SlideShare a Scribd company logo
1 of 33
Patternsin Gilaand ColoradoRiverWaterChemistry andSolidsDistribution*
The purpose of thisprojectis to enumerate anddescribe patternsinwaterchemistry andsolids
distribution of majorArizonastreams. Itisthe contentionof thispaperthat solids,particularly the major
ions, forma contextwithinwhichwaterqualityexceedancesoccur. Each ‘matrix’hasa differentsetof
electronic,solidspartitioning, pH,andalkalinityrelationswhichaffecttrace metal andnutrient
speciationandsolubility.
While some attempthasbeenmade totie togethersimilarphenomenon andsuggestpossible causes
and effects,manyobservations remain‘loose ends.’Theircause andfull significance are notknown so
‘explaining’themispremature andsummarizing leadstolossof information. The hope is these may
prove useful atsome pointinthe future toan investigatorwhomayfindine tobe justthe ‘key’needed
to create a betterpicture of howthese systemswork.
FINDINGS
The projectbeganwitha chance observationof some interestingchemistryata site onthe Colorado
River. Sulfate atMorelos typicallyrunsabouta100 mg/L higherthanbicarbonate.In1992, however,
sulfate concentrationsdippedbelowbicarbonateandstayedlowerthroughout1993. Such a change in
one of the fundamental constituentsoveralongperiodof time seemedsignificant.
There isa patterninthe major ionconcentrations,althoughitishardto see inthe above graph.The
patternis more easilyseen if alongertime span isused.The below graphshowssulfate and metals
concentrations‘scaled’ tosulfate withlineartransformations sothatthey plotinthe same area withthe
same amplitude.The resultingoverall patternisasine curve withaperiodof 5-7 years.
This patternisfirstseeninthe majorionsat LeesFerry,at the opposite endof the state,inthe mid-
1960s. It contrasts clearly withanearlierperiodinwhichmajorionconcentrationswere muchmore
variable. Itisprobablysignificantthat GlenCanyonDam wentintooperationinthe mid-1960s.Infact,
GlenCanyondam releases are identical withflow atthe gage before 1996-97 anddifferonlyslightly
after.So we can surmise thatthe 5-7 sine curve isprobably relatedtodamreleases.
The relationshipbetweenflowandconcentrationisseeninthe graphbelow but itisnot a strongone.
The weaknessof the correlation isapparentinthe secondgraphbelow and furtherevidencedin
numerical correlation of only R^2
=-0.56 overthe periodof record.
Correlations - elevated flows from Gila
0
100
200
300
400
500
600
700
8/28/76 5/25/79 2/18/82 11/14/84 8/11/87 5/7/90 1/31/93 10/28/95 7/24/98 4/19/01 1/14/04
date
units
SULFATE, TOTAL (MG/L AS SO4)
CALCIU x 4.48 + -99.12
MAGNES x 12.49 + -86.67
SODIUM x 1.96 + 8.37
POTASS x 75.57 + -86.88
BORON, x 1182.90 + 63.40
ARSENI x 41684.85 + 185.38
MANGAN x 4930.23 + 233.11
COPPER x 44421.93 + 218.25
BARIUM x 4337.11 + -98.62
.
Part of the reason couldbe that all dam releasesmaynotbe the same. It wouldprobablymake a
difference if releaseswere made ‘off the top,’which wouldhave apresumably‘decanting’effect,or
withmixingwhich,assumingsome stratificationinLake Powell,mightstirup higher,bottom
concentrations. A more in-depthlookatGlenCanyonDam operationsthanwhatisgenerallyavailableto
the publicwouldprobablyclearupa lotof the uncertaintyhere.
A closerlookat sulfate concentrations,however, mayreveal anotherreason why the correlationwith
flowisso poor.The sulfate curve shows a tighter,innercurve withinthe larger5-7 yearcurve.The ups
and downsof thisinnercurve interfere withthe correlationbetweenflow andthe largersine curve.The
innercurve has highpointstypicallyinJun-Augandlow pointsin Oct-Jansowe can guessitto be a
seasonal effectstill goingonwithinthe contextof regulatedflow.
The seasonalityhypothesis canbe investigatedfurtherwithautocorrelations.The followingtwographs
showchloride concentrations atLeesFerry from1926 to 1965 and from1966 to 2008. Bothshow,to
some extent,the ‘dampedoscillator’patterntypical of seasonal effects.Presumablythe 5-7sine curve is
causingthe undulationandtighteramplitudesinthe 1966 to 2008 plot.
1926-1965
Autocorrelation - CHLORIDE,TOTAL IN WATER MG/L
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0 100 200 300 400 500 600
lag
coefficient
1966-2008
It mightseemobviousthatflowsinthe earlierperiodwouldbe more heavilyinfluencedbyseasonality
than inthe laterperiod. But there were ‘technical’difficultiesinattemptingtoshow thiswith
autocorrelations.The earlierperiodshowssome evidence of seasonality inflow withaplotthatlooks
verymuch like the ’26 to ‘65 chloride above.The laterperiodshowsaless convincingpatternbutthere
was a shiftfromusingmeandailytoinstantaneousflows,soall betsare off.
In fact, flowsand sulfate concentrationsinthe earlierperiod seemtosuggestthatthere maybe
seasonal effectsnotrelatedto‘seasonal flows.’Inthe graphsbelow highflows usuallycorrespondto
dropsin sulfate but notalways. Some dropsmay be the resultof changingsolubilityorspeciation with
temperature anddensitywithinthe base flow.Whateverthe cause,sulfate concentrationsatLeesFerry
routinelydroppedbelowbicarbonate inthe springorearlysummerfrom1948 to 1958. For several
yearsafterthere isspottydata so it ishard to tell butafterthe mid-1960s these dropsno longeroccur.
In general,Coloradomajorionchemistryshowstwobasicpatterns–one,a5-7 sine curve beginningin
the mid-1960s and possibly relatedtodamreleasesand two, a tighter,innercurve whichappearstobe
Autocorrelation - CHLORIDE,TOTAL IN WATER MG/L
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0 100 200 300 400 500 600
lag
coefficient
seasonal butnotstrictlytiedto seasonal flow. Metalsconcentrations loosely follow the majorion
concentrations 5-7year sine curve.
These patternsare seen at Morelasbutthe onsetof the 5-7 curve is eithermutedornot fully visible
(earliestdata,1961) and therefore lessdistinct.The inner,seasonal curve atMorelashas highsin Oct-
Jan andlowsin Mar-Aug,opposite toLeesFerryandthere are more anomalies.Some dropsinsulfate
are outside the normal amplitudesof eitherthe 5-7year sine orthe innerseasonal curve.
Returningtothe metals concentrationsatMorelas,one seesthatthey alsorespondduringthe same
periodasthe sulfate dip. The graphbelow isthe same as the metalsgraph above (p.2) withall
parameters scaledtosulfate, butovera shortertime span andwithparameters removed thatdonot
have at leasttwopointswithinthe time of interest(92-94).
Obviouslythesegraphshave ‘waytoomanypoints’andit ishard to see the forestforthe trees,as the
sayinggoes. But there seemtobe nodes (3) duringwhichtime all the metals are all movingeitherupor
downand the center(nochange in concentration) clearsout. Inotherwords,all the parameterswith
data inthe time of interestseemtobe affectedinone wayoranother. Thisapparent, ‘multi-variate’
correlation naturally raisesthe questionof whatmightbe the cause.
The period1992-1993 was a time whenmajorflowsonthe Gilacausedit to flow all the way from
Saffordto Dome andthe Colorado.The maincharge carrierson the Gila are sodiumandchloride
whereas onthe Coloradosodiumand sulfate. Whatwe seemtobe seeingare the metalsadjustingfrom
theirpositioninthe Coloradomatrix tothatin the Gilaand thenslowlyreturningasGilaflow tapersoff.
The ‘matrix’here isa theoretical constructthatpositsthatthe majorionsforman environmentora
‘structure’forall the otherconstituents.Thishypothesisis notbasedonanyfirstprinciple,itissimplya
‘hunch’,probablyinspiredbythe hierarchyof redox reactions, usedtogenerate anapproach.
A searchwas made for similarpatternsof mixingatother‘transition’zonesbetweendifferentmatrices
aroundthe state.Veryfewexampleswere found.While somemixingoccurseverytime atributary
entersa stream,flow,concentration,andtime span probably needtobe justrightto actuallysee a
concentrationresponse.(Most‘grab’samplesare takenamonth apart – for that reasonconsiderable
mixingneedstogoon foralmost6 months,ashere,to be visible)
Mixinganalysisprogramsare,of course,available but the focushere waslessonverifyingthe above
hypothesisthaninsimplycharacterizingthe twosystems involved. The Gila,like the rest of the southor
westflowingstreams inArizonaexamined(Colorado,Gila,Salt,Verde) gainsinsulfateasitprogresses.
(Northflowingstreams(SantaCruz,SanPedro andLittle Colorado) gaininchloride.)
Correlations - elevated flows from Gila
0
100
200
300
400
500
600
700
9/19/91 4/6/92 10/23/92 5/11/93 11/27/93 6/15/94 1/1/95 7/20/95
date
units
SULFATE, TOTAL (MG/L AS SO4)
CALCIU x 4.48 + -99.12
MAGNES x 12.49 + -86.67
SODIUM x 1.96 + 8.37
POTASS x 75.57 + -86.88
BORON, x 1182.90 + 63.40
ARSENI x 41684.85 + 185.38
MANGAN x 4930.23 + 233.11
COPPER x 44421.93 + 218.25
BARIUM x 4337.11 + -98.62
12/92 to 12/933-6/92
12/94-8/95
More significantly,relationshipsbetweenthe majorionschange withelevationasthe Gila proceeds.
The Gila doesnotusuallyhave surface flow betweenGillespie andDome,butthe chemistryatDome is
much closertothat of Gillespie thanitisto that of the Coloradoonlysome eighttofifteen milesaway.
The presumptionisthatthe Gilaexistsif notinactual undergroundflowsatleastinconnectedaquifers
betweenGillespieandDome.
At Safford the majorionconcentrations(activities) are highlycorrelatedwitheachotherwiththe
exceptionof bicarbonate. Inthe following ‘correlation matrix’thatcoversthe entire periodof record,
highcorrelation(R^2
>.90) is inlightmagentawhile some correlation(R^2
>.75<.89) isinlightblue.
Safford
concentration Ca Mg Na Cl SO4 HCO3
Ca 1 0.953973 0.881617 0.879023 0.833019 0.298355
Mg 0.953973 1 0.934212 0.930191 0.919909 0.163743
Na 0.881617 0.934212 1 0.996687 0.959978 0.215696
Cl 0.879023 0.930191 0.996687 1 0.95163 0.182205
SO4 0.833019 0.919909 0.959978 0.95163 1 0.164268
HCO3 0.298355 0.163743 0.215696 0.182205 0.164268 1
The highcorrelation isimmediatelyapparentin graphsof majorionconcentrations.
This‘dance of the ions’seemstobe relatedtoseasonal flow.The GilaatSafford usually hastwohigh
flowperiodsperyear,correspondingtothe so-calledwinterandsummermonsoonseasons. A typical
yearin termsof flowand concentrations(conductivity) isshownbelow aswell asmonthlyaveragesfor
flowandevaporation (Eref in1/10 mm H20, here multipliedby10).
The pattern of conductivityonthe lefthandgraph is apparentlythe resultof interplaybetween seasonal
floweventsandperiodsof highevapo(transpi)ration.The eventsmaybe termed ‘dilution’and
‘concentration.’ The followingtwographsshow typical dilution(left)andconcentrationpatterns(right)
interms of flowandconductivity.Inadilutionevent,flow goesupwhile conductivity(standinginfor
TDS/concentration) goesdown,andinaconcentrationeventflow goesdownwhileconductivitygoes
up.
Notall flow/concentrationeventscanbe labelleddilutionorconcentration.Instancesof flow and
conductivitybothrisingare dubbed‘influx’whilebothdroppingare called ‘outflux.’ Of the 160 samples
at Safford, 79 were concentrationand61 were dilution(49and38% respectively). Only9were labelled
‘influx’and12 ‘outflux’(6& 8%).
‘Influx’couldbe aninflowof higherconcentrationwatersuchasmightoccur withan inflow of
groundwaterorag returns. ‘Outflux’mightbe aneventsimilartoinfiltration,waterpercolatingthrough
soil andlosingsome of itssolidscontent. ‘Outflux’ishard tovisualizeas a physical phenomenon and
may insome casesactuallybe an error indesignation.
As a simple check, conductivitymaybe comparedtoTDS and ADEQ flows(grabs) toUSGS flows(means).
If the twodo not agree indirection,thenthe designation maybe erroneousdue toa badconductivityor
flowread. Or the flowand/orconductivityreads,typicallyamonth apart,may be correct but justnot
representative of the periodasawhole. Ingeneral,the simple dilution/concentrationmodel seems
appropriate about90-95% of the time at Safford.Of the influx andoutflux designationsmost atSafford
were foundtobe problematic,so ratherthan 14%, 5-10% isa betterestimate of possible actual ‘influx’
or ‘outflux’eventsthere.
The concentration response atSafford todilutionandconcentrationevents inthe same time framesas
the graphs immediately aboveisclearinthe pattern of the major ions.
All the majorion concentrations,withthe possible exceptionof bicarbonate,godownin a dilutionevent
and up ina concentrationevent(period).The dropinsodiumandchloride isproportionallygreaterthan
that of calcium(or bicarbonate whenitdrops). The resultisthatcharge%, a functionof concentration
but as a percentsensitive to relativechange, goesdown forsodiumandchloride andupforcalciumand
bicarbonate.
The major charge carriers,therefore,canchange fromsodiumandchloride tocalciumand bicarbonate.
Thisis termeda‘matrix inversion’andisclearlyseeninthe graph of charge on the left(dilution event-
same year as above dilutiongraph). The significance of the matrix inversionisnot knownbutone
suspectsitmightprovide anenvironmentthatfacilitateschangesinspeciationandsolubilityfrom than
those seenduringbase flowconditions.
(Varioustypesof charge %calculationscanbe used.Charge%,asusedinthe USGS programs,divides
molesof plusor minus speciesbythe total plusorminusmoles,molese (molesof electrons) multiplies
molesby charge,ionicitymultiplies moles bycharge squared. Charge% emphasizesthe effectof relative
concentrations,molese,whichisusedhere,isclosesttothe contributiontoconductivity,whileionicity
emphasizesthe charge.Graphsof all three show onlyslight,expectedvariations–whichisused
dependsonfocusandinterest.)
Several more graphsshow variationsin the depictionof how charge respondstodilutionevents. The
flow/conductivitycontextisonthe left,the change incharge relationstothe right.
Charge response dependsonthe extentof flow/concentrationdroporrise and the numberof data
pointsoverwhichthe eventisspread.Single pointeventsappearsharplydefinedwhile multiplepoint
eventsare flattenedoutregardlessof relative drop/rise magnitudes.
The dynamicbetweensodium-chloride andcalcium-bicarbonate charge isstrikinglyrevealedinthe
followingmatrix.Sodiumandchloride are stronglycorrelatedtoeachotherand negativelycorrelatedto
calciumand bicarbonate.
Safford
molse Ca Mg Na Cl SO4 HCO3
Ca 1 0.869854 -0.93593 -0.8688 0.241483 0.852654
Mg 0.869854 1 -0.89957 -0.83721 0.437799 0.813541
Na -0.93593 -0.89957 1 0.930656 -0.29567 -0.90326
Cl -0.8688 -0.83721 0.930656 1 -0.35323 -0.97398
SO4 0.241483 0.437799 -0.29567 -0.35323 1 0.283348
HCO3 0.852654 0.813541 -0.90326 -0.97398 0.283348 1
The hypothesis hereisthatprecipitationbringsdilute water,definitelylowerinsodiumandchloride
(associatedmore withthe base flow),andvariable inbicarbonate. Hemsandotherothershave
suggestedthathigherbicarbonate contentinsurface runoff isdue to increasedcontactwithair(CO2)
and vegetation. While bicarbonatecontentmayormay notbe higher,calciumandbicarbonate changes
inconcentrationare invariablyrelativelylowerthanthose of sodiumandchloride.
The mixingof differentwatersinthe course of flowingfromhighertolowerelevations withthe
accompanyingshiftfrompotential tokineticenergy hasapparently createdapatternwhichmaybe
viewedasa ‘structure’intermsof entropy.Sothe questionsbecomes,inwhatwaysisthis‘structure’
maintained.
Note that inthe area of charge,sulfate isnotcorrelatedwiththe otherions,asinconcentration,
bicarbonate isnot. The ionnot correlatedmaybe suspected tobe the one that ‘tipsthe balance’and
determineswhatis‘goingon.’ Tosee how sulfate maybe involvedinthe responsetodilution/
concentrationeventsrequiresadigressiononsulfate chemistry.
Sulfate, like bicarbonate butunlike chloride, hasatendencytoform ionpairswithcationssuchas
calcium,magnesiumandsodium.Formationof sulfate ionpairscanbe seenonspeciationgraphssuch
as that for BoulderCreek.The graphtothe leftshowsthat ’SO4as (free) SO4’,‘CaasCa’, and ‘Mg as Mg’
percentswentdownsteadilyforabout6 months. The graphto the rightplotsconcentrationsof CaSO4,
MgSO4 andNaSO4 concentrationsona reverse x-axisof SO4/SO4speciation.Inotherwords,asCaSO4,
MgSO4, and NaSO4 concentrationsgo up,SO4/SO4 speciationgoesdown(reversingthe usual
independent/dependentvariable relation)
Growth isgenerallyexponential,though appearinglinearorlogarithmicattimes,andthe orderof
magnitudesisusually CaSO4, MgSO4,NaSO4. CaSO4 andMgSO4 are unchargedwhile NaSO4hasa
minus1 charge as opposedtoSO4 itself whichhasa charge of -2. Formationof ionpairstherefore
involves notonlycompetitionforCa,Mg and, to a lesserextent, Nabutalsoremoves theircharge %
fromthe system.
Thoughthe percentage of sulfate assulfate isdecreasing,sulfateconcentrationsactuallyhave tobe
risingbecause that’swhatispushingformationof the ionpairs.Ionpairformationisself-regulatingin
accord withthe law of mass action (sulfate inputinanopensystemwith steadystate approximation).
The above graph showssulfate concentrationinbluewith‘sulfate backcalc’(sulfateplussulfate ionpairs
as sulfate) inred.Sulfate ‘backcalc’isanalytical,‘total’sulfate. The divergenceof redand blue lines
showsthe accelerating growthof ionpairconcentrations. Ionpairformationcontinues aslongas
sulfate concentrationsare risingand,initself,servesasabreak forsulfate concentration.Thisistermed
a ‘deceleration.’ SimilardecelerationsoccurforCa and Mg but verylittle if atall forNa. HCO3 ionpairs
seemtofunctionsimilarlybutwithmore variabilityandatlowermagnitudesinmostwaters. The blue
square showswhere CaSO4precipitationisexpected.
(Thispart of the discussion isalittle tenuous. Iam usingthe law of mass actionto describe the relation
betweenreactantsand‘ionpairs’withoutknowingwhetherthere isalso equilibriumbetweenionpairs
and products(CaSO4etc precipitates).InfactI am treatingionpairsas if theywere precipitateswhich,
of course,theyare not. Such argumentscan be,accordingto Hems,“misleading”buthe doesnotgo
intoany more detail.)
ReturningtoSaffordwe can see that,in the original Gilamatrix,sulfateandbicarbonate ion pair
formationdrop indilutioneventsandgrow to a peakduringconcentrationevents. The graphsbelow
