through the
dryer from one end to another end.
It is supported on rollers so that it can be rotated. To avoid slipping over rollers, it is fitted with
thrust wheels. It is fitted inside with flights, which lefts the material upwards and showered if
down from the top. Few spiral flights are fitted near the feed end, which helps initial forward
motion of the material before the principal flights are reached. The material, which is to be dried,
is fed at higher end of the drier a by the hopper the product is to be taken from the lower end.
Materials move through dryer by virtue of its motion, heat effects and inclination of the
cylindrical shell.
The cylindrical shell is rotated by a gear mechanism at a speed of 2-2.5rpm. This is fixed in a
furnace refractory lined of sellamanite bricks. The heating coils are arranged in the refractory
bricks. The heating coils are made up of Nichrome.
PPrroocceessss ddeessccrriippttiioonn::
The dried material is charged through an opening at the top and is fed into the rotary furnace.
The chamber has a cylindrical tube rotating inside a rectangular box. The calciner is a 150 KW
capacity heater. The cylindrical tube is made up of SS310 and the heating elements are made of
nichrome. The temperature reached in a calcinations chamber is about 800OC. the main use of
this furnace is to drive away the moisture and the other volatile impurities to the specified limits.
The calcined material is Zirconium oxide, which is collected in drums at the other end of the
furnace. The collected oxide is sent for grinding.
CChheemmiiccaall RReeaaccttiioonn::
ZZrr ((OOHH))44 -------------------------------------------------- ZZrrOO22 ++ 22HH22OO
28
AAddvvaannttaaggeess::
 Moderate drying time.
 Low capital cost
 High thermal efficiency
 Continuous operation
DDiissaaddvvaannttaaggeess
 Difficulty of sealing
 High structural load
Safetyprecautions:
1. Clean exhaust duct for every 8 hours
2. Avoid high feed rate
3. Ensure emergency power supply
4. Collect the exhaust duct material
5.8 GRINDING
PPrriinncciippllee::
Size reduction is achieved by impact and attrition.
CCoonnssttrruuccttiioonn::
The hammer mill consists of essentially of high-speed rotor turning inside a cylindrical casing.
The rotor is mounted on a shaft, which is usually horizontal. In this mill, the particles are broken
by sets of swing hammers. They may be straight bars of metal with plane or enlarged ends. The
products fall through a gate or screen, which forms the lower portion of the casing. Several rotors
discs each carrying 4 to 8 swing hammers is often mounted on a single shaft. The rotor disc
diameter ranges from 150mm to 250mm as the hammers hinged. The hammers are readily
replaced when they are worn out.
PPrroocceessss DDeessccrriippttiioonn::
The calcined material is then sent to the grinding section. The grinding section essentially
consists of a feed charger, a feed rate adjusted hammer mill, a blower and a big filter. The feed
rate is adjusted using a mechanical device. If the machine reaches the overloading limit then
using the feed rate adjuster the overloading can be stopped. If the machine gets overloaded then
it comes halt thereby disrupting further production.
29
The material is ground in the hammer mill. The grinding action is because of both impact and
attrition. The ground power is pneumatically carried using a centrifugal blower. It is collected in
a drum and very fine particles are collected in the bag filter. Coarser particles are sent back to the
hammer mill and are ground to the required size. The product is of 325 mesh.
Another important aspect to be considered in grinding is that of the amount of sulphuric acid is
added. If less amount of sulphuric acid is added then the obtained material is hard and the
grinding load on the machine increased thereby increasing the grinding time which in turn
increases the current consumption.
SSaaffeettyy PPrreeccaauuttiioonn::
1. Check for foreign items like nuts, bolts, etc.
2. Clean the dust collecting system.
3. Do not keep a high feed rate.
4. Keep belt guard in position.
5.9BLENDING
Blending is a process of mixing the ground solids in required proportion to get the required
percentage purity of zirconium oxide. The zirconium oxide thus obtained is then sent to
30
Zirconium Sponge Plant (ZSP) for production of zirconium metal and then sent to Zirconium
Fabrication Plant (ZFP) for the production of Zircaloy, which is used as cladding material in
nuclear reactors.
6. PROPERTIES AND USES OF ZIRCONIUM OXIDE
PPrrooppeerrttiieess ooff zziirrccoonniiuumm ooxxiiddee::
 Highdensity
 Thermal conductivity(20%thatof alumina)
 Chemical inertness
 Ionicelectrical conduction
 Resistance tomoltenmass
 Highfracture toughness
 HighhardnessZirconiumoxide (zircon) alsohasahighindex of refraction
TTyyppiiccaall uusseess ooff zziirrccoonniiuumm ooxxiiddee::
 Precisionball valve ballsandseats
 Highdensityball andpebble millgrindingmedia
 Rollersandguidesformetal tube forming
 Threadand wire guides
 Hot metal extrusion
 Deepwell down-hole valvesandseatsdies
 Powercompactingdies
 Marine pump sealsandshaftguides
 Oxygensensors
 Hightemperature inductionfurnace susceptors
 Fuel cell membranes
 Electricfurnace heatersover2000O
C in oxidizingatmospheres
7. HEAT EXCHANGER & IT’S CLASSIFICATION
Heat exchangers is a piece of equipment build for efficient heat transfer from one medium to
another. The media may be separated by solid wall to prevent the mixing or they may be in direct
contact. They are widely used in space heating, refrigeration, power plant, chemical plant
petrochemical plant, petroleum refinery etc.
31
It is still difficult to have an overview, and a classification needs to be made. It is possible to
classify heat exchangers in a number of ways.
32
8. TYPES OF HEAT EXCHANGERS
There are many types of heat exchangers used in industries. The heat exchangers that are
commonly used in industries are:
1. Double pipe heat exchanger: Double pipe heat exchangers are simplest heat
exchangers used in industries. On one hand, these heat exchangers are cheap for both design
and maintenance making them good choice for small scale industries. On other hand, their
low efficiency coupled with the high space occupied in large scale has led modern industries
to use more efficient heat exchangers like shell and tube or plate heat exchangers. However
double pipe heat exchangers are used to teach heat exchanger design basics to students as the
fundamental rule for all the heat exchangers are same. It is used where flow rate of fluid and
heat duty is small. It is suitable for high pressure service. It is used when heat transfer area
requirement is small.
Advantages
• Inexpensive
• True countercurrentorco-currentflow
• Easilydesignedforhighpressureservice
Disadvantages
• Difficulttocleanonshell side.
• Onlysuitable forsmall sizes.Theyare generallynoteconomical if UA > 50,000 Btu/hr-o
F.
• Thermal expansioncanbe anissue.
Typical Applications
1. Single phase heatingandcoolingwhenthe requiredheattransferareaissmall.
2. Can be usedfor heatingusingcondensingsteamif fabricatedwithelbowstoallow expansion
U-type or hairpin construction for a double pipe heat exchanger.
33
2. Shell and tube heat exchanger: It is usually a cylindrical casing through which
one of the fluid flows in one or Shell is commonly made of carbon steel. The minimum
thickness of shell made of carbon steel varies from 5mm to 11mm depending upon the
diameter. It may be cut to the required length from a standard pipe up to 60 cm diameter
or Fabricated by rolling a metal plate suitable dimension into a cylinder and welding
along the length. Tubes are providing the heat transfer surface. Variety of materials
including low carbon steel, stainless steel, copper, brass, aluminum, etc. are used as tube
material. Outside diameter of tubes vary from 6 mm to 40 mm. The tubes with outside
diameter 19 mm to 25 mm are very common. The tube lengths used are 0.5, 2.5, 3, 4, 5
and 6 m. It depends upon the material of construction and diameter. The tubes that are
placed in a tube bundle inside the shell are either rolled or welded to the tube sheet. Tube
side fluid first enters a channel through and then through the tubes in one or multi pass
fashion. The shortest center-to-center distance between the adjacent tubes is called the
tube pitch. Tubes are generally arranged in square or triangular pitch manner. The
shortest distance between the two tubes is called the clearance. The minimum pitch is
1.25 times the outside diameter of tube. Baffles are commonly employed within the shell
to increase the rate of heat transfer by increasing the turbulence of shell side fluid and
also provides supports for the tubes and act as dampers against vibration.
Fig.:Shell and tube heat exchanger.
34
Passes are generally used to obtain higher velocities and long paths for a fluid to travel without
increasing the length of the exchanger that leads to high heat transfer area. Single or two pass is
used in shell side. One, two, four, six up to twelve passes used in tube side. Passes in tube side
are formed by partitions placed in the shell cover and channel
3. Plate heat exchanger: It consists of a series of rectangular, parallel and corrugated
plates held firmly together between substantial head frames. The plates have corner ports
and are sealed and spaced by rubber gaskets around the ports and along the plate edges.
These plates serve as the HT surfaces and are of stainless steel. Corrugated plates provide
a high degree of turbulence even at low flow rates. Gap between plates is 1.3 to 1.5 mm.
It is provided with inlet and outlet nozzles for fluid at the ends. Hot fluid passes between
alternate pairs of plates, transferring heat to a cold fluid in the adjacent spaces. The plates
can be readily separated for cleaning and the HT area can be increased by simply adding
more plates. As it is very compact, requires very small floor space. High heat transfer
coefficient, easy to clean. Plate heat exchanger are competitive with Shell and tube heat
exchanger where the corrosive fluid is to be handled. Heat sensitive material, where the
temperature control is required, these units are used.
Fig.:Plateheat exchanger.
4. Waste heatrecoveryunit: A waste heat recovery unit (WHRU) is a heat exchanger
that recovers heat from a hot stream while transferring it to a working medium, typically
water or oil. The hot gas stream can be the exhaust gas from a gas turbine or a diesel
engine or waste gas from industry or refinery. Big system with high volume and
temperature and gas stream, typical in industries can be benefit from steam Rankine
Cycle in WHRU, but these cycle are too expensive for small system. The recovery of
heat from low temperature system requires different working fluids than steam. An
organic Rankine Cycle WHRU can be more efficient at low temperature range using
Refrigerant that boil at lower temperature than water. Typical organic refrigerant are
Ammonia Pentafluoropropane and Toluene. The refrigerant is boiled by the heat source
in the evaporator to produce super-heated vapor. This fluid is expanded in the turbine to
35
convert thermal energy to kinetic energy, that is converted in to electricity in the
electrical generator. This energy transfer process decrease the temperature of the
refrigerant that, condenses. The cycle is close and complete using a pump to send the
fluid back to the evaporator.
9. DESIGNING OF DOUBLE PIPE HEAT EXCHANGER
The double-pipe heat exchanger is one of the simplest types of heat exchangers. It is called a
double-pipe exchanger because one fluid flows inside a pipe and the other fluid flows between
that pipe and another pipe that surrounds the first. This is a concentric tube construction. Flow
in a double-pipe heat exchanger can be co-current or counter-current. There are two flow
configurations: co-current is when the flow of the two streams is in the same direction, counter
current is when the flow of the streams is in opposite directions. As conditions in the pipes
change: inlet temperatures, flow rates, fluid properties, fluid composition, etc., the amount of
heat transferred also changes. This transient behavior leads to change in process temperatures,
which will lead to a point where the temperature distribution becomes steady. When heat is
beginning to be transferred, this changes the temperature of the fluids. Until these temperatures
reach a steady state their behavior is dependent on time.
