SlideShare a Scribd company logo
1 of 117
Solids
Eisberg & Resnick Ch 13 & 14
RNave:
http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
Alison Baski:
http://www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt
Carl Hepburn, “Britney Spear’s Guide to Semiconductor Physics”.
http://britneyspears.ac/lasers.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
OUTLINE
• Review Ionic / Covalent Molecules
• Types of Solids (ER 13.2)
• Band Theory (ER 13.3-.4)
– basic ideas
– description based upon free electrons
– descriptions based upon nearly-free electrons
• ‘Free’ Electron Models (ER 13.5-.7)
• Temperature Dependence of Resistivity (ER 14.1)
Ionic Bonds
RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
Ionic Bonds
Ionic Bonding
RNave, Georgia State Univ at hyperphysics.phy-astr.gsu.edu/hbase/molecule
Covalent Bonds
RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
Covalent Bonding
SYM ASYM
spatial spin
ASYM SYM
spatial spin
space-symmetric tend to be closer
Covalent Bonding
Stot = 1
not really parallel, but spin-symmetric
not really anti, but spin-asym
Stot = 0
space-symmetric tend to be closer
TYPES OF SOLIDS (ER 13.2)
CRYSTALINE BINDING
• molecular
• ionic
• covalent
• metallic
Molecular Solids
• orderly collection of molecules held together by v. d. Waals
• gases solidify only at low Temps
• easy to deform & compress
• poor conductors
most organics
inert gases
O2 N2 H2
Ionic Solids
• individ atoms act like closed-shell, spherical, therefore binding
not so directional
• arrangement so that minimize nrg for size of atoms
• tight packed arrangement  poor thermal conductors
• no free electrons  poor electrical conductors
• strong forces  hard & high melting points
• lattice vibrations absorb in far IR
• to excite electrons requires UV, so ~transparent visible
NaCl
NaI
KCl
Covalent Solids
• 3D collection of atoms bound by shared valence
electrons
• difficult to deform because bonds are directional
• high melting points (b/c diff to deform)
• no free electrons  poor electrical conductors
• most solids adsorb photons in visible  opaque
Ge Si
diamond
Metallic Solids
• (weaker version of covalent bonding)
• constructed of atoms which have very weakly
bound outer electron
• large number of vacancies in orbital (not enough
nrg available to form covalent bonds)
• electrons roam around (electron gas )
• excellent conductors of heat & electricity
• absorb IR, Vis, UV  opaque
Fe Ni Co
config dhalf full
BAND STRUCTURE
Isolated Atoms
Diatomic Molecule
Four Closely Spaced Atoms
Six Closely Spaced Atoms
as fn(R)
the level of interest
has the same nrg in
each separated atom
Solid of N atoms
Two atoms Six atoms
ref: A.Baski, VCU 01SolidState041.ppt
www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt
Four Closely Spaced Atoms
valence band
conduction band
Solid composed of ~NA Na Atoms
as fn(R)
1s22s22p63s1
Sodium Bands vs Separation
Rohlf Fig 14-4 and Slater Phys Rev 45, 794 (1934)
Copper Bands vs Separation
Rohlf Fig 14-6 and Kutter Phys Rev 48, 664 (1935)
Differences down a column in the Periodic Table: IV-
A Elements
Sandin
same valence
config
The 4A Elements
Band Spacings
in
Insulators & Conductors
electrons free to roam
electrons confined to small region
RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
How to choose eF
and
Behavior of the Fermi function at
band gaps
Fermi Distribution for a selected eF
0
0.5
1
1.5
0 1 2 3 4
Energy
Probability
of
an
energy
occuring
(not
normalized)
T=0
1000
5000
1
1
)
( /
)
(

  kT
F
e
n e
e
e
How does one choose/know eF
If in unfilled band, eF is energy of highest energy electrons at T=0.
If in filled band with gap to next band, eF is at the middle of gap.
Fermions
T=0
RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
Fermions T > 0
Number of Electrons at an Energy e
    e
e
e
e d
N
n
KE
Tot 


0
distrib fn Number of ways
to have a particular
energy
In QStat, we were doing
Number of electrons
at energy e
# states
probability
of this nrg
occurring
# electrons
at a given nrg
Semiconductors
ER13-9, -10
Semiconductors
• Types
– Intrinsic – by thermal excitation or high nrg photon
– Photoconductive – excitation by VIS-red or IR
– Extrinsic – by doping
• n-type
• p-type
•
~1 eV
~1/40 eV
Intrinsic Semiconductors
Silicon
Germanium
RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
Doped Semiconductors
lattice
p-type dopants n-type dopants
5A in 4A lattice
3A in 4A lattice
5A doping in a 4A
lattice
5A in 4A lattice 3A in 4A lattice
‘Free-Electron’ Models
• Free Electron Model (ER 13-5)
• Nearly-Free Electron Model (ER13-6,-7)
– Version 1 – SP221
– Version 2 – SP324
– Version 3 – SP425
• .
• Free-Electron Model
– Spatial Wavefunctions
– Energy of the Electrons
– Fermi Energy
– Density of States dN/dE E&R 13.5
– Number of States as fn NRG E&R 13.5
• Nearly-Free Electron Model (Periodic Lattice Effects) – v2 E&R 13.6
• Nearly-Free Electron Model (Periodic Lattice Effects) – v3 E&R 13.6
 
