SlideShare a Scribd company logo
1 of 27
1
ProjectREPORT
ON
In vitro Seed Production and Seed Immobilization
Submitted in Partial Fulfillment of the Required Credits for the Degree of
Bachelor OF technology
IN
BIOTECHNOLOGY
SuPERVISEDby Submittedby
Dr. Avinash Marwal Preeti
JV-B /10/2051
Faculty of ENGINEERING & technology
2
jayoti Vidyapeeth Women’s University, Jaipur
CERTIFICATE
The report is hereby approved as a bonafide and creditable project work “In vitro
Seed Production and Seed Immobilization” carried out and presented by Preeti
(JV-B/10/2051) in a manner to warrant its acceptance in partial fulfillment of the
required credits for the degree of B. Tech + M. Tech in Biotechnology. However,
the undersigned do not necessarily endorse or take responsibility for any statement
or opinion expressed or conclusion drawn there in, but only approve the report for
the purpose for which it is submitted.
(…………………………) (Dr. Richa Sharma)
Supervisor (External) Supervisor (Internal)
Organization Jayoti Vidyapeeth Women’s University
(Dr. Avinash Marwal)
Coordinator
Department of Biotechnology & Engineering,
Jayoti Vidyapeeth Women’s University
(Dr. Promod Raghav)
3
Dean
Faculty of Engineering and Technology,
Jayoti Vidyapeeth Women’s University
4
ACKNOWLEDGEMENT
I express my gratitude to all those who helped me to prepare and complete my
dissertation/training/project work entitled “In vitro Seed Production and Seed
Immobilization” First of all, I convey my deep gratitude and heart full thanks to
Dr. Avinash Marwal, JVWU for his inspiration, cooperation and encouragement
for pursuing my dissertation. His valuable suggestion and guidance helped me a lot
to complete my work in this institution with in a very short period.
I render my sincere respect and heart full gratitude to Dr. Richa Sharma,
Department of Biotechnology, Jayoti Vidyapeeth Women’s University, Jaipur. I
am also thankful to all the faculty members, for their valuable suggestion towards
completing the dissertation work. I am also grateful to all my class mates, who
helped me directly or indirectly in completing my dissertation/training/project
work successfully.
Last but not least, I am really ever grateful to my parents, who remained a constant
source of encouragement and inspiration during the completion of this work
successfully in Jayoti Vidyapeeth women’s University, Jaipur.
Preeti
(JV-B/10/2051)
Department of Biotechnology
Jayoti Vidyapeeth Women’s University, Jaipur
5
DECLARATION
"I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor materials which have been accepted for the award of any other
degree or diploma of any university or institution of higher learning, except where
due acknowledgment has been made in the text.”
Place: Jayoti Vidhyapeeth, Rajasthan (Preeti)
Date: 28th Nov 2015 JV-B/10/2051
6
INDEX
S.NO. TOPIC PAGE NO.
1
2
3
4
5
Introduction
Review Literature
Materials and Methods
a)Seed Viability
b)MS preparation
c)In vitro seed germination
d)Artificial seed production
Result and Discussion
References
6-8
9-12
12-13
14-17
17
18
19-22
22-26
7
INTRODUCTION
Germination testing is considered as the most important quality test in evaluating the
planting value of a seed lot. The ability of seeds to produce normal seedling and plants later on is
measured in terms of germination test. Testing of seeds under field conditions is normally
unsatisfactory as the results cannot be replaced with reliability. Laboratory methods then have
been conceived wherein the external factors are controlled to give the most uniform rapid and
complete germination. Testing conditions in the laboratory have been standardized to enable the
test results to be reproduced within limits as nearly as possible as those determined by random
sample variations.
Testing seed viability (germination) is considered as one of the secondary tasks in the
production of a cereal crop. Nonetheless, it deserves a very careful attention. Without knowing
the germination capacity of the seed to be planted, one will not be able to determine an
intelligent estimate of seeds required to ensure a adequate population of plants at the beginning
of the planting cycle. The percentage of germination of a sample taken from seeds to be planted
is an important test, but not enough sufficient.
When conventional methods produce low or no germination, in vitro techniques can
greatly enhance germination. The media composition, qualitative and quantitative aspects of
plant growth regulators play a vital role in plant in vitro studies. Therefore optimization of these
conditions is a prerequisite for in vitro plant tissue culture studies. Development of protocols for
in vitro seed germination and seedling development can be used to rapidly produce large number
of plants for conservation and restoration [1].
8
Preparation of culture media is preferred to be performed in an equipped for this purpose
compartment. This compartment should be constructed so as to maintain ease in cleaning and
reducing possibility of contamination. Supplies of both tap and distilled water and gas should be
provided. Appropriate systems for water sterilization or deionization are also important [2].
Certain devices are required for better performance such as a refrigerator, freezer, hot
plate, stirrer, pH meter, electric balances with different weighing ranges, heater, Bunsen burner
in addition to glassware and chemicals. It is well known now that mistakes which occur in tissue
culture process most frequently originate from inaccurate media preparation that is why clean
glassware, high quality water, pure chemicals and careful measurement of media components
should be facilitated [3].
A convenient method for preparation of culture media is to make concentrated stock
solutions which can be immediately diluted to preferred concentration before use. Solutions of
macronutrients are better to be prepared as stock solutions of 10 times the strength of the final
operative medium. Stock solutions can be stored in a refrigerator at 2- 4oC. Micronutrients stock
solutions are made up at 100 times of the final concentration of the working medium. The
micronutrients stock solution can also be stored in a refrigerator or a freezer until needed. Iron
stock solution should be 100 times concentrated than the final working medium and stored in a
refrigerator. Vitamins are prepared as either 100 or 1000 times concentrated stock solutions and
stored in a freezer (-20oC) until used if it is desired to keep them for long otherwise they can be
stored in a refrigerator for 2-3 months and should be discarded thereafter [4]. Stock solutions of
growth regulators are usually prepared at 100-1000 times the final desired concentration.
Plant propagation through artificial seeds broadens the horizon of plant biotechnology
and agriculture [5]. As one of the important value-added plant tissue culture products, artificial
9
seed technology can only be successful with efficient upstream production of micropropagules as
well as downstream germination protocols for high percentage of plant regeneration [6].
Production of synthetic seeds has unraveled new vistas in in vitro plant biotechnology,
such as large scale clonal propagation, delivery of clonal plantlets, germplasm conservation,
breeding of plants in which propagation through normal seeds is not possible, genetic uniformity,
easy storage and transportation etc [7] because artificial seeds technology offers several potential
advantages: (1) ease of handling, (2) low production cost, (3) ease of exchange of plant materials
between different laboratories in different counties, (4) genetic uniformity of propagated plants
(5) direct delivery to the soil, (6) shorten the breeding cycle and (7) reduction of the storage
space [8-10].
The present study was focused on the following objectives:
1. Determination of Mung bean (Vigna radiata) seed viability.
2. Preparation of various stock solutions of Murashige and Skoog (MS) medium.
3. In Vitro Seed Germination of Mung bean (Vigna radiata).
4. Artificial Seed Production through Sodium Alginate immobilization technique.
10
REVIEW LITERATURE
A study at Fairbanks, AK, was started in 1984 to determine soil seed longevity of 17
weed species. Seeds were buried in mesh bags 2 and 15 cm deep and were recovered 0.7, 1.7,
2.7, 3.7, 4.7, 6.7, 9.7, and 19.7 yr later. Viability was determined by germination and tetrazolium
tests. Seed viability data were fit to an exponential model, separately for each depth, and the
likelihood-ratio test was used to determine whether seed-viability decline was affected by burial
depth. Depth of burial had a significant effect on viability decline of prostrate knotweed, marsh
yellowcress, bluejoint reedgrass, and wild oat [11].
By 19.7 years after burial (YAB), all seeds of common hempnettle, quackgrass, wild oat,
foxtail barley, and bluejoint reedgrass were dead. Seeds of 12 other species were still viable:
corn spurry (0.1%), prostrate knotweed (0.3% at 2 cm, 0.8% at 15 cm), flixweed (0.5%),
pineapple-weed (0.6%), shepherd’s- purse (1.3%), wild buckwheat (1.5%), common chickweed
(1.6%), rough cinquefoil (1.8%), common lambsquarters (3.0%), Pennsylvania smartweed
(3.3%), marsh yellowcress (8.5% at 2 cm, 0.3% at 15 cm), and American dragonhead (62.2%).
Seed dormancy at 19.7 YAB was very low for all species (4%) except for American dragonhead,
common lambsquarters, Pennsylvania smartweed, and shepherd’s-purse, which had seed
dormancies of 100, 27, 25, and 38%, respectively. Seed longevity was not increased by cold,
subarctic temperatures [11].
The ‘algarrobo’ Prosopis flexuosa is an important food resource in the Monte Desert of
Argentina. Native, domestic and exotic mammals consume the fruit of this legume and disperse
the seed through faeces. It was analyzed the effect of different dispersal agents (cattle, horse,
European wild boar, rodents, gray fox) have on seed damage, viability and germination. Cattle
increase germination at the expense of reduced viability, whereas horses maintain viability but
11
do not contribute to a prompt germination response. Among native mammals, the gray fox
maintains seed viability without increasing germination, whereas rodents affect seed viability but
enhance germination rates. The European wild boar, however, damages all of the seeds it
consumes [12]
South American Polylepis mountain forests belong to the most endangered forest
ecosystem in the world. Reforestation measures have been strongly recommended but may be
hampered due to the very low seed germination rates reported for several Polylepis species. In
order to determine the causes behind reduced seed germination, seed viability of Polylepis