In this double-pipe heat exchanger a hot process fluid flowing through the inner pipe transfers its
heat to cooling water flowing in the outer pipe. The system is in steady state until conditions
change, such as flow rate or inlet temperature. These changes in conditions cause the
temperature distribution to change with time until a new steady state is reached. The new steady
state will be observed once the inlet and outlet temperatures for the process and coolant fluid
become stable. In reality, the temperatures will never be completely stable, but with large
enough changes in inlet temperatures or flow rates a relative steady state can be experimentally
observed. . The outer tube is called the annulus. In one of the pipes a warmer fluid flows and in
the other a colder one.
Co-currentFlow
To understandwhatfactorsinfluence the dimensionsof thisheatexchangerwhenacertainheatrate is
expectedsome simpleequationswill be examined.
CountercurrentFlow
36
First a simple heat balance:
q = m& h ⋅ch ⋅(ThI −ThII ) = m& c ⋅cc ⋅(TcII −TcI ) (1.1)
With:
qh = heat transferred from the hot to the cold fluid (kW)
m& h = mass flow of the hot fluid (kg/s )
ch = specific heat of the hot fluid (kJ/kg/°C)
ThI = hot fluid at position I (°C)
ThII = hot fluid at position II (°C)
The subscript c stands for cold.
But alsothe nextequationisvalid:
q =U ⋅ A⋅LMTD (1.2)
With:
q = the heat transferred between the hot and the cold fluid (kW)
U = the overall heat transfer coefficient (kW/m2/°C)
A = the heat transferring surface (m2)
LMTD = the log mean temperature difference
LMTD for counter flow the following can be written down:
LMTD =
( 𝑇1−𝑡2)−(𝑇2−𝑡1)
𝑙𝑛
(𝑇1−𝑡2)
(𝑇2−𝑡1)
(1.3)
Where:
T1= Hot fluid inlet temperature.
T2= Hot fluid outlet temperature.
t1 = Cold fluid inlet temperature.
t2= Cold fluid outlet temperature.
37
Another big factor in heat exchanger design is of course costs. The three main relevant factors
that have the greatest effect on size and therefore on costs are:
- Pressure drops
- Log Mean Temperature Difference
- Fouling factors
They will be discussed one by one.
Pressure drops – If unrealistically low allowable pressure drops are imposed, the designer is
forced to use lower fluid velocities to maintain the pressure drops limitations. Lower velocities
can result in a large heat exchanger. Higher pressure drops result in a smaller heat exchanger, but
a pumping device is needed to maintain this high pressure drop. This pumping device needs
energy and so operating costs must be calculated in the overall cost for the heat exchanger. Only
by considering the relationship between operating costs and investments can the economical
pressure drop be determined.
Log MeanTemperature Difference – The size, or surface, of a heat exchanger is inversely
proportional to the overall heat-transfer coefficient and the corrected LMTD. When looking at a
shell-and-tube heat exchanger a so-called ‘corrected LMTD’ must be used instead of the LMTD
presented earlier when the double-pipe heat exchanger was discussed.Assuming that reasonable
temperatures have been specified, a designer should try to maximize the product of the heat-
transfer rate and the LMTD.
Fouling factors – According to Garrett-Price (1985) “fouling is generally defined as the forming
of deposits on heat transfer surfaces, which interferes with heat transfer and/or fluid flow”. In
other words, by using a heat exchanger small layers of insulating material will be formed on the
heat transferring surfaces of that heat exchanger. The influence of this layer is two-sided:
1) The layer has a high thermal resistance, higher then any other part of the heat exchanger,
thereby increasing the total thermal resistance. This will decrease the amount of heat
transferred through the surfaces and reduces the efficiency of the heat exchanger.
2) The presence of a layer will decrease cross-sectional flow area of the medium. To
achieve the same throughput through this smaller area, there’s a bigger pressure drop
needed. Additional pumping is needed, increasing to total amount of energy added to the
system, decreasing the efficiency.
So fouling is a absolutely not-wanted phenomenon. The problem is that the heat exchanger that
doesn’t suffer from fouling still has to be invented. Furthermore fouling is extremely difficult to
describe. That’s why recent years there’s a lot of emphasis on the analysis of this problem.
38
A convenient order of calculations follow:
1. From T1, T2, t1 and t2 check the heat balance Q, using c at Tmean and tmean
Q = MC(T1 –T2 ) = mc(t2 - t1).
2. Calculate LMTD assuming counter flow.
3. Tc and tc : if liquid is neither a petroleum fraction nor a hydrocarbon then the calorific
temperature need not to be determine. If neither of liquid is very viscous at cold terminal
say not more than 1 centipoise, if the temperature difference is less than 50oF, then the
arithmetic mean temperature T1 and T2 and t1 and t2 can be used in place of Tc and tc for
evaluating the physical properties of liquids. For non-viscous liquid, 𝝋= (𝝁/𝝁w)0.14 may
be taken as 1.
Inner pipe.
4. Flow area, ap = 𝛑𝐃 𝟐
/4, ft2 .
5. Mass velocity, GP = (mass flow rate of liquid in inner pipe ./ ap) , lb/(hr.)(ft2).
6. Obtain 𝝁 at Tc or tc depending upon which flow through the inner pipe. 𝝁 , lb/(ft)(hr) =
centipoise x 2.42 . From D, ft (inner diameter of inner pipe.) and Gp , obtain Reynolds
number Rep =DGp / 𝝁 .
7. From fig. 24, in which JH = (hiD/k)(c𝝁/k)-1/3(𝝁/𝝁w)0.14 vs. DGp / 𝝁 , obtain JH.
8. From c Btu /(lb)(oF) , 𝝁 lb/(ft)(hr) , k Btu / (hr)(ft2)(oF/ft) , all obtained at Tc or tc ,
compute (c𝝁/k)1/3.
9. To obtain hi multiply JH by (k/D) (c𝝁/k)1/3 (𝝋 = 1) gives hi Btu/(hr)(ft2)(oF).
10. Convert hi to hio by using , hio = hi x ID/OD of inner pipe.
Annulus:
11. Flow area, aa = 𝛑(D2
2-D1
1) / 4, ft2.
39
Equivalent diameter De =
𝟒 𝒙 𝒇𝒍𝒐𝒘 𝒂𝒓𝒆𝒂
𝒘𝒆𝒕𝒕𝒆𝒅 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓
= (D2
2 – D1
2) / D1 , ft.
12. Mass velocity, Ga = (mass flow rate of liquid in annlus. / aa ) , lb/(hr.)(ft2).
13. Obtain 𝝁 at Tc or tc depending upon which flow through the inner pipe. 𝝁 , lb/(ft)(hr) =
centipoise x 2.42 . From De ft (inner diameter of inner pipe.) and Ga , obtain Reynolds
number Rep =DeGa / 𝝁 .
14. From fig. 24, in which JH = (hoD/k)(c𝝁/k)-1/3(𝝁/𝝁w)0.14 vs. DeGa / 𝝁, obtain JH.
15. From c Btu /(lb)(oF) , 𝝁 lb/(ft)(hr) , k Btu / (hr)(ft2)(oF/ft) , all obtained at Tc or tc ,
compute (c𝝁/k)1/3.
16. To obtain ho multiply JH by (k/De) (c𝝁/k)1/3 (𝝋 = 1) gives ho Btu/(hr)(ft2)(oF).
Overall coefficient
17. Compute Uc = hohio / (hio+ ho ) , Btu / (hr)(ft2)(oF).
18. Compute Ud , from 1/Ud =1/Uc + Rd .
19. Compute Area from Q = Ud A (LMTD), which may be translated into length. If the
length should not corresponds to integral no. of hairpins required a change in dirt factor
will result. The recalculated dirt factor should equal or exceed the required dirt factor by
using the next larger integral no. of hairpins .
Calculation of pressure drop requires a knowledge of total length of path satisfying the
heat transfer requirement.
Pressure drop (Inner pipe)
20. From Rep in (6) above , obtain f =0.0035 + .264/(Rep)0.42.
21. ∆𝑭p = 4fG2L /2g𝝆2D, ft.
22. ∆𝑷p psi. = ∆𝑭p 𝝆 / 144.
40
Pressure drop (Annulus side)
23. Obtain D’e = ( D2 – D1 )
24. Compute the frictional Reynolds number using the above D’e , and then calculate f by
using no. 20 and frictional Reynolds number.
25. ∆Fa = 4FG2L / 2g𝝆2D’e , ft.
26. Entrance and exit losses , one velocity head per hairpin,
∆Fl =V2 /2g’ ft. /hairpin
27. ∆𝑷a psi = (∆Fl + ∆Fa )𝝆 / 144
There is an advantage if both fluid calculation is computed side by side.
10. NUMERICAL ON DESIGING OF DOUBLE PIPE HEAT
EXCHANGER.
Q.) Ammonia hydroxide is formed by reaction of ammonia and water according to
following reaction,
NH3 + H2O ----------- NH4OH.
Reaction is an exothermic reaction in which heat is liberated.As the reaction proceeds temperature
rises.According to Le- chatelier’s principal, backward reaction occurs ifexothermic reaction
occurs at higher temperature. So,heat is removed from reaction by use ofcold water in double pipe
heat exchanger. A 2
𝟏
𝟐
inch by 1
𝟏
𝟒
inch I.P.S pipe( shec. No. = 40) double pipe heat exchanger
is used. The temperature of hot fluid at inlet and outlet are 96.8 oF and 78.8oF respectively.
The temperature of cold water at inlet and outlet are 77oF and 93.2oF respectively. Design
a double pipe heat exchanger considering fouling factor to be 0.001. Consider pressure
41
drop should not exceedmore than 10 psi. Calculate the required no. of hairpins used if the
length of pipe is 20 ft.
The flow rate of ammonia is 500 kg/hr .The required normality of ammonia hydroxide solution
is 10N.
Ans.) NH3 + H2O -------- NH4OH
17kg 18kg 35kg
For 10N ammonia hydroxide solution 350kg of ammonia hydroxide must be dissolved in
1000kg water which required 170 kg ammonia. As 10N solution is prepared, it have density
same as that of density of water. So , 1000 liters is same as 1000 kg.
170 kg ammonia ------------- 350 kg ammonia hydroxide-------------- 1000kg solution
For, 500 kg ammonia ----------1029.41kg ammonia hydroxide------------2941 kg of solution
Therefore the flow rate of hot fluid = 2941 kg /hr = 6483.8 lb/hr.
As fluid is not petroleum or hydrocarbon so we can take mean temperatures as calorific
temperature. Both the fluid is non-viscous so, 𝝋= (𝝁/𝝁w)0.14 = 1
Tmean = (96.8+78.8) / 2 = 87.8oF
tmean = (77+93.2) /2 = 85.1oF
Physical properties of fluid at this mean temperature.
For hot fluid. (mean temp.=87.8oF) For cold fluid (mean temp. =85.2oF)
C (Btu/hr. oF ) =1.145 c (Btu/hr. oF ) = 1
𝝁 lb/(ft)(hr) = 2.444 𝝁 lb/(ft)(hr) = 2.187
k Btu / (hr)(ft2)(oF/ft) = 0.269 k Btu / (hr)(ft2)(oF/ft) = 0.355
𝝆 = 56.875 Btu /ft 3 𝝆 = 62.5 Btu /ft 3
42
All above data from appendix of D.KERN
HEAT BALANCE
Q = MC(T1 –T2 ) = mc(t2 - t1).
Putting the values, we get flow rate of cold fluid m = 7423.951 lb/hr.
LMTD CALCULATION
LMTD =
( 𝑇1−𝑡2)−(𝑇2−𝑡1)
𝑙𝑛
(𝑇1−𝑡2)
(𝑇2−𝑡1)
= 2.59
OUTER PIPE
Outer diameter = .24 ft. Inner diameter = .20575 ft.
INNER PIPE
Outer diameter = .138ft. Inner diameter = .115ft.
INNER PIPE (HOT FLUID) (AMMONIA SOLUTION)
 Flow area , ap = 𝛑𝐃 𝟐
/4, ft2 =0.0138 ft2
 Equivalent dia . = .115 ft2
 Mass velocity GP = (mass flow rate of liquid in inner pipe ./ ap) , lb/(hr.)(ft2).
= 624643.54 lb/(hr.)(ft2)
 Rep =DeGa / 𝝁 = 624643.54 X .115 / 2.444 = 29391.95
 JH = 109 ( referring fig. 24 , Appendix ,D. Kern)
 hi Btu/(hr)(ft2)(oF).= JH X (k/De) (c𝝁/k)1/3 (𝝋 = 1) = 556.58 Btu/(hr)(ft2)(oF).
 hio = hi x ID/OD of inner pipe = 556.58 X .115 / .138 = 463.81 Btu/(hr)(ft2)(oF).
43
ANNULUS REGION (COLD FLUID)(WATER)
 Flow area, , aa = 𝛑(D2
2-D1
1) / 4, ft2
=0.01829 ft2.
 Equivalent diameter De =
𝟒 𝒙 𝒇𝒍𝒐𝒘 𝒂𝒓𝒆𝒂
𝒘𝒆𝒕𝒕𝒆𝒅 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓
= (D2
2 – D1
2) /D1 , ft.
=
(.𝟐𝟎𝟓𝟕𝟓) 𝟐−(.𝟏𝟑𝟖)𝟐
.𝟏𝟑𝟖
= 0.168 ft2.
 Ga = (mass flow rate of liquid in annlus. / aa ) , lb/(hr.)(ft2).
= 7423.951/ .01829
= 405902.187 lb/(hr.)(ft2).
 Rep =DeGa / 𝝁
= .168 X 405902.2 / 2.180
= 32472.176
 JH. =122 (referring fig.24 , Appendix ,D. Kern).
 For ho multiply JH by (k/De) (c𝝁/k)1/3 (𝝋 = 1) gives ho = 466 Btu/(hr)(ft2)(oF).
Overall coefficient.
 Clean over all heat transfer coefficient Uc = hohio / (hio+ ho ) ,
= 232.45 Btu / (hr)(ft2)(oF).
 Ud , from 1/Ud =1/Uc + Rd .
Ud = 188 Btu / (hr)(ft2)(oF). (taking Rd = 0.001).
 Computing Area by using ,
44
Q = Ud A (LMTD)
A= Q/Ud X LMTD
= 274 ft2.
 Computing length of pipe
For 1
𝟏
𝟒
inch I.P.S pipe 0.435ft2 of external surface / ft length
Required length =
𝑨
𝟎.𝟒𝟑𝟓
= 274/0.435 =629.88 ft.
As 20 ft pipe is used , so for one hairpin the length will be 40 ft.
Therefore, no. of hairpins required = required length/ 40 = 629.88/40 = 15.72 =16
Number of hairpins required = 16.
PRESSURE DROP
INNER PIPE
 Rep in (6) above , obtain f =0.0035 + .264/(Rep)0.42
= 0.0035 + .264/(29391.95)0.42
= 4.83 X 10-3 .
 ∆𝑭p = 4fG2L /2g𝝆2D, ft.
By putting the values from above we get,
∆𝑭p=22.50 ft.
 ∆𝑷p psi. = ∆𝑭p 𝝆 / 144.
= 22.50 X 56.87 /144
= 8.88 psi
45
Annulus region
 D’e = ( D2 – D1)= .20575-.138 = .06775ft.
 Nre’= .06775 X405902.187 /2.30 = 11956.466.
 f = .0035 + .264/(11956.46).42 = 8.61 X 10-3.
 ∆Fa = 4FG2L / 2g𝝆2D’e , ft.
By putting the values from above, we get
∆Fa= 15.270 ft.
 Entrance and exit losses , one velocity head per hairpin,
∆Fl =V2 /2g’ ft. /hairpin.
=0.804 ft. /hairpin.
 ∆𝑷a psi = (∆Fl + ∆Fa )𝝆 / 144
= ( .804 + 15.270) X 62.5 / 144
= 6.97 psi.

