SlideShare a Scribd company logo
1 of 59
Excellence in motors since 1959 Page : 1
Project Title : Automotive Motor Noise
Prepared By:
Peter Zhou
Excellence in motors since 1959 Page : 2
Define PhaseDefine Phase
Team Charter
Project Leader : Peter Zhou
Name Functional Area Reporting to
1. Paul Tsang HA Q&R xxxx
2. CL Chiang C&S Shaft xxxx
3. JN Ta Corp. Engg xxxx
4. Howard IP Corp. Engg xxxx
5. Peter Lai HA Engg xxxx
6. LapLeong Ma HA Q&R xxxx
7. Pierre Wong JENA xxxx
Excellence in motors since 1959 Page : 3
Define PhaseDefine Phase
Problem Statement :
End customer from N.A. complained about NVH issue (i.e. abnormal noise)
by shaft gear mating when installed inside the pump unit. All inventory in
N.A. has been rejected for sorting in China.
For this brand new designed pilot product there was no objective noise
measurement standard developed at both sides for grinding noise inspection at
certain sensitive frequency (e.g. 1K and 2K Hz)
Goal/Objective Statement :
To reduce the current grinding noise defect rate from current 20000 PPM to
5000 PPM with well established shop floor outgoing inspection standard
Projected Business Benefits :
Increased market share with further business business expansion;
Significant savings on both customer field returned/sorting and shop floor
process scrap;
Industry NVH application standard development, etc
Excellence in motors since 1959 Page : 4
Define PhaseDefine Phase
Defect DefinitionDefect Definition
Customer Complained Two Typical Defects From Field Application
- Noise Level Too Loud from Specific High Speed Range (i.e. Speed 10)
- Abnormal Grinding Noise From Specified Frequency Bands Defined
as Human Being Comfortable Zone (i.e. 1 KHz and 2 KHz ). A New
Product Characteristic Has Been Developed As “ Sound Quality” For
Measurement
Before the customer complaints there were no specific technical spec. available.
All field rejection was based on customer subjective judgement.
Excellence in motors since 1959 Page : 5
Define PhaseDefine Phase
Defect Graphic Demonstration By Sound MeasurementDefect Graphic Demonstration By Sound Measurement
Excellence in motors since 1959 Page : 6
Practical Problem Statement:
Customer CTQ (Y): Sound Quality of Gear Mating
Measurable y’s: Noise dBA Level and Sound Quality Index
Continuous or Attribute y? Continuous
Unit: dBA
Sound Quality
Defect: 20000 PPM
Customer Specification: To Be Developed By the Team
Define PhaseDefine Phase
Excellence in motors since 1959 Page : 7
Define Phase
Process Trend Chart - BaselineProcess Trend Chart - Baseline
20000
0
5000
10000
15000
20000
25000
30000
Nov Jan Mar Apr May June July
MeasureMeasure AnalyzeAnalyze ImproveImprove ControlControl RealizationRealization
BASELINEBASELINE
GOALGOAL
Excellence in motors since 1959 Page : 8
Rating of
Importance to
Customer
7 9 8 9 9 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MotorTotal
Length
MotorShaftT.I.R.
Input/Output
Balancing
MotorGrinding
Noise
MotorVibration
Ass'yMotorShaft
Concentricity
Total
Process Step Process Input
1
Lamination
Height
9 0 0 0 0 0 63
2 Shaft Burrs 0 0 0 9 0 0 81
3
Shaft Teeth
T.I.R.
0 0 7 3 0 90
4
Shaft Teeth
Crowning Value 0 0 0 9 0 0 81
5 Shaft T.I.R. 0 3 3 3 7 127
6
Input Bracket
Concentricity
0 0 0 0 1 7 58
7
Output Bracket
Concentricity
0 0 0 0 1 7 58
8
Input Bearing
Concentricity
0 0 0 0 1 5 44
9
Output Bearing
Concentricity
0 0 0 0 1 5 44
10
Product
Balancing Spec 0 0 9 0 1 0 81
11
Lam. Screw
Hole
Concentricity
0 0 0 0 0 9 63
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
0
Total
63
0
96
252
99
280
0
0
0
0
0
0
0
0
0
Lower Spec
Target
Upper Spec
Cause and Effect
Matrix
This table provides the initial input to the FMEA. When each of the output variables (requirements) are
not correct, that represents potential "EFFECTS". When each input variable is not correct, that
represents "Failure Modes".
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 9
Sub-Assembly ComponentsSub-Assembly Components
Process Capability MeasurementProcess Capability Measurement
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 10
Customer Requirement
(Output Variable)
Measurement Technique
%R&R or P/T
Ratio
Upper
Spec
Limit
Target
Lower
Spec
Limit
Cp Cpk
Sample
Size
Date Actions
Shaft Crowning Shaft Teeth Mahr Mchine 77% 7.5 5 0 * -1.34 150 Nov-03
Need to Train Operator for Correct
Measurement Method
Shaft T.I.R. T.I.R. Indicator 52.88% 0.05 0.025 0 0.8 0.77 37 Nov-03
Need to Change the Measurement
Gate Immediately
Input Balancing Input Balancing Meter 8.90% 800 400 0 0.91 0.72 32 Nov-03 Good Gage
Output Balancing Balancing Meter 9.27% 800 400 0 1 0.7 32 Nov-03 Good Gage
Output Hub T.I.R. Hub T.I.R. Indicator 6.09% 0.1 0.05 0 1.17 0.92 31 Nov-03 Good Gage
Key Process Output Variable
Capability Status Sheet
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 11
-6 -4 -2 0 2 4 6 8 10
LSL USL
Process Capability Analysis For Shaft eeth Crowning Value
USL
Target
LSL
Mean
Sample N
StDev (Within)
StDev (Overall)
Z.Bench
Z.USL
Z.LSL
Cpk
Cpm
Z.Bench
Z.USL
Z.LSL
Ppk
PPM< LSL
PPM> USL
PPMTotal
PPM< LSL
PPM> USL
PPMTotal
PPM < LSL
PPM > USL
PPM Total
10.0000
*
5.0000
-1.3379
150
1.57087
1.64989
-4.03
7.22
-4.03
-1.34
*
-3.84
6.87
-3.84
-1.28
1000000.00
0.00
1000000.00
999972.66
0.00
999972.66
999938.84
0.00
999938.84
Process Data
Potential (Within) Capability
Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance
Within
Overall
2.00.5-1.0-2.5-4.0-5.5
95% Confidence Interval for Mu
-1.05-1.15-1.25-1.35-1.45-1.55-1.65-1.75
95% Confidence Interval for Median
Variable: History
-1.70000
1.47945
-1.60368
Maximum
3rd Quartile
Median
1st Quartile
Minimum
N
Kurtosis
Skewness
Variance
StDev
Mean
P-Value:
A-Squared:
-1.10000
1.85800
-1.07218
1.90000
0.00000
-1.40000
-2.50000
-6.10000
150
-3.6E-01
-1.3E-01
2.71302
1.64713
-1.33793
0.303
0.431
95% Confidence Interval for Median
95% Confidence Interval for Sigma
95% Confidence Interval for Mu
Anderson-Darling Normality Test
Descriptive Statistics
Incoming Shaft Crowning Value CapabilityIncoming Shaft Crowning Value Capability
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 12
0.0450.0350.0250.0150.005
95% Confidence Interval for Mu
0.0300.0250.020
95% Confidence Interval for Median
Bare Shaft TIR
2.00E-02
8.70E-03
2.23E-02
Maximum
3rd Quartile
Median
1st Quartile
Minimum
N
Kurtosis
Skewness
Variance
StDev
Mean
P-Value:
A-Squared:
3.00E-02
1.39E-02
2.94E-02
5.00E-02
3.40E-02
2.50E-02
1.80E-02
5.00E-03
37
-4.7E-01
0.235228
1.14E-04
1.07E-02
2.58E-02
0.540
0.310
95% Confidence Interval for Median
95% Confidence Interval for Sigma
95% Confidence Interval for Mu
Anderson-Darling Normality Test
Descriptive Statistics
0.060.050.040.030.020.010.00-0.01
USLLSL
Process Capability Analysis for Bare Shaft TIR
PPMTotal
PPM> USL
PPM< LSL
PPMTotal
PPM> USL
PPM< LSL
PPMTotal
PPM> USL
PPM< LSL
Ppk
PPL
PPU
Pp
Cpm
Cpk
CPL
CPU
Cp
StDev (Overall)
StDev (Within)
Sample N
Mean
LSL
Target
USL
20695.95
12458.49
8237.47
17111.91
10395.49
6716.43
0.00
0.00
0.00
0.75
0.80
0.75
0.77
*
0.77
0.82
0.77
0.80
0.0107738
0.0104519
37
0.0258378
0.0000000
*
0.0500000
Exp. "Overall" PerformanceExp. "Within" PerformanceObserved PerformanceOverall Capability
Potential (Within) Capability
Process Data
Within
Overall
Incoming Shaft T.I.R. CapabilityIncoming Shaft T.I.R. Capability
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 13
Misc:
Tolerance:
Reported by:
Date of study:
Gage name:
0
13
12
11
21
Xbar Chart by OP
SampleMean
Mean=11.60
UCL=11.92
LCL=11.28
0
1.5
1.0
0.5
0.0
21
R Chart by OP
SampleRange
R=0.315
UCL=0.8109
LCL=0
10987654321
12.8
11.8
10.8
Part_No
OP
OP*Part_No Interaction
Average
1
2
21
13
12
11
10
OP
By OP
10987654321
13
12
11
10
Part_No
By Part_No
%Contribution
%StudyVar
Part-to-PartReprodRepeatGage R&R
100
50
0
Components of Variation
Percent
Gage R&R (ANOVA) for Shaft Teeth Mahr M/C
Two-Way ANOVA Table With Interaction
Source DF SS MS F P
Part_No 9 11.5875 1.2875 5.1344 0.01148
OP 1 11.5282 11.5282 45.9730 0.00008
OP*Part_No 9 2.2568 0.2508 5.1881 0.00011
Repeatability 40 1.9333 0.0483
Total 59 27.3058
Shaft Teeth CH Value Gage R&R
%Contribution
Source VarComp (of VarComp)
Total Gage R&R 0.49172 74.00
Repeatability 0.04833 7.27
Reproducibility 0.44339 66.72
OP 0.37591 56.57
OP*Part_No 0.06748 10.15
Part-To-Part 0.17279 26.00
Total Variation 0.66451 100.00
StdDev Study Var %Study Var %Tolerance
Source (SD) (5.15*SD) (%SV) (SV/Toler)
Total Gage R&R 0.701229 3.61133 86.02 72.23
Repeatability 0.219848 1.13222 26.97 22.64
Reproducibility 0.665875 3.42925 81.68 68.59
OP 0.613118 3.15756 75.21 63.15
OP*Part_No 0.259760 1.33776 31.87 26.76
Part-To-Part 0.415680 2.14075 50.99 42.82
Total Variation 0.815176 4.19816 100.00 83.96
Number of Distinct Categories = 1
GR&R Study For Shaft Teeth CH Mahr M/CGR&R Study For Shaft Teeth CH Mahr M/C
Operator w/ incorrect
Measure Method
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 14
In-Process Assembly DataIn-Process Assembly Data
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 15
800700600500400300200
95% Confidence Interval for Mu
550500450400
95% Confidence Interval for Median
Balancing Input
399.463
114.947
430.791
Maximum
3rd Quartile
Median
1st Quartile
Minimum
N
Kurtosis
Skewness
Variance
StDev
Mean
P-Value:
A-Squared:
540.537
190.619
534.178
799.000
581.625
481.750
376.000
211.500
32
-1.8E-01
0.364069
20557.4
143.379
482.484
0.662
0.268
95% Confidence Interval for Median
95% Confidence Interval for Sigma
95% Confidence Interval for Mu
Anderson-Darling Normality Test
Descriptive Statistics
10008006004002000
USLLSL
Process Capability Analysis for Balancing Input
PPM Total
PPM > USL
PPM < LSL
PPM Total
PPM > USL
PPM < LSL
PPM Total
PPM > USL
PPM < LSL
Ppk
PPL
PPU
Pp
Cpm
Cpk
CPL
CPU
Cp
StDev (Overall)
StDev (Within)
Sample N
Mean
LSL
Target
USL
14441.18
14019.40
421.79
15805.53
15297.00
508.52
0.00
0.00
0.00
0.73
1.11
0.73
0.92
*
0.72
1.10
0.72
0.91
144.539
146.841
32
482.484
0.000
*
800.000
Exp. "Overall" PerformanceExp. "Within" PerformanceObserved PerformanceOverall Capability
Potential (Within) Capability
Process Data
Within
Overall
Input Balancing Process CapabilityInput Balancing Process Capability
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 16
Misc:
Tolerance:
Reported by:
Date of study:
Gage name:
0
35.3
35.2
35.1
35.0
34.9
34.8
BA
Xbar Chart by Operator
SampleMean
Mean=35.00
UCL=35.04
LCL=34.96
0
0.10
0.05
0.00
BA
R Chart by Operator
SampleRange
R=0.021
UCL=0.06861
LCL=0
10987654321
35.2
35.1
35.0
34.9
34.8
Serial
Operator
Operator*Serial Interaction
Average
A
B
BA
35.3
35.2
35.1
35.0
34.9
34.8
Operator
By Operator
10987654321
35.3
35.2
35.1
35.0
34.9
34.8
Serial
By Serial
%Contribution
%StudyVar
%Tolerance
Part-to-PartReprodRepeatGage R&R
140
120
100
80
60
40
20
0
Components of Variation