australis trees in the mountains of central Argentina were analyzed. Seeds from seven
heterogeneous areas (4-5 well-separated trees per area totaling 29 trees) with high within and
between variation in degradation status were picked. Average percentage of viable seeds was 8 -
38 and lack of an embryo was the main reason for seeds not being able to germinate. Seed
viability was positively associated with relatively undisturbed soils supporting tussock grasslands
(38.7 % of variance) and negatively associated with soil erosion (18.8% of the variance). In order
to improve seed viability, the data suggests that livestock pressure and burning practices should
be reduced, as these are the main causes for erosion and other forms of soil destruction [13].
Optimal growth and morphogenesis of tissues may vary for different plants according to
their nutritional requirements. Moreover, tissues from different parts of plants may also have
different requirements for satisfactory growth [14]. Tissue culture media were first developed
from nutrient solutions used for culturing whole plants e.g. root culture medium of White and
callus culture medium of Gautheret. White’s medium was based on Uspenski and Uspenska’s
medium for algae, Gautheret’s medium was based on Knop’s salt solution [15]. Basic media that
12
are frequently used include Murashige and Skoog (MS) medium [14], Linsmaier and Skoog (LS)
medium [16], Gamborg (B5) medium [17] and Nitsch and Nitsch (NN) medium [18].
Enhanced in vitro seed germination, seedling development protocol has been established
for conservation of very rare and globally endangered woody tree species, Butea monosperma
(Lam.) Taub. var. lutea (Witt.) Fabaceae). Mature seeds were cultured on two basic inorganic
media with full (F) or ½ strength (H) of MS supplemented with various concentrations of N6-
benzyladenine (BA, 2.22, 4.40, 6.62 and 8.40 μM) or thidiazuron (TDZ, 0.45, 2.27, 4.54, 6.80
μM) alone. The seedlings (90%) of B. monosperma var. lutea readily acclimated to greenhouse
conditions [19].
Dendrobium ovatum Lind l. is an epiphytic orchid found in the Western Ghats. A rapid in
vitro seed germination technique were used. MS, VW, B5 and KC media supplemented with
various concentrations of auxins and cytokinins were used in combination for asymbiotic seed
germination and plantlet formation. CM induced formation of PLBs which further differentiated
into plantlets. In the optimization process for phytohormones, 0.5 mg BAP/L-1 and 5 mg
NAA/L-1 favoured maximum number of plantlet formation. However, rhizogenesis was found to
be minimal in the above medium. 90 days old in vitro plantlets inside the tissue culture bottles
were seen with inflorescence production with 10-12 flowers per axis. Hardened plants were
transferred to green house after ex vitro rooting technique [20].
The somatic embryo can be encapsulated, handled and used like a natural seed was first
suggested by [21] and efforts to engineer them into synthetic seed have been ongoing ever since
[22, 23] Winkelmann et al. [24] added that the hardening of beads is generally performed in 50-
100 mM of CaCl2.2H2O, with exposure times ranging from 20 min for Cyclamen persicum to 60
min for Pelongonium horturum [25]. The highest germination rate was obtained when a 30-min
13
exposure to 50 mM CaCl2.2H2O was applied for bead polymerization, in comparison with a 10-
min exposure to 60 mM or 80 mM [26].
In Orchids, the most important cut flowers which are commercially propagated in vitro,
the best conversion to plantlets (100%) of encapsulated of Dendrobium ‘Sonia’ was observed
when 3% Na-alginate drops were hardened for 30 min in 75 mM CaCl2.2H2O [27]. Shoot tips
stored for 12 weeks and encapsulated in 3% sodium alginate prepared in distilled water without
MS medium [28]. In other studies use of meristematic shoot tips or axillary buds were used for
the production of synthetic seeds as reported for banana [29, 30].
Although it was widely accepted that orchid seeds could only be germinated with the
proper fungus, germination rates were often low and seedling death was common [31]. Bernard,
however, was successful in germinating seeds of Cattleya and Laelia in the absence of a fungus
by using salep, a powder obtained from tubers of Ophrys, a terrestrial orchid genus [32].
Oliva and Arditti [33] reported that photoperiod did not have a significant effect on
germination of several species of Aplectrum, Spiranthes, and Cypripedium. Arditti et al. [34]
reported that illumination negatively affected the germination of Calypso bulbosa and Epipactis
gigantea; however, no difference was found between illumination and complete darkness in seed
germination of Goodyera, Piperia, and Platanthera.
Rasmussen et al. [35] examined symbiotic seed germination of Dactylorhiza majalis
incubated in darkness and then placed under a 16-hour light/8-hour dark photoperiod and vice
versa. Cultures were placed under 36-watt fluorescent tubes with an irradiance of 51.2 μmol m-2
s-1. Cultures under a 16-hour light/8-hour dark photoperiod for 14 days followed by a dark
incubation for 35 days increased germination (75% germination) substantially over the control
(44% germination).
14
MATERIALS AND METHODS
Seed Viability
1. Obtain a representative sample of seed.
a. Make sure the sample chosen is representative of the seed.
b. A sample of 1500 grams should be well mixed.
c. Choose sub samples each having 10 seeds.
2. Write the details on the cover of the petri dish.
a. Use a wax pen or a thin indelible marker. Indicate the variety, the date of the test.
3. Put a filter paper in a petri dish.
a. Use the base of the petri dish.
4. Wet the filter paper.
a. Add enough clean water to wet the paper. Careful not to put much, for too much
water will make some seeds to float.
5. Put the seeds on the filter paper.
a. Distribute all the 10 seeds uniformly on the filter paper. Make sure the seeds aren`t
bunched in one location for this complicate the counting of the emerged seeds.
b. Don`t add water after placing the seeds as water drops could move the seeds.
6. Cover the petri dish.
a. Make sure you use the cover that is already marked with the information.
7. Wait the seeds to germinate.
a. Put the petri dishes in different location at different temeperature and light conditions
b. Ambient temperature is favourable for germination
c. The seeds will germinate in 4-5 days and check the seed viability.
15
Murashige and Skoog (MS) tissue culture medium (1962) Preparation
Major salts (500 mL)
NH4NO3 8.25 g
KNO3 9.5 g
CaCl2.2H2O 2.2 g
MgSO4.7H2O 1.85 g
KH2PO4 0.85 g
Bring to volume (500 mL) with distilled water and Store at 40C.
Minor salts (500 mL)
KI 0.0415 g
H3BO3 0.310 g
MnSO4.4H2O 1.115 g
ZnSO4.7H2O 0.43 g
CuSO4.5H2O 0.00125 g
CoCl2.6H2O 0.00125 g
Na2MoO4.2H2O 0.0125 g
Bring to volume (500 mL) with distilled water and Store at 40C.
Organic Supplement (500 mL)
Myo-inositol 5 g
16
Nicotinic acid 0.025 g
Pyridoxine-HCl 0.025 g
Thiamine-HCl 0.005 g
Glycine 0.1 g
Bring to volume (500 mL) with distilled water and Store at 40C.
Iron Stock (500 mL)
Sol A: FeSO4.7H2O 1.39 g (200 ml DW)
Sol B:Na2EDTA.2H2O 1.86 g (200 ml DW)
Mix solutions A and B. Bring to volume (500 mL) with distilled water and Store at 40C.
Volumes of the stock solutions (the first column from the left) required for making different
volumes of the MS medium (indicated in the first row)
200 mL 500 mL One Litre
Distilled water 150 mL 375 mL 750 mL
Major salts 20 mL 50 mL 100 mL
Minor salts 2 mL 5 mL 10 mL
Organic supplement 2 mL 5 mL 10 mL
Iron stock 2 mL 5 mL 10 mL
The method is exemplified for preparing 1.0 liter of MS basal medium.
17
1. For preparation of 1.0 liter of MS Basal medium, the above stocks solutions should be added
sequentially in about 500 ml of doubled distilled water.
2. Weight and add required quantities of sucrose (20 or 30 g) and dissolve by magnetic stirring.
3. According to the purpose of the medium growth regulator and other medium conjugates/
additives are added, and the volume of the medium is made up to 1000 ml by distilled water.
4. Adjust the pH of the medium to 5.8 using 0.1 NaOH or 0.1 N HCL before autoclaving.
5. Note that the pH meter should be calibrated by standard buffers (4.0 and 7.0) immediately
before adjusting the medium.
6. For preparing semisolid medium, add agar at the rate of 6.0-8.0 gm/l in the pH adjusting
medium, and heat until near boiling in a microwave oven or gas oven with intermittent
stirring.
7. Measured volume of semisolid media is dispenser into culture tubes, containers. Vessel using
an automatic media disperser.
8. For preparing liquid medium, pH adjusted media are directly poured in suitable containers.
9. For plating experiments, semisolid medium is poured in sterile Petri dishes.
10. Plant tissue culture media are usually autoclaved at 121⁰ C For 20 min (15 lb in or 1.05 kg
cm2).
11. Autoclaving is generally done in a horizontal or vertical autoclave.
12. Minimum time necessary for steam sterilization of media is dependent on volume of medium
per vessel and is described separately.
13. Autoclaved media are kept in ambient temperature for a day and then transferred in a dust-
free closed cabinet for subsequent use.
18
14. Semisolid medium starts drying up, and therefore should be used within a fortnight after its
preparation.
In Vitro Seed Germination
1. The mature seeds of Mung bean (Vigna radiata) were purchased from the market.
2. Collected seeds were initially washed under running water tap for 5 min and were soaked in
sterilized distilled water (SDW) at room temperature for overnight.
3. The soaked seeds were surface sterilized with 70% ethyl alcohol for 1-2 mins followed by
0.1% (w/v) HgCl2 (0.1% w/v) for 40-60 sec.
4. After each surface sterilization treatment, seeds were thoroughly rinsed 4-5 (each of 1-2 min)
with sterile distilled water (SDW).
5. After rinsing for 4-5 times with SDW, the seeds were aseptically blotted on Whatman paper
and transferred to conical flask containing 50 ml of Murashige and Skoog Media.
6. The seed explants were cultured for 1 weeks on the full strength Murashige and Skoog media
using 25 ± 2 0C with 16h photoperiod, under white fluorescent light (65 μE/m2/s).
7. After two days the germinated seeds were transferred to half strength Murashige and Skoog
Media for better root development.
8. After germination, individual seedlings after three days of culture (plantlets) were removed
from culture jars and washed thoroughly with water and transferred carefully / potted in
plastic jars / glass beaker containing sterilized soil.
19
Artificial Seed Production