More Related Content

What's hot

Stages of hydrometallurgical processes
Stages of hydrometallurgical processesStages of hydrometallurgical processes
Stages of hydrometallurgical processes
reyhane mazahernasab
 
Aniline point for petroleum productes
Aniline point for petroleum productesAniline point for petroleum productes
Aniline point for petroleum productes
NIAZMAHMUD
 

What's hot (20)

Roll crushers
Roll crushers Roll crushers
Roll crushers
 
Jaw crusher
Jaw crusherJaw crusher
Jaw crusher
 
Coke oven
Coke ovenCoke oven
Coke oven
 
Continuous Rectification
Continuous RectificationContinuous Rectification
Continuous Rectification
 
Sondaj SıVıLarı
Sondaj SıVıLarıSondaj SıVıLarı
Sondaj SıVıLarı
 
Lecture 1 distillation (introduction)
Lecture 1  distillation (introduction)Lecture 1  distillation (introduction)
Lecture 1 distillation (introduction)
 
Hydrocracking
HydrocrackingHydrocracking
Hydrocracking
 
Lean Iron Ore Beneficiation in India
Lean Iron Ore Beneficiation in IndiaLean Iron Ore Beneficiation in India
Lean Iron Ore Beneficiation in India
 
Separation, screening and classification
Separation, screening and classificationSeparation, screening and classification
Separation, screening and classification
 
Solex Thermal Indirect Plate Heating &amp; Cooling
Solex Thermal Indirect Plate Heating &amp; CoolingSolex Thermal Indirect Plate Heating &amp; Cooling
Solex Thermal Indirect Plate Heating &amp; Cooling
 
02 petrochemical processes
02 petrochemical processes02 petrochemical processes
02 petrochemical processes
 
IOCL Training Report
IOCL Training ReportIOCL Training Report
IOCL Training Report
 
Chemical Engineering Apparatus Design, ChEg4191-1.pptx
Chemical Engineering Apparatus Design, ChEg4191-1.pptxChemical Engineering Apparatus Design, ChEg4191-1.pptx
Chemical Engineering Apparatus Design, ChEg4191-1.pptx
 
Stages of hydrometallurgical processes
Stages of hydrometallurgical processesStages of hydrometallurgical processes
Stages of hydrometallurgical processes
 
Leaching
LeachingLeaching
Leaching
 
Up-gradtion of Coal By Blending Method
Up-gradtion of Coal By Blending MethodUp-gradtion of Coal By Blending Method
Up-gradtion of Coal By Blending Method
 
Hydrotreating process
Hydrotreating processHydrotreating process
Hydrotreating process
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
 
C2 Acetylene Hydrogenation
C2 Acetylene HydrogenationC2 Acetylene Hydrogenation
C2 Acetylene Hydrogenation
 
Aniline point for petroleum productes
Aniline point for petroleum productesAniline point for petroleum productes
Aniline point for petroleum productes
 

Viewers also liked

College and University Rating System for Hawaiian Students-Schools by Rank
College and University Rating System for Hawaiian Students-Schools by RankCollege and University Rating System for Hawaiian Students-Schools by Rank
College and University Rating System for Hawaiian Students-Schools by Rank
Michael Weddington
 
«Психологическое сопровождение агрессивного ребенка».
«Психологическое сопровождение агрессивного ребенка».«Психологическое сопровождение агрессивного ребенка».
«Психологическое сопровождение агрессивного ребенка».
olga10051978
 

Viewers also liked (15)

Responsive design Sem Mitos
Responsive design Sem MitosResponsive design Sem Mitos
Responsive design Sem Mitos
 
Taller implementación de estrategias inferenciales
Taller implementación de estrategias inferencialesTaller implementación de estrategias inferenciales
Taller implementación de estrategias inferenciales
 
земля планета сс
земля планета ссземля планета сс
земля планета сс
 
Mesa de eventos
Mesa de eventosMesa de eventos
Mesa de eventos
 
Клімат африки
Клімат африкиКлімат африки
Клімат африки
 
College and University Rating System for Hawaiian Students-Schools by Rank
College and University Rating System for Hawaiian Students-Schools by RankCollege and University Rating System for Hawaiian Students-Schools by Rank
College and University Rating System for Hawaiian Students-Schools by Rank
 
4still5togo
4still5togo4still5togo
4still5togo
 
Zilele Biz 2015 - Media & Marketing - Claudiu Dobrita, FCB Bucharest
Zilele Biz 2015 - Media & Marketing - Claudiu Dobrita, FCB BucharestZilele Biz 2015 - Media & Marketing - Claudiu Dobrita, FCB Bucharest
Zilele Biz 2015 - Media & Marketing - Claudiu Dobrita, FCB Bucharest
 
Fotos2
Fotos2Fotos2
Fotos2
 
UAB_BA
UAB_BAUAB_BA
UAB_BA
 
Partners Andrews Aldridge - ReThink - Web Summit 2016
Partners Andrews Aldridge - ReThink - Web Summit 2016Partners Andrews Aldridge - ReThink - Web Summit 2016
Partners Andrews Aldridge - ReThink - Web Summit 2016
 
Fiscal Education. The Italian experience
Fiscal Education. The Italian experience Fiscal Education. The Italian experience
Fiscal Education. The Italian experience
 
Radiation Biology
Radiation BiologyRadiation Biology
Radiation Biology
 
«Психологическое сопровождение агрессивного ребенка».
«Психологическое сопровождение агрессивного ребенка».«Психологическое сопровождение агрессивного ребенка».
«Психологическое сопровождение агрессивного ребенка».
 
Будова кровоносних судин людини.
Будова кровоносних судин людини.Будова кровоносних судин людини.
Будова кровоносних судин людини.
 

Similar to NFC_TRAINING_REPORT-1

NFC_TRAINING_REPORT-1
NFC_TRAINING_REPORT-1NFC_TRAINING_REPORT-1
NFC_TRAINING_REPORT-1
Ratan Kumar
 
librarycopy (1)
librarycopy (1)librarycopy (1)
librarycopy (1)
Shyam A
 
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTSSYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
IAEME Publication
 
Activation Of Carbon Produced From Coconut Shell By Using Fluidized Bed ...
Activation Of Carbon Produced From Coconut      Shell By Using Fluidized Bed ...Activation Of Carbon Produced From Coconut      Shell By Using Fluidized Bed ...
Activation Of Carbon Produced From Coconut Shell By Using Fluidized Bed ...
Ratan Kumar
 
atomic power and waste india how it get affected the environment -pdf
atomic power and waste india how it get affected the environment -pdfatomic power and waste india how it get affected the environment -pdf
atomic power and waste india how it get affected the environment -pdf
rajdutt1111
 
DCC Training Report Final
DCC Training Report FinalDCC Training Report Final
DCC Training Report Final
SOUPARNO ROY
 
OCL INDIA LIMITED, RAJGANGPUR
OCL INDIA LIMITED, RAJGANGPUROCL INDIA LIMITED, RAJGANGPUR
OCL INDIA LIMITED, RAJGANGPUR
Sudhanshu Shekhar
 

Similar to NFC_TRAINING_REPORT-1 (20)

NFC_TRAINING_REPORT-1
NFC_TRAINING_REPORT-1NFC_TRAINING_REPORT-1
NFC_TRAINING_REPORT-1
 
librarycopy (1)
librarycopy (1)librarycopy (1)
librarycopy (1)
 
Nuclear Fuel complex
Nuclear Fuel complex Nuclear Fuel complex
Nuclear Fuel complex
 
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTSSYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
 
A Review on Experimental Analysis of Effect of Cooker base Coating Material o...
A Review on Experimental Analysis of Effect of Cooker base Coating Material o...A Review on Experimental Analysis of Effect of Cooker base Coating Material o...
A Review on Experimental Analysis of Effect of Cooker base Coating Material o...
 
78218645 hammer-mill-design-mini-project
78218645 hammer-mill-design-mini-project78218645 hammer-mill-design-mini-project
78218645 hammer-mill-design-mini-project
 
Extracting the Shales
Extracting the ShalesExtracting the Shales
Extracting the Shales
 
Atomic waste.docx
Atomic waste.docxAtomic waste.docx
Atomic waste.docx
 
Crabon black ccil.ppt
Crabon black   ccil.pptCrabon black   ccil.ppt
Crabon black ccil.ppt
 
Hitesh1
Hitesh1Hitesh1
Hitesh1
 
Activation Of Carbon Produced From Coconut Shell By Using Fluidized Bed ...
Activation Of Carbon Produced From Coconut      Shell By Using Fluidized Bed ...Activation Of Carbon Produced From Coconut      Shell By Using Fluidized Bed ...
Activation Of Carbon Produced From Coconut Shell By Using Fluidized Bed ...
 
What i learnt as an intern by Ihsan Wassan
What i learnt as an intern by Ihsan Wassan What i learnt as an intern by Ihsan Wassan
What i learnt as an intern by Ihsan Wassan
 
Stability Test of Copper Oxide Nanofluid Prepared using Two Step Method
Stability Test of Copper Oxide Nanofluid Prepared using Two Step MethodStability Test of Copper Oxide Nanofluid Prepared using Two Step Method
Stability Test of Copper Oxide Nanofluid Prepared using Two Step Method
 
Hydration mechanism and strength of opc and blended opc with fly ash in the p...
Hydration mechanism and strength of opc and blended opc with fly ash in the p...Hydration mechanism and strength of opc and blended opc with fly ash in the p...
Hydration mechanism and strength of opc and blended opc with fly ash in the p...
 
Mechanical Properties and Flexural Performance of Geopolymer Concrete
Mechanical Properties and Flexural Performance of Geopolymer ConcreteMechanical Properties and Flexural Performance of Geopolymer Concrete
Mechanical Properties and Flexural Performance of Geopolymer Concrete
 
atomic power and waste india how it get affected the environment -pdf
atomic power and waste india how it get affected the environment -pdfatomic power and waste india how it get affected the environment -pdf
atomic power and waste india how it get affected the environment -pdf
 
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
 
DCC Training Report Final
DCC Training Report FinalDCC Training Report Final
DCC Training Report Final
 
VIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORTVIZAG STEEL KCB REPORT
VIZAG STEEL KCB REPORT
 
OCL INDIA LIMITED, RAJGANGPUR
OCL INDIA LIMITED, RAJGANGPUROCL INDIA LIMITED, RAJGANGPUR
OCL INDIA LIMITED, RAJGANGPUR
 

NFC_TRAINING_REPORT-1

  • 1. 22 GOVERNMENT OF INDIA DEPARTMENT OF ATOMIC ENERGY NUCLEAR FUEL COMPLEX HYDERABAD-500062 IN PLANT TRAINING ZIRCONIUM OXIDE PRODUCTION AT NEW ZIRCONIUM OXIDE PLANT AND ZIRCONIUM OXIDE PLANT AND DESIGNING OF DOUBLE PIPE HEAT EXCHANGERS SUBMITTED BY: RATAN MONDAL (B.TECH,CHEMICAL ENGG.) SHUBHAM SINGH (B.TECH,CHEMICAL ENGG.) KANCHI AKSHITH (B.TECH,CHEMICAL ENGG.) SUBMITTED ON:JUNE 16, 2015 INSTITUTE OF TECHNOLOGY, GURU GHASIDAS VISHWAVIDYALAYA BILASPUR
  • 2. 1 GOVERNMENT OF INDIA DEPARTMENT OF ATOMIC ENERGY NUCLEAR FUEL COMPLEX BONAFIDE CERTIFICATE This is to certify that MR.RATAN MONDAL has done his Project Work under my guidance during the period from 18th May 2015 to 17th June 2015 on the topic entitled ZIRCONIUM OXIDE PRODUCTION AND DESIGNING OF DOUBLE PIPE HEAT EXCHANGERS. During this period his conductwas found to be _________________ It is ensured that the report does not contain classified or Plant operational live data in any form. HEYDERABAD SIGNATURE: DATE: APPROVED BY, JOHNSON D’SOUZA THE MANAGER OF PLANT SENIOR MANAGER ZOP, NFC
  • 3. 2 ACKNOWLEDGEMENTS First of all I am extremely thankful to Shri N. Saibaba, Chairman ,NFC Board & Chief Executive, NFC for giving me opportunity to carry out Project Work at Nuclear Fuel Complex. I would like to express my sincere thanks to Mr. JohnsonD’souza(Senior manager) for accepting to be our Guide and helping us throughout our Project Work. I would like to thank Mr. Charan(S.O) and Mr. Arun Anand (T.O) for helping us throughout our Project Work. I express my sincere thanks to Shri H. R. Ravindra, DGM (HR) & Dr. B. N. Murty, AGM (HRD, Q. Cir., & QIS) for helping me throughout our training period at NFC and also conducting Awareness Programme on DAE/NFC activities at HRD. We are indebted to our director Dr. Shailendra Kumar and the Head of the Department of Chemical Engineering Mr.NeerajChandrakar, for making it possible to undergo in-plant training in NuclearFuel Complex, Hyderabad. I am grateful to my parents who have given me constant encouragement and inspiration to pursue my graduation. Finally I would like to thank everyone who have directly or indirectly help me in the successfulcompletion of this Project.
  • 4. 3 CONTENTS Error! Bookmark not defined. 1. INTRODUCTION _________________________________________________________ 4 2. PRODUCTION OF ZIRCALLOYCOMPONENTS _______________________________ 5 3.ABOUT ZIRCONIUM AND HAFNIUM ________________________________________ 6 4. FLOW SHEET OF ZIRCONIUM OXIDE PRODUCTION__________________________11 5. PROCESS OF PRODUCTION _______________________________________________11 5.1 DISSOLUTION __________________________________________________________13 5.2 SOLVENT EXTRACTION _________________________________________________15 I. SLURRYEXTRACTION____________________________________________________17 II. SCRUBBING ____________________________________________________________18 III. STRIPPING_____________________________________________________________20 TREATMENT WITH SODA SOLUTION: ________________________________________21 5.3 PRECIPITATION ________________________________________________________21 5.4 REPULPING ____________________________________________________________23 5.5 VACUUM FILTRATION ___________________________________________________23 5.6 DRYING _______________________________________________________________25 5.7 CALCINATION__________________________________________________________26 5.8 GRINDING _____________________________________________________________28 5.9 BLENDING _____________________________________________________________29 6. PROPERTIESAND USES OF ZIRCONIUM OXIDE______________________________30 7.HEAT EXCHANGERS ANDITS CLASSIFICATION_________________________________30 8. TYPES OF HEAT EXCHANGERS ________________________________________________32 9. DESIGNING OF DOUBLEPIPE HEAT EXCHANGERS ______________________________35 10. NUMERICAL ON DESIGNING DOUBLE PIPE HEAT EXCHANGERS________________40
  • 5. 4 1. INTRODUCTION NEED OF NUCLEAR POWER From the dawn of civilization, mankind has depended upon nature’s gifts such as solar energy and wind energy, in addition to firewood as fuel. However, the discovery of coal and petroleum as fuels sparked the industrial development of humanity, and helped it grow by leaps and bounds. As a result, man became overly dependent on these, and exploited these resources greatly, unaware of sustainability issues, all well as environmental issues. In the present world, where all these issues are persisting as a cancerous growth, it is obvious that one must look for a cleaner source of power, which does not only save the environment, but is sustainable, and is available to us at a reasonable cost. Solar, wind and hydro energy satisfy most of these criteria, but fail terribly on certain counts. Considering all of this, one may wonder, what is the true solution to mankind’s problems? The answer is NUCLEAR POWER. Nuclear power is a clean power source. With proper and sustainable implementation it is virtually an inexhaustible source of energy. The same mass of nuclear fuel is capable of producing millions of times more energy than coal. In India, the second most populous country of the world, there is an exceeding increase in the need of power. Our coal is limited. So what do we do? The answer once again, is nuclear power. India’s approach to nuclear power production is unique, owing to the lesser uranium deposits in comparison to the thorium deposits. India is pursuing a three stage nuclear power program linking the fuel cycle of pressurized Heavy water plant reactor (PHWR) &liquid metal cooled fast breeder reactor (LMFBR). In addition light water reactor (LWR) has also seen included in program. The program is currently completing the second stage of its implementation, and once fully implemented can supply up to 30% of India’s power needs by 2050. The driving force behind nuclear energy is nuclear fuel. And this is where the Nuclear Fuel Complex comes into play. THE NUCLEAR FUEL COMPLEX(NFC) Nuclear Fuel Complex (NFC) is an industrial unit under the Department of Atomic Energy (DAE). It manufactures enriched Uranium Oxide Fuels and zirconium alloy structural components for water-cooled nuclear power reactors in India. NFC is perhaps the only facility in the world where in under the same roof, both Uranium Oxide fuels and Zirconium alloy components are fabricated starting from the basic raw materials namely Magnesium diuranate and zircon sand respectively. Indian Rare Earth Ltd. (IREL) supplies zircon sand in the manufacture of reactor grade zirconium oxide, zirconium sponge and finished zirconium alloy mill products.
  • 6. 5 NFC manufactures seamless stainless steel and special alloy tubes, high purity and advanced materials for various high tech applications in Atomic Energy, Defence, Space, and other industries and zirconium alloy components for non-nucleus appliances in fertilizers and heavy chemical industries. NFC, practicing continuous in-house technology up gradation in the manufacture of strategic material meeting stringent quality requirements, has developed expertise and built a number of sophisticated equipment as special chemical process reactors, high temperature sintering furnaces and filter mills which made rapid strides in the field of mechanized material handling processes and automation. ”. A production activity in its various plants was started in early 1970’s and today it has a strong work force of about 3600 people comprising of scientists, engineers, supervisors, workmen and the administrative staff. 2. PRODUCTION OF ZIRCALLOY COMPONENTS ZIRCONIUM OXIDE PLANT (ZOP) Zirconium oxide powder is produced in ZOP. The basic raw material for producing zirconium is zircon sand. Zircon sand has silicates as major impurities and hafnium as critical impurity. Zircon is subjected to fusion process with caustic soda (at 6500C), and frit is formed is sent to a series of three leaching tanks for removing sodium silicate. After leaching zirconate is washed again in plate and frame filter press, to remove the impurities and reduce the alkalinity. The obtained hydrated zirconia product is dried in turbo dryer and subjected to dissolution with nitric acid. The crude zirconium nitrate solution is then sent for solvent extraction process and pure zirconium nitrate is produced. The obtained zirconium nitrate is then precipitated and subjected to drying and calcinations to obtain granules, which are pulverized to get fine powder of zirconium oxide. This is packed and sent to zirconium sponge plant. ZIRCONIUM SPONGE PLANT (ZSP) Anhydrous zirconium tetrachloride is the preferred intermediate for the production of reactor grade sponge. It is produced by the chlorination of pure zirconium oxide. Thermodynamically ZrO2 is more stable than ZrCl4 as evident from the free energy values -216kcal mol-1 and -178 kcal mol-1 respectively at 1000oC. Direct chlorination of ZrO2 is not possible because the net change of free energy is positive. ZrO2 + 2Cl2 ZrCl4 For the production of zirconium sponge, ZrO2, petroleum coke and starch solution are mixed thoroughly and the mixture so formed is extruded to produce briquettes. The briquettes are subjected to coking to remove starch in a furnace with continuous supply of cooling water and N2. This briquette is chlorinated at high temperature to obtain zirconium chloride. ZrCl4 is converted to zirconium metal by Kroll’s reduction reaction. In these the ZrCl4 vapours react with molten magnesium to form zirconium metal. ZrCl4 (g) + 2Mg (l) Zr (s) + 2MgCl2 + 76 Calmole-1 at 11500C
  • 7. 6 The reduced mass is vacuum treated at high temperature to distil out MgCl2 and magnesium leaving out pure zirconium in the crucible. Before exposing the pure pyrophoric metal to the atmosphere, the metal is conditioned with argon, the air mixture progressively, enriched with air, to form a protective film of oxide on the metal surface thus prevent spontaneous of reactive metal. ZIRCALLOY FABRICATION PLANT (ZFP) The activities of this plant can be divided into three categories: Ingot making, Hot extrusion and finishing operations.  INGOT MAKING The alloys made in the melt shop are Zircalloy-2 for BWR fuel, zircalloy-4 for PHWR fuel and structural, Zr-2.5% Nb for pressure tubes, Zr-1% Nb for special application and Zr-Nb-Cu for a special PHWR component. The process involves mixing of alloying elements during briquetting these are welded in electro-beam welding equipment to form electrode. The electrode melted in furnace vacuum arc melting to make the primary ingots. These ingots are subjected to re-melting to make a homogeneous melt. For certain special application four times re-melting is also carried out.  HOT EXTRUSION The ingots are melted in two sizes viz., 300mm diameter and 350mm diameter, which are broken down in hot extrusion press to either rounds or slabs depending on the end products.  FINISHING OPERATIONS Hot extruded rounds are subjected to pulgering to produce fuel tubes. Slabs are rolled into sheets and further cold rolled to get the final dimensions. These sheets are hot rolled into sheets and further cold rolled to get the final dimensions. These sheets are used for making PHWR/BWR fuel component or calandria tubes by steam making. 3. ABOUT ZIRCONIUM AND HAFNIUM Zirconium occurs widely in the earth’s crust, but not in concentrated deposits. The mineral zircon, ZrSiO4 (zirconium silicate) that is alluvial deposits in streambeds, ocean beaches, old lakebeds, is the only commercial source of zirconium oxide. ZrSiO4 is the only important zirconium mineral. These zirconium minerals generally have hafnium contents that vary from a few tenths of 1 percent to several percent. For some purposes separation of these two elements is not important. Zirconium containing about 1 percent of hafnium is accepted as pure zirconium. In the case of largest single use of zirconium, however, namely, as a structural & cladding material in atomic reactors, it is essentially free of hafnium, absorption cross section of neutrons (0.18 barn). Hafnium on the other hand has an exceptionally high cross section (115barn) (1 barn = 10-24 cm2), & accordingly even slight hafnium contaminants nullify the intrinsic advantage of
  • 8. 7 zirconium. Pure hafnium is in fact used in some atomic reactors as control element materials because of high neutron-capture cross-section. The atomic radii of zirconium & hafnium are 1.45 0A & 1.44 0A respectively. While the radii of the ions are Zr4+ ---0.74 0A & Hf4+ ---0.74 0A. The virtual identity of atomic & ionic sizes, resulting from the lanthanide contraction, has the effect of making the chemical behaviour of these two elements more similar than for any other pair of elements known. Although the chemistry of hafnium has been studied less than that of zirconium, the two are similar that only very small quantity differences for e.g. in solubility’s & volatilities of compounds would be expected in cases that have not been actually investigated. The most important aspect in which these two elements differ from titanium is that lower oxidation states are of minor importance, they are relatively few compounds of hafnium or zirconium in other than their tetravalent states compounds. ZIRCONIUM Zirconium, a chemical element, metal of group IV B of the periodic table, is used as structural material for nuclear reactors. Properties- Zirconium and hafnium are chemical elements of the IV B group of the periodic table. Zirconium was discovered in 1789 by German chemist Martin Heinrich Klaproth, and the metal was isolated (1824) in impure form by the Swedish chemist Johns Jacob Berzeius. The impure metal, even when 99% pure is brittle. The white, soft malleable, and ductile metal of high purity was first produced in quantity (1925) by the Dutch chemists Anton E. Van Arkel and J.H. Boer by the thermal decomposition of zirconium tetrachloride, ZrCl4. It has several valuable chemical and physical properties. It has small thermal neutron capture cross section and remarkable anticorrosion and mechanical properties, and is therefore widely used in atomic and chemical engineering and metallurgy. In the early 1940’s William Justin Kroll, of Luxemburg developed his cheaper process of making metal based on the reduction of zirconium tetrachloride, ZrCl4, by magnesium. It is relatively abundant in the earth’s crust and is characteristically observed in ‘S’ type stars. Zirconium is commercially obtained principally from the minerals, zircon and baddelyite. Occurrence The most important use of zirconium is in nuclear reactors for cladding fuel rods, for alloying with uranium and for reactor core structures because of its unique properties. Zirconium has strength at elevated temperatures, resists corrosion from the rapidly circulating coolants, does not form highly radioactive isotopes and withstands mechanical damage from neutron bombardment. Zirconium absorbs oxygen, nitrogen and hydrogen in astonishing amounts at about 8000C. It combines chemically with oxygen to yield the oxide (ZrO2); zirconium reduces such refractory crucible materials as the oxides of magnesium, beryllium and thorium. This strong affinity for oxygen and other gases accounts for its use as a getter for removing residual gases in electron tubes. At normal temperature in air, zirconium is passive because of the formation of protective film of oxide or nitrate. Even without this film, the metal is resistant to the action of weak acids, acidic salts.