(same yearsas earliergraphs (topof p. 10)) show % molese with ionpairconcentrationsinmg/L(SO4IP
= SO4 IonPairs = SO4 backcalc mg/L– SO4 as SO4 mg/L)
The suppositionhere isthatthe ionpairformationcompetingforcalciumandmagnesiumcombines
withdecreasing(dilute) surface runoff andre-increasingbase flowtoallow sodiumandchloride toonce
againbecome dominant.The endresultis mostclearlyseenbyplottingthe majorionconcentrations
and charge againstconductivity. Here the ‘mediatingeffect’of bicarbonate isclearlyseen,thatof sulfate
ismore indirect,throughionpairformation.
Thispicture isthe Gilamatrix at itsmost clearand the patternsnotedabove show the ‘self-regulating’
mechanismsinvolved. Thislevel of orderamongthe majorionsraisesthe question‘how fardowninthe
structure isorder apparent?’
Unfortunately,minorconstituentmetal andnutrientconcentrationsare nothighly correlatedwiththe
majorion patterns at Safford.There isnogeneral sine curve,asseenonthe Colorado,forthe metalsto
follow. Metal concentrationsare infactrelatedto eachother – that isthe whole pointof the USGS
programs.But highcorrelationstendtobe betweendifferentcompoundsof the same metal. The
furtherwe go downinthe electronic‘structure,’the lesscompleteourpicture is,the more the situation
isdeterminedbythe ‘local’environment. The ‘local’ environmentmaybe aproduct of everythingabove
it,but tyingthe causesand effectsbecomesincreasinglycomplex anddifficult.Whetherthere are any
correlationsorpatternswithmajorionsdependsonthe picture we canconstruct.
Comparingmetalsconcentrationswiththe dominantanioncharge % indifferentmatricesyieldssome
suggestive plots.Here HCO3and SO4 charge percent at a numberof differentsitesare plottedagainst
arsenicconcentrations. Higherarsenicconcentrationsseemtoclusterincertainportionsof the graphs.
If the appropriate charge%forthe Verde andColoradoare labelled,itisclearthatthe Verde isina high
concentrationclusterwhilethe Coloradoisnot. Doesthisindicate ahigher‘carryingcapacity’for
arsenicinthe Verde as opposedto Colorado?
Probablynot. It couldjustbe coincidental. The Verde ishigherinarsenicdue togeological formations
and there isno obviouscausal connectionwiththe matrix. A streamdoesnothave a choice inaccepting
or rejectingmaterialsinitspath,insteadithastoadjustto them. If there isanythingtothe ‘carrying
capacity’ideaitprobablyliesinspeciation. Thisargumentdoesnotdomuch forarsenic,which
invariablyexistsasAsO4. But itcouldsalvage the theorybypositingthatcertainspeciesmightmigrate
more readilyintothe suspendedsedimentportioninsome matrices. Itmightbe of interesttodesign3
dimensional PiperPlotswithmetalsconcentrationsasthe Z axis. Butit wouldbe a lotof workand
mightnot leadtoany significantfindings.
A majorproblemfindingpatternsandcorrelationswithminorconstituentmetalsisthattheyhave a
variable ‘presence.’ (Imaginethe charge % graphs above (topof p 10) witheverysecondorthirdpoint
missing) There isalarge element of chance inwhetherminormetalswillbe presentandinwhat
concentrations. Base-flow metalsconcentrationscanbe comparedtohighflow butthistellsusnothing
aboutrelations.
Returningtothe Gila matrix at Safford,however,one cansee thatmetalsdo seemto respondtomajor
ionpatterns ina verygeneral way.If all bicarbonate andsulfate species are plotted togetheron
separate chartsand theirmovementrelatedwithflow andconductivity,trace metal bicarbonate and
sulfate compoundsseemtolargely move inoppositedirectiontothose of majorions.
V V
The major ioncompounds at the top of the graph, thoughratherflattenedbythe logscale, dipdown at
the dilutionevent,while underneathmany trace metal –(H)CO3and -SO4compounds are trendingup,
thoughnot all inunison. Metal hydroxide compounds followthe upwardmotion of bicarbonatesand
sulfateswhilephosphates,whichare mostlymajorcationcompounds(exception, iron),seemtobe
variable inresponse.
There are a couple more interestingpointsaboutthe above graphs. The firstisthatthe large dilution
flowpeakandconductivitydropof 8/16 isaccompaniedbya droppingpH. The secondis thatthe
response of several trace metals occursona small side peak(7/19) to the mainpeak(an ‘upswing’side
peak). Eleven dilutioneventsshowedupsidepeaks.(Only22% of all eventsbut that isheavily
dependenton (chance) spacingof samples).Tenhadmatrix inversions,nineshowedsome metals
response,andfourshowedsignsof acorrelated metal response.
In caseswithresponse atthe side peak, adrop inpH anda switchof OH and CO3 specieswere usually
alsoobserved.Differentmetalsrespondatthe side peakorat the mainpeak (presumablybychance).
Free metal speciationandcharge percent (inblackbelow)oftengoupwitha dropin pH as expected.
The followinggraphsshowspeciation,concentration,andcharge% (lefttoright) forthe same time
periodasthe graphsabove.
These pictures suggestthat‘firstflush’maybe amore extendedphenomenonthancommonlythought.
Meteorologists dosometimessay thatthe earlymonsoonseasonmaypresentwithspottyprecipitation.
As isolatedtributariesbegintorun,if they chance to pickup higherconcentrationsof metalsalongthe
way,they‘hit’the mainstreamwiththe full force. Inotherwords,the contrast betweenincomingand
receivingwaterconcentrations islikelytobe greaterthanlaterinthe seasonwhenmore tributariesare
runningandconcentrationstendtocancel each otherout.
How differentthe Gilaisat Gillespie thanitisat Saffordcan be seenbycomparingthe concentration
and charge vs conductivityforGillespiewiththose forSafford above.
The plot upto about 1500 uS/cmis exactlythe same asSafford. Athigherconductivity,sulfate becomes
an increasingfactorwhile bicarbonatehaslessof a‘mediating’role thanithasat Safford.Infact, sulfate
increasesandbicarbonate decreases asthe Gilaprogressesasseeninthe PiperPlotsbelow (Saffordleft,
Gillespie right,bicarbonateaxis lowerrightside of diamondincreasinggoingdown,spring- yellow)
While the same dilution/concentrationresponsesevidentatSaffordare still,ingeneral, seenat
Gillespie,theyare lessfrequentand/orlessclear. The correlationof charge betweenNaandCl has
weakenedandthe oppositionwithcalciumandbicarbonate is alittle lessclear.
molese Ca Mg Na Cl SO4 HCO3
Ca 1 0.057617 -0.94184 -0.84481 -0.25469 0.854752
Mg 0.057617 1 -0.35518 0.017606 -0.07962 0.007393
Na -0.94184 -0.35518 1 0.794772 0.324235 -0.83363
Cl -0.84481 0.017606 0.794772 1 0.079984 -0.92585
SO4 -0.25469 -0.07962 0.324235 0.079984 1 -0.44067
HCO3 0.854752 0.007393 -0.83363 -0.92585 -0.44067 1
In itsplace there isan eventightercorrelationbetweenmajorionconcentrationsthanseenatSafford
with,again,bicarbonate beingthe exception.Itwouldbe interestingtoattempttoquantifywhatsucha
change meansinterms of entropydifferencesandwhatthe energyimplicationsare.
Concentration Ca Mg Na Cl SO4 HCO3
Ca 1 0.957677 0.970109 0.970231 0.963923 0.448994
Mg 0.957677 1 0.960178 0.960932 0.950435 0.408477
Na 0.970109 0.960178 1 0.990563 0.983885 0.395387
Cl 0.970231 0.960932 0.990563 1 0.972332 0.389997
SO4 0.963923 0.950435 0.983885 0.972332 1 0.348298
HCO3 0.448994 0.408477 0.395387 0.389997 0.348298 1
There appearsto be lesscontrastbetweenincomingandreceivingwatersatGillespie thanatSafford.
(HighTDS groundwaterorag returnsflowingintoagenerallyhigherTDSwaterrather thana dilute
meetingamore concentratedreceivingwater(particularlyinsodiumandchloride)).The lackof contrast
makesresponse hardertogauge.
One corollaryof this newsituation maybe that so called‘influx’ and‘outflux’situationsare more
commonat lowerelevations. Gillespiecertainlyhasagand municipal returnswhichmaybe of generally
highTDS waterand the Gila exists undergroundincertainspotswhichmight(somehow) make
inflltrationapossibility. While some‘influx’and‘outflux’designationsmaybe erroneous,asatSafford,
the ratiosof the differenttypesof eventschangesdramaticallyatGillespie andDome where influx and
outflux are 16 and19-20% for a combinedtotal of about35-36% of all events(asopposedto5-10% at
Safford).
Under similarcircumstancesasSafford,one ismore likelytosee ‘partial’than‘full’matrix inversions at
Gillespie. The majorionsmerelytake aslightmove toward or awayfrom eachother.These are not,
strictlyspeaking,matrix ‘inversions’buttheydo bearthe same relationtodilution/concentrationevents
and pointtoward the same mechanismasat Safford withthe same drop andrise in ionpairformation.
Note that bicarbonate isstill uncorrelatedforconcentrationandsulfate isstill uncorrelatedforcharge.It
may be that, as the dynamicbetweenNa/ClandCa/HCO3weakens,the rolesof bicarbonate andsulfate
ionpairs in maintainingthe highsodiumchloridematrix maychange butwhethermore orless
importantisnot clear.
Withmajor iondynamicslessclear,itisnot surprisingthatminorconstituent responseto
dilution/concentrationare mutedand/or confused. Evenwithfairlylarge dipsinconductivityandhigh
peaksinflow, one ismore likelytosee flatlinesora confusedjumble.
But while responsetodilution/concentrationeventsisless clearthere are a numberof new
relationshipsemergingatGillespie.pHchangesunaccompaniedby change in flow orconductivity,are
associatedwith concentrationchanges more often thanatSafford.There mayalsobe different
responsesinvolvingbicarbonate,iron,andsilicabutthese have notbeenfullyworkedout.
Some responsesseenatGillespie are particularlysuggestive. Incertainyears,the phosphatesoscillate
ina sine pattern. The regularityandtightnessof the responsesuggestssomesortof fine-tuningisgoing
on butno relationtoflow/concentrationorothermetal trendshave beenfound.(Anotherwaysucha
regularpatterncan be producediswith a steadyconcentration nearthe detectionlimit alternatingwith
‘lessthanthe detectionlimit’values (usingone half the detectionlimitisatypical wayof bridging
‘datagaps’inenvironmental monitoring) Inotherwords,apositedregulatingmechanismmayjustbe an
artifactof analysis!).
Thiskindof tightmovementisreminiscentof ironspeciationchanges exceptthatthe latteriseasily
explained. Everytime the pHapproachesorcrossesthe pH = 8 line there isashiftinspeciationfrom
Fe(OH)4to Fe(OH)2orvice versadependingonthe direction of change.Plottingironspeciationvs.pH
showswhy.
The significance of the ‘braidiing’patternseenin blue andgreenlines(Fe(OH)4andFe(OH)2) of the
above,rightgraph isnot known.One mightsuspect thatironhasa role infine-tuningcharge
relationships. Fe(OH)4isminuscharged,whileFe(OH)2ispluschargedandFe(OH)3isuncharged.
Whichspeciespredominate maynotbe directlyrelatedtothe magnitude of flow but tothe total charge
structure of the incomingflow.
Iron hasseveral strongcorrelationsthatare veryinterestingaswell. Atmostsitesexaminedthere isa
strongcorrelation betweenFe(OH)4speciationand H3SiO4concentration(>0.9).H3SiO4, witha minus
charge andoftenexistingatintermediateconcentrations,canbe a major charge carrier. Fe(OH)4-
speciation alsohasa pretty faircorrelation withHCO3speciation whichmaybe relevanttowhatone
seesat LeesFerry(below)
While the chemistryhasmanyunansweredquestions,the overall solids distributionpicture isfairly
clear.As the Gilaflowsfromeastto westitgainsin TDS . Many parametersshow asimilarstraightline
trendfromSaffordto Dome but some show the middle, Gillespie,asbeing‘unique.’ Gillespieseemsto
be a sinkforTDS, possiblydue to(ormerelyresultingin) higherdensity.Averagesformanyparameters
are higheratGillespie thaneitherSaffordorDome,though maximumvaluesare oftenhigheratDome
for some reason or possiblyjustcoincidentally.
On the otherhand,TSS drops steadilyasthe Gilaprogresses. Thatthe Gilamayonlyexistunderground
betweenGillespieandDome rathercomplicatesthe situation. Ingeneral,though, TSSisonlyan
importantfactorat Safford,unlesshigherflowscarryitalongdownto Gillespieand/orDome.
The changesseeninthe Gila as itprogresses canbe relatedto the Coloradoat LeesFerrybefore and
afterthe mid-1960s. The high contrast betweenincomingandbase flow,particularlyintermsof
bicarbonate concentrations,seen atSafford butnotat Gillespieiscomparable to higherbicarbonate
concentrationsinthe spring atLeesFerry before the mid-1960s.The Piperplotsbelow show LeesFerry
majorion chemistry,left:1926-1965, right:1966-2008, spring– green, bicarbonate axisisthe lower
rightside of the diamond,goingfrom0 (high) to100(low) downthe page).Thisisanother,evenmore
striking,view of the change in majorion variabilitybefore andafterthe mid-1960s.
In the earlierperiod,the matrix response to thisscenarioissimilartothatof the Gila, complete with
matrix inversion, inspite of the factthat the Coloradoisnot a particularly highsodiumchloridematrix.
Afterthe mid-1960s, however, the 5-7sine curve setsinand chemistry looksalotmore like the Gilaat
Gillespie thanthe Gilaat Safford. Whateverthe exactflow/concentrationrelationmaybe,the lessening
contrast betweeninflowingandreceivingwaters,seemstooperate similarlywhethercausedbychange
inelevationordamconstruction.Withregulatedflows,the chemistrybecomesverydull(!)
The existence of matrix inversionsonthe Coloradosimilartothose seenonthe Gilasuggeststhatsimilar
patternsmay have existed. Correlationsshow thatthere isdynamicbetweenNa/Cl andCa/HCO3at
LeesFerrybefore butnotafter the mid-1960s.
LEES FERRY
1947 1964
molse Ca Mg Na Cl SO4 HCO3
Ca 1 -0.40573 -0.94925 -0.89028 -0.64347 0.850363
Mg -0.40573 1 0.100641
0.18
9917 -0.04384 -0.04691
Na -0.94925 0.100641 1 0.905448 0.71796 -0.91212
Cl -0.89028 0.189917 0.905448 1 0.488477 -0.79756
SO4 -0.64347 -0.04384 0.71796 0.488477 1 -0.91546
HCO3 0.850363 -0.04691 -0.91212 -0.79756 -0.91546 1
1965 2006
molse Ca Mg Na Cl SO4 HCO3
Ca 1 -0.14401 -0.71956 -0.52467 -0.41035 0.589472
Mg -0.14401 1 -0.542 -0.37188 -0.28283 0.400297
Na -0.71956 -0.542 1 0.66897 0.613963 -0.80739
Cl -0.52467 -0.37188 0.66897 1 0.267296 -0.74255
SO4 -0.41035 -0.28283 0.613963 0.267296 1 -0.83879
HCO3 0.589472 0.400297 -0.80739 -0.74255 -0.83879 1
Metals otherthaniron were notanalyzedatLeesFerrybefore 1964, soit isnot possible to compare
before andafter..Iron,however, showsamarkedchange inspeciation atLeesFerry around1964 as
well.
The connectionbetweenbicarbonate andironhasbeenstudiedingroundwaterbut whetherthe same
connection existsinsurface waterandwhatitmightmeanare notknown.The correlationbetween
Fe(OH)4- speciationandHCO3/CO3speciation atLeesFerry is -.54 before 1964, butjumpsto -.94 after.
On the Gila,the correlationis -.5 at Saffordandmovesupto -.79 at Gillespie.
The same dynamicseenatLeesFerryare apparentat Morelasas well.
1961 1963
molse Ca Mg Na Cl SO4 HCO3
Ca 1 0.181372 -0.89389 -0.7665 0.708599 0.836269
Mg 0.181372 1 -0.60292 -0.19981 0.16666 0.263912
Na -0.89389 -0.60292 1 0.710665 -0.64784 -0.79814
Cl -0.7665 -0.19981 0.710665 1 -0.98879 -0.94914
SO4 0.708599 0.16666 -0.64784 -0.98879 1 0.891651
HCO3 0.836269 0.263912 -0.79814 -0.94914 0.891651 1
1964 2006
Mols e Ca Mg Na Cl SO4 HCO3
Ca 1 -0.41798 0.134442 -0.24957 0.586402 0.71817
Mg -0.41798 1 -0.95317 -0.59209 0.301907 0.176618
Na 0.134442 -0.95317 1 0.73992 -0.63879 -0.71494
Cl -0.24957 -0.59209 0.73992 1 -0.95912 -0.87269
SO4 0.586402 0.301907 -0.63879 -0.95912 1 0.699257
HCO3 0.71817 0.176618 -0.71494 -0 .87269 0.699257 1
What we have to thispointthenare twosystemswithbasicsimilarities(presentorpast) and some basic
differences.The Coloradohas general seasonalityandregulatedflowswhile the Gilahasaseasonality
heavilypunctuatedbyflow patternsandevaporationrates. The followinggraphsshow the flow,
conductivityandmassflux relationsandmajorionresponse atMorelos in1993 to increasedflow from
the Gila.
The massive dilutioneventwasnotaccompaniedbya verylarge drop inconductivityorTDS. There was
howeveralarge negative massflux (apointtopointconcentrationtimesvolume calculation usingpoints
a monthapparent– not reallyaverygoodidea).Asthe nextgraphsshow,there wasa sulfate
(concentration) dipbelowbicarbonate butnocharge inversion.
As mightbe expected,whilemajorion carbonate andsulfate compounds dodip,there isnotsvery
convincingcorrelatedupwardmovementamongtrace metal compounds..
Individual metalswere graphedandthe response foundtobe quite variablebothintermsof magnitude
and timingwithmanyshowingnoresponse atall. A few examples of individual metal concentration
responsesover1993:
Giventhese results,itishardto see howthe initial graph(p.7),made froma randomgroupof metals,
was evenproduced. Rerunningthe graphingprogramwiththe original concentrationdata(thatis,not
activitiesderivedfromthe USGSprograms) revealedthatmostof the parameterswere dissolved
species. Scalingthe datato sulfate withlineartransformationsstretchesthe amplitudeandpositions
the resultsinthe same general areaas sulfate.Thistechniquemakesrelationshipseasiertosee but
magnitudesmore difficulttogauge.Anothertechnique thatmaybe usedisto divide sulfatevaluesto
plotinthe same general areaas the metals.The followinggraphsshow the twotechniquesusedwith
sulfate andarseniconly. Onthe left,arsenicisscaledtosulfate,onthe right,sulfate valuesdividedand
arsenicmultipliedtoplotinthe same area.
Both techniquesshow the same,roughlyinverse,relationshipbetweensulfate andarsenic. The
correlationbetweenAsandSO4is -0.68 overthe main ‘node’shown (12/92-10/93), or -0.79 overthe
entire time spanof the graph (9/91 - 1/95) whichincludes3‘nodes’,butonly -0.46 overthe entire
periodof record. In thisstudycorrelationswere usuallyrunoverthe entire ‘periodof record’(unless
otherwise stated)tosee if there wasanygeneral validityto‘eyeball’correlationsmade ongraphswith
varyingtime spans.
The problemwiththe differentgraphingtechniques,however, isthatwhenanumberof differentions
are scaledsimilarly,the overallresultmaybe eitherrevealingormisleading dependingonhow youlook
at it(!) Here are tworeconstructionsof the original correlatedmetals movementgraphof p.7 usingthe
same techniques,lefttoright,asabove withAsand SO4 only.