1. Dissolve 9 g of sodium alginate in 300 ml of distilled water.
2. Stir until all sodium alginate is completely dissolved to avoid clump formation.
3. The final solution contains 3% alginate by weight.
4. Thoroughly suspend about 50 seeds in the alginate solution prepared in the previous step.
5. Let air bubbles escape.
6. Drip the seed-alginate mixture from a height of 20 cm into 1000 ml of crosslinking solution.
7. The crosslinking solution is prepared by adding an additional 0.05M of CaCl2 to the distilled
water.
8. The calcium crosslinking solution is agitated on a magnetic stirrer.
9. Gel formation can be achieved at room temperature as soon as the sodium alginate drops
come in direct contact with the calcium solution.
10. Wash the beads with a fresh calcium crosslinking solution and transfer to soil.
20
RESULTS AND DISCUSSION
Germination of a seed lot in a laboratory is the emergence and development of the
seedling to a stage where the aspect of its essential structures indicates whether or not it is able to
develop further into a satisfactory plant under favorable conditions in soil [36]. "These essential
structures are a well-developed and intact root system, hypocotyl, plumule and one or two
cotyledons according to the species. Seedlings cannot be evaluated in a germination test until
these essential structures are clearly identifiable and the reported percentage germination
expresses the proportion of seed which have produced normal seedlings within the period
specified for each species [37].
Figure 1: Petriplates showing Mung bean (Vigna radiata) seeds (+ & -) germination at various
temperature and light conditions.
Germination occurs under different ranges of temperatures provided the seed is given
adequate moisture. Temperature is not as critical as water requirement during the test. Seeds of
21
most of agricultural and horticultural crops germinate in the temperature range of 10 °C - 35 °C
[38]. Our results too hold the germination within the favorable range. Mung bean (Vigna radiata)
seeds showed 100% germination at Room Temperature (Both in Light and Dark condition),
Growth Chamber (15 °C) and BOD Incubator (28.6 °C) (Figure 1). Whereas Mung bean (Vigna
radiata) seeds fail to germinate at higher temperature in Incubator (50 °C) and at low
temperature in Fridge (4 °C) suggesting 0% germination rate.
Figure 2: Depicting the fast root development in liquid media.
For in vitro seed production MS media was used, supplemented with various
concentrations of nutrients. After two days seeds started germinating and no contamination was
observed. Seeds with miniature hypocotyls and plumule were transferred to half strength MS
liquid for better root development (Figure 2). Seedlings showed better root development in liquid
media as compared to semi solid media. After germination, individual seedlings after three days
22
of culture (plantlets) were removed from culture jars and washed thoroughly with water and
transferred carefully / potted in plastic jars / glass beaker containing sterilized soil (Figure 3).
Figure 3: Growth of shoot development in soil transferred seedlings
The concentration of the CaCl2 is about one fourth of the strength used for seed
immobilization. Relatively small alginate beads are preferred to minimize the mass transfer
resistance (Figure 4a). A diameter of 3-5 mm was readily achieved with a forceps. The beads
should fully harden in 1-2 hours. Individual seeds transferred carefully into potted plastic jars /
glass beaker containing sterilized soil showed germination after one week (Figure 4b).
(a)
23
(b)
Figure 4: (a) Beads showing encapsulation of seed with Alginate matrix. (b) Germinated seed via
artificial seed production technology.
This protocol may be useful in low production cost, short time conservation, ease of
handling and ease of exchange of plant materials between different laboratories in different
counties. Finally, it must be pointed that synthetic seeds composition may be differed depending
on plant type, where its endogenous construction may affected its response.
Finally, we can conclude that in vitro grown seeds and encapsulation of seeds is a
suitable system for mid-term storage of cultures since encapsulation saves space, time and
resources and it demonstrates advantages over conventional method.
24
REFERENCES
[1]. Fay, M. F. 1992. Conservation of rare and endangered plants using in vitro methods. In vitro
Cell. Dev. Biol. 28: 1- 4.
[2] Ahloowali BS, Prakash J. Physical components of tissue culture technology. In: International
Atomic Energy Agency (ed.): Low cost options for tissue culture technology in developing
countries. Proceedings of a technical meeting, 26-30 August 2002, Vienna, Austria.
[3] Brown D, Thorpe T. Organization of a plant tissue culture laboratory. In: (ed.) Vasil I. Cell
culture and somatic cell genetics of plants.
[4] Gamborg OL, Shyluk JP, Shahin EA. Isolation, fusion and culture of plant protoplasts. In:
(ed.) Thorpe TA. Plant Tissue Culture: Methods and Applications in Agriculture. New
York: Academic Press; 1981. p115-153.
[5]. I. KINOSHITA. The Production and Use of Artificial Seed, Research Journal of Food and
Agriculture, 15(3), 6-11 (1992)
[6]. V.S. JAISWAL, A. HUSSAIN, U. JAIWAL. Synthetic seed: Prospects and limitations.
Current Science, Vol. 78, No. 12 (2001).
[7] Brischia, R., E. Piccioni and A. Standardi, 2002.Micropropagation and synthetic seed in M
26 apple rootstock (11): A new protocol for production of encapsulated differentiating
propagules. Plant Cell Tiss. Org. Cult., 68: 137-141.
[8] Ara, H., U. Jaiswal and V.S. Jaiswal, 1999. Germination and plantlet regeneration from
encapsulated somatic embryos of mango (Mangifera indica L.). Plant Cell Rep., 19: 166-
170.
[9] Ganapathi, T.R., L. Srinivas, P. Supranna and V.A. Bapat, 2001. Regeneration of plants from
25
alginate –encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB group ). In
Vitro Cell. Dev. Biol., 37: 178-181.
[10] Reddy, M.C., K.S.R. Murthyand and T. Pullaiah, 2012. Synthetic seeds: A review in
agriculture and forestry. African Journal of Biotechnology, 11: 14254-14275.
[11] Jeffery S. Conn, Katherine L. Beattie and Arny Blanchard. Seed viability and dormancy of
17 weed species after 19.7 years of burial in Alaska. Weed Science, 54:464–470. 2006
[12] Claudia M. Campos & Ricardo A. Ojeda. Dispersal and germination of Prosopis flexuosa
(Fabaceae) seeds by desert mammals in Argentina. Journal of Arid Environments (1997) 35:
707–714
[13] Daniel Renison, Isabell Hensen, Ana M. Cingolani. Anthropogenic soil degradation affects
seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecology
and Management 196 (2004) 327–333
[14] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco
tissue cultures. Physiol. Plant. 1962; 15: 473-479.
[15] Torres KC., editor. Tissue culture techniques for horticultural crops. New York, London:
Chapman and Hall; 1989.
[16] Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures.
Physiol. Plant., 1965; 18: 100-127.
[17] Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension culture of soybean
root cells. Ex. Cell. Res. 1968; 50: 15-158.
[18] Nitsch JP, Nitsch C. Haploid plants from pollen grains. Science 1969; 163: 85- 87.
[19] Mahender Aileni, Mahesh Damodar. M and Murthy Elagonda Narashimha. In vitro seed
germination and development of Butea monosperma (Lam.) Taub. Var. lutea (Willt.) : a step
26
for rehabilitation. International Journal of Multidisciplinary and Current Research. April
2014, Vol.2. 297-301
[20] Sagaya Mary B. and Divakar K.M. In Vitro Seed Germination Studies and Flowering in
Micropropagated Plantlets of Dendrobium Ovatum Lindl. IOSR Journal of Biotechnology
and Biochemistry. Volume 1, Issue 3 (Mar. – Apr. 2015), PP 04-09
[21] Murashige T (1977). Plant cell and organ culture as horticultural practice. Acta Hortic.
78:17-30.
[22] Kitto SL, Janick J (1985c). A citrus embryo assay to screen water soluble resins as synthetic
seed coats. Hort. Sci. 20:98-102.
[23] Gray DJ (1987). Synthetic seed technology for the mass cloning of crop plants: problems
and prospects. Horti. Sci. 22:795-814.
[24] Winkelmann, T., L. Meyer and M. Serek, 2004. Germination of encapsulated somatic
embryos of Cyclamen persicum. Hort. Sci., 39: 1093-1097.
[25] Gill, R., T. Senaratna and P.K. Saxena, 1994. Thidiazuron induced somatic embryogenesis
enhances viability of hydrogel encapsulated somatic embryos of Geranium. J. Plant
Physiol., 143: 726-729.
[26] Ipekci, Z. and N. Gozukirmizi, 2003. Direct somatic embryogenesis and synthetic seed
production from Paulownia elongata. Plant Cell Rep., 22: 16-24.
[27] Saiprasad, G.V.S. and R. Polisetty, 2003. Propagation of three orchid genera using
encapsulated protocorm like bodies. In vitro Cell Dev. Biol. Plant, 39: 42-48.
[28] Grzegorczyk, I. and H. Wysokiñska, 2011. A Protocol for synthetic seeds from Salvia
officinalis L. shoot tips. Acta Biologica Cracoviensia Series Botanica, 53: 80-85.
27
[29] Ganapathi, T.R., P. Suprasanna, V.A. Bapat and P.S. Rao, 1992. Propagation of banana
through encapsulated shoot tips. Plant Cell Rep., 11: 571-575.
[30] Ganapathi, T.R., V.M. Kulkarni, P. Suprasanna, V.A. Bapat and P.S. Rao, 1998. Studies on
in vitro multiplication and encapsulation in an elite variety of banana-Lal Kela (AAA). Proc.
Natle. Acad. Sci. USA, 68B: 45-51.
[31] Knudson, L. 1922. Nonsymbiotic germination of orchid seed. Botanical Gazette 73: 1-25.
[32] Arditti, J. 1967a. Factors affecting the germination of orchid seed. The Botanical Review
33: 1-97.
[33] Oliva, A.P. and J. Arditti. 1984. Seed germination of North American orchids. II. native
California and related species of Aplectrum, Cypripedium, and Spiranthes. Botanical
Gazette 145: 495-501.
[34] Arditti, J., J.D. Michaud, and A.P. Oliva. 1981. Seed germination of North American
orchids. I. native California and related species of Calypso, Epipactis, Goodyera, Piperia,
and Platanthera. Botanical Gazette 142: 442-453.
[35] Rasmussen, H.N., T.F. Anderson, and B. Johansen. 1990. Temperature sensitivity of in vitro
germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and
without a mycorrhizal fungus. Plant, Cell and Environment 13: 171-177.
[36] Burnside, 0. C., R. S. Moomaw, F W Roeth, G. A. Wicks, and R. G. Wilson. 1986. Weed
seed demise in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 34:248.
[37] Wilson, B. J. 1985. Effect of seed age and cultivation on seedling emergence and seed
decline of Avena fatua L. in winter barley. Weed Res. 25:213- 219.
[38] Snedecor, G. W. and W. G. Cochran. 1967. Statistical Methods. 6th ed. Ames, IA: The Iowa
State University Press. 593 p.