  • 9. 8 Because of its high corrosion resistance, zirconium has found wide spread used in the fabrication of pumps, tubes, valves and heat exchangers. Zirconium is also used as an alloying agent in the production of magnesium alloys and as an additive in the manufacture of certain steels. Applications: The properties of zirconium are such as to indicate that it may find several uses in modern industry. It possesses a combination of physical, chemical and nuclear properties, which are unique. The zirconium chemicals have a wide range of applications, including automotive catalysts, electro-ceramics, structural ceramics, thermal barrier coatings, optical glass fibre/fibre optics, paints/pigments and solid oxide fuel cells. HAFNIUM Until 1922, it was not known that zirconium and its compounds always contain small amounts of chemical elements of atomic number 72. In 1922, Hevesy and Coster, while carrying out X-ray spectroscopic investigation of zirconium, discovered new X-ray lines, which coincided with the characteristic lines that had been calculated for the element of atomic number 72. It was named hafnium. The simultaneous occurrence of zirconium and hafnium is because of the effect “Lanthanide contraction” in hafnium. Hafnium is a ductile metal with brilliant silvery lustre. Hafnium is dispersed in the earth’s crust to 3ppm and is invariably found in zirconium minerals up to a few % compared with Zirconium, altered Zircons, and some other zircon compounds. Zirconium and hafnium are extremely similar in physiochemical properties. Hafnium’s large thermal neutron capture cross section, high resistance to corrosion in hot water and good chemical properties make hafnium an excellent material for the manufacture of control rods for thermal nuclear reactors. Hafnium can also be alloyed or composite with other materials, which can be used in the outlet nozzle of a rocket. Hafnium is used for fabricating nuclear control rods because it easily absorbs thermal neutrons and has excellent mechanical properties. Hafnium produces a protective film of oxides or nitride upon contact with air and thus has high corrosion resistance. It forms alloys with Iron, Tantalum and other transition metals. The alloy Tantalum Hafnium Carbide (Ta4 HfC5), with a melting point of 41250C (76190F) is one of the most refractory substances known. SEPARATION OF ZIRCONIUM AND HAFNIUM: Separation of Hafnium & Zirconium is generally accomplished by liquid-liquid counter current extraction process. In this procedure, crude Zirconium oxide is dissolved in a nitric acid solution & tri butyl phosphate is passed counter current to the aqueous mixture, with the result that the Zirconium nitrate is perfectly extracted. For reactor grade zirconium (<50 ppm) the solvent extraction method using tri butyl phosphate is appropriate with high purity hafnium (0.1 % Zr) can be obtained efficiently (42% recovery) by ion exchange using Dowex-50 cation exchanger. A pure grade of Hf (0.02 % Zr) may be obtained by less efficient process (20-30 % yield) using solvent extraction with trifluroacetylacetone.
  • 10. 9 PHYSICAL CONSTANTSFOR ZIRCONIUM AND HAFNIUM Properties Zr Hf Atomic number 40 72 Atomic weight 91.22 178.49 Melting point, 0C 1830 2222 Density, g/cc 6.49 13.01-13.09 Boiling point, 0C 2900 3100 Transition temperature,0C 862 1670 CHEMICAL PROPERTIES: Natural Zr is a mixture of five stable isotopes and natural Hf is a mixture of six isotopes. The thermal neutron capture cross section of zirconium metal (0.18 barn) is very small when compared with that of other metals, iron (2.53 barn), nickel (4.60 barn) or copper (3.69 barn). In contrast to Zr, Hf has a large thermal neutron capture cross section of 115 barns. Hf in Zr plays a decisive part, which is about 1-2% in impure Zr. The presence of this amount of Hf in Zr causes a considerable rise in the value of thermal neutron capture cross section from 0.18 barn to 1 barn. The valency of Zr&Hf may be 2, 3 or 4. The stability of their compounds increases at high valencies. Compounds of bi- and trivalent Zr&Hf are known, but they are unstable & have strong reducing properties. The characteristic oxidation state of the two elements is +4. Zr&Hf are highly resistant to corrosion. Zr is practically unaffected by water, HCl, HNO3 or dil. H2SO4 and alkali solutions even on heating. However both metals are readily dissolved by H2F2 Property Zr Hf Atomic radius,0A 1.452 1.442 Ionic radius, 0A 0.74 0.75
  • 11. 10 and by a mixture of HCl& HNO3, and at high temperature vigorously combine with O2, N2, H2, halogens S, C, Si, and B; with the last mentioned compounds, Zr&Hf form refractor compounds. The basic properties increase in the sequence Ti<Zr<Hf<Th, Hf being slightly more basic than Zr. FEATURES OF IMPORTANCE IN NUCLEAR INDUSTRY:  Ready availability  Low cross-sectional absorption of thermal neutron  Resistance to radiation damage  Excellent corrosion resistance in pressurizes hot water up to 3500C OTHER SALIENT FEATURES:  Good guttering  Highly pyrophoric  Super conductive at low temperature with niobium  High refractive index in oxide form  Good refractive properties in oxide form ZIRCALLOY USED IN INDIAN NUCLEAR REACTORS: ZIRCALLOY -2(FUEL TUBES BWR’S) Zircalloy -4(fuel tubes and calandria tubes of PHWR’s, coolant channels of BWR’s) Zr- Nb (pressure tubes of PHWR’s) Zr-Nb-Cu (garter springs PHWR’s) Uses: a) Fuel clad and structural material in alloy form for core components of Detonators and Pyrotechnics. b) Corrosion resistance applications as components in chemical industry. c) Getter in vacuum tubes. d) Refractory material in the form of oxide in lass and ceramic industries. e) Lining of metallurgical furnaces in the form of oxide. f) Artificial gems. Deposits of zircon are high along the coastline of Needakara and Kayamkulum in Kerala. Chavara mineral division near Kollam in Kerala, Manavalakurichi mineral division near
  • 12. 11 Kanyakumari in Tamil Nadu and OSCOM at Chatrapur in Orissa are the Indian Rate Earth Division (IREL) units exploiting the huge zircon deposits in India. 4. FLOW SHEET OF ZIRCONIUM OXIDE PRODUCTION
  • 13. 12 5. PROCESS OF PRODUCTION LIST OF UNIT OPERATIONS AND UNIT PROCESSES CARRIED OUT IN ZOP: 5.1 DISSOLUTION OF DRYPOWDER 5.2 SOLVENT EXTRACTION I. SLURRY EXTRACTION II. SCRUBBING III. STRIPPING IV. SODA SOLUTION TREATMENT 5.3 PRECIPITATION 5.4 REPULPING 5.5 VACUUM FILTRATION 5.6 DRYING 5.7 CALCINATION 5.8 GRINDING 5. 9 BLENDING
  • 14. 13 5.1 DISSOLUTION Raw materials:  Dry powder  NitricAcid(60% concentrated) Storage ofnitric acid: Nitric acid is received in a horizontal SS tank. The receiving tank is placed below the ground level, so as to receive the nitric acid from the tankers by the force of gravity. There are two vertical storage tanks each of 150KL capacity. The vertical tanks are filled from the horizontal tank by the use of vertical pumps. The specialty of the vertical pumps is that they are inside the horizontal tank, so the chance of nitric acid to leak or spill is eliminated. To measure the level of nitric acid in the vertical tank, the float and weight method is used. The tanks are made of stainless steel. The nitric acid from storage tanks is pumped to the dozing tanks from where the required amount of nitric acid is fed into the reactor. Storage ofdry powder: The dry powder is procured in 50 kg bags. The dry powder is mainly tested for the above required compositions of the compound mainly zirconium before being charged into the reactor. It is tested in the control lab, which plays a pivotal role in each and every part of production of zirconium. The dry powder is taken to level above that of the height of the reactor and is charged into the reactor from conical opening, because of which the chances of the powder being wasted is reduced and the handlings becomes easier. The dry powder is taken to the required height by using a 2-ton hoist. Materialof construction: Dissolution is done in SS tanks. It consists of an agitator and the feed is heated by steam. Chemicalreaction: ZrO2 + 4HNO3  Zr (NO3)4 + 2H2O
  • 15. 14 PROCESSDESCRIPTION The requisite amount of nitric acid (12N) is charged into a reactor made of stainless steel. It is agitated using an impeller and moderately heated using direct contact steam at a pressure of 3 kg/cm2 . Then the calculated amount of dry powder is added to the reactor and it is agitated for 2 hrs. This DP is dissolved in 12N (60%) Nitric acid, which is already present in the dissolution tank to produce Zirconium Nitrate solution, which is the feed material for purification by solvent extraction. It is an exothermic reaction so the temperature rises .The solution is diluted with scrub raffinate and allowed to settle for 2 hrs. After 2 hrs. The insoluble solids settle down and a clear layer of zirconium nitrate is formed above the solids. The solids are drained off once a week in order to prevent choking of lines. The nitrate solution is checked for the required qualities such as free acidity, total acidity and the composition of zirconium and hafnium values. The nitrate solution is then sent to feed tanks, which is made of SS by means of centrifugal pump whose impeller is also made of stainless steel. The feed tanks have a conical bottom to ensure free draining of the silt that settles in due course time. The silt is cleaned once in 20 days. Large care is taken while handling nitric acid since it corrodes materials like Mild Steel, so, only Stainless Steel components are used while handling nitric acid. Here the material of construction of the reactor is SS-304L. Some safety precautions that must be taken while dissolution, is that the temperature must not rise abruptly to high value. If the temperature rises above this range then nitrate Fumes are released and the batch gets wasted. Usually sodium carbonate is sprinkled on the floor to neutralize the nitric acid that HN03 STEAM m DRY POWDER Baffles Acidic slit Feed slurry SCRUB RAFFINATE
  • 16. 15 leaks from pipelines. The other main factor is the concentration of nitric acid: if a higher concentration is used then the required acidity cannot be maintained. If the free acidity of the nitrate solution is above the required value then in slurry extraction even hafnium is extracted and if free acidity is less than the required value then some amount of zirconium is lost, so it is very necessary to maintain the free acid. If free acidity is less than the required value acid is added to increase the free acidity and if the free acidity exceeds the required value then acid addition is stopped. The foremost and the important chemical unit operation of zirconium oxide is “solvent extraction”. This process takes place as slurry extraction, scrubbing and stripping. 5.2 SOLVENT EXTRACTION The process of separation of the components of a solution depends upon the unequal distribution of the components between two immiscible liquids is known as “LIQUID – LIQUID EXTRACTION” or more simply “Liquid Extraction”. Liquid extraction is sometimes called as “SOLVENT EXTRACTION”. Solvent extraction is a chemical engineering separation that has many variations and many applications in that process industries and uses many types of equipment. Solvent extraction is based on the principle that a solute can distribute itself in a ratio between two immiscible solvents, one of which is usually water and the other an organic solvent such as benzene, carbon tetrachloride, etc. in certain cases the solute can be more or less completely transferred into the organic phase. For a given metal, present in various species M1, M2, and so on up to Mi and distributed between an organic and aqueous phase, the extraction can be defined in the following terms. Distribution ratio or extraction coefficient, E E = Morg/Maq Where Morg = M1org + M2org + ……. Maq = M1aq + M2aq + ……… The above expression is valid for a simple system in which only one species is distributed and exists in the same form in both phases. Under ideal conditions, where the solute exists in the same form in both phases, interactions between solute and solvent are absent and association and dissociation reactions do not occur. When separation by distillation is ineffective or very difficult, liquid extraction is one of the main alternatives to consider. Close boiling mixtures or substances that cannot withstand the temperature of distillation, even under a vacuum, may often be separated from impurities by extraction, which utilizes chemical potential difference instead of vapour pressure difference. Separations done by solvent extractions are essentially physical in character and the various components are unchanged chemically. Nevertheless, the chemical nature of the liquids influences the extent of solutions involved. The minimum requirement for liquid extraction is the intimate contact of the two immiscible liquids for the purpose of mass transfer of the constituents from one liquid to the other, followed by physical separation of the two immiscible liquids.