Percent
Gage R&R (ANOVA) for Stator Lam. Height Two-Way ANOVA Table With Interaction
Source DF SS MS F P
Serial 9 0.65816 0.0731289 127.550 0.00000
Operator 1 0.00169 0.0016900 2.948 0.12013
Operator*Serial 9 0.00516 0.0005733 1.318 0.28850
Repeatability 20 0.00870 0.0004350
Total 39 0.67371
U9845 Stator Lamination Heigt Gage R&R
%Contribution
Source VarComp (of VarComp)
Total Gage R&R 0.000539 2.88
Repeatability 0.000478 2.56
Reproducibility 0.000061 0.32
Operator 0.000061 0.32
Part-To-Part 0.018163 97.12
Total Variation 0.018701 100.00
StdDev Study Var %Study Var %Tolerance
Source (SD) (5.15*SD) (%SV) (SV/Toler)
Total Gage R&R 0.023206 0.119513 16.97 23.90
Repeatability 0.021862 0.112587 15.99 22.52
Reproducibility 0.007785 0.040092 5.69 8.02
Operator 0.007785 0.040092 5.69 8.02
Part-To-Part 0.134769 0.694061 98.55 138.81
Total Variation 0.136753 0.704276 100.00 140.86
Number of Distinct Categories = 8
GR&R Study For Lamination Height CaliperGR&R Study For Lamination Height Caliper
Good
Gage
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 17
Misc:
Tolerance:
Reported by:
Date of study:
Gage name:
0
0.06
0.05
0.04
0.03
0.02
BA
Xbar Chart by Operator
SampleMean
Mean=0.04025
UCL=0.04307
LCL=0.03743
0
0.010
0.005
0.000
BA
R Chart by Operator
SampleRange
R=0.0015
UCL=0.004901
LCL=0
10987654321
0.06
0.05
0.04
0.03
0.02
Serial
Operator
Operator*Serial Interaction
Average
A
B
BA
0.06
0.05
0.04
0.03
0.02
Operator
By Operator
10987654321
0.06
0.05
0.04
0.03
0.02
Serial
By Serial
%Contribution
%StudyVar
%Tolerance
Part-to-PartReprodRepeatGage R&R
100
50
0
Components of Variation
Percent
Gage R&R (ANOVA) for Output Bracket Hub (T.I.R) Two-Way ANOVA Table With Interaction
Source DF SS MS F P
Serial 9 0.0075725 0.0008414 43.8986 0.00000
Operator 1 0.0000025 0.0000025 0.1304 0.72631
Operator*Serial 9 0.0001725 0.0000192 2.5556 0.03864
Repeatability 20 0.0001500 0.0000075
Total 39 0.0078975
Output Bracket Hub T.I.R. Gage R&R
%Contribution
Source VarComp (of VarComp)
Total Gage R&R 1.33E-05 6.09
Repeatability 7.50E-06 3.43
Reproducibility 5.83E-06 2.66
Operator 0.00E+00 0.00
Operator*Serial 5.83E-06 2.66
Part-To-Part 2.06E-04 93.91
Total Variation 2.19E-04 100.00
StdDev Study Var %Study Var %Tolerance
Source (SD) (5.15*SD) (%SV) (SV/Toler)
Total Gage R&R 3.65E-03 1.88E-02 24.68 18.81
Repeatability 2.74E-03 1.41E-02 18.51 14.10
Reproducibility 2.42E-03 1.24E-02 16.32 12.44
Operator 0.00E+00 0.00E+00 0.00 0.00
Operator*Serial 2.42E-03 1.24E-02 16.32 12.44
Part-To-Part 1.43E-02 7.38E-02 96.91 73.84
Total Variation 1.48E-02 7.62E-02 100.00 76.19
Number of Distinct Categories = 6
GR&R Study For Output Hub T.I.R. IndicatorGR&R Study For Output Hub T.I.R. Indicator
Good
Gage
Measure PhaseMeasure Phase
Excellence in motors since 1959 Page : 18
Measurement Device : BK 4188 Sound Meter
w/ Microphone
Acoustic Room : 40 dBA Environment Chamber
Installation Distance : 26.5 cm Above the Part
PC Software : B&K Sound Quality 7698 System
Sound Frequency : 1000 Hz
2000 Hz
Measure PhaseMeasure Phase
Sound Level MeasurementSound Level Measurement
Measured Sound Level (dBA) Will Be Transformed Into
Discrete Data In the Specified Frequency, Which Will Be
Added Up Together as the Sound Quality Index.
Excellence in motors since 1959 Page : 19
Speed 10
Frequency
949290888684
3.0
2.5
2.0
1.5
1.0
0.5
0.0
Mean 88.89
StDev2.793
N 16
Histogram (with Normal Curve) of Speed 10
Speed10
95.0
92.5
90.0
87.5
85.0
Boxplot of Speed 10
Descriptive Statistics: dba-10
Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
dba-10 32 0 88.856 0.535 3.024 84.800 86.100 88.400 90.800
Variable Maximum
dba-10 95.000
Measure PhaseMeasure Phase
Sound Level Data at High Speed 10Sound Level Data at High Speed 10
No Customer Spec.
Available Now!
Excellence in motors since 1959 Page : 20
Measure PhaseMeasure Phase
b. Abnormal Noise Defect From Shop floor Per Subjective Standardb. Abnormal Noise Defect From Shop floor Per Subjective Standard
Sound Quality Index Will be Referred If There Was Any ConfusionSound Quality Index Will be Referred If There Was Any Confusion
DPMO Z-Score Cpk Sigma Level
14000 2.20 0.73 3.7
Excellence in motors since 1959 Page : 21
QFD - Noise (1)QFD - Noise (1)
StackingPosition
LaminationHeight
FittingDimension
Angle
WireTension
SpindleSpeed
TricklingAmount
TricklingTime
SurfaceFinishing
Roundness
T.I.R.
BalancingInput
CuttingDepth
CuttingLength
InputT.I.R.
Laminationheight
SurfaceLeveling
ScrewID
WireTension
SpindleSpeed
CoilHeight
Pressure
Push-offForce
Concentricity
Pressure
Push-offForce
Concentricity
Shaft Diameter, Crowning value, T.I.R.,Knurling Height, Roundness5
Magnet wire Diameter, Coating 2
Commutator Roundness, Bar-to-bar, Surface finishing 3
Cooling fan ID, Roundness 2
Lamination Height, Surface Finishing, Resistance 3
Magnet wire Diameter, Tension Strength, Coating 2
Lamination Height, Surface Finishing, Resistance
4
Carbon brush Hardness, Resistance 2
Ball bearing -input ID, OD, Roundness, Oil Content 3
Ball bearing - output ID, OD, Roundness, Oil Content 3
Bracket-input ID, OD, Surface Finishing, Roundness, Eccentric, Height5
Bracket -output ID, OD, Surface Finishing, Roundness, Eccentric, Height5
57.8+0.2/-0mm
34.5+0/-0.5mm
24.9+/-0.1mm
7.5+/-0.2deg
1000~1200g
4.6~5.6mleach
95-96/110-111sec
3.5-5.5um
3.0ummax
0.01mmMax
1.8mmMax
20mmMax
0.01mmMax
35.0+/-0.25mm
0.20Max
3000g
17.5mmMax
700-3000