The ‘correlated’movementseentothe leftisalmostentirelymissingonthe rightdue to the fact that
the metalswere notall scaledto sulfate. Withthe exceptionof boronandbarium, the upsand downs
of the variousmetalsobscure the general pattern. The magnitudes,however, are more clearlyrevealed
on the righthand plot to have beenverysmall.
On the otherhand,plotsof ‘total’metalsdone inthe same manner tell adifferent,more consistent,
story.Nowboth depictionsseemtobe sayingthe same thing,acorrelatedupwardresponse of mostof
the metals,and,inaddition,the some of the magnitudesare significant.
The highmetalsconcentrationsnoted were aresult, notof changesinany ‘electronicstructure’,but
simplydue tothe typical ‘dilution’ scenarioof dippingTDSandrisingTSS. The cause of the highmetals
concentrationsatMorelasin 1992-93 was a massive influx of suspendedsolidscomingfrom the Gila
flow. Andhavingarrivedbackwhere we started,havingraisedfarmore questionsthanprovided
answers.. . thisseemslike agoodplace toend.
Appendix A
Coverage,Approachand“Deliverables”Summary
The projectdevelopedinseveral stages. The firstwascreatingthe tools foran integratedapproach.
The secondwas to produce ‘profiles’of site chemistryusingaverage valuesforanumberof Arizona
streamsfrompublicwaterqualityrecords.The thirdwasto add the capabilitiesof USGSgeochemical
modellingprograms. Fourth,the modellingprogramswere usedtogenerate more detailedviewsof
some of the same sitesforwhichprofileshadbeenmade.Finally,toolswere createdthatallow forthe
rapidcharacterizationanddepictionof streamchemistry.
An integratedapproach tostreamchemistryinvolvestryingtoachieve a‘complete’pictureof the
systembeingconsidered. The massand charge balance are the basictools. The advantagesof an
integratedapproachare that resultscaneasilybe checkedanddifferencesraisequestionsthatleadto
furtherinvestigation.The discoveryprocessis,asitwere,self-perpetuating.
The massbalance,forexample,canbe checkedagainstaphysical measurement -- total dissolvedsolids
results. The difference betweenthe twoisa measure of the completenessof the ‘picture’of the
system.The charge balance can use a numberof tests(sevenare usedhere). How manyteststhe
charge balance passesorfailsgivessome indicationof how wellthe numbersinthe individual analyses
‘fittogether.’ A poorcharge balance indicatesonlythatthere isaproblemsomewhere inthe ‘complete’
picture beingproducedandgiveslittle ornoindicationwhere thatmayproblemmightbe.
Implicitinthe approachisthat all available dataisused.There are some pitfallsaswell asadvantagesto
thisaspect. The profilesproducedare overthe entire periodof recordbutthatmay range from
hundredsof samplesover40 to 50 yearsto five totensamplesovera yearor two.In general,siteswith
manysamples overlongperiodsof time were favored.
A fewsiteswithlessernumberof samples,however,were alsoused,typicallythose withahistoryof
exceedingwaterqualitystandardsand/ortofill gapsinlongstretchesalongastream.Obviously,some
care has to be usedingeneralizingfromresultsthatwere generatedfromonlyafew samplesovera
short spanof time.Withsuchsites,comparisonwithothermore adequatelycoveredsiteseither
upstreamor downstream,if available,canaidinevaluation.
Some siteshave manysamplesbutnotall the sampleswere ‘complete’analyzes.Inthisstudy,generally
onlysampleswithall the majorions(Na,Ca,Mg, Cl,SO4, HCO3) and at leastsome metalswere used.
These restrictionshave todobothwiththe methodsandwiththe purpose of the study. The ideaisthat
there isan electronicstructure createdbythe majorions(the ‘matrix’) andthatminorconstituentssuch
as metalshave tofit intothisstructure incertainways. Some attemptswere made toextrapolate major
ionconcentrationsfrombasicchemical measurementsbutthese were notfoundsatisfactoryandwere
discontinued.
To date,about 100 ‘average’value profileshave beencompleted.Theseprofilesincludemassand
charge balance resultsandPiperPlot(software courtesyof UtahUSGS) depictionsof the majorions.As
an aide to navigation,profilesare alwayssavedatthe same place (the PiperPlotonthe ‘results’sheet)
and followasetlayout(describedin‘Intro-howto-metadata’file)
PiperPlotsare particularlygoodat depictingnotonlythe relativepositionof the particular‘mix’of ions
but alsothe variability. Some siteshave mostof the individual sample pointsclusteredtightlyintoa
small area,othershave themina wide swathacrossthe diagram. The firstrepresentswhatmightbe
calledinsome sensesa‘stable’matrix while the secondisamore ‘diffuse’or‘more highlyvariable’
matrix. Some sites,like the ColoradoatLeesFerry,show both – a verydiffuse matrix before 1964 and a
very tightmatrix afterwards.Forthe mostpart, however,the average value profilesare static,
representing a‘snapshot’of the systemoverthe entire periodof record.
The resultsof these profilesare depictedinaseriesof about35 GIS mapsand associatedfiles. Thirteen
of the mapsare statewide depictionsof the variouswatermatrix compositionsandgroupingsof
interest. The mainmap,labelledAZwatermatrix,unfortunatelyhadtobe dividedinto4partsdue to size
limitations.The ‘composition’mapsshow the matrix compositionsatabout16 sites,representing9of
the major streamsaroundthe state (1-3 samplesalongthe Colorado,Bill Williams,AguaFria,Verde,
Gila,Salt,Santa Cruz,San Pedroand Little Colorado)
‘Composition1”usesapie chart depictionof the charge percentsof the majorionswhile ‘Composition2’
usessymbolsproportionaltosize.‘Confidence’and‘variability’mapsgive chartdepictionsof the mass
and charge balance resultsandsome measurementsof the variabilityshownin the PiperPlot.Ideally,
confidence andvariabilityinformationshouldbe presentedalongside composition.
Othermaps inthe statewide sectiondepictadditional,associatedinformation.Three mapstermed
‘AZhotspots’showthe locationsof waterqualityexceedancesatprofiledsitesintermsof numberof
parametersexceeding,magnitude of exceedances,andmaximumvalues(regardlessof exceedance
status).There are also twomaps showingareasof highor low solidsproduction. One mapand an Excel
file categorize matrix compositionsintermsof dominantanionsandcations(alkalinityandhardness
types).
Finallytwofiles,one mapandone Excel file,are the resultof alargelyabortive attempttofindevidence
of ‘transition’or‘mixing’zonesatthe variousexceedance ‘hotspots’aroundthe state.Many‘hotspots’
do occur at the junctionof differentwatermatricesbutactuallyseeingthe resultsof mixingdemands
that justthe right flowsandconcentrationsexistandlastlongenoughtogatherenoughdatato see
them.
The rest of the 35 mapsare locatedina subfoldercalled‘MajorStreams’. Here the 9 streamsplusthe
Hassayampaare shownonindividual mapswithcomposition,confidence andvariabilityall shownon
the same map. Sitesare labellednotonlywiththe name butalsowiththe numberof samplesandyears
coveredincludedinparentheses. ‘GilaatGillespieDam(385/42)’indicatesthe site has385 (complete)
analysesoveraperiodof 42 years,while ‘GilaatBuckeye Canal(6/1)’,thrownintohelp coverthe long
stretchbetweenGillespieandKelvin,hasonly6complete analysesover1year(Fortunatelythe results
are perfectlyconsistentwithKelvinandGillespie.) Some of the tributariestothe Gila,QueenCreekand
the San Carlos,however,have few samplesbuthave widelydifferentcompositionsfromthe Gila. Both
showlowervariance thanthe Gilabut have poor charge balance results. How muchtheycontribute to
the Gila woulddependonflowsandrelative concentrations.
As the profilesapproachedcompletion,workbeganinvestigatingthe use of USGSgeochemical
modellingprograms. Twoprograms,WATEQ4F and PHREEQC,were used. WATEQ4F isan older
program,somewhatlimitedinoutputandusingdifferentassumptionsthanPHREEQC. Both programs
dependonan underlyingdatabase of thermodynamicdata (standardenthalpies). Whatthe programs
offerisa quickway of doingdifficult,iterative ‘bestfit’calculationstogetspeciation,activity,and
solubilityfrompHand redox data.While handy,these programscome withassumptionsandthere is
some riskintheiruse (see theoretical considerationsbelow)
To date,twentythree profilescoveringfourteenstreamshave beenredoneusingthe programs. The
filesare labelledwith‘grab’atthe endof the file name andthe elementsexaminedindetail in
parentheses(usuallyFe andCu). The analysisinthese profilesislimitedtoaverage valuesandplaced
nextto the earliervalues(PiperPlot) forcomparison.Inadditiontothe charge percentcompositionpie
charts, however,are cationandanionspeciation,activityandsolubilitychartsaswell asall metal s and
predominantmetalsactivitiesandsolubilities.Resultsare linedupbyprogramfromleftto right,
WATEQ4F, PHREEQC withitsowndatabase,and PHREEQC withthe more extensive LawrenceLivermore
database. Resultswere generallyfairlysimilarforall three programsandall were usuallywithin1-4%of
earliercalculations.
Once some confidence hadbeenbuiltupwiththe average values,workbeganongettingamore
detailedviewof the variousmatrices. Toolswere developedtogenerate graphsandcorrelation
matricesfromdata on the ‘output2’sheetof the ‘grab’profiles. The ‘output2’sheethasdatagrouped
and organizedinsetlocationsmakingitveryeasytopickout data byelement,analysistype (speciation,
concentration(activity) orsolubility),andanindependent(x) variablesuchasdate,pH or conductivity(or
anotherelement).Virtuallyanythingcanbe plottedorcorrelatedwithanything else(thoughthe
programshave not beencheckedforeverypossible combinationsothere are occasional hangupsand
snafus)
The ideahere isto give as manyperspectivesaspossible onthe system. Several graphtemplateswere
developedcomparingmatrix parametersagainstbasicmeasurementandeachother. The most used
template haspH,flowandconductivityand‘massflux’chartsacross the topof the sheetwithdifferent
matrix parametersfollowingbelow. The ideaistolookat conductivity,flow,andpH‘events’andthen
checkthe chemistryatthe same pointsto see if there appearstobe any response. Matrix parameters
are alsoexaminedagainsteachothertosee if there are anypatterns.
Because correlationscanbe chance,one-time events(coincidental) andpatternsmayneeddifferent
time spansto become visible,mapsandcorrelationscanbe generatedusingdifferenttime frames.
Maps were usuallygeneratedwith‘all’data,whichare mostlyuselessforanalysisdue totoomany
pointstosee anything,butoccasionallyshow patternsnotseeninfinerdetail,andyearlyincrements.
Correlationswere usuallydoneoverthe periodof record,largelytoverifyif seemingcorrelations
spottedongraphs hadany general validity,butcanalsobe done forany time frame of interest. One
program runscorrelationsof one parameteragainstanynumberof otherparametersona yearlybasis
and itis interestingtosee thatcorrelationscancome and go overtime (thoughhardto judge what
significance thismayhave)
To date,14 ‘matrix’studieshave beencompletedonfourstreams(Gila,Salt,ColoradoandSantaCruz).
Whenfirstbegun,the studiestookseveral daysbutrefinementshave reducedthe time to2-3hours.
One sheetof mapsis producedusinggraphingprograms,thenthe entire sheetiscopiedandanother
program usedtochange the dateson all the graphsof the new sheet. IN thisway,annual graphs
covering20-30 yearscan be producedveryquickly. Correlationmatriceswere developedandrowand
columnheaderscopiedtoproduce the nextfilescorrelations.
THEORETICAL CONSIDERATIONS
The USGS programstake the ‘total’analysesof the database andworkout the variouscompoundsthat
are mostlikelytoexistata givenpHand redox potential.The majorions,particularlyNa,Cl andSO4, are
predominantlyintheirionicform.NaasNa and Cl as Cl, forexample,are almostalwaysnearly100%
(Na/Na,Cl/Cl ~100%, SO4/SO4 istypically60-80%) Ca, Mg, andHCO3 oftenexistincompoundssuchas
CaHCO3, CaSO4 etc.
PO4 existsinsmall amountsasPO4,is mostcommonlyfoundasHPO4 and formscompoundsprimarily
withothermajorionsand iron.What thismeansisthat, if PO4 has anyeffectonfree metal
concentrations,ithasto be an indirectone,possiblythroughalowerlevelcompetitionwithOHand
CO3, and to a lesserextentSandSO4,for major cations.
Ultimately,the wholeanalysisdependsonLaChateliersprinciple (asystemunderastresswill move to
relieve thatstress) anditsparticularformappropriate togeochemicalsystems,the law of massaction.
These principlespositthatif two reactantscome intocontact in a closedsystemthere isatendencyfor
themto forma product(time notspecified). Eachsetof reactantsform productup to a setamount
specifictothe system,atwhichtime the ‘stress’onthe systemreversesdirection towarddissolutionof
the product back intoreactants. At thispointthe systemhasreachedwhatistermed‘equilibrium’
whichisdefinedasthe reactiontowardcreationof productbeingequal tothat towarddissolution. The
equilibriumistermeddynamicinthatthe concentrations,while alwaysfluctuatingslightly,appear
unchangingbecause there isnooverall movementineitherdirection.
Equilibriumsituationsare mosteasilyanalyzedinlabbeakers. Saysmall amountsof soluble CaandSO4
compounds (CaNO3andNaSO4 wouldprobablydo) are placedina beakerof DI wateron a lab bench
(thatis,withno analyzable inputsof massorheat). The compoundswill dissolvealmostinstantlyand
veryquicklyCaSO4will begintoform. Firstthere wouldbe a tendencyforCaand SO4 ionsto associate,
thensome pairswouldbegintoformmolecularbonds,finallyif conditionsare right,CaSO4wouldbegin
to precipitate outof solution.
Ca + SO4 [CaSO4] CaSO4 aq
Here a couple of potential problemscropup. What the programsfind,asfar as I know,are the
associatedionsorso called‘ionpairs’notactual molecularspecies. Ionpairsare describedasgroupings
of ionsthatare heldtogetherbyveryweakforces(coulombicinteractions)asopposedtothe stronger
bondsof actual molecules. Whethertheyare,ingeneral,strongenoughtowithstandthe forcesof
filtrationisnotknown(atleastbyme) so whethertheywouldbe inthe dissolvedorthe total analysis
portionisnot clear. In thiswork dissolveddatawasusedwheneverpossible unlesstotal wasspecified
(WATEQ4F specifiestotal Fe).The rationalehere isthatthe suspendedsolidportion,whichincludes
largelyunchargedparticles,doesnotfigure directlyintothe posited‘electronicstructure’.
Evenmore significant,however,isthatequilibriumis,Ibelieve,generallyconsideredasbetween
reactantsand (molecular) products.There mayalsobe anequilibriumbetweenreactantsandionpairs
but itmightbe verydifficulttoanalyze. IFthere isnomolecularproductthere maybe no equilibrium
and resultsmaybe “misleading,’accordingtoone authority(Hems).
Of course,the whole conceptof equilibriumisnotquite appropriateforreal worldsystemseither.
Natural systemsare usuallynot‘closed’toinputsof massand/orheat. The CaSO4 reactionthatoccurs
insecondsina beaker,apparentlylastedoveraperiodof eightmonthsonBoulderCreek(atleastif
increasedionpairformation andpredictedprecipitateare anyindication). The term ‘steadystate’is
usedto describe opensystemsinwhichinputsof massandheatare assimilatedinafashionthatmimics
equilibrium.
But while mostof usare happyenoughtoset aside the whole notionof ‘equilibrium’as‘theoretical’and
use the resultinginformationbasedonitsassumptiontosolve problems,there are otherdifficulties.
Evenin the case of Ca and SO4 ina beaker,the resultsmightbe verydifferentif acompetingionwere
present. We relyonthe programto sort out these competingrelationshipsbutthe programscan only
use the informationwe give themandthe informationinthe underlyingdatabase.Typically‘modelling’
meansthat a givensystemisanalyzedtoinclude all the parametersthatare involvedand the underlying
database ischeckedforboth internal consistencyandrelevance tothe system. Where appropriate,the
informationinthe database mayneedtobe changedor addedto.None of thatwas done here.
Insteadthe programswere usedwithverylittle ‘tweaking’toinvestigatethe watersystemsnotbecause
thisisthe bestwayto do it butbecause of lack of knowledge onthe userspart(i.e.me!). Atfirst,the
inputswere limitedtoaverage valuesandcomparedtothe profilesgeneratedusingsimplermethods.
Usuallythe activitiesderivedfromthe programswere within1-4percentof the concentrations(even
thoughthe two are not the same). The redox potential wassettothat of the H20/O2 pair – that isfor
full saturation. This‘dominant’pair assumptionishotlydebatedingroundwaterstudiesbutaccepted
(Fraseretal.) and probablyo.k.forthe typicallymore homogeneoussurface watersample.
The underlyingdatabaseswerenotexaminedforconsistency,completenessorrelevance thoughthey
probablyshouldhave been. Instead,the resultswere evaluatedagainstgenerallyacceptedfindings. For
example,PHREEQChastwodatabasesthatcan be pluggedin,one comeswiththe programand the
otheris a compilationfromthe Lawrence Livermore Laboratories. The latterisa verycomplete setof
data but some valuesmayhave beenderivedinveryspecificcircumstances. Usingthe Lawrence
Livermore datasetonColoradoRiverwateryieldedthe findingthatCuCO3was the mostcommon form
of copper,while WATEQ4FandPHREEQC datasetsagree withthe more generallyacceptedfindingthat
Cu(OH)2,ismore common. The Lawrence Livermore datasetwasusedbutmore fora ‘whatif’
comparison.
In some cases,however,the problemsresultingfromnottweakingthe underlyingdatasettomatchthe
systembeinganalyzedmayhave andprobablydidmake the analysesmeaningless. The SantaCruz in
particularseemsalmost‘unanalyzable’,showingverylittle correlationorpatternsamongthe majorions,
but that maybe because,historically,there hasbeenasignificantconcentrationof ammoniaandthe
programshave ammonia‘uncoupled’fromotherreactions.Thisisanarea where furtherworkis
definitelyneeded.
 Thisarticle isa re-write of anearlierprojectbegunatADEQthat usespublicrecordwaterquality
data to examine patternsinsolidsdistributionsinnatural waters. There are no references
eitherstatedorimpliedtoADEQor ADEQ policyinthe article andthere wasno commenton the
subjectmatteronthe part of reviewersatADEQ. Thispostingseeksfeedbackonthe article as
part of an ‘improvement’plan. Sendcommentsandquestionstopcba2@dialup4less.com.