  • 17. 16 The solvent extraction contains three units i.e., Extraction, scrubbing, stripping to produce the pure solution. During the extraction process, the organic solvent (TBP+Kerosene) is contained with the inorganic zirconium nitrate solution counter currently. Calculated amount of nitric acid is also added to maintain free acidity. The ZrO2 is then loaded into the organic solvent by contact, which is again loaded back into the pure solution (inorganic) as pre extract in the scrubbing unit. The function of a stage is to contact the liquids, allow equilibrium to be approached and to make a mechanical separation of the liquids. The contacting and separating correspond to mixing the liquids and settling the resultant dispersion, so these devices are usually called “MIXER SETTLERS”. Over the past many years, various designs of mixers settlers have been with general aim to decrease the required while maintaining high throughput and efficiency. Mixers are relatively easy to operate, reliable, flexible and fairly simple to design, are free of back mixing and the stage efficiencies are usually greater than 90%. With sufficient residence time and power in the mixer, and sufficient residence time in the settler, practically 100% stage efficiencies can be reached. Uncertainties in operation are considerably decreased by high stage efficiencies. A mixer settler transfers a solute from one liquid phase into another immiscible, or only partially miscible liquid phase. It consists essentially of a chamber where two liquids are mixed by stirring or some other means of agitation and a settler where two liquids are separated by gravity. Each stage consists of mixing and settling chambers, which alternate along the box so that mixers and settlers of adjacent stages are in juxtaposition. The liquids are brought into intimate contact in a mixing chamber and pass together, in the form of an unstable emulsion, to the settler through a port or slot placed about midway up the dividing wall. In the settler the phases disengage, the heavy phase on to the mixer of the next stage through a port plated low in the wall, while the lighter passes over a weir to the next adjacent mixer in the opposite direction. It will be seen that this flow pattern represents co current flow in each stage and counter current flow overall. These mixer settlers thus show little change in performance with moderate variations in through put and phase ratio, resulting in flexibility and ease of design. The settler size is a critical factor in mixer settler designs. The size is governed by the throughput limitations imposed by the rate of coalescence of the dispersed phase. The power input to the mixer has apparently little effect on the specific settling rate, but the rate was found to vary in a TBP/HNO3/Kerosene system with chemical composition, phase ratio and temperature. Advantages of mixer settlers:  Good contacting of phases  Handles wide range of flow ratio (with recycle)  Low head room  High efficiency  Many stages can be accommodated  Reliable scale up  Low cost and maintenance Disadvantagesofmixer settlers:  Large holdup  High power costs  High solvent inventory  Large floor space
  • 18. 17  Inter stage pumping may be necessary I. SLURRY EXTRACTION Raw materials:  Zirconium nitrate solution from the feed tanks  Lean solvent (TBP + Kerosene)  Nitric acid (to maintain free acidity) Extraction: In extraction, a solvent that preferentially dissolves one or more components in the mixture treats a mixture of two or more components. Mixer-settler is the most common type of extractor. Objective: For continuous operation a battery of mixer-settlers is used. Slurry extractor is multistage equipment. Except the last stage, all the other stages contain small settling tanks where no interphase is maintained between organic and aqueous. The last stage consists bigger settler tank (raffinate tank) where well defined inter-phase is maintained between organic and aqueous. Each stage is provided with an airlift for effective zirconium extraction and inter-stage pumping. Compressed air is used for operating airlift pumps. A long vertical disengagement section is followed by an airlift for separating compressed air from the mixed phases. A tangential entry is given from air disengagement section to settling tank for a better phase separation in settling tank. Each disengagement section is provided with a mist-eliminator where left out solvent in air is entrained and remaining air is vented out to a duct. Materialof construction: A typical slurry extraction unit consists of mixers and settlers that are made up of SS-304. In this unit a mixer and a settler comprises a stage. Processdescription: The nitrate solution (feed) is pumped through a digital rota meter (which is used for slurries) into the first stage and the lean solvent (TBP+ Kerosene) is passed in a counter current fashion into the last stage. A float rota meter cannot be used for slurries because the solids present in the slurry accumulate on the surface of the float and tend to increase the weight of the float thereby faltering the flow rate reading of the feed solution, so a digital rota meter is used. Initially all the stages are filed up with the lean solvent before starting the extraction. The solvent TBP is selected because of its tendency to extract only zirconium at a given acidity in the nitrate medium. The principle behind this type of extraction is that the zirconium in the aqueous phase is extracted in the organic phase. Nitric acid is added accordingly to maintain the free acidity. The extraction equipment used by ZOP is the new mixer-settler (made of SS316/304L) that has been indigenously developed by NFC. It mainly consists of a mixing section and a disengaging section. The main merit of this equipment is that the mixing and propagation is done by means of compressed air. The airlift mechanism follows the principle that when air mixes with the solution the density of the solution decreases and thereby it causes
  • 19. 18 the solution to rise and also it enhances the mixing operation. The disengaging section’s primary use is to disengage the air from the solution after it has been propagated. The primary advantage of using such airlift mechanism is that unlike the conventional mixer-settler it does not use any mechanical parts, which can develop various types of mechanical problems, which is absent in airlift since there is no use of mechanical components. The problems relating to the slurry extraction are: 1) The build-up of aqueous and organic phases. 2) This build up is mainly caused due to presence of excessive amount of either feed or organic in one stage. 3) This excessive amount of either feed or organic is mainly due to the presence of some amount of unreacted silica in the feed. 4) This unreacted silica forms a coating inside the pipeline and tends decrease the diameter of flow. 5) The reduced diameter of flow reduces the flow rate and thereby creates a build-up. 6) Thus this coating is root cause for the above said problems, so it has to be cleared. It is cleared by purging the equipment with steam, which melts the silica coating and thereby clears all the above said problems. II. SCRUBBING Raw materials:  Organic(extract) fromthe slurryextraction  Pure solutionfromstripping  Nitricacid Material of construction: The material of construction is SS316. Processdescription: The extract from slurry extraction that contains minimum amount of hafnium compounds is sent for scrubbing into the conventional mixer-settler where it is scrubbed with pure solution, which is the aqueous solution of pure zirconium nitrate obtained from the stripping process. The scrubbing operation is a counter current operation. Both the phases are mixed in a mixer, which essentially consists of an agitator, side baffles and two inlets for organic and aqueous phases. The side baffles are provided in order to provide turbulence, which in turn provides good mass-transfer. If there is no side baffle then the liquid moves in a circular motion without mixing with the bulk of the solution. After the solution is mixed it is allowed to settle through an opening in the side. The settling compartment is comparatively longer than that of the mixing chamber. The settled solution is again transferred to the next stages by means of the density differences and again mixed and settled. This is carried out repeatedly and finally we obtain the scrub raffinate and the extract pure (which is the feed for stripping). The salient problems encountered here are those of the mechanical parts or the moving parts, so regular maintenance has to be made in order to keep the unit efficiently working.
  • 20. 19 The main importance of this unit is that the hafnium composition is totally eliminated (<50 ppm). The other point to be noted is that the some amount of zirconium is associated in the scrub raffinate, which is used for dilution in the reactor, and some part is again sent into another extraction chamber to get back the zirconium. Other than Lean solvent (TBP+Kerosene),the use of methyl isobutyl ketone (MIBP) in a cyanide medium can be used as solvent for extraction. The main drawbacks of using MIBK are that it has a low flash point, it is toxic and corrosive. EXTRACTION: The scrub raffinate is the feed and it counter currently extracted with lean solvent (TBP+ Kerosene). The zirconium left out in the scrub raffinate is extracted in the acidic medium (nitric acid), which is again sent to the scrubbingunit. The product obtained here is “Extract”.
  • 21. 20 III. STRIPPING Raw materials:  Extract pure from the scrubbingsection  De Mineralizedwater Processdescription: The stripping unit is the same as the scrubbing and the extraction units, the only difference lies in that of the minerals used. Here the extract pure from the scrubbing unit is counter currently mixed with demineralized water. Here the zirconium in the organic phase is transferred to the aqueous phase. The stripped organic solvent is sent for treatment with soda solution. The zirconium that is in the aqueous phase is known as pure solution. Some part of the pure solution is transferred to the storage tanks and the other part is recycled to the scrubbing section.
  • 22. 21 TREATMENT WITH SODA SOLUTION: Raw materials:  Lean solventfromthe strippingunit  Soda solution  DM water ProcessDescription: The Lean solvent from the stripping section is sent to mixer-settler unit in which soda solution is passed in a counter current flow. The lean solution i.e., tri butyl phosphate degrades into mono butyl phosphate and di butyl phosphate. The main use of this treatment is to remove the mono butyl phosphate and di butyl phosphate, which dissolve in soda solution thereby producing free tri butyl phosphate. MBP and DBP have higher solubility in aqueous medium than that of TBP. So, it always betters to treat the degraded TBP before sending it for extraction. The most important point to be noted here is that the plant does not consume excess TBP as it can be treated and recycled back to the extraction process. There is certainly some wastage but it is minor. TBP has 0.39g/l solubility in water DBP has 0.64g/l solubility in water MBP has complete solubility in water Safetyprecautions: o Use personal protection accessories like gloves, masks etc. o Avoid chemical spillage. o TBP and kerosene are flammable. Hence all fire prevention measures must be taken. o Wall and local exhaust must be on. o Emulsion formation should be avoided. o Ensure clear phase separation such that entrainment is avoided in organic aqueous streams. o Maintain correct inter phase levels. o Check airlift pump also for sufficient pressure. o In this we should check the pulleys, belts and agitators before starting the operation. o The silica coming from the slurry extraction may cause problems. So we have to check for scaling. 5.3 PRECIPITATION Raw materials:  Pure solutionfromthe strippingunit  Ammoniumhydroxide  Sulphuricacid
  • 23. 22 Materialof construction: Precipitation tank is made up of SS-304. An agitator is provided for mixing. Chemicalreaction: The required amount of pure solution, ammonium hydroxide and sulphuric acid are taken into the precipitation tank and are agitated. The temperature is maintained around 600 C. The following reaction takes place: - Zr (NO3)4 + 6NH4OH + H2SO4Zr (OH)4 + 4NH4NO3 + (NH4)2SO4 Sulphuric acid is added to the solution in order to make the cake fluffier and to reduce the density of the zirconium oxide. Ammonium hydroxide is added to precipitate zirconium hydroxide from zirconium nitrate.
  • 24. 23 Processdescription: The solution coming from the precipitation tank is sent to a vacuum rotary drum filter. We have to maintain vacuum of around 450 mm Hg. The filter cloth we are using here is polypropylene. The drum rotates with a speed of 1.33 revolutions per minute. The cake coming out contains 80-85% moisture which consists of water,ammonium nitrate and ammonium sulphate. This wet cake is sent for repulping. In repulping the wet cake is mixed with water where ammonium nitrate will dissolve in water and again sent it for filtration. The slurry free of solids transferred to scrubbing unit where alkalinity changes to neutralization. We have to agitate the slurry during the filtration to avoid settling of any solids in the equipment and also we should maintain 600 C with manual controlled steam valve. Safetyprecautions: 1. Use personal protective appliances. 2. Check for any damage to the polypropylene cloth. 3. Avoid spillage of slurry by overflow. Note:pH of the slurry is maintained at 7 before filtration. 5.4 REPULPING Raw materials:  Filteredcake  Demineralizedwater ProcessDescription: The slurry from the precipitation tank is passed through a rotary vacuum drum filter. The cake thus obtained is mixed with demineralized water in a tank. This process is called repulping. The importance of repulping is that is ammonium compounds dissolve in demineralized water thereby reducing the possibility of explosion in the drying chamber. 5.5 VACUUM FILTRATION Raw materials: Filtered cake from repulping