*********************************************************
Free-Electron Model (ER13-5)
 
m
K
m
p
2
2
2
2
2



e
classical description
 






 E
m
0
2
2
2

  z
k
y
k
x
k
L
xyz z
y
x sin
sin
sin
8
3




In a 3D slab of metal, e’s are free to move
but must remain on the inside
Solutions are of the form:
L
nz 
 
2
2
2
2
2
8
z
y
x n
n
n
mL
h



e
With nrg’s:
Quantum Mechanical Viewpoint
At T = 0, all states are filled
up to the Fermi nrg
 max
2
2
2
2
2
8
z
y
x
fermi n
n
n
mL
h



e
A useful way to keep track of the states that are filled is:
max
2
2
2
2
n
n
n
n z
y
x 


total number of states up to an energy efermi:
3
3
max
4
8
1
8
1
2
2
n
sphere
of
volume 








N
3
/
2
2
3
8 








V
N
m
h
fermi

e
max
2
2
2
8
n
mL
h
fermi 
e
# states/volume ~ # free e’s / volume
Sample Numerical Values for Copper slab
V
N
= 8.96 gm/cm3 1/63.6 amu 6e23 = 8.5e22 #/cm3 = 8.5e28 #/m3
efermi = 7 eV
3
/
2
2
3
8 








V
N
m
h
fermi

e
nmax = 4.3 e 7
so we can easily pretend that there’s a smooth distrib of nxnynz-states
Density of States
How many combinations of are there
within an energy interval e to e + de ?
3
/
2
2
3
8 








V
N
m
h
fermi

e
2
/
3
2
8
3













h
mE
V
N

dE
h
m
h
mE
V
dN 2
2
/
1
2
8
8
2
3
3














  2
/
1
2
/
1
3
3
2
8
E
m
h
V
dE
dN 

    e
e
e
e d
N
n
KE
Tot 


0
At T ≠ 0 the electrons will be spread out among the allowed states
How many electrons are contained in a particular energy range?
















occuring
energy
this
of
y
probabilit
energy
particular
a
have
to
ways
of
number
 
1
1
2
8
/
)
(
2
/
1
2
/
1
3
3

 kT
E f
e
E
m
h
V
e

this assumes there are no other issues
Distribution of States:
Simple Free-Electron Model vs Reality
Problems with Free Electron Model
(ER13-6, -7)
 
* * * * * * * * * * * * * * * * * * * * * * * * * * * *
1) Bragg reflection
2) .
3) .
Other Problems with the Free Electron Model
• graphite is conductor, diamond is insulator
• variation in colors of x-A elements
• temperature dependance of resistivity
• resistivity can depend on orientation of crystal & current I direction
• frequency dependance of conductivity
• variations in Hall effect parameters
• resistance of wires effected by applied B-fields
• .
• .
• .
Nearly-Free Electron Model
version 1 – SP221
2
/
2
2
/
k
a

 

2
/


k
2
/
2
2
/
k
a

 