More Related Content

Viewers also liked (7)

BBB
BBBBBB
BBB
 
DarkKnowledge
DarkKnowledgeDarkKnowledge
DarkKnowledge
 
h2o-world_v12.0
h2o-world_v12.0h2o-world_v12.0
h2o-world_v12.0
 
Dones del espiritu santo
Dones del espiritu santoDones del espiritu santo
Dones del espiritu santo
 
Judaismo
JudaismoJudaismo
Judaismo
 
Hinduismo
HinduismoHinduismo
Hinduismo
 
Budismo
BudismoBudismo
Budismo
 

Similar to Patterns in Gila and Colorado River Water Chemistry and Solids Distributions

Molofsky_et_al-2016-Groundwater
Molofsky_et_al-2016-GroundwaterMolofsky_et_al-2016-Groundwater
Molofsky_et_al-2016-Groundwater
Lisa Molofsky
 
A salt water reservoir as the source of a compositionally stratified plume on...
A salt water reservoir as the source of a compositionally stratified plume on...A salt water reservoir as the source of a compositionally stratified plume on...
A salt water reservoir as the source of a compositionally stratified plume on...
Sérgio Sacani
 
14 van sambeek importance of small deviatoric stresses
14 van sambeek importance of small deviatoric stresses 14 van sambeek importance of small deviatoric stresses
14 van sambeek importance of small deviatoric stresses
leann_mays
 
KECK North Slope Alaska Project
KECK North Slope Alaska ProjectKECK North Slope Alaska Project
KECK North Slope Alaska Project
Evan Lewis
 
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
Sérgio Sacani
 
ScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
ScalingUptheShapeAnovelGrowthPatternOfGa49-70ClstrsScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
ScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
???? ?????
 

Similar to Patterns in Gila and Colorado River Water Chemistry and Solids Distributions (20)

Molofsky_et_al-2016-Groundwater
Molofsky_et_al-2016-GroundwaterMolofsky_et_al-2016-Groundwater
Molofsky_et_al-2016-Groundwater
 
A salt water reservoir as the source of a compositionally stratified plume on...
A salt water reservoir as the source of a compositionally stratified plume on...A salt water reservoir as the source of a compositionally stratified plume on...
A salt water reservoir as the source of a compositionally stratified plume on...
 