  • 25. 24 Filtration: Filtration is the removal of solid particles from a fluid passing the fluid through a filtering medium, or septum, on which solids are deposited. Objective: It consists of a cylindrical drum mounted horizontally. Their outer surface of the drum is formed of perforated plate. A filter medium such as polypropylene cloth covers the outer surface of the drum, which turns at 0.1-2 rpm in an agitated slurry trough. The annular surface between the two drums is dividing into number of compartments/sectors (12) by radial partition through a rotary valve (12 holes). Here in ZOP a continuous vacuum drum filter is used, in which filtration & discharge of cake takes place continuously. Materialof construction: Apart from cast iron, other materials of construction include stainless steel, titanium and plastics such as poly vinyl chloride etc. These materials give much improved corrosion resistance for many types of slurry. ProcessDescription: The slurry from the repulping is sent for vacuum filter. As the drum rotates, vacuum is applied to all compartments except the one at which the cake has to be released,air is applied. The solution coming from the precipitation tank is sent to a vacuum rotary drum filter we have to maintain the vacuum of around 450mmHg. The filter cloth here we are using is polypropylene. The drum rotates with a speed of 1.33 revolutions per minute. The cake coming out contains 80-85% moisture which consists of water,ammonium nitrate and ammonium sulphate. We have to agitate the slurry during the filtration to avoid settling of any solids in the equipment and also we should maintain 60c with manual controlled steam valve. When the drum dips into the slurry vacuum is applied because of which the slurry is sucked into the drum. The vacuum drum filter essentially consists of a boot in which the slurry is allowed. The drum is placed inside the boot. There is a factor known as submergence, which affects the rate of formation of cake. The submergence is about 30% in this case. When the drum comes out of the boot then air is applied to blow out the filter cloth thereby helping the easy scraping of the cake. The cake is scraped using a doctor blade. The drum has a filter cloth, which is used to retain the solid, and the liquid passes through the cloth and it goes into a receiver. The liquid in the receiver is then drained into a waste storage tank, from where it is taken away by other companies for the production of ammonium nitrate.
  • 26. 25 ADVANTAGES  The filter is continuous in operation, as the rotary drum is rotated by electric motor. So the manpower requirement is very low.  With cake consisting of coarse solids, it is possible to remove most of the liquids from the cake before discharging. DISADVANTAGES  The maximum available pressure difference is limited as it being a vacuum filter. 5.6 DRYING To bring the moisture content of wet cake from 85% to 30%, to make the material free flowing and to remove ammonium nitrate from the cake,high temperature drying is done.
  • 27. 26 Materialof construction: Processdescription: The cake obtained from the filtration section is collected in bunkers and is collected in bunkers and is charged in the static bed dryers. The bunkers are lifted by means of a hoist. The material is dried for about 12-16 hours at high temperature with intermittent baking of the material. Raking is done to distribute the heat uniformly in the material. Later the oven is checked for every 4 hours to level the surface for faster drying. The dryer has shutters through which the material is charged. After completion of drying, the shutters are opened by means of rotating wheels provided. The dried product is collected in containers and is taken to the charging section and transported into calcinations hopper. Then the oven is available for next cycle. 5.7 CALCINATION It is the process of removing volatile impurities to specified limits, present in the substance. This type of furnace that is indirect heated and is adopted for drying of free granular material on a large scale. Exhaust Discharge BLOWER Heating elements FEED POINT HOT TEMPERATURE OVEN
  • 28. 27 Objective: It consists of hollow cylindrical shell of diameter 350mm-500mm and a length of 5m-8m with it axis at a slight angle of horizontal. So that the material is consequently advances through the dryer from one end to another end. It is supported on rollers so that it can be rotated. To avoid slipping over rollers, it is fitted with thrust wheels. It is fitted inside with flights, which lefts the material upwards and showered if down from the top. Few spiral flights are fitted near the feed end, which helps initial forward motion of the material before the principal flights are reached. The material, which is to be dried, is fed at higher end of the drier a by the hopper the product is to be taken from the lower end. Materials move through dryer by virtue of its motion, heat effects and inclination of the cylindrical shell. The cylindrical shell is rotated by a gear mechanism at a speed of 2-2.5rpm. This is fixed in a furnace refractory lined of sellamanite bricks. The heating coils are arranged in the refractory bricks. The heating coils are made up of Nichrome. PPrroocceessss ddeessccrriippttiioonn:: The dried material is charged through an opening at the top and is fed into the rotary furnace. The chamber has a cylindrical tube rotating inside a rectangular box. The calciner is a 150 KW capacity heater. The cylindrical tube is made up of SS310 and the heating elements are made of nichrome. The temperature reached in a calcinations chamber is about 800OC. the main use of this furnace is to drive away the moisture and the other volatile impurities to the specified limits. The calcined material is Zirconium oxide, which is collected in drums at the other end of the furnace. The collected oxide is sent for grinding. CChheemmiiccaall RReeaaccttiioonn:: ZZrr ((OOHH))44 -------------------------------------------------- ZZrrOO22 ++ 22HH22OO
  • 29. 28 AAddvvaannttaaggeess::  Moderate drying time.  Low capital cost  High thermal efficiency  Continuous operation DDiissaaddvvaannttaaggeess  Difficulty of sealing  High structural load Safetyprecautions: 1. Clean exhaust duct for every 8 hours 2. Avoid high feed rate 3. Ensure emergency power supply 4. Collect the exhaust duct material 5.8 GRINDING PPrriinncciippllee:: Size reduction is achieved by impact and attrition. CCoonnssttrruuccttiioonn:: The hammer mill consists of essentially of high-speed rotor turning inside a cylindrical casing. The rotor is mounted on a shaft, which is usually horizontal. In this mill, the particles are broken by sets of swing hammers. They may be straight bars of metal with plane or enlarged ends. The products fall through a gate or screen, which forms the lower portion of the casing. Several rotors discs each carrying 4 to 8 swing hammers is often mounted on a single shaft. The rotor disc diameter ranges from 150mm to 250mm as the hammers hinged. The hammers are readily replaced when they are worn out. PPrroocceessss DDeessccrriippttiioonn:: The calcined material is then sent to the grinding section. The grinding section essentially consists of a feed charger, a feed rate adjusted hammer mill, a blower and a big filter. The feed rate is adjusted using a mechanical device. If the machine reaches the overloading limit then using the feed rate adjuster the overloading can be stopped. If the machine gets overloaded then it comes halt thereby disrupting further production.
  • 30. 29 The material is ground in the hammer mill. The grinding action is because of both impact and attrition. The ground power is pneumatically carried using a centrifugal blower. It is collected in a drum and very fine particles are collected in the bag filter. Coarser particles are sent back to the hammer mill and are ground to the required size. The product is of 325 mesh. Another important aspect to be considered in grinding is that of the amount of sulphuric acid is added. If less amount of sulphuric acid is added then the obtained material is hard and the grinding load on the machine increased thereby increasing the grinding time which in turn increases the current consumption. SSaaffeettyy PPrreeccaauuttiioonn:: 1. Check for foreign items like nuts, bolts, etc. 2. Clean the dust collecting system. 3. Do not keep a high feed rate. 4. Keep belt guard in position. 5.9BLENDING Blending is a process of mixing the ground solids in required proportion to get the required percentage purity of zirconium oxide. The zirconium oxide thus obtained is then sent to
  • 31. 30 Zirconium Sponge Plant (ZSP) for production of zirconium metal and then sent to Zirconium Fabrication Plant (ZFP) for the production of Zircaloy, which is used as cladding material in nuclear reactors. 6. PROPERTIES AND USES OF ZIRCONIUM OXIDE PPrrooppeerrttiieess ooff zziirrccoonniiuumm ooxxiiddee::  Highdensity  Thermal conductivity(20%thatof alumina)  Chemical inertness  Ionicelectrical conduction  Resistance tomoltenmass  Highfracture toughness  HighhardnessZirconiumoxide (zircon) alsohasahighindex of refraction TTyyppiiccaall uusseess ooff zziirrccoonniiuumm ooxxiiddee::  Precisionball valve ballsandseats  Highdensityball andpebble millgrindingmedia  Rollersandguidesformetal tube forming  Threadand wire guides  Hot metal extrusion  Deepwell down-hole valvesandseatsdies  Powercompactingdies  Marine pump sealsandshaftguides  Oxygensensors  Hightemperature inductionfurnace susceptors  Fuel cell membranes  Electricfurnace heatersover2000O C in oxidizingatmospheres 7. HEAT EXCHANGER & IT’S CLASSIFICATION Heat exchangers is a piece of equipment build for efficient heat transfer from one medium to another. The media may be separated by solid wall to prevent the mixing or they may be in direct contact. They are widely used in space heating, refrigeration, power plant, chemical plant petrochemical plant, petroleum refinery etc.
  • 32. 31 It is still difficult to have an overview, and a classification needs to be made. It is possible to classify heat exchangers in a number of ways.
  • 33. 32 8. TYPES OF HEAT EXCHANGERS There are many types of heat exchangers used in industries. The heat exchangers that are commonly used in industries are: 1. Double pipe heat exchanger: Double pipe heat exchangers are simplest heat exchangers used in industries. On one hand, these heat exchangers are cheap for both design and maintenance making them good choice for small scale industries. On other hand, their low efficiency coupled with the high space occupied in large scale has led modern industries to use more efficient heat exchangers like shell and tube or plate heat exchangers. However double pipe heat exchangers are used to teach heat exchanger design basics to students as the fundamental rule for all the heat exchangers are same. It is used where flow rate of fluid and heat duty is small. It is suitable for high pressure service. It is used when heat transfer area requirement is small. Advantages • Inexpensive • True countercurrentorco-currentflow • Easilydesignedforhighpressureservice Disadvantages • Difficulttocleanonshell side. • Onlysuitable forsmall sizes.Theyare generallynoteconomical if UA > 50,000 Btu/hr-o F. • Thermal expansioncanbe anissue. Typical Applications 1. Single phase heatingandcoolingwhenthe requiredheattransferareaissmall. 2. Can be usedfor heatingusingcondensingsteamif fabricatedwithelbowstoallow expansion U-type or hairpin construction for a double pipe heat exchanger.
  • 34. 33 2. Shell and tube heat exchanger: It is usually a cylindrical casing through which one of the fluid flows in one or Shell is commonly made of carbon steel. The minimum thickness of shell made of carbon steel varies from 5mm to 11mm depending upon the diameter. It may be cut to the required length from a standard pipe up to 60 cm diameter or Fabricated by rolling a metal plate suitable dimension into a cylinder and welding along the length. Tubes are providing the heat transfer surface. Variety of materials including low carbon steel, stainless steel, copper, brass, aluminum, etc. are used as tube material. Outside diameter of tubes vary from 6 mm to 40 mm. The tubes with outside diameter 19 mm to 25 mm are very common. The tube lengths used are 0.5, 2.5, 3, 4, 5 and 6 m. It depends upon the material of construction and diameter. The tubes that are placed in a tube bundle inside the shell are either rolled or welded to the tube sheet. Tube side fluid first enters a channel through and then through the tubes in one or multi pass fashion. The shortest center-to-center distance between the adjacent tubes is called the tube pitch. Tubes are generally arranged in square or triangular pitch manner. The shortest distance between the two tubes is called the clearance. The minimum pitch is 1.25 times the outside diameter of tube. Baffles are commonly employed within the shell to increase the rate of heat transfer by increasing the turbulence of shell side fluid and also provides supports for the tubes and act as dampers against vibration. Fig.:Shell and tube heat exchanger.
  • 35. 34 Passes are generally used to obtain higher velocities and long paths for a fluid to travel without increasing the length of the exchanger that leads to high heat transfer area. Single or two pass is used in shell side. One, two, four, six up to twelve passes used in tube side. Passes in tube side are formed by partitions placed in the shell cover and channel 3. Plate heat exchanger: It consists of a series of rectangular, parallel and corrugated plates held firmly together between substantial head frames. The plates have corner ports and are sealed and spaced by rubber gaskets around the ports and along the plate edges. These plates serve as the HT surfaces and are of stainless steel. Corrugated plates provide a high degree of turbulence even at low flow rates. Gap between plates is 1.3 to 1.5 mm. It is provided with inlet and outlet nozzles for fluid at the ends. Hot fluid passes between alternate pairs of plates, transferring heat to a cold fluid in the adjacent spaces. The plates can be readily separated for cleaning and the HT area can be increased by simply adding more plates. As it is very compact, requires very small floor space. High heat transfer coefficient, easy to clean. Plate heat exchanger are competitive with Shell and tube heat exchanger where the corrosive fluid is to be handled. Heat sensitive material, where the temperature control is required, these units are used. Fig.:Plateheat exchanger. 4. Waste heatrecoveryunit: A waste heat recovery unit (WHRU) is a heat exchanger that recovers heat from a hot stream while transferring it to a working medium, typically water or oil. The hot gas stream can be the exhaust gas from a gas turbine or a diesel engine or waste gas from industry or refinery. Big system with high volume and temperature and gas stream, typical in industries can be benefit from steam Rankine Cycle in WHRU, but these cycle are too expensive for small system. The recovery of heat from low temperature system requires different working fluids than steam. An organic Rankine Cycle WHRU can be more efficient at low temperature range using Refrigerant that boil at lower temperature than water. Typical organic refrigerant are Ammonia Pentafluoropropane and Toluene. The refrigerant is boiled by the heat source in the evaporator to produce super-heated vapor. This fluid is expanded in the turbine to