Nearly-Free Electron Model
version 2 – SP324
• Bloch Theorem
• Special Phase Conditions, k = +/- m /a
• the Special Phase Condition k = +/- /a
This treatment assumes that when
a reflection occurs, it is 100%.
(x) ~ u e i(kx-wt)
(x) ~ u(x) e i(kx-wt)
 
~~~~~~~~~~
amplitude
In reality, lower energy waves are sensitive to the lattice:
Amplitude varies with location
u(x) = u(x+a) = u(x+2a) = ….
Bloch’s
Theorem
u(x+a) = u(x)
(x+a) e -i(kx+ka-wt)  (x) e -i(kx-wt)
(x) ~ u(x) e i(kx-wt)
(x+a)  e ika (x)
Something special happens with the phase when
e ika = 1
ka = +/ m  m = 0 not a surprise
m = 1, 2, 3, …
...
,
2
,
a
a
k





What it is ?
a
k



Consider a set of waves with +/ k-pairs, e.g.
k = + /a moves  k =  /a moves 
This defines a pair of waves moving right & left
Two trivial ways to superpose these waves are:
+ ~ e ikx + e ikx  ~ e ikx  e ikx
+ ~ 2 cos kx  ~ 2i sin kx
+ ~ 2 cos kx  ~ 2i sin kx
Kittel
|+|2 ~ 4 cos2 kx ||2 ~ 4 sin2 kx
Free-electron Nearly Free-electron
Kittel
Discontinuities occur because the lattice is impacting the movement of electrons.
Effective Mass m*
A method to force the free electron
model to work in the situations where
there are complications
ER Ch 13 p461 starting w/ eqn (13-19b)
*
2
2
2
m
k


e
free electron KE functional form
Effective Mass m*
-- describing the balance between applied ext-E and lattice site reflections
2
2
2
1
*
1
k
m 


e

m* a = S Fext
q Eext
No distinction between m & m*,
m = m*, “free electron”, lattice structure does
not apply additional restrictions on motion.
m = m*
greater curvature, 1/m* > 1/m > 0,  m* < m 
net effect of ext-E and lattice interaction
provides additional acceleration of electrons
greater |curvature| but negative,
net effect of ext-E and lattice interaction
de-accelerates electrons
At inflection pt
1)
2)
*
2
2
2
2
2
2 m
k
m
k lattice
from
on
perturbati
apply




e
Another way to look at the discontinuities
Shift up implies effective mass has decreased, m* < m,
allowing electrons to increase their speed and join
faster electrons in the band.
The enhanced e-lattice interaction speeds up the electron.
Shift down implies effective mass has increased, m* > m,
prohibiting electrons from increasing their speed and making
them become similar to other electrons in the band.
The enhanced e-lattice interaction slows down the electron
From earlier: Even when above barrier,
reflection and transmission coefficients can
increase and decrease depending upon the energy.
change in motion
due to reflections
is more significant
than change in motion
due to applied field
change in motion
due to applied field
enhanced by change in reflection coefficients
Nearly-Free Electron Model
version 3
à la Ashcroft & Mermin, Solid State Physics
This treatment recognizes
that the reflections of electron
waves off lattice sites can
be more complicated.
A reminder:
Waves from the left behave like:
iKx
iKx
left
the
from e
r
e 



iKx
left
the
from e
t


m
K
2
2
2


e
Waves from the right behave like:
iKx
iKx
right
the
from e
r
e 

 
iKx
right
the
from e
t 


m
K
2
2
2


e
right
left
sum B
A 




Bloch’s Theorem defines periodicity of the wavefunctions:
   
x
e
a
x sum
ika
sum 



   
x
e
a
x sum
ika
sum 



unknown weights
Related to
Lattice spacing
   
x
e
a
x sum
ika
sum 


    
x
e
a
x sum
ika
sum 



Applying the matching conditions at x   a/2
A + B
left right
A + B
left right
A + B
left right
A + B
left right
iKa
iKa
e
t
e
t
r
t
ka 



2
1
2
cos
2
2
m
K
2
2
2


e
And eliminating the unknown constants A & B leaves:
For convenience (or tradition) set:
2
2
1 r
t 


i
e
t
t  
i
e
r
i
r 

  ka
t
Ka
cos
cos


  ka
t
Ka
cos
cos


Related to
possible
Lattice spacings
Related to
Energy
m
K
2
2
2


e
allowed solution regions
allowed
solution
regions
Superconductivity
ER 14-1, 13-4
R Nave: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/supcon.html#c1
Temperature Dependence of Resistivity
Joe Eck: superconductors.org
Temperature Dependence of
Resistivity
A
L
R 

• Conductors
– Resistivity  increases with increasing Temp
– Temp  t but same # conduction e-’s  
• Semiconductors & Insulators
– Resistivity  decreases with increasing Temp
– Temp  t but more conduction e-’s  
First observed Kamerlingh Onnes 1911
Superconductors.org Only in nanotubes
Note: The best conductors & magnetic materials tend not to be superconductors (so far)
Superconductor Classifications
• Type I
– tend to be pure elements or simple alloys
–  = 0 at T < Tcrit
– Internal B = 0 (Meissner Effect)
– At jinternal > jcrit, no superconductivity
– At Bext > Bcrit, no superconductivity
– Well explained by BCS theory
• Type II
– tend to be ceramic compounds
– Can carry higher current densities ~ 1010 A/m2
– Mechanically harder compounds
– Higher Bcrit critical fields
– Above Bext > Bcrit-1, some superconductivity
Superconductor Classifications
Type I
Bardeen, Cooper, Schrieffer 1957, 1972
“Cooper Pairs”
Symmetry energy ~ 0.01 eV
Q: Stot=0 or 1? L? J?
e
e
Sn 230 nm
Al 1600
Pb 83
Nb 38
Best conductors  best ‘free-electrons’  no e – lattice interaction
 not superconducting
Popular Bad Visualizations:
Pairs are related by momentum ±p,
NOT position.
correlation lengths
More realistic 1-D billiard ball picture:
Cooper Pairs are ±k sets
Furthermore:
“Pairs should not be thought of as independent particles” -- Ashcroft & Mermin Ch 34
• Experimental Support of BCS Theory
– Isotope Effects