20kgMin
60kgMin
72 27 72 72 18 18 36 36 27 27 42 9 27 27 24 36 36 36 12 12 27 12 141 12 141
Matrix
Strong
Medium
Weak
Weight
9
3
1
Process Capability
How Importance
Armature Ass'y
CoilWinding
Stator Ass'y
StatorWelding
Part Characteristic Values
Process Parameters (Hows)
Bracket Ass'y
Importance
Stacking
CommutatorFitting
CoilWinding
Trickling
Comm.Turning
ArmatureBalancing
InputBracket
FittingBearing
Process Parameter Values
RotorStatorBracket
Part Characteristics (Whats)
OnputBracket
FittingBearing
1st Priority -
Bracket Ass’y
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 22
QualityControl
Maintenance
MistakeProofing
Training
Stacking Position 2 2 2 2 1 16
Lamination Height 3 1 1 2 1 6
Fitting Dimension 3 3 2 3 2 108
Angle 3 2 1 3 2 36
Wire Tension 4 3 3 2 2 144
Spindle Speed 2 2 2 1 1 8
Trickling Amount 4 3 3 5 2 360
Trickling Time 4 1 2 4 2 64
Surface Finishing 3 1 1 3 2 18
Roundness 3 3 2 3 2 108
T.I.R. 3 2 1 3 2 36
Balancing Input 5 1 1 4 1 20
Cutting Depth 4 1 1 3 2 24
Cutting Length 4 1 1 3 2 24
Input T.I.R. 4 3 2 3 1 72
Lamination height 3 2 2 2 1 24
Surface Leveling 3 2 1 2 1 12
Screw ID 4 3 3 3 3 324
Wire Tension 4 3 3 2 2 144
Spindle Speed 2 2 2 1 1 8
Coil Height 3 2 2 2 1 24
Pressure 3 2 1 2 1 12
Push-off Force 3 2 1 2 1 12
Concentricity 4 3 2 3 3 216
Pressure 3 2 1 2 1 12
Push-off Force 3 2 1 2 1 12
Concentricity 4 3 2 3 3 216
Fitting Armature To
Output Bracket
Shaft Turning Freedom 4 3 3 3 2 216
Screw Fastening 3 2 2 3 1 36
Shaft Output T.I.R 4 3 3 3 2 216
Fitting Carbon Brush 0
Dimension 3 2 2 2 1 24
Push-off Force 3 2 2 2 1 24
FinalAss'y
Final Ass'y
Cooling Fan Fitting
ArmatureAss'y
Stacking
Commutator Fitting
Coil Winding
Trickling
Comm. Turning
Armature Balancing
StatorAss'y
Stator Welding
Coil Winding
BracketAss'y
Input Bracket
Fitting Bearing
Onput Bracket
Fitting Bearing
Remark
Planning Requirement
Severity
Difficulty
Frequency
Process Parameters
(WHAT)
Production
Requirement (HOWS)
AbilitytoDetect
TotalPoint
Process Parameter Values
Importance
ProcessCapability
QFD - Noise (2)QFD - Noise (2)
1st Priority to
Monitor Noise
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 23
Pareto Analysis Of QFD Process PlanningPareto Analysis Of QFD Process Planning
0
50
100
150
200
250
S
haftO
utputT.I.R
S
haftTurning
Freedom
C
oncentricity
(InputB
racket)
Concentricity(O
utputB
racket)
Stacking
P
osition
Fitting
D
im
ension
Angle
C
om
m
.T.I.R.
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 24
Item# Process / Product Parameter
Keyprocess Inputs
Variables
[KPIVs](X's)
KeyProcess
OutputsVariables
[KPOVs} (Y's)
Levels of
Interest (for
each input)
[Process Limit]
Specification (for
each input)
Appropriate
Test(s) /
Analysis
Is Input
Vital
(Yes/No)?
Comments
1 Armature Stacking
Gear Teeth
Crowning
Abnormal Noise
(dBA/Sound
Quality)
Positive and
Negative
>5 Multi-Vari Yes
Samples
from one
shift
2 Armature Balancing Input Balancing
Abnormal Noise
(dBA/Sound
Quality)
200 - 1200
mg.cm
500 mg.cm Multi-Vari Yes
Samples
from one
shift
3 Armature Balancing Output Balancing
Abnormal Noise
(dBA/Sound
Quality)
200 - 1200
mg.cm
500 mg.cm Multi-Vari Yes
Samples
from one
shift
4 Fitting Armature Into Bracket Bracket Shaft TIR
Abnormal Noise
(dBA/Sound
Quality)
0.010 - 0.018
mm
Nil T-Test No
Samples
from one
shift
KPIV Matrix
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 25
67.5 68.5 69.5 70.5 71.5 72.5 73.5
95% Confidence Interval for Mu
67.8 68.3 68.8 69.3
95% Confidence Interval for Median
Variable: dB
A-Squared:
P-Value:
Mean
StDev
Variance
Skewness
Kurtosis
N
Minimum
1st Quartile
Median
3rd Quartile
Maximum
67.7576
0.4020
67.7714
0.271
0.529
68.4333
0.6439
0.414667
0.436417
-1.63033
6
67.7000
67.8500
68.3000
69.1500
69.3000
69.1091
1.5794
69.2286
TIR: 0.004
Anderson-Darling Normality Test
95% Confidence Interval for Mu
95% Confidence Interval for Sigma
95% Confidence Interval for Median
Descriptive Statistics
67.5 68.5 69.5 70.5 71.5 72.5 73.5
95% Confidence Interval for Mu
67 68 69 70 71 72 73 74
95% Confidence Interval for Median
Variable: dB
A-Squared:
P-Value:
Mean
StDev
Variance
Skewness
Kurtosis
N
Minimum
1st Quartile
Median
3rd Quartile
Maximum
66.8151
1.5271
67.6000
0.405
0.206
69.9800
2.5489
6.497
0.626605
-2.47711
5
67.6000
67.9000
68.7000
72.7000
73.3000
73.1449
7.3245
73.3000
TIR: 0.006
Anderson-Darling Normality Test
95% Confidence Interval for Mu
95% Confidence Interval for Sigma
95% Confidence Interval for Median
Descriptive Statistics
67.5 68.5 69.5 70.5 71.5 72.5 73.5
95% Confidence Interval for Mu
67.5 68.5 69.5 70.5 71.5 72.5
95% Confidence Interval for Median
Variable: dB
A-Squared:
P-Value:
Mean
StDev
Variance
Skewness
Kurtosis
N
Minimum
1st Quartile
Median
3rd Quartile
Maximum
68.0654
0.9817
67.9000
0.142
0.923
70.1000
1.6386
2.685
-1.5E-01
-3.8E-01
5
67.9000
68.5500
70.3000
71.5500
72.2000
72.1346
4.7086
72.2000
TIR: 0.002
Anderson-Darling Normality Test
95% Confidence Interval for Mu
95% Confidence Interval for Sigma
95% Confidence Interval for Median
Descriptive Statistics
0 1 2 3 4 5 6 7 8 9 10
95% Confidence Intervals for Sigmas
Bartlett's Test
Test Statistic: 6.505
P-Value : 0.039
Levene's Test
Test Statistic: 1.776
P-Value : 0.208
Factor Levels
0.002
0.004
0.006
Test for Equal Variances for dB
Kruskal - Wallis Test For Shaft T.I.R. - (1)Kruskal - Wallis Test For Shaft T.I.R. - (1)
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 26