More Related Content

What's hot

Chapter 1 mass balance series of lecture of bioprocess engineering
Chapter 1 mass balance series of lecture of bioprocess engineeringChapter 1 mass balance series of lecture of bioprocess engineering
Chapter 1 mass balance series of lecture of bioprocess engineeringSapan Anand
 
“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The FutureAnik Banik
 
Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.ICHHA PURAK
 
Plant transformation vectors and their types
Plant transformation vectors and their typesPlant transformation vectors and their types
Plant transformation vectors and their typesZahra Naz
 
Transformation in plants
Transformation in plantsTransformation in plants
Transformation in plantsKirandip Kaur
 
Protease Enzyme Application in Food Processing
Protease Enzyme Application in Food Processing Protease Enzyme Application in Food Processing
Protease Enzyme Application in Food Processing Mohan Naik
 
Recombinant protein expression seminar paper
Recombinant protein expression seminar paperRecombinant protein expression seminar paper
Recombinant protein expression seminar paperSamuel Kariuki
 
Pectinase enzyme. Characteristics and production
Pectinase enzyme. Characteristics and productionPectinase enzyme. Characteristics and production
Pectinase enzyme. Characteristics and productionTatiana Dekun
 
Fermented foods and beverages, food ingredients and food additives
Fermented foods and beverages, food ingredients and food additivesFermented foods and beverages, food ingredients and food additives
Fermented foods and beverages, food ingredients and food additivessivaranjaniarunnehru
 
Mammalian cell culture, basic techniques
Mammalian cell culture, basic techniquesMammalian cell culture, basic techniques
Mammalian cell culture, basic techniquesKAUSHAL SAHU
 
PGPR - Plant Growth Promoting Rhizobacteria
PGPR - Plant Growth Promoting RhizobacteriaPGPR - Plant Growth Promoting Rhizobacteria
PGPR - Plant Growth Promoting RhizobacteriaIsuru Priyaranga Silva
 
Bioreactor control system
Bioreactor control system Bioreactor control system
Bioreactor control system nandhujaan
 

What's hot (20)

Rotary Disc Bioreactors
Rotary Disc BioreactorsRotary Disc Bioreactors
Rotary Disc Bioreactors
 
Chapter 1 mass balance series of lecture of bioprocess engineering
Chapter 1 mass balance series of lecture of bioprocess engineeringChapter 1 mass balance series of lecture of bioprocess engineering
Chapter 1 mass balance series of lecture of bioprocess engineering
 
Seconadry metabolites
Seconadry metabolitesSeconadry metabolites
Seconadry metabolites
 
Insect resisance ppt
Insect resisance  pptInsect resisance  ppt
Insect resisance ppt
 
Introduction to bioprocess Engineering
Introduction to bioprocess EngineeringIntroduction to bioprocess Engineering
Introduction to bioprocess Engineering
 
Lantibiotic
LantibioticLantibiotic
Lantibiotic
 
“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future“Microbial Biomass” A Renewable Energy For The Future
“Microbial Biomass” A Renewable Energy For The Future
 
Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.Agrobacterium mediated gene transfer in plants.
Agrobacterium mediated gene transfer in plants.
 
Plant transformation vectors and their types
Plant transformation vectors and their typesPlant transformation vectors and their types
Plant transformation vectors and their types
 
Transformation in plants
Transformation in plantsTransformation in plants
Transformation in plants
 
Protease Enzyme Application in Food Processing
Protease Enzyme Application in Food Processing Protease Enzyme Application in Food Processing
Protease Enzyme Application in Food Processing
 
Bioprocess (1)
Bioprocess (1)Bioprocess (1)
Bioprocess (1)
 
Recombinant protein expression seminar paper
Recombinant protein expression seminar paperRecombinant protein expression seminar paper
Recombinant protein expression seminar paper
 
Pectinase enzyme. Characteristics and production
Pectinase enzyme. Characteristics and productionPectinase enzyme. Characteristics and production
Pectinase enzyme. Characteristics and production
 
In vitro testing of drug toxicity
In vitro testing of drug toxicityIn vitro testing of drug toxicity
In vitro testing of drug toxicity
 
Fermented foods and beverages, food ingredients and food additives
Fermented foods and beverages, food ingredients and food additivesFermented foods and beverages, food ingredients and food additives
Fermented foods and beverages, food ingredients and food additives
 
Enzymatic bioconversions
Enzymatic bioconversionsEnzymatic bioconversions
Enzymatic bioconversions
 
Mammalian cell culture, basic techniques
Mammalian cell culture, basic techniquesMammalian cell culture, basic techniques
Mammalian cell culture, basic techniques
 
PGPR - Plant Growth Promoting Rhizobacteria
PGPR - Plant Growth Promoting RhizobacteriaPGPR - Plant Growth Promoting Rhizobacteria
PGPR - Plant Growth Promoting Rhizobacteria
 
Bioreactor control system
Bioreactor control system Bioreactor control system
Bioreactor control system
 