– Measured Band Gaps corresponding to Tcrit
predictions
– Energy Gap decreases as Temp  Tcrit
– Heat Capacity Behavior
Normal Conductor
Semiconductor
or
Superconductor
Another fact about Type I:
-- Interrelationship of Bcrit and Tcrit
Type II
Q: does BCS apply ?
mixed normal/super
Yr Composition Tc
May
2006
InSnBa4Tm4Cu6O18+ 150
2004 Hg0.8Tl0.2Ba2Ca2Cu3O8.33 138
1986 (La1.85Ba.15)CuO4 30
YBa2Cu3O7 93
actual ~ 8 mm
Sandin
Type II – mixed phases
Q: does BCS apply ?
fluxon
Y Ba2 Cu3 O7 crystalline
La2-x Bax Cu O2 solid solution
may control the electronic config of the conducting layer
Another fact about Type II:
-- Interrelationship of Bcrit and Tcrit
Applications
OR
Other Features of Superconductors
http://superconductors.org/Uses.htm
Meissner Effect
Magnetic Levitation – Meissner Effect
Q: Why ?
Kittel states this explusion effect
is not clearly directly connected
to the  = 0 effects
Magnetic Levitation – Meissner Effect
MLX01 Test Vehicle
2003 581 km/h 361 mph
2005 80,000+ riders
2005 tested passing trains at relative 1026 km/h
http://www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html
Maglev in Germany (sc? idi)
32 km track
550,000 km since 1984
Design speed 550 km/h
NOTE(061204): I’m not so sure this track is superconducting. The MagLev planned for the Munich area will be. France is also thinking about a sc maglev.
Josephson Junction
~ 2 nm
Recall: Aharonov-Bohm Effect
-- from last semester
affects the phase of a wavefunction
Source B

/
)
( 2
~ r
eA
p
i
e 

/
)
( 1
~ r
eA
p
i
e 

/
~
~ ipx
ikx
e
e
A
SQUID
superconducting quantum interference device
left
i
oe


 ~
right
i
oe


 ~
o


i
oe

 ~
)
(location
fn



B
Bohm
Aharonov
loop
q
n
dl


 



 



 
 2
q
n
B



2

2
15
10
07
.
2
)
2
(
2
m
Telsa
e





Add up change in flux as go around loop
Typical B fields
(Tesla) (# flux quanta)
MAGSAFE will be able to locate
targets without flying close to
the surface.
Image courtesy Department of
Defence.
http://www.csiro.au/science/magsafe.html
Finding 'objects of interest' at sea with MAGSAFE
MAGSAFE is a new system for locating and identifying submarines.
Operators of MAGSAFE should be able to tell the range, depth and
bearing of a target, as well as where it’s heading, how fast it’s going
and if it’s diving.
Building on our extensive experience using highly sensitive magnetic
sensors known as Superconducting QUantum Interference Devices
(SQUIDs) for minerals exploration, MAGSAFE harnesses the power
of three SQUIDs to measure slight variations in the local magnetic
field.
MAGSAFE has higher sensitivity and greater immunity to external noise than conventional
Magnetic Anomaly Detector (MAD) systems. This is especially relevant to operation over shallow
seawater where the background noise may 100 times greater than the noise floor of a MAD
instrument.
Phillip Schmidt etal. Exploration Geophysics 35, 297 (2004).
http://www.csiro.au/science/magsafe.html
Arian Lalezari
SQUID
2 nm
1014 T SQUID threshold
Heart signals 10 10 T
Brain signals 10 13 T
• Fundamentals of superconductors:
– http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html
• Basic Introduction to SQUIDs:
– http://www.abdn.ac.uk/physics/case/squids.html
• Detection of Submarines
– http://www.csiro.au/science/magsafe.html
• Fancy cross-referenced site for Josephson Junctions/Josephson:
– http://en.wikipedia.org/wiki/Josephson_junction
– http://en.wikipedia.org/wiki/B._D._Josephson
• SQUID sensitivity and other ramifications of Josephson’s work:
– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid2.html
• Understanding a SQUID magnetometer:
– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c1
• Some exciting applications of SQUIDs:
– http://www.lanl.gov/quarterly/q_spring03/squid_text.shtml
• Relative strengths of pertinent magnetic fields
– http://www.physics.union.edu/newmanj/2000/SQUIDs.htm
• The 1973 Nobel Prize in physics
– http://nobelprize.org/physics/laureates/1973/
• Critical overview of SQUIDs
– http://homepages.nildram.co.uk/~phekda/richdawe/squid/popular/
• Research Applications
– http://boojum.hut.fi/triennial/neuromagnetic.html
• Technical overview of SQUIDs:
– http://www.finoag.com/fitm/squid.html
– http://www.cmp.liv.ac.uk/frink/thesis/thesis/node47.html
Redraw LHS
Sn 230 nm
Al 1600
Pb 83
Nb 38
Best conductors  best ‘free-electrons’  no e – lattice interaction
 not superconducting

More Related Content

Similar to Solids.ppt

Chap-4 Modern theory of solids.pptx
Chap-4 Modern theory of solids.pptxChap-4 Modern theory of solids.pptx
Chap-4 Modern theory of solids.pptx
WendyAditya4
 
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.pptchapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
TcherReaQuezada
 
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.pptchapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
UzomaNwigwe1
 
cathode ray oscilloscope
cathode ray oscilloscopecathode ray oscilloscope
cathode ray oscilloscope
hajahrokiah
 
Chapter 5 Electrons in Atoms
Chapter 5 Electrons in AtomsChapter 5 Electrons in Atoms
Chapter 5 Electrons in Atoms
frhsd
 

Similar to Solids.ppt (20)

Energy band structure and electrical conductivity mechanisms of metals and se...
Energy band structure and electrical conductivity mechanisms of metals and se...Energy band structure and electrical conductivity mechanisms of metals and se...