Practical sequence stratigraphy for iconoclasts
Practical sequence stratigraphy for iconoclastsPractical sequence stratigraphy for iconoclasts
Practical sequence stratigraphy for iconoclasts
 
Molecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIAMolecular water detected on the sunlit Moon by SOFIA
Molecular water detected on the sunlit Moon by SOFIA
 
Structural properties of SrO thin films grown by molecular beam epitaxy on La...
Structural properties of SrO thin films grown by molecular beam epitaxy on La...Structural properties of SrO thin films grown by molecular beam epitaxy on La...
Structural properties of SrO thin films grown by molecular beam epitaxy on La...
 
Goldschmidt Conference Abstract 2010
Goldschmidt Conference Abstract 2010Goldschmidt Conference Abstract 2010
Goldschmidt Conference Abstract 2010
 
13095
1309513095
13095
 
14 van sambeek importance of small deviatoric stresses
14 van sambeek importance of small deviatoric stresses 14 van sambeek importance of small deviatoric stresses
14 van sambeek importance of small deviatoric stresses
 
Science Publication: Many Risky Feedback Loops amplify the need for Climate A...
Science Publication: Many Risky Feedback Loops amplify the need for Climate A...Science Publication: Many Risky Feedback Loops amplify the need for Climate A...
Science Publication: Many Risky Feedback Loops amplify the need for Climate A...
 
Micellar aggregation number
Micellar aggregation numberMicellar aggregation number
Micellar aggregation number
 
KECK North Slope Alaska Project
KECK North Slope Alaska ProjectKECK North Slope Alaska Project
KECK North Slope Alaska Project
 
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equival...
 
ScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
ScalingUptheShapeAnovelGrowthPatternOfGa49-70ClstrsScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
ScalingUptheShapeAnovelGrowthPatternOfGa49-70Clstrs
 
Rose and Brenan (2001)
Rose and Brenan (2001)Rose and Brenan (2001)
Rose and Brenan (2001)
 
Igneous essay
Igneous essayIgneous essay
Igneous essay
 
INTRODUCTION TO ROCK PHYSICS
INTRODUCTION TO ROCK PHYSICSINTRODUCTION TO ROCK PHYSICS
INTRODUCTION TO ROCK PHYSICS
 
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
 
Hydrothermal fluid activity on asteroid Itokawa
Hydrothermal fluid activity on asteroid ItokawaHydrothermal fluid activity on asteroid Itokawa
Hydrothermal fluid activity on asteroid Itokawa
 
3D-Ag-Science
3D-Ag-Science3D-Ag-Science
3D-Ag-Science
 
Analyzing Aggregates by Sedimentation Velocity and Light Scattering
Analyzing Aggregates by Sedimentation Velocity and Light ScatteringAnalyzing Aggregates by Sedimentation Velocity and Light Scattering
Analyzing Aggregates by Sedimentation Velocity and Light Scattering
 