Kruskal-Wallis Test: dB versus TIR
Kruskal-Wallis Test on dB
TIR N Median Ave Rank Z
0.002 5 70.30 10.7 1.25
0.004 6 68.30 6.3 -1.41
0.006 5 68.70 8.9 0.23
Overall 16 8.5
H = 2.35 DF = 2 P = 0.310
H = 2.35 DF = 2 P = 0.308 (adjusted for ties)
P-Value: 0.889
A-Squared: 0.186
Anderson-Darling Normality Test
N: 16
StDev: 1.60834
Average: -0.0000000
3210-1-2
.999
.99
.95
.80
.50
.20
.05
.01
.001
Probability
RESI1
Normal Probability Plot
Shaft T.I.R.
is Not
KPIV
Kruskal - Wallis Test For Shaft T.I.R. - (2)Kruskal - Wallis Test For Shaft T.I.R. - (2)
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 27
2000500
2000
500
2000
500
79
78
77
76
75
74
73
72
output balancing
S1_dBA
5
-1
Multi-Vari Chart for Speed 1dBA by crowning/output/input balancing
input balancing
value
crowning
2000500
2000
500
2000
500
83.5
82.5
81.5
80.5
79.5
output balan
S5_dBA
5
-1
Multi-Vari Chart for S5_dBA by crowning/output/input balancing
input balanc
value
crowning
2000500
2000
500
2000
500
91.8
90.8
89.8
88.8
87.8
86.8
85.8
output balan
S10_dBA
5
-1
Multi-Vari Chart for S10_dBA by crowning/output/input balancing
input balanc
value
crowning
Ch/Input/Output
are KPIVs
for dBA
Multi-Vari Study for KPIV - dBAMulti-Vari Study for KPIV - dBA
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 28
2000500
2000
500
2000
500
41
36
31
output balancing
S1_loud
5
-1
Multi-Vari Chart for S1_loud by crowning/output/input balancing
input balancing
value
crowning
2000500
2000
500
2000
500
60
55
50
output balancing
S5_loud
5
-1
Multi-Vari Chart for S5_loud by crowning/output/input balancing
input balancing
value
crowning
2000500
2000
500
2000
500
90
80
70
output balancing
S10_loud
5
-1
Multi-Vari Chart for S10_loud by crowning/output/input balancing
input balancing
value
crowning
Ch/Input/Output
are KPIVs
for Loudness
Multi-Vari Study for KPIV - Sound LoudnessMulti-Vari Study for KPIV - Sound Loudness
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 29
Two-Sample T-Test and CI: S1_dBA, Shaft TIR
Two-sample T for S1_dBA
Shaft TI N Mean StDev SE Mean
a 8 75.34 2.63 0.93
b 8 75.86 3.81 1.3
Difference = mu (a) - mu (b)
Estimate for difference: -0.52
95% CI for difference: (-4.03, 2.98)
T-Test of difference = 0 (vs not =): T-Value = -0.32
P-Value = 0.753 DF = 14
Both use Pooled StDev = 3.27
1 2 3 4 5 6 7 8 9
95% Confidence Intervals for Sigmas
b
a
70 75 80
Boxplots of Raw Data
S1_dBA
F-Test
Test Statistic: 0.478
P-Value : 0.351
Levene's Test
Test Statistic: 1.507
P-Value : 0.240
Factor Levels
a
b
Test for Equal Variances for S1_dBA
a b
70
75
80
Shaft TIR
S1_dBA
Boxplots of S1_dBA by Shaft TI
(means are indicated by solid circles)
70 72 74 76 78 80 82
95% Confidence Interval for Mu
73 74 75 76 77 78
95% Confidence Interval for Median
Variable: S1_dBA
A-Squared:
P-Value:
Mean
StDev
Variance
Skewness
Kurtosis
N
Minimum
1st Quartile
Median
3rd Quartile
Maximum
73.1374
1.7400
73.5455
0.358
0.355
75.3375
2.6316
6.92554
0.471267
0.568964
8
71.3000
73.9000
74.9500
77.4000
79.9000
77.5376
5.3561
78.2158
Shaft TIR: a
Anderson-Darling Normality Test
95% Confidence Interval for Mu
95% Confidence Interval for Sigma
95% Confidence Interval for Median
Descriptive Statistics
a=0.010
b=0.018
Shaft T.I.R.
is Not
KPIV
Two Sample T-test For Shaft T.I.R.Two Sample T-test For Shaft T.I.R.
Analyze PhaseAnalyze Phase
Excellence in motors since 1959 Page : 30
Improve PhaseImprove Phase
Problem Statement:Problem Statement:
To optimize assembly process setting with minimum sound level (dBA) andTo optimize assembly process setting with minimum sound level (dBA) and
sound quality indexsound quality index
Objective:Objective:
2233
full factorial design to optimize the sound level and sound quality indexfull factorial design to optimize the sound level and sound quality index
Study Factor:Study Factor:
A Shaft teeth crowning value (Lo: -1, Hi: +5)A Shaft teeth crowning value (Lo: -1, Hi: +5)
B Armature input balancing (Lo: 500, Hi: 2000)B Armature input balancing (Lo: 500, Hi: 2000)
C Motor output balancing (Lo: 500, Hi: 2000)C Motor output balancing (Lo: 500, Hi: 2000)
Response Interest:Response Interest:
1) Sound level (dBA)1) Sound level (dBA)
2) Sound Quality Index2) Sound Quality Index
Excellence in motors since 1959 Page : 31
Scorpion Motor Speed Range:Scorpion Motor Speed Range:
a.a. Speed 10 - High SpeedSpeed 10 - High Speed (Sound Level & Sound Quality)(Sound Level & Sound Quality)
b.b. Speed 5 - Medium SpeedSpeed 5 - Medium Speed (Sound Quality Only)(Sound Quality Only)
c.c. Speed 1 - Low SpeedSpeed 1 - Low Speed (Sound Quality Only)(Sound Quality Only)
All the three speeds are interested in this DOE study,All the three speeds are interested in this DOE study,
Which means the process optimization should resolveWhich means the process optimization should resolve
all three speeds abnormal noise issue.all three speeds abnormal noise issue.
Improve PhaseImprove Phase
Excellence in motors since 1959 Page : 32
Improve PhaseImprove Phase
cr owni ng
val ue
i nput
bal anci ng
out put
bal anci ng
Speed 10
- 1 500 500 94. 6
5 500 500 88. 3
5 500 2000 93. 8
- 1 2000 500 87
- 1 500 500 88. 6
5 2000 500 85. 9
5 2000 2000 85. 3
5 2000 2000 86. 9
- 1 2000 2000 86. 7
- 1 500 2000 88
- 1 2000 2000 88. 8
- 1 2000 500 92
5 2000 500 85. 9
5 500 2000 89. 2
5 500 500 90. 2
- 1 500 2000 91
cr owni ng
val ue
i nput
bal anci ng
out put
bal anci ng