Energy band structure and electrical conductivity mechanisms of metals and se...
 
Unit 3
Unit 3Unit 3
Unit 3
 
Chap-4 Modern theory of solids.pptx
Chap-4 Modern theory of solids.pptxChap-4 Modern theory of solids.pptx
Chap-4 Modern theory of solids.pptx
 
Electronic Devices
Electronic DevicesElectronic Devices
Electronic Devices
 
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.pptchapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
 
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.pptchapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
 
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.pptchapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
chapter_06pptfromBrownLeMayBurstendownloadedandmodified.ppt
 
Electron config
Electron configElectron config
Electron config
 
Magnetism at oxide interface final
Magnetism at oxide interface finalMagnetism at oxide interface final
Magnetism at oxide interface final
 
Unit 1.pdf
Unit 1.pdfUnit 1.pdf
Unit 1.pdf
 
Electron configuration
Electron configurationElectron configuration
Electron configuration
 
Chapter_5.pptx .
Chapter_5.pptx                                    .Chapter_5.pptx                                    .
Chapter_5.pptx .
 
Tight binding
Tight bindingTight binding
Tight binding
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Mottphysics 1talk
Mottphysics  1talkMottphysics  1talk
Mottphysics 1talk
 
cathode ray oscilloscope
cathode ray oscilloscopecathode ray oscilloscope
cathode ray oscilloscope
 
cry
crycry
cry
 
Chapter 5 Electrons in Atoms
Chapter 5 Electrons in AtomsChapter 5 Electrons in Atoms
Chapter 5 Electrons in Atoms
 
L4electronicstructureofatompart2 130906000855-
L4electronicstructureofatompart2 130906000855-L4electronicstructureofatompart2 130906000855-
L4electronicstructureofatompart2 130906000855-
 
Orbitals hl
Orbitals hlOrbitals hl
Orbitals hl
 

Recently uploaded

Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp NumberHot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
kumarajju5765
 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
Dr. Salem Baidas
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
kauryashika82
 
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdfTraining Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
Basel Ahmed
 
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting Day
 
Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp NumberHot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
Hot Call Girls 🫤 Malviya Nagar ➡️ 9711199171 ➡️ Delhi 🫦 Whatsapp Number
 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
 
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
NO1 Verified kala jadu karne wale ka contact number kala jadu karne wale baba...
 
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Valsad 7001035870 Whatsapp Number, 24/07 Booking
 
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
Call Now ☎ Russian Call Girls Connaught Place @ 9899900591 # Russian Escorts ...
 
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
 
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Preet Vihar ☎ 9711199171 Book Your One night Stand
 
Booking open Available Pune Call Girls Yewalewadi 6297143586 Call Hot Indian...
Booking open Available Pune Call Girls Yewalewadi  6297143586 Call Hot Indian...Booking open Available Pune Call Girls Yewalewadi  6297143586 Call Hot Indian...
Booking open Available Pune Call Girls Yewalewadi 6297143586 Call Hot Indian...
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
 
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdfTraining Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
Training Of Trainers FAI Eng. Basel Tilapia Welfare.pdf
 
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...Booking open Available Pune Call Girls Budhwar Peth  6297143586 Call Hot Indi...
Booking open Available Pune Call Girls Budhwar Peth 6297143586 Call Hot Indi...
 
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls In Okhla DELHI ~9654467111~ Short 1500 Night 6000
Call Girls In Okhla DELHI ~9654467111~ Short 1500 Night 6000Call Girls In Okhla DELHI ~9654467111~ Short 1500 Night 6000
Call Girls In Okhla DELHI ~9654467111~ Short 1500 Night 6000
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
VIP Model Call Girls Viman Nagar ( Pune ) Call ON 8005736733 Starting From 5K...
 
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCeCall Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
Call Girls In Yamuna Vihar꧁❤ 🔝 9953056974🔝❤꧂ Escort ServiCe
 

Solids.ppt

  • 1. Solids Eisberg & Resnick Ch 13 & 14 RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon Alison Baski: http://www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt Carl Hepburn, “Britney Spear’s Guide to Semiconductor Physics”. http://britneyspears.ac/lasers.htm
  • 3. OUTLINE • Review Ionic / Covalent Molecules • Types of Solids (ER 13.2) • Band Theory (ER 13.3-.4) – basic ideas – description based upon free electrons – descriptions based upon nearly-free electrons • ‘Free’ Electron Models (ER 13.5-.7) • Temperature Dependence of Resistivity (ER 14.1)
  • 4. Ionic Bonds RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
  • 6. Ionic Bonding RNave, Georgia State Univ at hyperphysics.phy-astr.gsu.edu/hbase/molecule
  • 7. Covalent Bonds RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