Patterns in Gila and Colorado River Water Chemistry and Solids Distributions

  • 1. Patternsin Gilaand ColoradoRiverWaterChemistry andSolidsDistribution* The purpose of thisprojectis to enumerate anddescribe patternsinwaterchemistry andsolids distribution of majorArizonastreams. Itisthe contentionof thispaperthat solids,particularly the major ions, forma contextwithinwhichwaterqualityexceedancesoccur. Each ‘matrix’hasa differentsetof electronic,solidspartitioning, pH,andalkalinityrelationswhichaffecttrace metal andnutrient speciationandsolubility. While some attempthasbeenmade totie togethersimilarphenomenon andsuggestpossible causes and effects,manyobservations remain‘loose ends.’Theircause andfull significance are notknown so ‘explaining’themispremature andsummarizing leadstolossof information. The hope is these may prove useful atsome pointinthe future toan investigatorwhomayfindine tobe justthe ‘key’needed to create a betterpicture of howthese systemswork. FINDINGS The projectbeganwitha chance observationof some interestingchemistryata site onthe Colorado River. Sulfate atMorelos typicallyrunsabouta100 mg/L higherthanbicarbonate.In1992, however, sulfate concentrationsdippedbelowbicarbonateandstayedlowerthroughout1993. Such a change in one of the fundamental constituentsoveralongperiodof time seemedsignificant. There isa patterninthe major ionconcentrations,althoughitishardto see inthe above graph.The patternis more easilyseen if alongertime span isused.The below graphshowssulfate and metals concentrations‘scaled’ tosulfate withlineartransformations sothatthey plotinthe same area withthe same amplitude.The resultingoverall patternisasine curve withaperiodof 5-7 years.
  • 2. This patternisfirstseeninthe majorionsat LeesFerry,at the opposite endof the state,inthe mid- 1960s. It contrasts clearly withanearlierperiodinwhichmajorionconcentrationswere muchmore variable. Itisprobablysignificantthat GlenCanyonDam wentintooperationinthe mid-1960s.Infact, GlenCanyondam releases are identical withflow atthe gage before 1996-97 anddifferonlyslightly after.So we can surmise thatthe 5-7 sine curve isprobably relatedtodamreleases. The relationshipbetweenflowandconcentrationisseeninthe graphbelow but itisnot a strongone. The weaknessof the correlation isapparentinthe secondgraphbelow and furtherevidencedin numerical correlation of only R^2 =-0.56 overthe periodof record. Correlations - elevated flows from Gila 0 100 200 300 400 500 600 700 8/28/76 5/25/79 2/18/82 11/14/84 8/11/87 5/7/90 1/31/93 10/28/95 7/24/98 4/19/01 1/14/04 date units SULFATE, TOTAL (MG/L AS SO4) CALCIU x 4.48 + -99.12 MAGNES x 12.49 + -86.67 SODIUM x 1.96 + 8.37 POTASS x 75.57 + -86.88 BORON, x 1182.90 + 63.40 ARSENI x 41684.85 + 185.38 MANGAN x 4930.23 + 233.11 COPPER x 44421.93 + 218.25 BARIUM x 4337.11 + -98.62
  • 3. . Part of the reason couldbe that all dam releasesmaynotbe the same. It wouldprobablymake a difference if releaseswere made ‘off the top,’which wouldhave apresumably‘decanting’effect,or withmixingwhich,assumingsome stratificationinLake Powell,mightstirup higher,bottom concentrations. A more in-depthlookatGlenCanyonDam operationsthanwhatisgenerallyavailableto the publicwouldprobablyclearupa lotof the uncertaintyhere. A closerlookat sulfate concentrations,however, mayreveal anotherreason why the correlationwith flowisso poor.The sulfate curve shows a tighter,innercurve withinthe larger5-7 yearcurve.The ups and downsof thisinnercurve interfere withthe correlationbetweenflow andthe largersine curve.The innercurve has highpointstypicallyinJun-Augandlow pointsin Oct-Jansowe can guessitto be a seasonal effectstill goingonwithinthe contextof regulatedflow.
  • 4. The seasonalityhypothesis canbe investigatedfurtherwithautocorrelations.The followingtwographs showchloride concentrations atLeesFerry from1926 to 1965 and from1966 to 2008. Bothshow,to some extent,the ‘dampedoscillator’patterntypical of seasonal effects.Presumablythe 5-7sine curve is causingthe undulationandtighteramplitudesinthe 1966 to 2008 plot. 1926-1965 Autocorrelation - CHLORIDE,TOTAL IN WATER MG/L -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 100 200 300 400 500 600 lag coefficient
  • 5. 1966-2008 It mightseemobviousthatflowsinthe earlierperiodwouldbe more heavilyinfluencedbyseasonality than inthe laterperiod. But there were ‘technical’difficultiesinattemptingtoshow thiswith autocorrelations.The earlierperiodshowssome evidence of seasonality inflow withaplotthatlooks verymuch like the ’26 to ‘65 chloride above.The laterperiodshowsaless convincingpatternbutthere was a shiftfromusingmeandailytoinstantaneousflows,soall betsare off. In fact, flowsand sulfate concentrationsinthe earlierperiod seemtosuggestthatthere maybe seasonal effectsnotrelatedto‘seasonal flows.’Inthe graphsbelow highflows usuallycorrespondto dropsin sulfate but notalways. Some dropsmay be the resultof changingsolubilityorspeciation with temperature anddensitywithinthe base flow.Whateverthe cause,sulfate concentrationsatLeesFerry routinelydroppedbelowbicarbonate inthe springorearlysummerfrom1948 to 1958. For several yearsafterthere isspottydata so it ishard to tell butafterthe mid-1960s these dropsno longeroccur. In general,Coloradomajorionchemistryshowstwobasicpatterns–one,a5-7 sine curve beginningin the mid-1960s and possibly relatedtodamreleasesand two, a tighter,innercurve whichappearstobe Autocorrelation - CHLORIDE,TOTAL IN WATER MG/L -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 100 200 300 400 500 600 lag coefficient
  • 6. seasonal butnotstrictlytiedto seasonal flow. Metalsconcentrations loosely follow the majorion concentrations 5-7year sine curve. These patternsare seen at Morelasbutthe onsetof the 5-7 curve is eithermutedornot fully visible (earliestdata,1961) and therefore lessdistinct.The inner,seasonal curve atMorelashas highsin Oct- Jan andlowsin Mar-Aug,opposite toLeesFerryandthere are more anomalies.Some dropsinsulfate are outside the normal amplitudesof eitherthe 5-7year sine orthe innerseasonal curve. Returningtothe metals concentrationsatMorelas,one seesthatthey alsorespondduringthe same periodasthe sulfate dip. The graphbelow isthe same as the metalsgraph above (p.2) withall parameters scaledtosulfate, butovera shortertime span andwithparameters removed thatdonot have at leasttwopointswithinthe time of interest(92-94).
  • 7. Obviouslythesegraphshave ‘waytoomanypoints’andit ishard to see the forestforthe trees,as the sayinggoes. But there seemtobe nodes (3) duringwhichtime all the metals are all movingeitherupor downand the center(nochange in concentration) clearsout. Inotherwords,all the parameterswith data inthe time of interestseemtobe affectedinone wayoranother. Thisapparent, ‘multi-variate’ correlation naturally raisesthe questionof whatmightbe the cause. The period1992-1993 was a time whenmajorflowsonthe Gilacausedit to flow all the way from Saffordto Dome andthe Colorado.The maincharge carrierson the Gila are sodiumandchloride whereas onthe Coloradosodiumand sulfate. Whatwe seemtobe seeingare the metalsadjustingfrom theirpositioninthe Coloradomatrix tothatin the Gilaand thenslowlyreturningasGilaflow tapersoff. The ‘matrix’here isa theoretical constructthatpositsthatthe majorionsforman environmentora ‘structure’forall the otherconstituents.Thishypothesisis notbasedonanyfirstprinciple,itissimplya ‘hunch’,probablyinspiredbythe hierarchyof redox reactions, usedtogenerate anapproach. A searchwas made for similarpatternsof mixingatother‘transition’zonesbetweendifferentmatrices aroundthe state.Veryfewexampleswere found.While somemixingoccurseverytime atributary entersa stream,flow,concentration,andtime span probably needtobe justrightto actuallysee a concentrationresponse.(Most‘grab’samplesare takenamonth apart – for that reasonconsiderable mixingneedstogoon foralmost6 months,ashere,to be visible) Mixinganalysisprogramsare,of course,available but the focushere waslessonverifyingthe above hypothesisthaninsimplycharacterizingthe twosystems involved. The Gila,like the rest of the southor westflowingstreams inArizonaexamined(Colorado,Gila,Salt,Verde) gainsinsulfateasitprogresses. (Northflowingstreams(SantaCruz,SanPedro andLittle Colorado) gaininchloride.) Correlations - elevated flows from Gila 0 100 200 300 400 500 600 700 9/19/91 4/6/92 10/23/92 5/11/93 11/27/93 6/15/94 1/1/95 7/20/95 date units SULFATE, TOTAL (MG/L AS SO4) CALCIU x 4.48 + -99.12 MAGNES x 12.49 + -86.67 SODIUM x 1.96 + 8.37 POTASS x 75.57 + -86.88 BORON, x 1182.90 + 63.40 ARSENI x 41684.85 + 185.38 MANGAN x 4930.23 + 233.11 COPPER x 44421.93 + 218.25 BARIUM x 4337.11 + -98.62 12/92 to 12/933-6/92 12/94-8/95
  • 8. More significantly,relationshipsbetweenthe majorionschange withelevationasthe Gila proceeds. The Gila doesnotusuallyhave surface flow betweenGillespie andDome,butthe chemistryatDome is much closertothat of Gillespie thanitisto that of the Coloradoonlysome eighttofifteen milesaway. The presumptionisthatthe Gilaexistsif notinactual undergroundflowsatleastinconnectedaquifers betweenGillespieandDome. At Safford the majorionconcentrations(activities) are highlycorrelatedwitheachotherwiththe exceptionof bicarbonate. Inthe following ‘correlation matrix’thatcoversthe entire periodof record, highcorrelation(R^2 >.90) is inlightmagentawhile some correlation(R^2 >.75<.89) isinlightblue. Safford concentration Ca Mg Na Cl SO4 HCO3 Ca 1 0.953973 0.881617 0.879023 0.833019 0.298355 Mg 0.953973 1 0.934212 0.930191 0.919909 0.163743 Na 0.881617 0.934212 1 0.996687 0.959978 0.215696 Cl 0.879023 0.930191 0.996687 1 0.95163 0.182205 SO4 0.833019 0.919909 0.959978 0.95163 1 0.164268 HCO3 0.298355 0.163743 0.215696 0.182205 0.164268 1 The highcorrelation isimmediatelyapparentin graphsof majorionconcentrations. This‘dance of the ions’seemstobe relatedtoseasonal flow.The GilaatSafford usually hastwohigh flowperiodsperyear,correspondingtothe so-calledwinterandsummermonsoonseasons. A typical yearin termsof flowand concentrations(conductivity) isshownbelow aswell asmonthlyaveragesfor flowandevaporation (Eref in1/10 mm H20, here multipliedby10).
  • 9. The pattern of conductivityonthe lefthandgraph is apparentlythe resultof interplaybetween seasonal floweventsandperiodsof highevapo(transpi)ration.The eventsmaybe termed ‘dilution’and ‘concentration.’ The followingtwographsshow typical dilution(left)andconcentrationpatterns(right) interms of flowandconductivity.Inadilutionevent,flow goesupwhile conductivity(standinginfor TDS/concentration) goesdown,andinaconcentrationeventflow goesdownwhileconductivitygoes up. Notall flow/concentrationeventscanbe labelleddilutionorconcentration.Instancesof flow and conductivitybothrisingare dubbed‘influx’whilebothdroppingare called ‘outflux.’ Of the 160 samples at Safford, 79 were concentrationand61 were dilution(49and38% respectively). Only9were labelled ‘influx’and12 ‘outflux’(6& 8%). ‘Influx’couldbe aninflowof higherconcentrationwatersuchasmightoccur withan inflow of groundwaterorag returns. ‘Outflux’mightbe aneventsimilartoinfiltration,waterpercolatingthrough soil andlosingsome of itssolidscontent. ‘Outflux’ishard tovisualizeas a physical phenomenon and may insome casesactuallybe an error indesignation. As a simple check, conductivitymaybe comparedtoTDS and ADEQ flows(grabs) toUSGS flows(means). If the twodo not agree indirection,thenthe designation maybe erroneousdue toa badconductivityor flowread. Or the flowand/orconductivityreads,typicallyamonth apart,may be correct but justnot representative of the periodasawhole. Ingeneral,the simple dilution/concentrationmodel seems
  • 10. appropriate about90-95% of the time at Safford.Of the influx andoutflux designationsmost atSafford were foundtobe problematic,so ratherthan 14%, 5-10% isa betterestimate of possible actual ‘influx’ or ‘outflux’eventsthere. The concentration response atSafford todilutionandconcentrationevents inthe same time framesas the graphs immediately aboveisclearinthe pattern of the major ions. All the majorion concentrations,withthe possible exceptionof bicarbonate,godownin a dilutionevent and up ina concentrationevent(period).The dropinsodiumandchloride isproportionallygreaterthan that of calcium(or bicarbonate whenitdrops). The resultisthatcharge%, a functionof concentration but as a percentsensitive to relativechange, goesdown forsodiumandchloride andupforcalciumand bicarbonate. The major charge carriers,therefore,canchange fromsodiumandchloride tocalciumand bicarbonate. Thisis termeda‘matrix inversion’andisclearlyseeninthe graph of charge on the left(dilution event- same year as above dilutiongraph). The significance of the matrix inversionisnot knownbutone suspectsitmightprovide anenvironmentthatfacilitateschangesinspeciationandsolubilityfrom than those seenduringbase flowconditions. (Varioustypesof charge %calculationscanbe used.Charge%,asusedinthe USGS programs,divides molesof plusor minus speciesbythe total plusorminusmoles,molese (molesof electrons) multiplies molesby charge,ionicitymultiplies moles bycharge squared. Charge% emphasizesthe effectof relative concentrations,molese,whichisusedhere,isclosesttothe contributiontoconductivity,whileionicity emphasizesthe charge.Graphsof all three show onlyslight,expectedvariations–whichisused dependsonfocusandinterest.)
  • 11. Several more graphsshow variationsin the depictionof how charge respondstodilutionevents. The flow/conductivitycontextisonthe left,the change incharge relationstothe right. Charge response dependsonthe extentof flow/concentrationdroporrise and the numberof data pointsoverwhichthe eventisspread.Single pointeventsappearsharplydefinedwhile multiplepoint eventsare flattenedoutregardlessof relative drop/rise magnitudes. The dynamicbetweensodium-chloride andcalcium-bicarbonate charge isstrikinglyrevealedinthe followingmatrix.Sodiumandchloride are stronglycorrelatedtoeachotherand negativelycorrelatedto calciumand bicarbonate. Safford molse Ca Mg Na Cl SO4 HCO3 Ca 1 0.869854 -0.93593 -0.8688 0.241483 0.852654 Mg 0.869854 1 -0.89957 -0.83721 0.437799 0.813541 Na -0.93593 -0.89957 1 0.930656 -0.29567 -0.90326 Cl -0.8688 -0.83721 0.930656 1 -0.35323 -0.97398 SO4 0.241483 0.437799 -0.29567 -0.35323 1 0.283348 HCO3 0.852654 0.813541 -0.90326 -0.97398 0.283348 1 The hypothesis hereisthatprecipitationbringsdilute water,definitelylowerinsodiumandchloride (associatedmore withthe base flow),andvariable inbicarbonate. Hemsandotherothershave
  • 12. suggestedthathigherbicarbonate contentinsurface runoff isdue to increasedcontactwithair(CO2) and vegetation. While bicarbonatecontentmayormay notbe higher,calciumandbicarbonate changes inconcentrationare invariablyrelativelylowerthanthose of sodiumandchloride. The mixingof differentwatersinthe course of flowingfromhighertolowerelevations withthe accompanyingshiftfrompotential tokineticenergy hasapparently createdapatternwhichmaybe viewedasa ‘structure’intermsof entropy.Sothe questionsbecomes,inwhatwaysisthis‘structure’ maintained. Note that inthe area of charge,sulfate isnotcorrelatedwiththe otherions,asinconcentration, bicarbonate isnot. The ionnot correlatedmaybe suspected tobe the one that ‘tipsthe balance’and determineswhatis‘goingon.’ Tosee how sulfate maybe involvedinthe responsetodilution/ concentrationeventsrequiresadigressiononsulfate chemistry. Sulfate, like bicarbonate butunlike chloride, hasatendencytoform ionpairswithcationssuchas calcium,magnesiumandsodium.Formationof sulfate ionpairscanbe seenonspeciationgraphssuch as that for BoulderCreek.The graphtothe leftshowsthat ’SO4as (free) SO4’,‘CaasCa’, and ‘Mg as Mg’ percentswentdownsteadilyforabout6 months. The graphto the rightplotsconcentrationsof CaSO4, MgSO4 andNaSO4 concentrationsona reverse x-axisof SO4/SO4speciation.Inotherwords,asCaSO4, MgSO4, and NaSO4 concentrationsgo up,SO4/SO4 speciationgoesdown(reversingthe usual independent/dependentvariable relation) Growth isgenerallyexponential,though appearinglinearorlogarithmicattimes,andthe orderof magnitudesisusually CaSO4, MgSO4,NaSO4. CaSO4 andMgSO4 are unchargedwhile NaSO4hasa minus1 charge as opposedtoSO4 itself whichhasa charge of -2. Formationof ionpairstherefore involves notonlycompetitionforCa,Mg and, to a lesserextent, Nabutalsoremoves theircharge % fromthe system. Thoughthe percentage of sulfate assulfate isdecreasing,sulfateconcentrationsactuallyhave tobe risingbecause that’swhatispushingformationof the ionpairs.Ionpairformationisself-regulatingin accord withthe law of mass action (sulfate inputinanopensystemwith steadystate approximation).
  • 13. The above graph showssulfate concentrationinbluewith‘sulfate backcalc’(sulfateplussulfate ionpairs as sulfate) inred.Sulfate ‘backcalc’isanalytical,‘total’sulfate. The divergenceof redand blue lines showsthe accelerating growthof ionpairconcentrations. Ionpairformationcontinues aslongas sulfate concentrationsare risingand,initself,servesasabreak forsulfate concentration.Thisistermed a ‘deceleration.’ SimilardecelerationsoccurforCa and Mg but verylittle if atall forNa. HCO3 ionpairs seemtofunctionsimilarlybutwithmore variabilityandatlowermagnitudesinmostwaters. The blue square showswhere CaSO4precipitationisexpected. (Thispart of the discussion isalittle tenuous. Iam usingthe law of mass actionto describe the relation betweenreactantsand‘ionpairs’withoutknowingwhetherthere isalso equilibriumbetweenionpairs and products(CaSO4etc precipitates).InfactI am treatingionpairsas if theywere precipitateswhich, of course,theyare not. Such argumentscan be,accordingto Hems,“misleading”buthe doesnotgo intoany more detail.) ReturningtoSaffordwe can see that,in the original Gilamatrix,sulfateandbicarbonate ion pair formationdrop indilutioneventsandgrow to a peakduringconcentrationevents. The graphsbelow (same yearsas earliergraphs (topof p. 10)) show % molese with ionpairconcentrationsinmg/L(SO4IP = SO4 IonPairs = SO4 backcalc mg/L– SO4 as SO4 mg/L)