  • 36. 35 convert thermal energy to kinetic energy, that is converted in to electricity in the electrical generator. This energy transfer process decrease the temperature of the refrigerant that, condenses. The cycle is close and complete using a pump to send the fluid back to the evaporator. 9. DESIGNING OF DOUBLE PIPE HEAT EXCHANGER The double-pipe heat exchanger is one of the simplest types of heat exchangers. It is called a double-pipe exchanger because one fluid flows inside a pipe and the other fluid flows between that pipe and another pipe that surrounds the first. This is a concentric tube construction. Flow in a double-pipe heat exchanger can be co-current or counter-current. There are two flow configurations: co-current is when the flow of the two streams is in the same direction, counter current is when the flow of the streams is in opposite directions. As conditions in the pipes change: inlet temperatures, flow rates, fluid properties, fluid composition, etc., the amount of heat transferred also changes. This transient behavior leads to change in process temperatures, which will lead to a point where the temperature distribution becomes steady. When heat is beginning to be transferred, this changes the temperature of the fluids. Until these temperatures reach a steady state their behavior is dependent on time. In this double-pipe heat exchanger a hot process fluid flowing through the inner pipe transfers its heat to cooling water flowing in the outer pipe. The system is in steady state until conditions change, such as flow rate or inlet temperature. These changes in conditions cause the temperature distribution to change with time until a new steady state is reached. The new steady state will be observed once the inlet and outlet temperatures for the process and coolant fluid become stable. In reality, the temperatures will never be completely stable, but with large enough changes in inlet temperatures or flow rates a relative steady state can be experimentally observed. . The outer tube is called the annulus. In one of the pipes a warmer fluid flows and in the other a colder one. Co-currentFlow To understandwhatfactorsinfluence the dimensionsof thisheatexchangerwhenacertainheatrate is expectedsome simpleequationswill be examined. CountercurrentFlow
  • 37. 36 First a simple heat balance: q = m& h ⋅ch ⋅(ThI −ThII ) = m& c ⋅cc ⋅(TcII −TcI ) (1.1) With: qh = heat transferred from the hot to the cold fluid (kW) m& h = mass flow of the hot fluid (kg/s ) ch = specific heat of the hot fluid (kJ/kg/°C) ThI = hot fluid at position I (°C) ThII = hot fluid at position II (°C) The subscript c stands for cold. But alsothe nextequationisvalid: q =U ⋅ A⋅LMTD (1.2) With: q = the heat transferred between the hot and the cold fluid (kW) U = the overall heat transfer coefficient (kW/m2/°C) A = the heat transferring surface (m2) LMTD = the log mean temperature difference LMTD for counter flow the following can be written down: LMTD = ( 𝑇1−𝑡2)−(𝑇2−𝑡1) 𝑙𝑛 (𝑇1−𝑡2) (𝑇2−𝑡1) (1.3) Where: T1= Hot fluid inlet temperature. T2= Hot fluid outlet temperature. t1 = Cold fluid inlet temperature. t2= Cold fluid outlet temperature.
  • 38. 37 Another big factor in heat exchanger design is of course costs. The three main relevant factors that have the greatest effect on size and therefore on costs are: - Pressure drops - Log Mean Temperature Difference - Fouling factors They will be discussed one by one. Pressure drops – If unrealistically low allowable pressure drops are imposed, the designer is forced to use lower fluid velocities to maintain the pressure drops limitations. Lower velocities can result in a large heat exchanger. Higher pressure drops result in a smaller heat exchanger, but a pumping device is needed to maintain this high pressure drop. This pumping device needs energy and so operating costs must be calculated in the overall cost for the heat exchanger. Only by considering the relationship between operating costs and investments can the economical pressure drop be determined. Log MeanTemperature Difference – The size, or surface, of a heat exchanger is inversely proportional to the overall heat-transfer coefficient and the corrected LMTD. When looking at a shell-and-tube heat exchanger a so-called ‘corrected LMTD’ must be used instead of the LMTD presented earlier when the double-pipe heat exchanger was discussed.Assuming that reasonable temperatures have been specified, a designer should try to maximize the product of the heat- transfer rate and the LMTD. Fouling factors – According to Garrett-Price (1985) “fouling is generally defined as the forming of deposits on heat transfer surfaces, which interferes with heat transfer and/or fluid flow”. In other words, by using a heat exchanger small layers of insulating material will be formed on the heat transferring surfaces of that heat exchanger. The influence of this layer is two-sided: 1) The layer has a high thermal resistance, higher then any other part of the heat exchanger, thereby increasing the total thermal resistance. This will decrease the amount of heat transferred through the surfaces and reduces the efficiency of the heat exchanger. 2) The presence of a layer will decrease cross-sectional flow area of the medium. To achieve the same throughput through this smaller area, there’s a bigger pressure drop needed. Additional pumping is needed, increasing to total amount of energy added to the system, decreasing the efficiency. So fouling is a absolutely not-wanted phenomenon. The problem is that the heat exchanger that doesn’t suffer from fouling still has to be invented. Furthermore fouling is extremely difficult to describe. That’s why recent years there’s a lot of emphasis on the analysis of this problem.
  • 39. 38 A convenient order of calculations follow: 1. From T1, T2, t1 and t2 check the heat balance Q, using c at Tmean and tmean Q = MC(T1 –T2 ) = mc(t2 - t1). 2. Calculate LMTD assuming counter flow. 3. Tc and tc : if liquid is neither a petroleum fraction nor a hydrocarbon then the calorific temperature need not to be determine. If neither of liquid is very viscous at cold terminal say not more than 1 centipoise, if the temperature difference is less than 50oF, then the arithmetic mean temperature T1 and T2 and t1 and t2 can be used in place of Tc and tc for evaluating the physical properties of liquids. For non-viscous liquid, 𝝋= (𝝁/𝝁w)0.14 may be taken as 1. Inner pipe. 4. Flow area, ap = 𝛑𝐃 𝟐 /4, ft2 . 5. Mass velocity, GP = (mass flow rate of liquid in inner pipe ./ ap) , lb/(hr.)(ft2). 6. Obtain 𝝁 at Tc or tc depending upon which flow through the inner pipe. 𝝁 , lb/(ft)(hr) = centipoise x 2.42 . From D, ft (inner diameter of inner pipe.) and Gp , obtain Reynolds number Rep =DGp / 𝝁 . 7. From fig. 24, in which JH = (hiD/k)(c𝝁/k)-1/3(𝝁/𝝁w)0.14 vs. DGp / 𝝁 , obtain JH. 8. From c Btu /(lb)(oF) , 𝝁 lb/(ft)(hr) , k Btu / (hr)(ft2)(oF/ft) , all obtained at Tc or tc , compute (c𝝁/k)1/3. 9. To obtain hi multiply JH by (k/D) (c𝝁/k)1/3 (𝝋 = 1) gives hi Btu/(hr)(ft2)(oF). 10. Convert hi to hio by using , hio = hi x ID/OD of inner pipe. Annulus: 11. Flow area, aa = 𝛑(D2 2-D1 1) / 4, ft2.
  • 40. 39 Equivalent diameter De = 𝟒 𝒙 𝒇𝒍𝒐𝒘 𝒂𝒓𝒆𝒂 𝒘𝒆𝒕𝒕𝒆𝒅 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓 = (D2 2 – D1 2) / D1 , ft. 12. Mass velocity, Ga = (mass flow rate of liquid in annlus. / aa ) , lb/(hr.)(ft2). 13. Obtain 𝝁 at Tc or tc depending upon which flow through the inner pipe. 𝝁 , lb/(ft)(hr) = centipoise x 2.42 . From De ft (inner diameter of inner pipe.) and Ga , obtain Reynolds number Rep =DeGa / 𝝁 . 14. From fig. 24, in which JH = (hoD/k)(c𝝁/k)-1/3(𝝁/𝝁w)0.14 vs. DeGa / 𝝁, obtain JH. 15. From c Btu /(lb)(oF) , 𝝁 lb/(ft)(hr) , k Btu / (hr)(ft2)(oF/ft) , all obtained at Tc or tc , compute (c𝝁/k)1/3. 16. To obtain ho multiply JH by (k/De) (c𝝁/k)1/3 (𝝋 = 1) gives ho Btu/(hr)(ft2)(oF). Overall coefficient 17. Compute Uc = hohio / (hio+ ho ) , Btu / (hr)(ft2)(oF). 18. Compute Ud , from 1/Ud =1/Uc + Rd . 19. Compute Area from Q = Ud A (LMTD), which may be translated into length. If the length should not corresponds to integral no. of hairpins required a change in dirt factor will result. The recalculated dirt factor should equal or exceed the required dirt factor by using the next larger integral no. of hairpins . Calculation of pressure drop requires a knowledge of total length of path satisfying the heat transfer requirement. Pressure drop (Inner pipe) 20. From Rep in (6) above , obtain f =0.0035 + .264/(Rep)0.42. 21. ∆𝑭p = 4fG2L /2g𝝆2D, ft. 22. ∆𝑷p psi. = ∆𝑭p 𝝆 / 144.
  • 41. 40 Pressure drop (Annulus side) 23. Obtain D’e = ( D2 – D1 ) 24. Compute the frictional Reynolds number using the above D’e , and then calculate f by using no. 20 and frictional Reynolds number. 25. ∆Fa = 4FG2L / 2g𝝆2D’e , ft. 26. Entrance and exit losses , one velocity head per hairpin, ∆Fl =V2 /2g’ ft. /hairpin 27. ∆𝑷a psi = (∆Fl + ∆Fa )𝝆 / 144 There is an advantage if both fluid calculation is computed side by side. 10. NUMERICAL ON DESIGING OF DOUBLE PIPE HEAT EXCHANGER. Q.) Ammonia hydroxide is formed by reaction of ammonia and water according to following reaction, NH3 + H2O ----------- NH4OH. Reaction is an exothermic reaction in which heat is liberated.As the reaction proceeds temperature rises.According to Le- chatelier’s principal, backward reaction occurs ifexothermic reaction occurs at higher temperature. So,heat is removed from reaction by use ofcold water in double pipe heat exchanger. A 2 𝟏 𝟐 inch by 1 𝟏 𝟒 inch I.P.S pipe( shec. No. = 40) double pipe heat exchanger is used. The temperature of hot fluid at inlet and outlet are 96.8 oF and 78.8oF respectively. The temperature of cold water at inlet and outlet are 77oF and 93.2oF respectively. Design a double pipe heat exchanger considering fouling factor to be 0.001. Consider pressure
  • 42. 41 drop should not exceedmore than 10 psi. Calculate the required no. of hairpins used if the length of pipe is 20 ft. The flow rate of ammonia is 500 kg/hr .The required normality of ammonia hydroxide solution is 10N. Ans.) NH3 + H2O -------- NH4OH 17kg 18kg 35kg For 10N ammonia hydroxide solution 350kg of ammonia hydroxide must be dissolved in 1000kg water which required 170 kg ammonia. As 10N solution is prepared, it have density same as that of density of water. So , 1000 liters is same as 1000 kg. 170 kg ammonia ------------- 350 kg ammonia hydroxide-------------- 1000kg solution For, 500 kg ammonia ----------1029.41kg ammonia hydroxide------------2941 kg of solution Therefore the flow rate of hot fluid = 2941 kg /hr = 6483.8 lb/hr. As fluid is not petroleum or hydrocarbon so we can take mean temperatures as calorific temperature. Both the fluid is non-viscous so, 𝝋= (𝝁/𝝁w)0.14 = 1 Tmean = (96.8+78.8) / 2 = 87.8oF tmean = (77+93.2) /2 = 85.1oF Physical properties of fluid at this mean temperature. For hot fluid. (mean temp.=87.8oF) For cold fluid (mean temp. =85.2oF) C (Btu/hr. oF ) =1.145 c (Btu/hr. oF ) = 1 𝝁 lb/(ft)(hr) = 2.444 𝝁 lb/(ft)(hr) = 2.187 k Btu / (hr)(ft2)(oF/ft) = 0.269 k Btu / (hr)(ft2)(oF/ft) = 0.355 𝝆 = 56.875 Btu /ft 3 𝝆 = 62.5 Btu /ft 3
  • 43. 42 All above data from appendix of D.KERN HEAT BALANCE Q = MC(T1 –T2 ) = mc(t2 - t1). Putting the values, we get flow rate of cold fluid m = 7423.951 lb/hr. LMTD CALCULATION LMTD = ( 𝑇1−𝑡2)−(𝑇2−𝑡1) 𝑙𝑛 (𝑇1−𝑡2) (𝑇2−𝑡1) = 2.59 OUTER PIPE Outer diameter = .24 ft. Inner diameter = .20575 ft. INNER PIPE Outer diameter = .138ft. Inner diameter = .115ft. INNER PIPE (HOT FLUID) (AMMONIA SOLUTION)  Flow area , ap = 𝛑𝐃 𝟐 /4, ft2 =0.0138 ft2  Equivalent dia . = .115 ft2  Mass velocity GP = (mass flow rate of liquid in inner pipe ./ ap) , lb/(hr.)(ft2). = 624643.54 lb/(hr.)(ft2)  Rep =DeGa / 𝝁 = 624643.54 X .115 / 2.444 = 29391.95  JH = 109 ( referring fig. 24 , Appendix ,D. Kern)  hi Btu/(hr)(ft2)(oF).= JH X (k/De) (c𝝁/k)1/3 (𝝋 = 1) = 556.58 Btu/(hr)(ft2)(oF).  hio = hi x ID/OD of inner pipe = 556.58 X .115 / .138 = 463.81 Btu/(hr)(ft2)(oF).
  • 44. 43 ANNULUS REGION (COLD FLUID)(WATER)  Flow area, , aa = 𝛑(D2 2-D1 1) / 4, ft2 =0.01829 ft2.  Equivalent diameter De = 𝟒 𝒙 𝒇𝒍𝒐𝒘 𝒂𝒓𝒆𝒂 𝒘𝒆𝒕𝒕𝒆𝒅 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒆𝒓 = (D2 2 – D1 2) /D1 , ft. = (.𝟐𝟎𝟓𝟕𝟓) 𝟐−(.𝟏𝟑𝟖)𝟐 .𝟏𝟑𝟖 = 0.168 ft2.  Ga = (mass flow rate of liquid in annlus. / aa ) , lb/(hr.)(ft2). = 7423.951/ .01829 = 405902.187 lb/(hr.)(ft2).  Rep =DeGa / 𝝁 = .168 X 405902.2 / 2.180 = 32472.176  JH. =122 (referring fig.24 , Appendix ,D. Kern).  For ho multiply JH by (k/De) (c𝝁/k)1/3 (𝝋 = 1) gives ho = 466 Btu/(hr)(ft2)(oF). Overall coefficient.  Clean over all heat transfer coefficient Uc = hohio / (hio+ ho ) , = 232.45 Btu / (hr)(ft2)(oF).  Ud , from 1/Ud =1/Uc + Rd . Ud = 188 Btu / (hr)(ft2)(oF). (taking Rd = 0.001).  Computing Area by using ,
  • 45. 44 Q = Ud A (LMTD) A= Q/Ud X LMTD = 274 ft2.  Computing length of pipe For 1 𝟏 𝟒 inch I.P.S pipe 0.435ft2 of external surface / ft length Required length = 𝑨 𝟎.𝟒𝟑𝟓 = 274/0.435 =629.88 ft. As 20 ft pipe is used , so for one hairpin the length will be 40 ft. Therefore, no. of hairpins required = required length/ 40 = 629.88/40 = 15.72 =16 Number of hairpins required = 16. PRESSURE DROP INNER PIPE  Rep in (6) above , obtain f =0.0035 + .264/(Rep)0.42 = 0.0035 + .264/(29391.95)0.42 = 4.83 X 10-3 .  ∆𝑭p = 4fG2L /2g𝝆2D, ft. By putting the values from above we get, ∆𝑭p=22.50 ft.  ∆𝑷p psi. = ∆𝑭p 𝝆 / 144. = 22.50 X 56.87 /144 = 8.88 psi
  • 46. 45 Annulus region  D’e = ( D2 – D1)= .20575-.138 = .06775ft.  Nre’= .06775 X405902.187 /2.30 = 11956.466.  f = .0035 + .264/(11956.46).42 = 8.61 X 10-3.  ∆Fa = 4FG2L / 2g𝝆2D’e , ft. By putting the values from above, we get ∆Fa= 15.270 ft.  Entrance and exit losses , one velocity head per hairpin, ∆Fl =V2 /2g’ ft. /hairpin. =0.804 ft. /hairpin.  ∆𝑷a psi = (∆Fl + ∆Fa )𝝆 / 144 = ( .804 + 15.270) X 62.5 / 144 = 6.97 psi.