  • 8. Covalent Bonding SYM ASYM spatial spin ASYM SYM spatial spin space-symmetric tend to be closer
  • 9. Covalent Bonding Stot = 1 not really parallel, but spin-symmetric not really anti, but spin-asym Stot = 0 space-symmetric tend to be closer
  • 10.
  • 11. TYPES OF SOLIDS (ER 13.2) CRYSTALINE BINDING • molecular • ionic • covalent • metallic
  • 12. Molecular Solids • orderly collection of molecules held together by v. d. Waals • gases solidify only at low Temps • easy to deform & compress • poor conductors most organics inert gases O2 N2 H2
  • 13. Ionic Solids • individ atoms act like closed-shell, spherical, therefore binding not so directional • arrangement so that minimize nrg for size of atoms • tight packed arrangement  poor thermal conductors • no free electrons  poor electrical conductors • strong forces  hard & high melting points • lattice vibrations absorb in far IR • to excite electrons requires UV, so ~transparent visible NaCl NaI KCl
  • 14. Covalent Solids • 3D collection of atoms bound by shared valence electrons • difficult to deform because bonds are directional • high melting points (b/c diff to deform) • no free electrons  poor electrical conductors • most solids adsorb photons in visible  opaque Ge Si diamond
  • 15. Metallic Solids • (weaker version of covalent bonding) • constructed of atoms which have very weakly bound outer electron • large number of vacancies in orbital (not enough nrg available to form covalent bonds) • electrons roam around (electron gas ) • excellent conductors of heat & electricity • absorb IR, Vis, UV  opaque Fe Ni Co config dhalf full
  • 16.
  • 21. Six Closely Spaced Atoms as fn(R) the level of interest has the same nrg in each separated atom
  • 22. Solid of N atoms Two atoms Six atoms ref: A.Baski, VCU 01SolidState041.ppt www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt
  • 23. Four Closely Spaced Atoms valence band conduction band
  • 24. Solid composed of ~NA Na Atoms as fn(R) 1s22s22p63s1
  • 25. Sodium Bands vs Separation Rohlf Fig 14-4 and Slater Phys Rev 45, 794 (1934)
  • 26. Copper Bands vs Separation Rohlf Fig 14-6 and Kutter Phys Rev 48, 664 (1935)
  • 27. Differences down a column in the Periodic Table: IV- A Elements Sandin same valence config
  • 29. Band Spacings in Insulators & Conductors electrons free to roam electrons confined to small region RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
  • 30. How to choose eF and Behavior of the Fermi function at band gaps
  • 31. Fermi Distribution for a selected eF 0 0.5 1 1.5 0 1 2 3 4 Energy Probability of an energy occuring (not normalized) T=0 1000 5000 1 1 ) ( / ) (    kT F e n e e e
  • 32. How does one choose/know eF If in unfilled band, eF is energy of highest energy electrons at T=0. If in filled band with gap to next band, eF is at the middle of gap.
  • 35. Number of Electrons at an Energy e     e e e e d N n KE Tot    0 distrib fn Number of ways to have a particular energy In QStat, we were doing Number of electrons at energy e
  • 36.
  • 37. # states probability of this nrg occurring # electrons at a given nrg
  • 38.
  • 40. Semiconductors • Types – Intrinsic – by thermal excitation or high nrg photon – Photoconductive – excitation by VIS-red or IR – Extrinsic – by doping • n-type • p-type • ~1 eV ~1/40 eV
  • 43. 5A in 4A lattice 3A in 4A lattice 5A doping in a 4A lattice
  • 44. 5A in 4A lattice 3A in 4A lattice
  • 45.
  • 46. ‘Free-Electron’ Models • Free Electron Model (ER 13-5) • Nearly-Free Electron Model (ER13-6,-7) – Version 1 – SP221 – Version 2 – SP324 – Version 3 – SP425 • .
  • 47. • Free-Electron Model – Spatial Wavefunctions – Energy of the Electrons – Fermi Energy – Density of States dN/dE E&R 13.5 – Number of States as fn NRG E&R 13.5 • Nearly-Free Electron Model (Periodic Lattice Effects) – v2 E&R 13.6 • Nearly-Free Electron Model (Periodic Lattice Effects) – v3 E&R 13.6   *********************************************************
  • 48. Free-Electron Model (ER13-5)   m K m p 2 2 2 2 2    e classical description
  • 49.          E m 0 2 2 2    z k y k x k L xyz z y x sin sin sin 8 3     In a 3D slab of metal, e’s are free to move but must remain on the inside Solutions are of the form: L nz    2 2 2 2 2 8 z y x n n n mL h    e With nrg’s: Quantum Mechanical Viewpoint
  • 50. At T = 0, all states are filled up to the Fermi nrg  max 2 2 2 2 2 8 z y x fermi n n n mL h    e A useful way to keep track of the states that are filled is: max 2 2 2 2 n n n n z y x   
  • 51. total number of states up to an energy efermi: 3 3 max 4 8 1 8 1 2 2 n sphere of volume          N 3 / 2 2 3 8          V N m h fermi  e max 2 2 2 8 n mL h fermi  e # states/volume ~ # free e’s / volume
  • 52. Sample Numerical Values for Copper slab V N = 8.96 gm/cm3 1/63.6 amu 6e23 = 8.5e22 #/cm3 = 8.5e28 #/m3 efermi = 7 eV 3 / 2 2 3 8          V N m h fermi  e nmax = 4.3 e 7 so we can easily pretend that there’s a smooth distrib of nxnynz-states
  • 53. Density of States How many combinations of are there within an energy interval e to e + de ? 3 / 2 2 3 8          V N m h fermi  e 2 / 3 2 8 3              h mE V N  dE h m h mE V dN 2 2 / 1 2 8 8 2 3 3                 2 / 1 2 / 1 3 3 2 8 E m h V dE dN       e e e e d N n KE Tot    0