  • 14. The suppositionhere isthatthe ionpairformationcompetingforcalciumandmagnesiumcombines withdecreasing(dilute) surface runoff andre-increasingbase flowtoallow sodiumandchloride toonce againbecome dominant.The endresultis mostclearlyseenbyplottingthe majorionconcentrations and charge againstconductivity. Here the ‘mediatingeffect’of bicarbonate isclearlyseen,thatof sulfate ismore indirect,throughionpairformation. Thispicture isthe Gilamatrix at itsmost clearand the patternsnotedabove show the ‘self-regulating’ mechanismsinvolved. Thislevel of orderamongthe majorionsraisesthe question‘how fardowninthe structure isorder apparent?’ Unfortunately,minorconstituentmetal andnutrientconcentrationsare nothighly correlatedwiththe majorion patterns at Safford.There isnogeneral sine curve,asseenonthe Colorado,forthe metalsto follow. Metal concentrationsare infactrelatedto eachother – that isthe whole pointof the USGS programs.But highcorrelationstendtobe betweendifferentcompoundsof the same metal. The furtherwe go downinthe electronic‘structure,’the lesscompleteourpicture is,the more the situation isdeterminedbythe ‘local’environment. The ‘local’ environmentmaybe aproduct of everythingabove it,but tyingthe causesand effectsbecomesincreasinglycomplex anddifficult.Whetherthere are any correlationsorpatternswithmajorionsdependsonthe picture we canconstruct. Comparingmetalsconcentrationswiththe dominantanioncharge % indifferentmatricesyieldssome suggestive plots.Here HCO3and SO4 charge percent at a numberof differentsitesare plottedagainst arsenicconcentrations. Higherarsenicconcentrationsseemtoclusterincertainportionsof the graphs.
  • 15. If the appropriate charge%forthe Verde andColoradoare labelled,itisclearthatthe Verde isina high concentrationclusterwhilethe Coloradoisnot. Doesthisindicate ahigher‘carryingcapacity’for arsenicinthe Verde as opposedto Colorado? Probablynot. It couldjustbe coincidental. The Verde ishigherinarsenicdue togeological formations and there isno obviouscausal connectionwiththe matrix. A streamdoesnothave a choice inaccepting or rejectingmaterialsinitspath,insteadithastoadjustto them. If there isanythingtothe ‘carrying capacity’ideaitprobablyliesinspeciation. Thisargumentdoesnotdomuch forarsenic,which invariablyexistsasAsO4. But itcouldsalvage the theorybypositingthatcertainspeciesmightmigrate more readilyintothe suspendedsedimentportioninsome matrices. Itmightbe of interesttodesign3 dimensional PiperPlotswithmetalsconcentrationsasthe Z axis. Butit wouldbe a lotof workand mightnot leadtoany significantfindings. A majorproblemfindingpatternsandcorrelationswithminorconstituentmetalsisthattheyhave a variable ‘presence.’ (Imaginethe charge % graphs above (topof p 10) witheverysecondorthirdpoint missing) There isalarge element of chance inwhetherminormetalswillbe presentandinwhat concentrations. Base-flow metalsconcentrationscanbe comparedtohighflow butthistellsusnothing aboutrelations. Returningtothe Gila matrix at Safford,however,one cansee thatmetalsdo seemto respondtomajor ionpatterns ina verygeneral way.If all bicarbonate andsulfate species are plotted togetheron separate chartsand theirmovementrelatedwithflow andconductivity,trace metal bicarbonate and sulfate compoundsseemtolargely move inoppositedirectiontothose of majorions. V V
  • 16. The major ioncompounds at the top of the graph, thoughratherflattenedbythe logscale, dipdown at the dilutionevent,while underneathmany trace metal –(H)CO3and -SO4compounds are trendingup, thoughnot all inunison. Metal hydroxide compounds followthe upwardmotion of bicarbonatesand sulfateswhilephosphates,whichare mostlymajorcationcompounds(exception, iron),seemtobe variable inresponse. There are a couple more interestingpointsaboutthe above graphs. The firstisthatthe large dilution flowpeakandconductivitydropof 8/16 isaccompaniedbya droppingpH. The secondis thatthe response of several trace metals occursona small side peak(7/19) to the mainpeak(an ‘upswing’side peak). Eleven dilutioneventsshowedupsidepeaks.(Only22% of all eventsbut that isheavily dependenton (chance) spacingof samples).Tenhadmatrix inversions,nineshowedsome metals response,andfourshowedsignsof acorrelated metal response. In caseswithresponse atthe side peak, adrop inpH anda switchof OH and CO3 specieswere usually alsoobserved.Differentmetalsrespondatthe side peakorat the mainpeak (presumablybychance). Free metal speciationandcharge percent (inblackbelow)oftengoupwitha dropin pH as expected. The followinggraphsshowspeciation,concentration,andcharge% (lefttoright) forthe same time periodasthe graphsabove.
  • 17. These pictures suggestthat‘firstflush’maybe amore extendedphenomenonthancommonlythought. Meteorologists dosometimessay thatthe earlymonsoonseasonmaypresentwithspottyprecipitation. As isolatedtributariesbegintorun,if they chance to pickup higherconcentrationsof metalsalongthe way,they‘hit’the mainstreamwiththe full force. Inotherwords,the contrast betweenincomingand receivingwaterconcentrations islikelytobe greaterthanlaterinthe seasonwhenmore tributariesare runningandconcentrationstendtocancel each otherout. How differentthe Gilaisat Gillespie thanitisat Saffordcan be seenbycomparingthe concentration and charge vs conductivityforGillespiewiththose forSafford above. The plot upto about 1500 uS/cmis exactlythe same asSafford. Athigherconductivity,sulfate becomes an increasingfactorwhile bicarbonatehaslessof a‘mediating’role thanithasat Safford.Infact, sulfate increasesandbicarbonate decreases asthe Gilaprogressesasseeninthe PiperPlotsbelow (Saffordleft, Gillespie right,bicarbonateaxis lowerrightside of diamondincreasinggoingdown,spring- yellow)
  • 18. While the same dilution/concentrationresponsesevidentatSaffordare still,ingeneral, seenat Gillespie,theyare lessfrequentand/orlessclear. The correlationof charge betweenNaandCl has weakenedandthe oppositionwithcalciumandbicarbonate is alittle lessclear. molese Ca Mg Na Cl SO4 HCO3 Ca 1 0.057617 -0.94184 -0.84481 -0.25469 0.854752 Mg 0.057617 1 -0.35518 0.017606 -0.07962 0.007393 Na -0.94184 -0.35518 1 0.794772 0.324235 -0.83363 Cl -0.84481 0.017606 0.794772 1 0.079984 -0.92585 SO4 -0.25469 -0.07962 0.324235 0.079984 1 -0.44067 HCO3 0.854752 0.007393 -0.83363 -0.92585 -0.44067 1 In itsplace there isan eventightercorrelationbetweenmajorionconcentrationsthanseenatSafford with,again,bicarbonate beingthe exception.Itwouldbe interestingtoattempttoquantifywhatsucha change meansinterms of entropydifferencesandwhatthe energyimplicationsare. Concentration Ca Mg Na Cl SO4 HCO3 Ca 1 0.957677 0.970109 0.970231 0.963923 0.448994 Mg 0.957677 1 0.960178 0.960932 0.950435 0.408477 Na 0.970109 0.960178 1 0.990563 0.983885 0.395387 Cl 0.970231 0.960932 0.990563 1 0.972332 0.389997 SO4 0.963923 0.950435 0.983885 0.972332 1 0.348298 HCO3 0.448994 0.408477 0.395387 0.389997 0.348298 1 There appearsto be lesscontrastbetweenincomingandreceivingwatersatGillespie thanatSafford. (HighTDS groundwaterorag returnsflowingintoagenerallyhigherTDSwaterrather thana dilute meetingamore concentratedreceivingwater(particularlyinsodiumandchloride)).The lackof contrast makesresponse hardertogauge. One corollaryof this newsituation maybe that so called‘influx’ and‘outflux’situationsare more commonat lowerelevations. Gillespiecertainlyhasagand municipal returnswhichmaybe of generally highTDS waterand the Gila exists undergroundincertainspotswhichmight(somehow) make inflltrationapossibility. While some‘influx’and‘outflux’designationsmaybe erroneous,asatSafford, the ratiosof the differenttypesof eventschangesdramaticallyatGillespie andDome where influx and outflux are 16 and19-20% for a combinedtotal of about35-36% of all events(asopposedto5-10% at Safford). Under similarcircumstancesasSafford,one ismore likelytosee ‘partial’than‘full’matrix inversions at Gillespie. The majorionsmerelytake aslightmove toward or awayfrom eachother.These are not,
  • 19. strictlyspeaking,matrix ‘inversions’buttheydo bearthe same relationtodilution/concentrationevents and pointtoward the same mechanismasat Safford withthe same drop andrise in ionpairformation. Note that bicarbonate isstill uncorrelatedforconcentrationandsulfate isstill uncorrelatedforcharge.It may be that, as the dynamicbetweenNa/ClandCa/HCO3weakens,the rolesof bicarbonate andsulfate ionpairs in maintainingthe highsodiumchloridematrix maychange butwhethermore orless importantisnot clear. Withmajor iondynamicslessclear,itisnot surprisingthatminorconstituent responseto dilution/concentrationare mutedand/or confused. Evenwithfairlylarge dipsinconductivityandhigh peaksinflow, one ismore likelytosee flatlinesora confusedjumble. But while responsetodilution/concentrationeventsisless clearthere are a numberof new relationshipsemergingatGillespie.pHchangesunaccompaniedby change in flow orconductivity,are
  • 20. associatedwith concentrationchanges more often thanatSafford.There mayalsobe different responsesinvolvingbicarbonate,iron,andsilicabutthese have notbeenfullyworkedout. Some responsesseenatGillespie are particularlysuggestive. Incertainyears,the phosphatesoscillate ina sine pattern. The regularityandtightnessof the responsesuggestssomesortof fine-tuningisgoing on butno relationtoflow/concentrationorothermetal trendshave beenfound.(Anotherwaysucha regularpatterncan be producediswith a steadyconcentration nearthe detectionlimit alternatingwith ‘lessthanthe detectionlimit’values (usingone half the detectionlimitisatypical wayof bridging ‘datagaps’inenvironmental monitoring) Inotherwords,apositedregulatingmechanismmayjustbe an artifactof analysis!). Thiskindof tightmovementisreminiscentof ironspeciationchanges exceptthatthe latteriseasily explained. Everytime the pHapproachesorcrossesthe pH = 8 line there isashiftinspeciationfrom Fe(OH)4to Fe(OH)2orvice versadependingonthe direction of change.Plottingironspeciationvs.pH showswhy.
  • 21. The significance of the ‘braidiing’patternseenin blue andgreenlines(Fe(OH)4andFe(OH)2) of the above,rightgraph isnot known.One mightsuspect thatironhasa role infine-tuningcharge relationships. Fe(OH)4isminuscharged,whileFe(OH)2ispluschargedandFe(OH)3isuncharged. Whichspeciespredominate maynotbe directlyrelatedtothe magnitude of flow but tothe total charge structure of the incomingflow. Iron hasseveral strongcorrelationsthatare veryinterestingaswell. Atmostsitesexaminedthere isa strongcorrelation betweenFe(OH)4speciationand H3SiO4concentration(>0.9).H3SiO4, witha minus charge andoftenexistingatintermediateconcentrations,canbe a major charge carrier. Fe(OH)4- speciation alsohasa pretty faircorrelation withHCO3speciation whichmaybe relevanttowhatone seesat LeesFerry(below) While the chemistryhasmanyunansweredquestions,the overall solids distributionpicture isfairly clear.As the Gilaflowsfromeastto westitgainsin TDS . Many parametersshow asimilarstraightline trendfromSaffordto Dome but some show the middle, Gillespie,asbeing‘unique.’ Gillespieseemsto be a sinkforTDS, possiblydue to(ormerelyresultingin) higherdensity.Averagesformanyparameters are higheratGillespie thaneitherSaffordorDome,though maximumvaluesare oftenhigheratDome for some reason or possiblyjustcoincidentally. On the otherhand,TSS drops steadilyasthe Gilaprogresses. Thatthe Gilamayonlyexistunderground betweenGillespieandDome rathercomplicatesthe situation. Ingeneral,though, TSSisonlyan importantfactorat Safford,unlesshigherflowscarryitalongdownto Gillespieand/orDome.
  • 22. The changesseeninthe Gila as itprogresses canbe relatedto the Coloradoat LeesFerrybefore and afterthe mid-1960s. The high contrast betweenincomingandbase flow,particularlyintermsof bicarbonate concentrations,seen atSafford butnotat Gillespieiscomparable to higherbicarbonate concentrationsinthe spring atLeesFerry before the mid-1960s.The Piperplotsbelow show LeesFerry majorion chemistry,left:1926-1965, right:1966-2008, spring– green, bicarbonate axisisthe lower rightside of the diamond,goingfrom0 (high) to100(low) downthe page).Thisisanother,evenmore striking,view of the change in majorion variabilitybefore andafterthe mid-1960s. In the earlierperiod,the matrix response to thisscenarioissimilartothatof the Gila, complete with matrix inversion, inspite of the factthat the Coloradoisnot a particularly highsodiumchloridematrix. Afterthe mid-1960s, however, the 5-7sine curve setsinand chemistry looksalotmore like the Gilaat Gillespie thanthe Gilaat Safford. Whateverthe exactflow/concentrationrelationmaybe,the lessening contrast betweeninflowingandreceivingwaters,seemstooperate similarlywhethercausedbychange inelevationordamconstruction.Withregulatedflows,the chemistrybecomesverydull(!)
  • 23. The existence of matrix inversionsonthe Coloradosimilartothose seenonthe Gilasuggeststhatsimilar patternsmay have existed. Correlationsshow thatthere isdynamicbetweenNa/Cl andCa/HCO3at LeesFerrybefore butnotafter the mid-1960s. LEES FERRY 1947 1964 molse Ca Mg Na Cl SO4 HCO3 Ca 1 -0.40573 -0.94925 -0.89028 -0.64347 0.850363 Mg -0.40573 1 0.100641 0.18 9917 -0.04384 -0.04691 Na -0.94925 0.100641 1 0.905448 0.71796 -0.91212 Cl -0.89028 0.189917 0.905448 1 0.488477 -0.79756 SO4 -0.64347 -0.04384 0.71796 0.488477 1 -0.91546 HCO3 0.850363 -0.04691 -0.91212 -0.79756 -0.91546 1 1965 2006 molse Ca Mg Na Cl SO4 HCO3 Ca 1 -0.14401 -0.71956 -0.52467 -0.41035 0.589472 Mg -0.14401 1 -0.542 -0.37188 -0.28283 0.400297 Na -0.71956 -0.542 1 0.66897 0.613963 -0.80739 Cl -0.52467 -0.37188 0.66897 1 0.267296 -0.74255 SO4 -0.41035 -0.28283 0.613963 0.267296 1 -0.83879 HCO3 0.589472 0.400297 -0.80739 -0.74255 -0.83879 1 Metals otherthaniron were notanalyzedatLeesFerrybefore 1964, soit isnot possible to compare before andafter..Iron,however, showsamarkedchange inspeciation atLeesFerry around1964 as well.
  • 24. The connectionbetweenbicarbonate andironhasbeenstudiedingroundwaterbut whetherthe same connection existsinsurface waterandwhatitmightmeanare notknown.The correlationbetween Fe(OH)4- speciationandHCO3/CO3speciation atLeesFerry is -.54 before 1964, butjumpsto -.94 after. On the Gila,the correlationis -.5 at Saffordandmovesupto -.79 at Gillespie. The same dynamicseenatLeesFerryare apparentat Morelasas well. 1961 1963 molse Ca Mg Na Cl SO4 HCO3 Ca 1 0.181372 -0.89389 -0.7665 0.708599 0.836269 Mg 0.181372 1 -0.60292 -0.19981 0.16666 0.263912 Na -0.89389 -0.60292 1 0.710665 -0.64784 -0.79814 Cl -0.7665 -0.19981 0.710665 1 -0.98879 -0.94914 SO4 0.708599 0.16666 -0.64784 -0.98879 1 0.891651 HCO3 0.836269 0.263912 -0.79814 -0.94914 0.891651 1 1964 2006 Mols e Ca Mg Na Cl SO4 HCO3 Ca 1 -0.41798 0.134442 -0.24957 0.586402 0.71817 Mg -0.41798 1 -0.95317 -0.59209 0.301907 0.176618 Na 0.134442 -0.95317 1 0.73992 -0.63879 -0.71494 Cl -0.24957 -0.59209 0.73992 1 -0.95912 -0.87269 SO4 0.586402 0.301907 -0.63879 -0.95912 1 0.699257 HCO3 0.71817 0.176618 -0.71494 -0 .87269 0.699257 1 What we have to thispointthenare twosystemswithbasicsimilarities(presentorpast) and some basic differences.The Coloradohas general seasonalityandregulatedflowswhile the Gilahasaseasonality heavilypunctuatedbyflow patternsandevaporationrates. The followinggraphsshow the flow, conductivityandmassflux relationsandmajorionresponse atMorelos in1993 to increasedflow from the Gila.
  • 25. The massive dilutioneventwasnotaccompaniedbya verylarge drop inconductivityorTDS. There was howeveralarge negative massflux (apointtopointconcentrationtimesvolume calculation usingpoints a monthapparent– not reallyaverygoodidea).Asthe nextgraphsshow,there wasa sulfate (concentration) dipbelowbicarbonate butnocharge inversion. As mightbe expected,whilemajorion carbonate andsulfate compounds dodip,there isnotsvery convincingcorrelatedupwardmovementamongtrace metal compounds.. Individual metalswere graphedandthe response foundtobe quite variablebothintermsof magnitude and timingwithmanyshowingnoresponse atall. A few examples of individual metal concentration responsesover1993:
  • 26. Giventhese results,itishardto see howthe initial graph(p.7),made froma randomgroupof metals, was evenproduced. Rerunningthe graphingprogramwiththe original concentrationdata(thatis,not activitiesderivedfromthe USGSprograms) revealedthatmostof the parameterswere dissolved species. Scalingthe datato sulfate withlineartransformationsstretchesthe amplitudeandpositions the resultsinthe same general areaas sulfate.Thistechniquemakesrelationshipseasiertosee but magnitudesmore difficulttogauge.Anothertechnique thatmaybe usedisto divide sulfatevaluesto plotinthe same general areaas the metals.The followinggraphsshow the twotechniquesusedwith sulfate andarseniconly. Onthe left,arsenicisscaledtosulfate,onthe right,sulfate valuesdividedand arsenicmultipliedtoplotinthe same area. Both techniquesshow the same,roughlyinverse,relationshipbetweensulfate andarsenic. The correlationbetweenAsandSO4is -0.68 overthe main ‘node’shown (12/92-10/93), or -0.79 overthe entire time spanof the graph (9/91 - 1/95) whichincludes3‘nodes’,butonly -0.46 overthe entire periodof record. In thisstudycorrelationswere usuallyrunoverthe entire ‘periodof record’(unless otherwise stated)tosee if there wasanygeneral validityto‘eyeball’correlationsmade ongraphswith varyingtime spans.