Speed 1 Speed 5 Speed 10
- 1 500 500 40. 5 51 82. 1
5 500 500 30. 9 50. 8 70. 2
5 500 2000 41. 6 68. 3 97. 9
- 1 2000 500 34. 9 51. 8 71. 7
- 1 500 500 31. 3 51. 1 71
5 2000 500 29. 4 48. 8 63. 7
5 2000 2000 29. 9 50. 6 68. 2
5 2000 2000 32. 5 49. 7 68. 8
- 1 2000 2000 44. 3 57. 9 67. 9
- 1 500 2000 43. 6 56. 2 68. 9
- 1 2000 2000 36. 3 55 67
- 1 2000 500 34. 2 49. 1 75. 9
5 2000 500 32. 3 44. 7 65. 4
5 500 2000 36 51. 6 79. 7
5 500 500 36. 9 56. 6 82. 6
- 1 500 2000 38. 8 57. 1 85. 5
Sound Level (dBA)Sound Level (dBA) Sound QualitySound Quality
Excellence in motors since 1959 Page : 33
Speed 10Speed 10 – High Speed Sound Level (dBA)– High Speed Sound Level (dBA)
Improve PhaseImprove Phase
Excellence in motors since 1959 Page : 34
0.0 0.5 1.0 1.5 2.0 2.5
C
BC
ABC
AB
A
AC
B
Pareto Chart of the Standardized Effects
(response is Speed 10, Alpha = .05)
A: crowning
B: input ba
C: output b
-2 -1 0 1
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
Standardized Effect
NormalScore
B
Normal Probability Plot of the Standardized Effects
(response is Speed 10, Alpha = .05)
A: crowning
B: input ba
C: output b
Improve PhaseImprove Phase
DOE Study On Sound Level dBADOE Study On Sound Level dBA
Excellence in motors since 1959 Page : 35
crowning val input balanc output balan
-1 5 500
2000
500
2000
87.4
88.2
89.0
89.8
90.6
Speed10
Main Effects Plot Speed 10 dBA Means
500 2000
500 2000
86
88
90
86
88
90crowning val
input balanc
output balan
-1
5
500
2000
Interaction Plot For Speed 10 dBA
Improve PhaseImprove Phase
DOE Study On Sound Level dBADOE Study On Sound Level dBA
Excellence in motors since 1959 Page : 36
543210-1-2-3-4-5
3
2
1
0
Residual
Frequency
Histogram of Residuals
151050
8
6
4
2
0
-2
-4
-6
-8
Observation Number
Residual
I Chart of Residuals
Mean=-3.6E-15
UCL=6.755
LCL=-6.755
9190898887
5
0
-5
Fit
Residual
Residuals vs. Fits
210-1-2
5
0
-5
Normal Plot of Residuals
Normal Score
Residual
Residual Plot For dBA Mean
Improve PhaseImprove Phase
DOE Study On Sound Level dBADOE Study On Sound Level dBA
Excellence in motors since 1959 Page : 37
Hi
Lo1.0000
D
New
Cur
d = 1.0000
Minimum
Speed 10
y = 85.90
500.0
2000.0
500.0
2000.0
-1.0
5.0
input ba output bcrowning
[5.0000] [2000.0] [500.0]
Improve PhaseImprove Phase
Sound Level (dBA) Control OptimizationSound Level (dBA) Control Optimization
Input Balance
Plays Dominant
to Reduce dBA
Excellence in motors since 1959 Page : 38
86.10
85.90
91.50
89.25
87.75
89.50
89.50
91.60
output balan
input balanc
crowning val
5-1
2000
500
2000
500
Cube Plot for Speed 10 dBA
Improve PhaseImprove Phase
The optimal set-up for a minimum sound level (dBA) should be:
Crowning value - 5, input balancing - 2000, output balancing - 500
Excellence in motors since 1959 Page : 39
Speed 1– Low Speed Sound QualitySpeed 1– Low Speed Sound Quality
Excellence in motors since 1959 Page : 40
210
A
C
B
AB
AC
ABC
BC
Pareto Chart of the Standardized Effects
(response is Speed 1, Alpha = .10)
A: crowning
B: input ba
C: output b
210-1-2
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
Standardized Effect
NormalScore
A
C
Normal Probability Plot of the Standardized Effects
(response is Speed 1, Alpha = .10)
A: crowning
B: input ba
C: output b
Improve PhaseImprove Phase
DOE Study On Sound Quality - Speed 1DOE Study On Sound Quality - Speed 1
Excellence in motors since 1959 Page : 41
output balaninput balanccrowning val
2000
500
2000
500
5-1
38
37
36
35
34
Speed1
Main Effects Plot for Speed1 Sound Quality
2000
500
2000
500
41
36
31
41
36
31
crowning val
input balanc
output balan
2000
500
5
-1
Interaction Plot for Speed1 Sound Quality
Improve PhaseImprove Phase
DOE Study On Sound Quality - Speed 1DOE Study On Sound Quality - Speed 1
Excellence in motors since 1959 Page : 42
-6 -4 -2 0 2 4 6
0
1
2
3
4
Residual
Frequency
Histogram of Residuals
0 5 10 15
-10
0
10
Observation Number
Residual
I Chart of Residuals
Mean=-3.8E-15
UCL=11.12
LCL=-11.12
31 32 33 34 35 36 37 38 39 40
-5
0
5
Fit
Residual
Residuals vs. Fits
-2 -1 0 1 2
-5
0
5
Normal Plot of Residuals
Normal Score
Residual
Residual Plot For Sound Quality Mean
Improve PhaseImprove Phase
Excellence in motors since 1959 Page : 43
78.95
76.30
72.30
72.05
75.00
78.20
75.05
76.95
-1 5
crowning val
input balanc
output balan
500
2000
500
2000
Cube Plot (data means) for Speed 1
Improve PhaseImprove Phase
The optimal set-up for a minimum sound quality should be:
Crowning value - 5, input balancing - 2000, output balancing - 2000
Excellence in motors since 1959 Page : 44
Speed 5– Medium Speed Sound QualitySpeed 5– Medium Speed Sound Quality
Improve PhaseImprove Phase
Excellence in motors since 1959 Page : 45
210
C
B
AB
A
ABC
BC
AC
Pareto Chart of the Standardized Effects
(response is Speed 5, Alpha = .10)
A: crowning
B: input ba
C: output b
2.52.01.51.00.50.0-0.5-1.0-1.5-2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
Standardized Effect
NormalScore
B
C
Normal Probability Plot of the Standardized Effects
(response is Speed 5, Alpha = .10)
A: crowning
B: input ba
C: output b
Improve PhaseImprove Phase
DOE Study On Sound Quality - Speed 5DOE Study On Sound Quality - Speed 5
Excellence in motors since 1959 Page : 46
output balaninput balanccrowning val
2000
500
2000
500
5-1
55.8
54.6
53.4
52.2
51.0
Speed5
Main Effects Plot for Speed 5 Sound Quality Mean 2000
500
2000
500
58
53
48
58
53
48
crowning val
input balanc