Similar to report on in vitro seed production and seed immobilization

B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitwe
B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel ArinaitweB4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitwe
B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitweb4fa
 
Role of biotechnology in enhancing fruit crop production and quality
Role of biotechnology in enhancing fruit crop production and qualityRole of biotechnology in enhancing fruit crop production and quality
Role of biotechnology in enhancing fruit crop production and qualityankit gawri
 
Comparison of Growth and Development of Pleurotus florida against Wastes from...
Comparison of Growth and Development of Pleurotus florida against Wastes from...Comparison of Growth and Development of Pleurotus florida against Wastes from...
Comparison of Growth and Development of Pleurotus florida against Wastes from...Dr. siddhant
 
Nutritional quality of seeds
Nutritional quality of seedsNutritional quality of seeds
Nutritional quality of seedsTanuja M
 
Concept of Seed Quality Testing.pdf
Concept of Seed Quality Testing.pdfConcept of Seed Quality Testing.pdf
Concept of Seed Quality Testing.pdfKumari Rajani
 
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...MDMAHMUDALNOOR
 
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...IRJET Journal
 
Plant tissue culture lab,sedf
Plant tissue culture lab,sedfPlant tissue culture lab,sedf
Plant tissue culture lab,sedfiqra junejo
 
Somaclonal Variation: A new dimension for sugarcane improvement
Somaclonal Variation: A new dimension for sugarcane improvementSomaclonal Variation: A new dimension for sugarcane improvement
Somaclonal Variation: A new dimension for sugarcane improvementDr. siddhant
 
Lecture 13 & 14 (student copy).pptx
Lecture 13 & 14 (student copy).pptxLecture 13 & 14 (student copy).pptx
Lecture 13 & 14 (student copy).pptxSarahStephenie2
 
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdfSatendraShroti
 
Quality seed and Quality Seed is the Carrier of New Technology
Quality seed and Quality Seed is the Carrier of New TechnologyQuality seed and Quality Seed is the Carrier of New Technology
Quality seed and Quality Seed is the Carrier of New TechnologyAttitraj Khadka
 
Pruning, cropping pattern and spacing regulation to enhance growth, productio...
Pruning, cropping pattern and spacing regulation to enhance growth, productio...Pruning, cropping pattern and spacing regulation to enhance growth, productio...
Pruning, cropping pattern and spacing regulation to enhance growth, productio...Innspub Net
 
0.1 plant tissue culture step by step guide
0.1 plant tissue culture step by step guide0.1 plant tissue culture step by step guide
0.1 plant tissue culture step by step guideDr. Mafatlal Kher
 
SEED PROPAGATION.pptx
SEED PROPAGATION.pptxSEED PROPAGATION.pptx
SEED PROPAGATION.pptxDr CHITHRA
 
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...AI Publications
 

Similar to report on in vitro seed production and seed immobilization (20)

B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitwe
B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel ArinaitweB4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitwe
B4FA 2012 Uganda: Biotech seed potato breeding in Uganda - Abel Arinaitwe
 
Role of biotechnology in enhancing fruit crop production and quality
Role of biotechnology in enhancing fruit crop production and qualityRole of biotechnology in enhancing fruit crop production and quality
Role of biotechnology in enhancing fruit crop production and quality
 
Comparison of Growth and Development of Pleurotus florida against Wastes from...
Comparison of Growth and Development of Pleurotus florida against Wastes from...Comparison of Growth and Development of Pleurotus florida against Wastes from...
Comparison of Growth and Development of Pleurotus florida against Wastes from...
 
PLANT BIOTECHNOLOGY
 PLANT BIOTECHNOLOGY  PLANT BIOTECHNOLOGY
PLANT BIOTECHNOLOGY
 
Seed and Seed technology
Seed and Seed technology Seed and Seed technology
Seed and Seed technology
 
Micropropagation
MicropropagationMicropropagation
Micropropagation
 
SEED ppt
SEED pptSEED ppt
SEED ppt
 
Nutritional quality of seeds
Nutritional quality of seedsNutritional quality of seeds
Nutritional quality of seeds
 
Concept of Seed Quality Testing.pdf
Concept of Seed Quality Testing.pdfConcept of Seed Quality Testing.pdf
Concept of Seed Quality Testing.pdf
 
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...
5. Phenotyping of lentil genotypes for drought tolerance using polyethylene g...
 
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
 
Plant tissue culture lab,sedf
Plant tissue culture lab,sedfPlant tissue culture lab,sedf
Plant tissue culture lab,sedf
 
Somaclonal Variation: A new dimension for sugarcane improvement
Somaclonal Variation: A new dimension for sugarcane improvementSomaclonal Variation: A new dimension for sugarcane improvement
Somaclonal Variation: A new dimension for sugarcane improvement
 
Lecture 13 & 14 (student copy).pptx
Lecture 13 & 14 (student copy).pptxLecture 13 & 14 (student copy).pptx
Lecture 13 & 14 (student copy).pptx
 
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
 
Quality seed and Quality Seed is the Carrier of New Technology
Quality seed and Quality Seed is the Carrier of New TechnologyQuality seed and Quality Seed is the Carrier of New Technology
Quality seed and Quality Seed is the Carrier of New Technology
 
Pruning, cropping pattern and spacing regulation to enhance growth, productio...
Pruning, cropping pattern and spacing regulation to enhance growth, productio...Pruning, cropping pattern and spacing regulation to enhance growth, productio...
Pruning, cropping pattern and spacing regulation to enhance growth, productio...
 
0.1 plant tissue culture step by step guide
0.1 plant tissue culture step by step guide0.1 plant tissue culture step by step guide
0.1 plant tissue culture step by step guide
 
SEED PROPAGATION.pptx
SEED PROPAGATION.pptxSEED PROPAGATION.pptx
SEED PROPAGATION.pptx
 