  • 27. The problemwiththe differentgraphingtechniques,however, isthatwhenanumberof differentions are scaledsimilarly,the overallresultmaybe eitherrevealingormisleading dependingonhow youlook at it(!) Here are tworeconstructionsof the original correlatedmetals movementgraphof p.7 usingthe same techniques,lefttoright,asabove withAsand SO4 only. The ‘correlated’movementseentothe leftisalmostentirelymissingonthe rightdue to the fact that the metalswere notall scaledto sulfate. Withthe exceptionof boronandbarium, the upsand downs of the variousmetalsobscure the general pattern. The magnitudes,however, are more clearlyrevealed on the righthand plot to have beenverysmall. On the otherhand,plotsof ‘total’metalsdone inthe same manner tell adifferent,more consistent, story.Nowboth depictionsseemtobe sayingthe same thing,acorrelatedupwardresponse of mostof the metals,and,inaddition,the some of the magnitudesare significant. The highmetalsconcentrationsnoted were aresult, notof changesinany ‘electronicstructure’,but simplydue tothe typical ‘dilution’ scenarioof dippingTDSandrisingTSS. The cause of the highmetals concentrationsatMorelasin 1992-93 was a massive influx of suspendedsolidscomingfrom the Gila
  • 28. flow. Andhavingarrivedbackwhere we started,havingraisedfarmore questionsthanprovided answers.. . thisseemslike agoodplace toend. Appendix A Coverage,Approachand“Deliverables”Summary The projectdevelopedinseveral stages. The firstwascreatingthe tools foran integratedapproach. The secondwas to produce ‘profiles’of site chemistryusingaverage valuesforanumberof Arizona streamsfrompublicwaterqualityrecords.The thirdwasto add the capabilitiesof USGSgeochemical modellingprograms. Fourth,the modellingprogramswere usedtogenerate more detailedviewsof some of the same sitesforwhichprofileshadbeenmade.Finally,toolswere createdthatallow forthe rapidcharacterizationanddepictionof streamchemistry. An integratedapproach tostreamchemistryinvolvestryingtoachieve a‘complete’pictureof the systembeingconsidered. The massand charge balance are the basictools. The advantagesof an integratedapproachare that resultscaneasilybe checkedanddifferencesraisequestionsthatleadto furtherinvestigation.The discoveryprocessis,asitwere,self-perpetuating. The massbalance,forexample,canbe checkedagainstaphysical measurement -- total dissolvedsolids results. The difference betweenthe twoisa measure of the completenessof the ‘picture’of the system.The charge balance can use a numberof tests(sevenare usedhere). How manyteststhe charge balance passesorfailsgivessome indicationof how wellthe numbersinthe individual analyses ‘fittogether.’ A poorcharge balance indicatesonlythatthere isaproblemsomewhere inthe ‘complete’ picture beingproducedandgiveslittle ornoindicationwhere thatmayproblemmightbe. Implicitinthe approachisthat all available dataisused.There are some pitfallsaswell asadvantagesto thisaspect. The profilesproducedare overthe entire periodof recordbutthatmay range from hundredsof samplesover40 to 50 yearsto five totensamplesovera yearor two.In general,siteswith manysamples overlongperiodsof time were favored. A fewsiteswithlessernumberof samples,however,were alsoused,typicallythose withahistoryof exceedingwaterqualitystandardsand/ortofill gapsinlongstretchesalongastream.Obviously,some care has to be usedingeneralizingfromresultsthatwere generatedfromonlyafew samplesovera short spanof time.Withsuchsites,comparisonwithothermore adequatelycoveredsiteseither upstreamor downstream,if available,canaidinevaluation. Some siteshave manysamplesbutnotall the sampleswere ‘complete’analyzes.Inthisstudy,generally onlysampleswithall the majorions(Na,Ca,Mg, Cl,SO4, HCO3) and at leastsome metalswere used. These restrictionshave todobothwiththe methodsandwiththe purpose of the study. The ideaisthat there isan electronicstructure createdbythe majorions(the ‘matrix’) andthatminorconstituentssuch as metalshave tofit intothisstructure incertainways. Some attemptswere made toextrapolate major ionconcentrationsfrombasicchemical measurementsbutthese were notfoundsatisfactoryandwere discontinued.
  • 29. To date,about 100 ‘average’value profileshave beencompleted.Theseprofilesincludemassand charge balance resultsandPiperPlot(software courtesyof UtahUSGS) depictionsof the majorions.As an aide to navigation,profilesare alwayssavedatthe same place (the PiperPlotonthe ‘results’sheet) and followasetlayout(describedin‘Intro-howto-metadata’file) PiperPlotsare particularlygoodat depictingnotonlythe relativepositionof the particular‘mix’of ions but alsothe variability. Some siteshave mostof the individual sample pointsclusteredtightlyintoa small area,othershave themina wide swathacrossthe diagram. The firstrepresentswhatmightbe calledinsome sensesa‘stable’matrix while the secondisamore ‘diffuse’or‘more highlyvariable’ matrix. Some sites,like the ColoradoatLeesFerry,show both – a verydiffuse matrix before 1964 and a very tightmatrix afterwards.Forthe mostpart, however,the average value profilesare static, representing a‘snapshot’of the systemoverthe entire periodof record. The resultsof these profilesare depictedinaseriesof about35 GIS mapsand associatedfiles. Thirteen of the mapsare statewide depictionsof the variouswatermatrix compositionsandgroupingsof interest. The mainmap,labelledAZwatermatrix,unfortunatelyhadtobe dividedinto4partsdue to size limitations.The ‘composition’mapsshow the matrix compositionsatabout16 sites,representing9of the major streamsaroundthe state (1-3 samplesalongthe Colorado,Bill Williams,AguaFria,Verde, Gila,Salt,Santa Cruz,San Pedroand Little Colorado) ‘Composition1”usesapie chart depictionof the charge percentsof the majorionswhile ‘Composition2’ usessymbolsproportionaltosize.‘Confidence’and‘variability’mapsgive chartdepictionsof the mass and charge balance resultsandsome measurementsof the variabilityshownin the PiperPlot.Ideally, confidence andvariabilityinformationshouldbe presentedalongside composition. Othermaps inthe statewide sectiondepictadditional,associatedinformation.Three mapstermed ‘AZhotspots’showthe locationsof waterqualityexceedancesatprofiledsitesintermsof numberof parametersexceeding,magnitude of exceedances,andmaximumvalues(regardlessof exceedance status).There are also twomaps showingareasof highor low solidsproduction. One mapand an Excel file categorize matrix compositionsintermsof dominantanionsandcations(alkalinityandhardness types). Finallytwofiles,one mapandone Excel file,are the resultof alargelyabortive attempttofindevidence of ‘transition’or‘mixing’zonesatthe variousexceedance ‘hotspots’aroundthe state.Many‘hotspots’ do occur at the junctionof differentwatermatricesbutactuallyseeingthe resultsof mixingdemands that justthe right flowsandconcentrationsexistandlastlongenoughtogatherenoughdatato see them. The rest of the 35 mapsare locatedina subfoldercalled‘MajorStreams’. Here the 9 streamsplusthe Hassayampaare shownonindividual mapswithcomposition,confidence andvariabilityall shownon the same map. Sitesare labellednotonlywiththe name butalsowiththe numberof samplesandyears coveredincludedinparentheses. ‘GilaatGillespieDam(385/42)’indicatesthe site has385 (complete) analysesoveraperiodof 42 years,while ‘GilaatBuckeye Canal(6/1)’,thrownintohelp coverthe long stretchbetweenGillespieandKelvin,hasonly6complete analysesover1year(Fortunatelythe results
  • 30. are perfectlyconsistentwithKelvinandGillespie.) Some of the tributariestothe Gila,QueenCreekand the San Carlos,however,have few samplesbuthave widelydifferentcompositionsfromthe Gila. Both showlowervariance thanthe Gilabut have poor charge balance results. How muchtheycontribute to the Gila woulddependonflowsandrelative concentrations. As the profilesapproachedcompletion,workbeganinvestigatingthe use of USGSgeochemical modellingprograms. Twoprograms,WATEQ4F and PHREEQC,were used. WATEQ4F isan older program,somewhatlimitedinoutputandusingdifferentassumptionsthanPHREEQC. Both programs dependonan underlyingdatabase of thermodynamicdata (standardenthalpies). Whatthe programs offerisa quickway of doingdifficult,iterative ‘bestfit’calculationstogetspeciation,activity,and solubilityfrompHand redox data.While handy,these programscome withassumptionsandthere is some riskintheiruse (see theoretical considerationsbelow) To date,twentythree profilescoveringfourteenstreamshave beenredoneusingthe programs. The filesare labelledwith‘grab’atthe endof the file name andthe elementsexaminedindetail in parentheses(usuallyFe andCu). The analysisinthese profilesislimitedtoaverage valuesandplaced nextto the earliervalues(PiperPlot) forcomparison.Inadditiontothe charge percentcompositionpie charts, however,are cationandanionspeciation,activityandsolubilitychartsaswell asall metal s and predominantmetalsactivitiesandsolubilities.Resultsare linedupbyprogramfromleftto right, WATEQ4F, PHREEQC withitsowndatabase,and PHREEQC withthe more extensive LawrenceLivermore database. Resultswere generallyfairlysimilarforall three programsandall were usuallywithin1-4%of earliercalculations. Once some confidence hadbeenbuiltupwiththe average values,workbeganongettingamore detailedviewof the variousmatrices. Toolswere developedtogenerate graphsandcorrelation matricesfromdata on the ‘output2’sheetof the ‘grab’profiles. The ‘output2’sheethasdatagrouped and organizedinsetlocationsmakingitveryeasytopickout data byelement,analysistype (speciation, concentration(activity) orsolubility),andanindependent(x) variablesuchasdate,pH or conductivity(or anotherelement).Virtuallyanythingcanbe plottedorcorrelatedwithanything else(thoughthe programshave not beencheckedforeverypossible combinationsothere are occasional hangupsand snafus) The ideahere isto give as manyperspectivesaspossible onthe system. Several graphtemplateswere developedcomparingmatrix parametersagainstbasicmeasurementandeachother. The most used template haspH,flowandconductivityand‘massflux’chartsacross the topof the sheetwithdifferent matrix parametersfollowingbelow. The ideaistolookat conductivity,flow,andpH‘events’andthen checkthe chemistryatthe same pointsto see if there appearstobe any response. Matrix parameters are alsoexaminedagainsteachothertosee if there are anypatterns. Because correlationscanbe chance,one-time events(coincidental) andpatternsmayneeddifferent time spansto become visible,mapsandcorrelationscanbe generatedusingdifferenttime frames. Maps were usuallygeneratedwith‘all’data,whichare mostlyuselessforanalysisdue totoomany pointstosee anything,butoccasionallyshow patternsnotseeninfinerdetail,andyearlyincrements.
  • 31. Correlationswere usuallydoneoverthe periodof record,largelytoverifyif seemingcorrelations spottedongraphs hadany general validity,butcanalsobe done forany time frame of interest. One program runscorrelationsof one parameteragainstanynumberof otherparametersona yearlybasis and itis interestingtosee thatcorrelationscancome and go overtime (thoughhardto judge what significance thismayhave) To date,14 ‘matrix’studieshave beencompletedonfourstreams(Gila,Salt,ColoradoandSantaCruz). Whenfirstbegun,the studiestookseveral daysbutrefinementshave reducedthe time to2-3hours. One sheetof mapsis producedusinggraphingprograms,thenthe entire sheetiscopiedandanother program usedtochange the dateson all the graphsof the new sheet. IN thisway,annual graphs covering20-30 yearscan be producedveryquickly. Correlationmatriceswere developedandrowand columnheaderscopiedtoproduce the nextfilescorrelations. THEORETICAL CONSIDERATIONS The USGS programstake the ‘total’analysesof the database andworkout the variouscompoundsthat are mostlikelytoexistata givenpHand redox potential.The majorions,particularlyNa,Cl andSO4, are predominantlyintheirionicform.NaasNa and Cl as Cl, forexample,are almostalwaysnearly100% (Na/Na,Cl/Cl ~100%, SO4/SO4 istypically60-80%) Ca, Mg, andHCO3 oftenexistincompoundssuchas CaHCO3, CaSO4 etc. PO4 existsinsmall amountsasPO4,is mostcommonlyfoundasHPO4 and formscompoundsprimarily withothermajorionsand iron.What thismeansisthat, if PO4 has anyeffectonfree metal concentrations,ithasto be an indirectone,possiblythroughalowerlevelcompetitionwithOHand CO3, and to a lesserextentSandSO4,for major cations. Ultimately,the wholeanalysisdependsonLaChateliersprinciple (asystemunderastresswill move to relieve thatstress) anditsparticularformappropriate togeochemicalsystems,the law of massaction. These principlespositthatif two reactantscome intocontact in a closedsystemthere isatendencyfor themto forma product(time notspecified). Eachsetof reactantsform productup to a setamount specifictothe system,atwhichtime the ‘stress’onthe systemreversesdirection towarddissolutionof the product back intoreactants. At thispointthe systemhasreachedwhatistermed‘equilibrium’ whichisdefinedasthe reactiontowardcreationof productbeingequal tothat towarddissolution. The equilibriumistermeddynamicinthatthe concentrations,while alwaysfluctuatingslightly,appear unchangingbecause there isnooverall movementineitherdirection. Equilibriumsituationsare mosteasilyanalyzedinlabbeakers. Saysmall amountsof soluble CaandSO4 compounds (CaNO3andNaSO4 wouldprobablydo) are placedina beakerof DI wateron a lab bench (thatis,withno analyzable inputsof massorheat). The compoundswill dissolvealmostinstantlyand veryquicklyCaSO4will begintoform. Firstthere wouldbe a tendencyforCaand SO4 ionsto associate, thensome pairswouldbegintoformmolecularbonds,finallyif conditionsare right,CaSO4wouldbegin to precipitate outof solution. Ca + SO4 [CaSO4] CaSO4 aq
  • 32. Here a couple of potential problemscropup. What the programsfind,asfar as I know,are the associatedionsorso called‘ionpairs’notactual molecularspecies. Ionpairsare describedasgroupings of ionsthatare heldtogetherbyveryweakforces(coulombicinteractions)asopposedtothe stronger bondsof actual molecules. Whethertheyare,ingeneral,strongenoughtowithstandthe forcesof filtrationisnotknown(atleastbyme) so whethertheywouldbe inthe dissolvedorthe total analysis portionisnot clear. In thiswork dissolveddatawasusedwheneverpossible unlesstotal wasspecified (WATEQ4F specifiestotal Fe).The rationalehere isthatthe suspendedsolidportion,whichincludes largelyunchargedparticles,doesnotfigure directlyintothe posited‘electronicstructure’. Evenmore significant,however,isthatequilibriumis,Ibelieve,generallyconsideredasbetween reactantsand (molecular) products.There mayalsobe anequilibriumbetweenreactantsandionpairs but itmightbe verydifficulttoanalyze. IFthere isnomolecularproductthere maybe no equilibrium and resultsmaybe “misleading,’accordingtoone authority(Hems). Of course,the whole conceptof equilibriumisnotquite appropriateforreal worldsystemseither. Natural systemsare usuallynot‘closed’toinputsof massand/orheat. The CaSO4 reactionthatoccurs insecondsina beaker,apparentlylastedoveraperiodof eightmonthsonBoulderCreek(atleastif increasedionpairformation andpredictedprecipitateare anyindication). The term ‘steadystate’is usedto describe opensystemsinwhichinputsof massandheatare assimilatedinafashionthatmimics equilibrium. But while mostof usare happyenoughtoset aside the whole notionof ‘equilibrium’as‘theoretical’and use the resultinginformationbasedonitsassumptiontosolve problems,there are otherdifficulties. Evenin the case of Ca and SO4 ina beaker,the resultsmightbe verydifferentif acompetingionwere present. We relyonthe programto sort out these competingrelationshipsbutthe programscan only use the informationwe give themandthe informationinthe underlyingdatabase.Typically‘modelling’ meansthat a givensystemisanalyzedtoinclude all the parametersthatare involvedand the underlying database ischeckedforboth internal consistencyandrelevance tothe system. Where appropriate,the informationinthe database mayneedtobe changedor addedto.None of thatwas done here. Insteadthe programswere usedwithverylittle ‘tweaking’toinvestigatethe watersystemsnotbecause thisisthe bestwayto do it butbecause of lack of knowledge onthe userspart(i.e.me!). Atfirst,the inputswere limitedtoaverage valuesandcomparedtothe profilesgeneratedusingsimplermethods. Usuallythe activitiesderivedfromthe programswere within1-4percentof the concentrations(even thoughthe two are not the same). The redox potential wassettothat of the H20/O2 pair – that isfor full saturation. This‘dominant’pair assumptionishotlydebatedingroundwaterstudiesbutaccepted (Fraseretal.) and probablyo.k.forthe typicallymore homogeneoussurface watersample. The underlyingdatabaseswerenotexaminedforconsistency,completenessorrelevance thoughthey probablyshouldhave been. Instead,the resultswere evaluatedagainstgenerallyacceptedfindings. For example,PHREEQChastwodatabasesthatcan be pluggedin,one comeswiththe programand the otheris a compilationfromthe Lawrence Livermore Laboratories. The latterisa verycomplete setof data but some valuesmayhave beenderivedinveryspecificcircumstances. Usingthe Lawrence
  • 33. Livermore datasetonColoradoRiverwateryieldedthe findingthatCuCO3was the mostcommon form of copper,while WATEQ4FandPHREEQC datasetsagree withthe more generallyacceptedfindingthat Cu(OH)2,ismore common. The Lawrence Livermore datasetwasusedbutmore fora ‘whatif’ comparison. In some cases,however,the problemsresultingfromnottweakingthe underlyingdatasettomatchthe systembeinganalyzedmayhave andprobablydidmake the analysesmeaningless. The SantaCruz in particularseemsalmost‘unanalyzable’,showingverylittle correlationorpatternsamongthe majorions, but that maybe because,historically,there hasbeenasignificantconcentrationof ammoniaandthe programshave ammonia‘uncoupled’fromotherreactions.Thisisanarea where furtherworkis definitelyneeded.  Thisarticle isa re-write of anearlierprojectbegunatADEQthat usespublicrecordwaterquality data to examine patternsinsolidsdistributionsinnatural waters. There are no references eitherstatedorimpliedtoADEQor ADEQ policyinthe article andthere wasno commenton the subjectmatteronthe part of reviewersatADEQ. Thispostingseeksfeedbackonthe article as part of an ‘improvement’plan. Sendcommentsandquestionstopcba2@dialup4less.com.