  • 54. At T ≠ 0 the electrons will be spread out among the allowed states How many electrons are contained in a particular energy range?                 occuring energy this of y probabilit energy particular a have to ways of number   1 1 2 8 / ) ( 2 / 1 2 / 1 3 3   kT E f e E m h V e 
  • 55. this assumes there are no other issues
  • 56. Distribution of States: Simple Free-Electron Model vs Reality
  • 57.
  • 58. Problems with Free Electron Model (ER13-6, -7)   * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1) Bragg reflection 2) . 3) .
  • 59. Other Problems with the Free Electron Model • graphite is conductor, diamond is insulator • variation in colors of x-A elements • temperature dependance of resistivity • resistivity can depend on orientation of crystal & current I direction • frequency dependance of conductivity • variations in Hall effect parameters • resistance of wires effected by applied B-fields • . • . • .
  • 60. Nearly-Free Electron Model version 1 – SP221 2 / 2 2 / k a     2 /   k 2 / 2 2 / k a    
  • 61. Nearly-Free Electron Model version 2 – SP324 • Bloch Theorem • Special Phase Conditions, k = +/- m /a • the Special Phase Condition k = +/- /a This treatment assumes that when a reflection occurs, it is 100%.
  • 62. (x) ~ u e i(kx-wt) (x) ~ u(x) e i(kx-wt)   ~~~~~~~~~~ amplitude In reality, lower energy waves are sensitive to the lattice: Amplitude varies with location u(x) = u(x+a) = u(x+2a) = …. Bloch’s Theorem
  • 63. u(x+a) = u(x) (x+a) e -i(kx+ka-wt)  (x) e -i(kx-wt) (x) ~ u(x) e i(kx-wt) (x+a)  e ika (x) Something special happens with the phase when e ika = 1 ka = +/ m  m = 0 not a surprise m = 1, 2, 3, … ... , 2 , a a k      What it is ?
  • 64. a k    Consider a set of waves with +/ k-pairs, e.g. k = + /a moves  k =  /a moves  This defines a pair of waves moving right & left Two trivial ways to superpose these waves are: + ~ e ikx + e ikx  ~ e ikx  e ikx + ~ 2 cos kx  ~ 2i sin kx
  • 65. + ~ 2 cos kx  ~ 2i sin kx Kittel |+|2 ~ 4 cos2 kx ||2 ~ 4 sin2 kx
  • 66. Free-electron Nearly Free-electron Kittel Discontinuities occur because the lattice is impacting the movement of electrons.
  • 67. Effective Mass m* A method to force the free electron model to work in the situations where there are complications ER Ch 13 p461 starting w/ eqn (13-19b) * 2 2 2 m k   e free electron KE functional form
  • 68. Effective Mass m* -- describing the balance between applied ext-E and lattice site reflections 2 2 2 1 * 1 k m    e  m* a = S Fext q Eext
  • 69. No distinction between m & m*, m = m*, “free electron”, lattice structure does not apply additional restrictions on motion. m = m* greater curvature, 1/m* > 1/m > 0,  m* < m  net effect of ext-E and lattice interaction provides additional acceleration of electrons greater |curvature| but negative, net effect of ext-E and lattice interaction de-accelerates electrons At inflection pt 1) 2)
  • 70. * 2 2 2 2 2 2 m k m k lattice from on perturbati apply     e Another way to look at the discontinuities Shift up implies effective mass has decreased, m* < m, allowing electrons to increase their speed and join faster electrons in the band. The enhanced e-lattice interaction speeds up the electron. Shift down implies effective mass has increased, m* > m, prohibiting electrons from increasing their speed and making them become similar to other electrons in the band. The enhanced e-lattice interaction slows down the electron
  • 71. From earlier: Even when above barrier, reflection and transmission coefficients can increase and decrease depending upon the energy.
  • 72. change in motion due to reflections is more significant than change in motion due to applied field change in motion due to applied field enhanced by change in reflection coefficients
  • 73. Nearly-Free Electron Model version 3 à la Ashcroft & Mermin, Solid State Physics This treatment recognizes that the reflections of electron waves off lattice sites can be more complicated.
  • 75. Waves from the left behave like: iKx iKx left the from e r e     iKx left the from e t   m K 2 2 2   e
  • 76. Waves from the right behave like: iKx iKx right the from e r e     iKx right the from e t    m K 2 2 2   e
  • 77. right left sum B A      Bloch’s Theorem defines periodicity of the wavefunctions:     x e a x sum ika sum         x e a x sum ika sum     unknown weights Related to Lattice spacing
  • 78.     x e a x sum ika sum         x e a x sum ika sum     Applying the matching conditions at x   a/2 A + B left right A + B left right A + B left right A + B left right iKa iKa e t e t r t ka     2 1 2 cos 2 2 m K 2 2 2   e And eliminating the unknown constants A & B leaves:
  • 79. For convenience (or tradition) set: 2 2 1 r t    i e t t   i e r i r     ka t Ka cos cos  
  • 80.   ka t Ka cos cos   Related to possible Lattice spacings Related to Energy m K 2 2 2   e allowed solution regions
  • 83. R Nave: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/supcon.html#c1 Temperature Dependence of Resistivity Joe Eck: superconductors.org
  • 85. • Conductors – Resistivity  increases with increasing Temp – Temp  t but same # conduction e-’s   • Semiconductors & Insulators – Resistivity  decreases with increasing Temp – Temp  t but more conduction e-’s  
  • 87. Superconductors.org Only in nanotubes Note: The best conductors & magnetic materials tend not to be superconductors (so far)