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
 

report on in vitro seed production and seed immobilization

  • 1. 1 ProjectREPORT ON In vitro Seed Production and Seed Immobilization Submitted in Partial Fulfillment of the Required Credits for the Degree of Bachelor OF technology IN BIOTECHNOLOGY SuPERVISEDby Submittedby Dr. Avinash Marwal Preeti JV-B /10/2051 Faculty of ENGINEERING & technology
  • 2. 2 jayoti Vidyapeeth Women’s University, Jaipur CERTIFICATE The report is hereby approved as a bonafide and creditable project work “In vitro Seed Production and Seed Immobilization” carried out and presented by Preeti (JV-B/10/2051) in a manner to warrant its acceptance in partial fulfillment of the required credits for the degree of B. Tech + M. Tech in Biotechnology. However, the undersigned do not necessarily endorse or take responsibility for any statement or opinion expressed or conclusion drawn there in, but only approve the report for the purpose for which it is submitted. (…………………………) (Dr. Richa Sharma) Supervisor (External) Supervisor (Internal) Organization Jayoti Vidyapeeth Women’s University (Dr. Avinash Marwal) Coordinator Department of Biotechnology & Engineering, Jayoti Vidyapeeth Women’s University (Dr. Promod Raghav)
  • 3. 3 Dean Faculty of Engineering and Technology, Jayoti Vidyapeeth Women’s University
  • 4. 4 ACKNOWLEDGEMENT I express my gratitude to all those who helped me to prepare and complete my dissertation/training/project work entitled “In vitro Seed Production and Seed Immobilization” First of all, I convey my deep gratitude and heart full thanks to Dr. Avinash Marwal, JVWU for his inspiration, cooperation and encouragement for pursuing my dissertation. His valuable suggestion and guidance helped me a lot to complete my work in this institution with in a very short period. I render my sincere respect and heart full gratitude to Dr. Richa Sharma, Department of Biotechnology, Jayoti Vidyapeeth Women’s University, Jaipur. I am also thankful to all the faculty members, for their valuable suggestion towards completing the dissertation work. I am also grateful to all my class mates, who helped me directly or indirectly in completing my dissertation/training/project work successfully. Last but not least, I am really ever grateful to my parents, who remained a constant source of encouragement and inspiration during the completion of this work successfully in Jayoti Vidyapeeth women’s University, Jaipur. Preeti (JV-B/10/2051) Department of Biotechnology Jayoti Vidyapeeth Women’s University, Jaipur
  • 5. 5 DECLARATION "I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor materials which have been accepted for the award of any other degree or diploma of any university or institution of higher learning, except where due acknowledgment has been made in the text.” Place: Jayoti Vidhyapeeth, Rajasthan (Preeti) Date: 28th Nov 2015 JV-B/10/2051
  • 6. 6 INDEX S.NO. TOPIC PAGE NO. 1 2 3 4 5 Introduction Review Literature Materials and Methods a)Seed Viability b)MS preparation c)In vitro seed germination d)Artificial seed production Result and Discussion References 6-8 9-12 12-13 14-17 17 18 19-22 22-26
  • 7. 7 INTRODUCTION Germination testing is considered as the most important quality test in evaluating the planting value of a seed lot. The ability of seeds to produce normal seedling and plants later on is measured in terms of germination test. Testing of seeds under field conditions is normally unsatisfactory as the results cannot be replaced with reliability. Laboratory methods then have been conceived wherein the external factors are controlled to give the most uniform rapid and complete germination. Testing conditions in the laboratory have been standardized to enable the test results to be reproduced within limits as nearly as possible as those determined by random sample variations. Testing seed viability (germination) is considered as one of the secondary tasks in the production of a cereal crop. Nonetheless, it deserves a very careful attention. Without knowing the germination capacity of the seed to be planted, one will not be able to determine an intelligent estimate of seeds required to ensure a adequate population of plants at the beginning of the planting cycle. The percentage of germination of a sample taken from seeds to be planted is an important test, but not enough sufficient. When conventional methods produce low or no germination, in vitro techniques can greatly enhance germination. The media composition, qualitative and quantitative aspects of plant growth regulators play a vital role in plant in vitro studies. Therefore optimization of these conditions is a prerequisite for in vitro plant tissue culture studies. Development of protocols for in vitro seed germination and seedling development can be used to rapidly produce large number of plants for conservation and restoration [1].
  • 8. 8 Preparation of culture media is preferred to be performed in an equipped for this purpose compartment. This compartment should be constructed so as to maintain ease in cleaning and reducing possibility of contamination. Supplies of both tap and distilled water and gas should be provided. Appropriate systems for water sterilization or deionization are also important [2]. Certain devices are required for better performance such as a refrigerator, freezer, hot plate, stirrer, pH meter, electric balances with different weighing ranges, heater, Bunsen burner in addition to glassware and chemicals. It is well known now that mistakes which occur in tissue culture process most frequently originate from inaccurate media preparation that is why clean glassware, high quality water, pure chemicals and careful measurement of media components should be facilitated [3]. A convenient method for preparation of culture media is to make concentrated stock solutions which can be immediately diluted to preferred concentration before use. Solutions of macronutrients are better to be prepared as stock solutions of 10 times the strength of the final operative medium. Stock solutions can be stored in a refrigerator at 2- 4oC. Micronutrients stock solutions are made up at 100 times of the final concentration of the working medium. The micronutrients stock solution can also be stored in a refrigerator or a freezer until needed. Iron stock solution should be 100 times concentrated than the final working medium and stored in a refrigerator. Vitamins are prepared as either 100 or 1000 times concentrated stock solutions and stored in a freezer (-20oC) until used if it is desired to keep them for long otherwise they can be stored in a refrigerator for 2-3 months and should be discarded thereafter [4]. Stock solutions of growth regulators are usually prepared at 100-1000 times the final desired concentration. Plant propagation through artificial seeds broadens the horizon of plant biotechnology and agriculture [5]. As one of the important value-added plant tissue culture products, artificial
  • 9. 9 seed technology can only be successful with efficient upstream production of micropropagules as well as downstream germination protocols for high percentage of plant regeneration [6]. Production of synthetic seeds has unraveled new vistas in in vitro plant biotechnology, such as large scale clonal propagation, delivery of clonal plantlets, germplasm conservation, breeding of plants in which propagation through normal seeds is not possible, genetic uniformity, easy storage and transportation etc [7] because artificial seeds technology offers several potential advantages: (1) ease of handling, (2) low production cost, (3) ease of exchange of plant materials between different laboratories in different counties, (4) genetic uniformity of propagated plants (5) direct delivery to the soil, (6) shorten the breeding cycle and (7) reduction of the storage space [8-10]. The present study was focused on the following objectives: 1. Determination of Mung bean (Vigna radiata) seed viability. 2. Preparation of various stock solutions of Murashige and Skoog (MS) medium. 3. In Vitro Seed Germination of Mung bean (Vigna radiata). 4. Artificial Seed Production through Sodium Alginate immobilization technique.
  • 10. 10 REVIEW LITERATURE A study at Fairbanks, AK, was started in 1984 to determine soil seed longevity of 17 weed species. Seeds were buried in mesh bags 2 and 15 cm deep and were recovered 0.7, 1.7, 2.7, 3.7, 4.7, 6.7, 9.7, and 19.7 yr later. Viability was determined by germination and tetrazolium tests. Seed viability data were fit to an exponential model, separately for each depth, and the likelihood-ratio test was used to determine whether seed-viability decline was affected by burial depth. Depth of burial had a significant effect on viability decline of prostrate knotweed, marsh yellowcress, bluejoint reedgrass, and wild oat [11]. By 19.7 years after burial (YAB), all seeds of common hempnettle, quackgrass, wild oat, foxtail barley, and bluejoint reedgrass were dead. Seeds of 12 other species were still viable: corn spurry (0.1%), prostrate knotweed (0.3% at 2 cm, 0.8% at 15 cm), flixweed (0.5%), pineapple-weed (0.6%), shepherd’s- purse (1.3%), wild buckwheat (1.5%), common chickweed (1.6%), rough cinquefoil (1.8%), common lambsquarters (3.0%), Pennsylvania smartweed (3.3%), marsh yellowcress (8.5% at 2 cm, 0.3% at 15 cm), and American dragonhead (62.2%). Seed dormancy at 19.7 YAB was very low for all species (4%) except for American dragonhead, common lambsquarters, Pennsylvania smartweed, and shepherd’s-purse, which had seed dormancies of 100, 27, 25, and 38%, respectively. Seed longevity was not increased by cold, subarctic temperatures [11]. The ‘algarrobo’ Prosopis flexuosa is an important food resource in the Monte Desert of Argentina. Native, domestic and exotic mammals consume the fruit of this legume and disperse the seed through faeces. It was analyzed the effect of different dispersal agents (cattle, horse, European wild boar, rodents, gray fox) have on seed damage, viability and germination. Cattle increase germination at the expense of reduced viability, whereas horses maintain viability but