output balan
2000
500
5
-1
Interaction Plot for Speed5 Sound Quality Mean
Improve PhaseImprove Phase
DOE Study On Sound Quality - Speed 5DOE Study On Sound Quality - Speed 5
Excellence in motors since 1959 Page : 47
2000
500
2000
500
5-1
output balancing
input balancing
crowning value
68.50
88.8077.20
67.45
64.55
76.4076.55
73.80
Cube Plot (data means) for Speed 10
Improve PhaseImprove Phase
The optimal set-up for a minimum sound quality should be:
Crowning value - 5, input balancing - 2000, output balancing - 500
Excellence in motors since 1959 Page : 48
31.20
30.85
38.80
33.90
40.30
34.55
41.20
35.90
output balan
input balanc
crowning val
5-1
2000
500
2000
500
Cube Plot for Speed1 Sound Quality Mean
50.15
46.75
59.95
53.70
56.45
50.45
56.65
51.05
output balan
input balanc
crowning val
5-1
2000
500
2000
500
Cube Plot for Speed5 Sound Quality Mean
68.50
64.55
88.80
76.40
67.45
73.80
77.20
76.55
output balan
input balanc
crowning val
5-1
2000
500
2000
500
Cube Plot for Speed10 Sound Quality Index
Improve PhaseImprove Phase
The Optimal Process Set-up In Each Speed is :
Crowning value - 5,
Input balancing - 2000,
Output balancing - 500
Excellence in motors since 1959 Page : 49
70.5
73.0
75.5
78.0
80.5
200015001000500
2000
1500
1000
500
input balancing
outputbalancing
Contour Plot of Speed 10
Hold values: crowning:-1.0
52.5
55.0
57.5
200015001000500
2000
1500
1000
500
input balancing
outputbalancing
Contour Plot of Speed 5
34
36
38
40
543210-1
2000
1500
1000
500
crowning value
outputbalancing
Contour Plot of Speed 1
Improve PhaseImprove Phase
Excellence in motors since 1959 Page : 50
Improve PhaseImprove Phase
KPIV Set Up Optimization From DOE StudyKPIV Set Up Optimization From DOE Study
Key Process Input Variables
(KPIV - Xs)
Sound
Level
( dBA)
Speed
10
Speed
1
Speed
5
Speed
10
Shaft Teeth Crown 5 5 5 5
Armature Input Balance 2000 2000 2000 2000
Motor Output Balance 500 2000 500 500
Sound Qual i t y
Out put ( Y)
Crowning value – 5
Input balancing – 2000
Output balancing - 500
Excellence in motors since 1959 Page : 51
Improve PhaseImprove Phase
a. Restricted Noise dBA Spec.: USL<a. Restricted Noise dBA Spec.: USL<9090 dBAdBA, LSL>40 dBA, LSL>40 dBA
9184777063564942
LSL USL
Process Data
Sample N 16
StDev(Within) 1.47754
StDev(Overall) 1.74767
LSL 40
Target *
USL 92
Sample Mean 85.5312
Potential (Within) Capability
CCpk 5.87
Overall Capability
Pp 4.96
PPL 8.68
PPU 1.23
Ppk
Cp
1.23
Cpm *
5.87
CPL 10.27
CPU 1.46
Cpk 1.46
Observed Performance
PPM < LSL 0.00
PPM > USL 0.00
PPM Total 0.00
Exp. Within Performance
PPM < LSL 0.00
PPM > USL 5.99
PPM Total 5.99
Exp. Overall Performance
PPM < LSL 0.00
PPM > USL 107.23
PPM Total 107.23
Within
Overall
Process Capability of Speed 10
Excellence in motors since 1959 Page : 52
Control PhaseControl Phase
BeforeBefore AfterAfter
Assembly Line Scrap – Abnormal NoiseAssembly Line Scrap – Abnormal Noise
Excellence in motors since 1959 Page : 53
Control PhaseControl Phase
b. Abnormal Noise Defect From Shopfloorb. Abnormal Noise Defect From Shopfloor
DPMO Z-Score Cpk Sigma Level
4000 2.65 0.88 4.15
Excellence in motors since 1959 Page : 54
Control PhaseControl Phase
T.I.R. Meter ImprovementT.I.R. Meter Improvement
BeforeAfter
BK Sound Meter DeviceBK Sound Meter Device
HardwareSoftware
Excellence in motors since 1959 Page : 55
Control PhaseControl Phase
Excellence in motors since 1959 Page : 56
S a m ple
SampleCount
60544842363024181261
20
15
10
5
0
_ _
NP = 4. 47
UCL = 10.79
LCL= 0
Befor e After
1
11
1
N P C h a r t o f D e f e c t _ 1 b y N a t u r e
T ests perfor m ed w ith unequal sa m ple sizes
Assembly Line SPC – Abnormal NoiseAssembly Line SPC – Abnormal Noise
Control PhaseControl Phase
Excellence in motors since 1959 Page : 57
Control PhaseControl Phase
JE Qual i t y Document Revi si on Ti t l e Responsi bl e Due Dat e St at us
DBDQC-CL-HC010-14 Rev.4
WPUN88C0127A Bracket Comm-
Quality Control Checklist
Simon Tan Nov-03 Done
DBDQC-CL-HC010-12 Rev.3
WPUN88C0126C Bracket Comm-
Quality Control Checklist
Simon Tan Dec-03 Done
9708197 Rev.03 Teeth Helica Gear Drawing Peter Lai Dec-03 Done
DBDQC-HA-QC010-01 Rev.02
Scorpion Motor R35000 (U9835)
PFMEA
Peter Zhou Mar-04 Done
DBEBC-PC-R101006 Rev.03 WPUN98B02005D W.I. Ping Zhao Jan-03 Done
DBEBC-EN-R350001 Rev.01 Noise Measurement Standard JN Ta Jan-03 Done
Corrective Activities ImplementationCorrective Activities Implementation
Excellence in motors since 1959 Page : 58
Process Trend Chart - AchievementProcess Trend Chart - Achievement
20000
15000
8000
5500 5000 4600
0
5000
10000
15000
20000
25000
30000
Nov Jan Feb Mar Apr May June July
MeasureMeasure AnalyzeAnalyze ImproveImprove ControlControl RealizationRealization
BASELINEBASELINE
GOALGOAL
Control PhaseControl Phase
Excellence in motors since 1959 Page : 59
JEHA Customer Situation Settlement
13
13
0
5
10
15
20
25
30
35
40
45
50
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#CS
0.0
20.0
40.0
60.0
80.0
100.0
120.0
SCT/DCT
Sev erity 2-X Sev erity 1
# of CS cases Ent. DCT
SCT DCT Entitlement
JEHA Customer Situation Settlement
21
19
0
5
10
15
20
25
30
35
40
45
50
w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16
#CS
0.0
20.0
40.0
60.0
80.0
100.0
120.0
SCT/DCT
Sev erity 2-X Sev erity 1
# of CS cases Ent. DCT
SCT DCT Entitlement
BeforeBefore AfterAfter
Control PhaseControl Phase
Customer Field Return – High NoiseCustomer Field Return – High Noise