  • 88. Superconductor Classifications • Type I – tend to be pure elements or simple alloys –  = 0 at T < Tcrit – Internal B = 0 (Meissner Effect) – At jinternal > jcrit, no superconductivity – At Bext > Bcrit, no superconductivity – Well explained by BCS theory • Type II – tend to be ceramic compounds – Can carry higher current densities ~ 1010 A/m2 – Mechanically harder compounds – Higher Bcrit critical fields – Above Bext > Bcrit-1, some superconductivity
  • 90. Type I Bardeen, Cooper, Schrieffer 1957, 1972 “Cooper Pairs” Symmetry energy ~ 0.01 eV Q: Stot=0 or 1? L? J? e e
  • 91. Sn 230 nm Al 1600 Pb 83 Nb 38 Best conductors  best ‘free-electrons’  no e – lattice interaction  not superconducting Popular Bad Visualizations: Pairs are related by momentum ±p, NOT position. correlation lengths
  • 92. More realistic 1-D billiard ball picture: Cooper Pairs are ±k sets Furthermore: “Pairs should not be thought of as independent particles” -- Ashcroft & Mermin Ch 34
  • 93. • Experimental Support of BCS Theory – Isotope Effects – Measured Band Gaps corresponding to Tcrit predictions – Energy Gap decreases as Temp  Tcrit – Heat Capacity Behavior
  • 95. Another fact about Type I: -- Interrelationship of Bcrit and Tcrit
  • 96. Type II Q: does BCS apply ? mixed normal/super Yr Composition Tc May 2006 InSnBa4Tm4Cu6O18+ 150 2004 Hg0.8Tl0.2Ba2Ca2Cu3O8.33 138 1986 (La1.85Ba.15)CuO4 30 YBa2Cu3O7 93
  • 97. actual ~ 8 mm Sandin
  • 98. Type II – mixed phases Q: does BCS apply ? fluxon
  • 99. Y Ba2 Cu3 O7 crystalline La2-x Bax Cu O2 solid solution may control the electronic config of the conducting layer
  • 100. Another fact about Type II: -- Interrelationship of Bcrit and Tcrit
  • 101. Applications OR Other Features of Superconductors http://superconductors.org/Uses.htm
  • 103. Magnetic Levitation – Meissner Effect Q: Why ? Kittel states this explusion effect is not clearly directly connected to the  = 0 effects
  • 104. Magnetic Levitation – Meissner Effect MLX01 Test Vehicle 2003 581 km/h 361 mph 2005 80,000+ riders 2005 tested passing trains at relative 1026 km/h http://www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html
  • 105. Maglev in Germany (sc? idi) 32 km track 550,000 km since 1984 Design speed 550 km/h NOTE(061204): I’m not so sure this track is superconducting. The MagLev planned for the Munich area will be. France is also thinking about a sc maglev.
  • 107. Recall: Aharonov-Bohm Effect -- from last semester affects the phase of a wavefunction Source B  / ) ( 2 ~ r eA p i e   / ) ( 1 ~ r eA p i e   / ~ ~ ipx ikx e e A
  • 108. SQUID superconducting quantum interference device left i oe    ~ right i oe    ~ o 
  • 109.  i oe   ~ ) (location fn    B Bohm Aharonov loop q n dl                2 q n B    2  2 15 10 07 . 2 ) 2 ( 2 m Telsa e      Add up change in flux as go around loop
  • 110. Typical B fields (Tesla) (# flux quanta)
  • 111. MAGSAFE will be able to locate targets without flying close to the surface. Image courtesy Department of Defence. http://www.csiro.au/science/magsafe.html Finding 'objects of interest' at sea with MAGSAFE MAGSAFE is a new system for locating and identifying submarines. Operators of MAGSAFE should be able to tell the range, depth and bearing of a target, as well as where it’s heading, how fast it’s going and if it’s diving. Building on our extensive experience using highly sensitive magnetic sensors known as Superconducting QUantum Interference Devices (SQUIDs) for minerals exploration, MAGSAFE harnesses the power of three SQUIDs to measure slight variations in the local magnetic field. MAGSAFE has higher sensitivity and greater immunity to external noise than conventional Magnetic Anomaly Detector (MAD) systems. This is especially relevant to operation over shallow seawater where the background noise may 100 times greater than the noise floor of a MAD instrument.
  • 112. Phillip Schmidt etal. Exploration Geophysics 35, 297 (2004). http://www.csiro.au/science/magsafe.html
  • 114. SQUID 2 nm 1014 T SQUID threshold Heart signals 10 10 T Brain signals 10 13 T
  • 115. • Fundamentals of superconductors: – http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html • Basic Introduction to SQUIDs: – http://www.abdn.ac.uk/physics/case/squids.html • Detection of Submarines – http://www.csiro.au/science/magsafe.html • Fancy cross-referenced site for Josephson Junctions/Josephson: – http://en.wikipedia.org/wiki/Josephson_junction – http://en.wikipedia.org/wiki/B._D._Josephson • SQUID sensitivity and other ramifications of Josephson’s work: – http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid2.html • Understanding a SQUID magnetometer: – http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c1 • Some exciting applications of SQUIDs: – http://www.lanl.gov/quarterly/q_spring03/squid_text.shtml
  • 116. • Relative strengths of pertinent magnetic fields – http://www.physics.union.edu/newmanj/2000/SQUIDs.htm • The 1973 Nobel Prize in physics – http://nobelprize.org/physics/laureates/1973/ • Critical overview of SQUIDs – http://homepages.nildram.co.uk/~phekda/richdawe/squid/popular/ • Research Applications – http://boojum.hut.fi/triennial/neuromagnetic.html • Technical overview of SQUIDs: – http://www.finoag.com/fitm/squid.html – http://www.cmp.liv.ac.uk/frink/thesis/thesis/node47.html
  • 117. Redraw LHS Sn 230 nm Al 1600 Pb 83 Nb 38 Best conductors  best ‘free-electrons’  no e – lattice interaction  not superconducting