  • 11. 11 do not contribute to a prompt germination response. Among native mammals, the gray fox maintains seed viability without increasing germination, whereas rodents affect seed viability but enhance germination rates. The European wild boar, however, damages all of the seeds it consumes [12] South American Polylepis mountain forests belong to the most endangered forest ecosystem in the world. Reforestation measures have been strongly recommended but may be hampered due to the very low seed germination rates reported for several Polylepis species. In order to determine the causes behind reduced seed germination, seed viability of Polylepis australis trees in the mountains of central Argentina were analyzed. Seeds from seven heterogeneous areas (4-5 well-separated trees per area totaling 29 trees) with high within and between variation in degradation status were picked. Average percentage of viable seeds was 8 - 38 and lack of an embryo was the main reason for seeds not being able to germinate. Seed viability was positively associated with relatively undisturbed soils supporting tussock grasslands (38.7 % of variance) and negatively associated with soil erosion (18.8% of the variance). In order to improve seed viability, the data suggests that livestock pressure and burning practices should be reduced, as these are the main causes for erosion and other forms of soil destruction [13]. Optimal growth and morphogenesis of tissues may vary for different plants according to their nutritional requirements. Moreover, tissues from different parts of plants may also have different requirements for satisfactory growth [14]. Tissue culture media were first developed from nutrient solutions used for culturing whole plants e.g. root culture medium of White and callus culture medium of Gautheret. White’s medium was based on Uspenski and Uspenska’s medium for algae, Gautheret’s medium was based on Knop’s salt solution [15]. Basic media that
  • 12. 12 are frequently used include Murashige and Skoog (MS) medium [14], Linsmaier and Skoog (LS) medium [16], Gamborg (B5) medium [17] and Nitsch and Nitsch (NN) medium [18]. Enhanced in vitro seed germination, seedling development protocol has been established for conservation of very rare and globally endangered woody tree species, Butea monosperma (Lam.) Taub. var. lutea (Witt.) Fabaceae). Mature seeds were cultured on two basic inorganic media with full (F) or ½ strength (H) of MS supplemented with various concentrations of N6- benzyladenine (BA, 2.22, 4.40, 6.62 and 8.40 μM) or thidiazuron (TDZ, 0.45, 2.27, 4.54, 6.80 μM) alone. The seedlings (90%) of B. monosperma var. lutea readily acclimated to greenhouse conditions [19]. Dendrobium ovatum Lind l. is an epiphytic orchid found in the Western Ghats. A rapid in vitro seed germination technique were used. MS, VW, B5 and KC media supplemented with various concentrations of auxins and cytokinins were used in combination for asymbiotic seed germination and plantlet formation. CM induced formation of PLBs which further differentiated into plantlets. In the optimization process for phytohormones, 0.5 mg BAP/L-1 and 5 mg NAA/L-1 favoured maximum number of plantlet formation. However, rhizogenesis was found to be minimal in the above medium. 90 days old in vitro plantlets inside the tissue culture bottles were seen with inflorescence production with 10-12 flowers per axis. Hardened plants were transferred to green house after ex vitro rooting technique [20]. The somatic embryo can be encapsulated, handled and used like a natural seed was first suggested by [21] and efforts to engineer them into synthetic seed have been ongoing ever since [22, 23] Winkelmann et al. [24] added that the hardening of beads is generally performed in 50- 100 mM of CaCl2.2H2O, with exposure times ranging from 20 min for Cyclamen persicum to 60 min for Pelongonium horturum [25]. The highest germination rate was obtained when a 30-min
  • 13. 13 exposure to 50 mM CaCl2.2H2O was applied for bead polymerization, in comparison with a 10- min exposure to 60 mM or 80 mM [26]. In Orchids, the most important cut flowers which are commercially propagated in vitro, the best conversion to plantlets (100%) of encapsulated of Dendrobium ‘Sonia’ was observed when 3% Na-alginate drops were hardened for 30 min in 75 mM CaCl2.2H2O [27]. Shoot tips stored for 12 weeks and encapsulated in 3% sodium alginate prepared in distilled water without MS medium [28]. In other studies use of meristematic shoot tips or axillary buds were used for the production of synthetic seeds as reported for banana [29, 30]. Although it was widely accepted that orchid seeds could only be germinated with the proper fungus, germination rates were often low and seedling death was common [31]. Bernard, however, was successful in germinating seeds of Cattleya and Laelia in the absence of a fungus by using salep, a powder obtained from tubers of Ophrys, a terrestrial orchid genus [32]. Oliva and Arditti [33] reported that photoperiod did not have a significant effect on germination of several species of Aplectrum, Spiranthes, and Cypripedium. Arditti et al. [34] reported that illumination negatively affected the germination of Calypso bulbosa and Epipactis gigantea; however, no difference was found between illumination and complete darkness in seed germination of Goodyera, Piperia, and Platanthera. Rasmussen et al. [35] examined symbiotic seed germination of Dactylorhiza majalis incubated in darkness and then placed under a 16-hour light/8-hour dark photoperiod and vice versa. Cultures were placed under 36-watt fluorescent tubes with an irradiance of 51.2 μmol m-2 s-1. Cultures under a 16-hour light/8-hour dark photoperiod for 14 days followed by a dark incubation for 35 days increased germination (75% germination) substantially over the control (44% germination).
  • 14. 14 MATERIALS AND METHODS Seed Viability 1. Obtain a representative sample of seed. a. Make sure the sample chosen is representative of the seed. b. A sample of 1500 grams should be well mixed. c. Choose sub samples each having 10 seeds. 2. Write the details on the cover of the petri dish. a. Use a wax pen or a thin indelible marker. Indicate the variety, the date of the test. 3. Put a filter paper in a petri dish. a. Use the base of the petri dish. 4. Wet the filter paper. a. Add enough clean water to wet the paper. Careful not to put much, for too much water will make some seeds to float. 5. Put the seeds on the filter paper. a. Distribute all the 10 seeds uniformly on the filter paper. Make sure the seeds aren`t bunched in one location for this complicate the counting of the emerged seeds. b. Don`t add water after placing the seeds as water drops could move the seeds. 6. Cover the petri dish. a. Make sure you use the cover that is already marked with the information. 7. Wait the seeds to germinate. a. Put the petri dishes in different location at different temeperature and light conditions b. Ambient temperature is favourable for germination c. The seeds will germinate in 4-5 days and check the seed viability.
  • 15. 15 Murashige and Skoog (MS) tissue culture medium (1962) Preparation Major salts (500 mL) NH4NO3 8.25 g KNO3 9.5 g CaCl2.2H2O 2.2 g MgSO4.7H2O 1.85 g KH2PO4 0.85 g Bring to volume (500 mL) with distilled water and Store at 40C. Minor salts (500 mL) KI 0.0415 g H3BO3 0.310 g MnSO4.4H2O 1.115 g ZnSO4.7H2O 0.43 g CuSO4.5H2O 0.00125 g CoCl2.6H2O 0.00125 g Na2MoO4.2H2O 0.0125 g Bring to volume (500 mL) with distilled water and Store at 40C. Organic Supplement (500 mL) Myo-inositol 5 g
  • 16. 16 Nicotinic acid 0.025 g Pyridoxine-HCl 0.025 g Thiamine-HCl 0.005 g Glycine 0.1 g Bring to volume (500 mL) with distilled water and Store at 40C. Iron Stock (500 mL) Sol A: FeSO4.7H2O 1.39 g (200 ml DW) Sol B:Na2EDTA.2H2O 1.86 g (200 ml DW) Mix solutions A and B. Bring to volume (500 mL) with distilled water and Store at 40C. Volumes of the stock solutions (the first column from the left) required for making different volumes of the MS medium (indicated in the first row) 200 mL 500 mL One Litre Distilled water 150 mL 375 mL 750 mL Major salts 20 mL 50 mL 100 mL Minor salts 2 mL 5 mL 10 mL Organic supplement 2 mL 5 mL 10 mL Iron stock 2 mL 5 mL 10 mL The method is exemplified for preparing 1.0 liter of MS basal medium.
  • 17. 17 1. For preparation of 1.0 liter of MS Basal medium, the above stocks solutions should be added sequentially in about 500 ml of doubled distilled water. 2. Weight and add required quantities of sucrose (20 or 30 g) and dissolve by magnetic stirring. 3. According to the purpose of the medium growth regulator and other medium conjugates/ additives are added, and the volume of the medium is made up to 1000 ml by distilled water. 4. Adjust the pH of the medium to 5.8 using 0.1 NaOH or 0.1 N HCL before autoclaving. 5. Note that the pH meter should be calibrated by standard buffers (4.0 and 7.0) immediately before adjusting the medium. 6. For preparing semisolid medium, add agar at the rate of 6.0-8.0 gm/l in the pH adjusting medium, and heat until near boiling in a microwave oven or gas oven with intermittent stirring. 7. Measured volume of semisolid media is dispenser into culture tubes, containers. Vessel using an automatic media disperser. 8. For preparing liquid medium, pH adjusted media are directly poured in suitable containers. 9. For plating experiments, semisolid medium is poured in sterile Petri dishes. 10. Plant tissue culture media are usually autoclaved at 121⁰ C For 20 min (15 lb in or 1.05 kg cm2). 11. Autoclaving is generally done in a horizontal or vertical autoclave. 12. Minimum time necessary for steam sterilization of media is dependent on volume of medium per vessel and is described separately. 13. Autoclaved media are kept in ambient temperature for a day and then transferred in a dust- free closed cabinet for subsequent use.
  • 18. 18 14. Semisolid medium starts drying up, and therefore should be used within a fortnight after its preparation. In Vitro Seed Germination 1. The mature seeds of Mung bean (Vigna radiata) were purchased from the market. 2. Collected seeds were initially washed under running water tap for 5 min and were soaked in sterilized distilled water (SDW) at room temperature for overnight. 3. The soaked seeds were surface sterilized with 70% ethyl alcohol for 1-2 mins followed by 0.1% (w/v) HgCl2 (0.1% w/v) for 40-60 sec. 4. After each surface sterilization treatment, seeds were thoroughly rinsed 4-5 (each of 1-2 min) with sterile distilled water (SDW). 5. After rinsing for 4-5 times with SDW, the seeds were aseptically blotted on Whatman paper and transferred to conical flask containing 50 ml of Murashige and Skoog Media. 6. The seed explants were cultured for 1 weeks on the full strength Murashige and Skoog media using 25 ± 2 0C with 16h photoperiod, under white fluorescent light (65 μE/m2/s). 7. After two days the germinated seeds were transferred to half strength Murashige and Skoog Media for better root development. 8. After germination, individual seedlings after three days of culture (plantlets) were removed from culture jars and washed thoroughly with water and transferred carefully / potted in plastic jars / glass beaker containing sterilized soil.
  • 19. 19 Artificial Seed Production 1. Dissolve 9 g of sodium alginate in 300 ml of distilled water. 2. Stir until all sodium alginate is completely dissolved to avoid clump formation. 3. The final solution contains 3% alginate by weight. 4. Thoroughly suspend about 50 seeds in the alginate solution prepared in the previous step. 5. Let air bubbles escape. 6. Drip the seed-alginate mixture from a height of 20 cm into 1000 ml of crosslinking solution. 7. The crosslinking solution is prepared by adding an additional 0.05M of CaCl2 to the distilled water. 8. The calcium crosslinking solution is agitated on a magnetic stirrer. 9. Gel formation can be achieved at room temperature as soon as the sodium alginate drops come in direct contact with the calcium solution. 10. Wash the beads with a fresh calcium crosslinking solution and transfer to soil.
  • 20. 20 RESULTS AND DISCUSSION Germination of a seed lot in a laboratory is the emergence and development of the seedling to a stage where the aspect of its essential structures indicates whether or not it is able to develop further into a satisfactory plant under favorable conditions in soil [36]. "These essential structures are a well-developed and intact root system, hypocotyl, plumule and one or two cotyledons according to the species. Seedlings cannot be evaluated in a germination test until these essential structures are clearly identifiable and the reported percentage germination expresses the proportion of seed which have produced normal seedlings within the period specified for each species [37]. Figure 1: Petriplates showing Mung bean (Vigna radiata) seeds (+ & -) germination at various temperature and light conditions. Germination occurs under different ranges of temperatures provided the seed is given adequate moisture. Temperature is not as critical as water requirement during the test. Seeds of
  • 21. 21 most of agricultural and horticultural crops germinate in the temperature range of 10 °C - 35 °C [38]. Our results too hold the germination within the favorable range. Mung bean (Vigna radiata) seeds showed 100% germination at Room Temperature (Both in Light and Dark condition), Growth Chamber (15 °C) and BOD Incubator (28.6 °C) (Figure 1). Whereas Mung bean (Vigna radiata) seeds fail to germinate at higher temperature in Incubator (50 °C) and at low temperature in Fridge (4 °C) suggesting 0% germination rate. Figure 2: Depicting the fast root development in liquid media. For in vitro seed production MS media was used, supplemented with various concentrations of nutrients. After two days seeds started germinating and no contamination was observed. Seeds with miniature hypocotyls and plumule were transferred to half strength MS liquid for better root development (Figure 2). Seedlings showed better root development in liquid media as compared to semi solid media. After germination, individual seedlings after three days
  • 22. 22 of culture (plantlets) were removed from culture jars and washed thoroughly with water and transferred carefully / potted in plastic jars / glass beaker containing sterilized soil (Figure 3). Figure 3: Growth of shoot development in soil transferred seedlings The concentration of the CaCl2 is about one fourth of the strength used for seed immobilization. Relatively small alginate beads are preferred to minimize the mass transfer resistance (Figure 4a). A diameter of 3-5 mm was readily achieved with a forceps. The beads should fully harden in 1-2 hours. Individual seeds transferred carefully into potted plastic jars / glass beaker containing sterilized soil showed germination after one week (Figure 4b). (a)
  • 23. 23 (b) Figure 4: (a) Beads showing encapsulation of seed with Alginate matrix. (b) Germinated seed via artificial seed production technology. This protocol may be useful in low production cost, short time conservation, ease of handling and ease of exchange of plant materials between different laboratories in different counties. Finally, it must be pointed that synthetic seeds composition may be differed depending on plant type, where its endogenous construction may affected its response. Finally, we can conclude that in vitro grown seeds and encapsulation of seeds is a suitable system for mid-term storage of cultures since encapsulation saves space, time and resources and it demonstrates advantages over conventional method.
  • 24. 24 REFERENCES [1]. Fay, M. F. 1992. Conservation of rare and endangered plants using in vitro methods. In vitro Cell. Dev. Biol. 28: 1- 4. [2] Ahloowali BS, Prakash J. Physical components of tissue culture technology. In: International Atomic Energy Agency (ed.): Low cost options for tissue culture technology in developing countries. Proceedings of a technical meeting, 26-30 August 2002, Vienna, Austria. [3] Brown D, Thorpe T. Organization of a plant tissue culture laboratory. In: (ed.) Vasil I. Cell culture and somatic cell genetics of plants. [4] Gamborg OL, Shyluk JP, Shahin EA. Isolation, fusion and culture of plant protoplasts. In: (ed.) Thorpe TA. Plant Tissue Culture: Methods and Applications in Agriculture. New York: Academic Press; 1981. p115-153. [5]. I. KINOSHITA. The Production and Use of Artificial Seed, Research Journal of Food and Agriculture, 15(3), 6-11 (1992) [6]. V.S. JAISWAL, A. HUSSAIN, U. JAIWAL. Synthetic seed: Prospects and limitations. Current Science, Vol. 78, No. 12 (2001). [7] Brischia, R., E. Piccioni and A. Standardi, 2002.Micropropagation and synthetic seed in M 26 apple rootstock (11): A new protocol for production of encapsulated differentiating propagules. Plant Cell Tiss. Org. Cult., 68: 137-141. [8] Ara, H., U. Jaiswal and V.S. Jaiswal, 1999. Germination and plantlet regeneration from encapsulated somatic embryos of mango (Mangifera indica L.). Plant Cell Rep., 19: 166- 170. [9] Ganapathi, T.R., L. Srinivas, P. Supranna and V.A. Bapat, 2001. Regeneration of plants from
  • 25. 25 alginate –encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB group ). In Vitro Cell. Dev. Biol., 37: 178-181. [10] Reddy, M.C., K.S.R. Murthyand and T. Pullaiah, 2012. Synthetic seeds: A review in agriculture and forestry. African Journal of Biotechnology, 11: 14254-14275. [11] Jeffery S. Conn, Katherine L. Beattie and Arny Blanchard. Seed viability and dormancy of 17 weed species after 19.7 years of burial in Alaska. Weed Science, 54:464–470. 2006 [12] Claudia M. Campos & Ricardo A. Ojeda. Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. Journal of Arid Environments (1997) 35: 707–714 [13] Daniel Renison, Isabell Hensen, Ana M. Cingolani. Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. Forest Ecology and Management 196 (2004) 327–333 [14] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962; 15: 473-479. [15] Torres KC., editor. Tissue culture techniques for horticultural crops. New York, London: Chapman and Hall; 1989. [16] Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant., 1965; 18: 100-127. [17] Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension culture of soybean root cells. Ex. Cell. Res. 1968; 50: 15-158. [18] Nitsch JP, Nitsch C. Haploid plants from pollen grains. Science 1969; 163: 85- 87. [19] Mahender Aileni, Mahesh Damodar. M and Murthy Elagonda Narashimha. In vitro seed germination and development of Butea monosperma (Lam.) Taub. Var. lutea (Willt.) : a step
  • 26. 26 for rehabilitation. International Journal of Multidisciplinary and Current Research. April 2014, Vol.2. 297-301 [20] Sagaya Mary B. and Divakar K.M. In Vitro Seed Germination Studies and Flowering in Micropropagated Plantlets of Dendrobium Ovatum Lindl. IOSR Journal of Biotechnology and Biochemistry. Volume 1, Issue 3 (Mar. – Apr. 2015), PP 04-09 [21] Murashige T (1977). Plant cell and organ culture as horticultural practice. Acta Hortic. 78:17-30. [22] Kitto SL, Janick J (1985c). A citrus embryo assay to screen water soluble resins as synthetic seed coats. Hort. Sci. 20:98-102. [23] Gray DJ (1987). Synthetic seed technology for the mass cloning of crop plants: problems and prospects. Horti. Sci. 22:795-814. [24] Winkelmann, T., L. Meyer and M. Serek, 2004. Germination of encapsulated somatic embryos of Cyclamen persicum. Hort. Sci., 39: 1093-1097. [25] Gill, R., T. Senaratna and P.K. Saxena, 1994. Thidiazuron induced somatic embryogenesis enhances viability of hydrogel encapsulated somatic embryos of Geranium. J. Plant Physiol., 143: 726-729. [26] Ipekci, Z. and N. Gozukirmizi, 2003. Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep., 22: 16-24. [27] Saiprasad, G.V.S. and R. Polisetty, 2003. Propagation of three orchid genera using encapsulated protocorm like bodies. In vitro Cell Dev. Biol. Plant, 39: 42-48. [28] Grzegorczyk, I. and H. Wysokiñska, 2011. A Protocol for synthetic seeds from Salvia officinalis L. shoot tips. Acta Biologica Cracoviensia Series Botanica, 53: 80-85.
  • 27. 27 [29] Ganapathi, T.R., P. Suprasanna, V.A. Bapat and P.S. Rao, 1992. Propagation of banana through encapsulated shoot tips. Plant Cell Rep., 11: 571-575. [30] Ganapathi, T.R., V.M. Kulkarni, P. Suprasanna, V.A. Bapat and P.S. Rao, 1998. Studies on in vitro multiplication and encapsulation in an elite variety of banana-Lal Kela (AAA). Proc. Natle. Acad. Sci. USA, 68B: 45-51. [31] Knudson, L. 1922. Nonsymbiotic germination of orchid seed. Botanical Gazette 73: 1-25. [32] Arditti, J. 1967a. Factors affecting the germination of orchid seed. The Botanical Review 33: 1-97. [33] Oliva, A.P. and J. Arditti. 1984. Seed germination of North American orchids. II. native California and related species of Aplectrum, Cypripedium, and Spiranthes. Botanical Gazette 145: 495-501. [34] Arditti, J., J.D. Michaud, and A.P. Oliva. 1981. Seed germination of North American orchids. I. native California and related species of Calypso, Epipactis, Goodyera, Piperia, and Platanthera. Botanical Gazette 142: 442-453. [35] Rasmussen, H.N., T.F. Anderson, and B. Johansen. 1990. Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and without a mycorrhizal fungus. Plant, Cell and Environment 13: 171-177. [36] Burnside, 0. C., R. S. Moomaw, F W Roeth, G. A. Wicks, and R. G. Wilson. 1986. Weed seed demise in weed-free corn (Zea mays) production across Nebraska. Weed Sci. 34:248. [37] Wilson, B. J. 1985. Effect of seed age and cultivation on seedling emergence and seed decline of Avena fatua L. in winter barley. Weed Res. 25:213- 219. [38] Snedecor, G. W. and W. G. Cochran. 1967. Statistical Methods. 6th ed. Ames, IA: The Iowa State University Press. 593 p.