More Related Content

Similar to Scorpion Motor Noise - JE BB (part)-1

Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vn
Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vnMitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vn
Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vnDien Ha The
 
Iai rcp4 pcon-catalog
Iai rcp4 pcon-catalogIai rcp4 pcon-catalog
Iai rcp4 pcon-catalogElectromate
 
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; sealMitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; sealDien Ha The
 
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...Dien Ha The
 
Greenbelt Six Sigma Final Outline
Greenbelt Six Sigma Final OutlineGreenbelt Six Sigma Final Outline
Greenbelt Six Sigma Final Outlineguest098cf2fe
 
Example-BB Electronic
Example-BB ElectronicExample-BB Electronic
Example-BB ElectronicPeter Zhou
 
Syed salman abbas green belt nov15
Syed salman abbas green belt nov15Syed salman abbas green belt nov15
Syed salman abbas green belt nov15Edward Jones
 
Harmonic drive hpn gearhead brochure
Harmonic drive hpn gearhead brochureHarmonic drive hpn gearhead brochure
Harmonic drive hpn gearhead brochureElectromate
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manualfhhjsjekmdme
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manualfjsjekkdmnem
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manualfhhjsjekmdme
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manualdidkkmmdm
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manualfjsjekkdmnem
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manualdidkkmmdm
 
Sadguru Autocomponents Pvt.Ltd.
Sadguru Autocomponents Pvt.Ltd.Sadguru Autocomponents Pvt.Ltd.
Sadguru Autocomponents Pvt.Ltd.Maxpromotion
 
Microprocessor based autonomous control system
Microprocessor based autonomous control systemMicroprocessor based autonomous control system
Microprocessor based autonomous control systemDr. Rajesh P Barnwal
 

Similar to Scorpion Motor Noise - JE BB (part)-1 (20)

A1000
A1000A1000
A1000
 
Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vn
Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vnMitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vn
Mitsubishi ac servos melservo j4 solutions film slitting machine-dienhathe.vn
 
Iai rcp4 pcon-catalog
Iai rcp4 pcon-catalogIai rcp4 pcon-catalog
Iai rcp4 pcon-catalog
 
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; sealMitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal
 
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...
Mitsubishi ac servos melservo j4 solutions vertical form, fill &amp; seal-die...
 
Six Sigma Final Outline
Six Sigma Final OutlineSix Sigma Final Outline
Six Sigma Final Outline
 
Greenbelt Six Sigma Final Outline
Greenbelt Six Sigma Final OutlineGreenbelt Six Sigma Final Outline
Greenbelt Six Sigma Final Outline
 
Cap Torque Tester by ACMAS Technologies Pvt Ltd.
Cap Torque Tester by ACMAS Technologies Pvt Ltd.Cap Torque Tester by ACMAS Technologies Pvt Ltd.
Cap Torque Tester by ACMAS Technologies Pvt Ltd.
 
Example-BB Electronic
Example-BB ElectronicExample-BB Electronic
Example-BB Electronic
 
Syed salman abbas green belt nov15
Syed salman abbas green belt nov15Syed salman abbas green belt nov15
Syed salman abbas green belt nov15
 
Harmonic drive hpn gearhead brochure
Harmonic drive hpn gearhead brochureHarmonic drive hpn gearhead brochure
Harmonic drive hpn gearhead brochure
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manual
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manual
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manual
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manual
 
Clark pwc 30 service repair manual
Clark pwc 30 service repair manualClark pwc 30 service repair manual
Clark pwc 30 service repair manual
 
Clark pwt 7 service repair manual
Clark pwt 7 service repair manualClark pwt 7 service repair manual
Clark pwt 7 service repair manual
 
Sadguru Autocomponents Pvt.Ltd.
Sadguru Autocomponents Pvt.Ltd.Sadguru Autocomponents Pvt.Ltd.
Sadguru Autocomponents Pvt.Ltd.
 
D2_MTV2012-EnergyEffPrf-Mattwandel
D2_MTV2012-EnergyEffPrf-MattwandelD2_MTV2012-EnergyEffPrf-Mattwandel
D2_MTV2012-EnergyEffPrf-Mattwandel
 
Microprocessor based autonomous control system
Microprocessor based autonomous control systemMicroprocessor based autonomous control system
Microprocessor based autonomous control system
 

More from Peter Zhou

BMW Pottfolio Dashboard
BMW Pottfolio DashboardBMW Pottfolio Dashboard
BMW Pottfolio DashboardPeter Zhou
 
Example-Project Brief
Example-Project BriefExample-Project Brief
Example-Project BriefPeter Zhou
 
Example-Demand Management
Example-Demand ManagementExample-Demand Management
Example-Demand ManagementPeter Zhou
 
Example-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingExample-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingPeter Zhou
 
Quality News Letter -Feb
Quality News Letter -FebQuality News Letter -Feb
Quality News Letter -FebPeter Zhou
 
Reliability GB Project
Reliability GB ProjectReliability GB Project
Reliability GB ProjectPeter Zhou
 
Vestas QPEX Plan
Vestas QPEX PlanVestas QPEX Plan
Vestas QPEX PlanPeter Zhou
 
Example-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTExample-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTPeter Zhou
 
Example-Line Speed Demonstration 08KK
Example-Line Speed Demonstration 08KKExample-Line Speed Demonstration 08KK
Example-Line Speed Demonstration 08KKPeter Zhou
 
8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall CrackPeter Zhou
 
Example -BB Powertrain
Example -BB PowertrainExample -BB Powertrain
Example -BB PowertrainPeter Zhou
 
QPEX Introduction
QPEX IntroductionQPEX Introduction
QPEX IntroductionPeter Zhou
 
Regional Office Presentation_China
Regional Office Presentation_ChinaRegional Office Presentation_China
Regional Office Presentation_ChinaPeter Zhou
 
SF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesSF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesPeter Zhou
 
DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF  DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF Peter Zhou
 

More from Peter Zhou (17)

BMW Pottfolio Dashboard
BMW Pottfolio DashboardBMW Pottfolio Dashboard
BMW Pottfolio Dashboard
 
Example-Project Brief
Example-Project BriefExample-Project Brief
Example-Project Brief
 
Example-Demand Management
Example-Demand ManagementExample-Demand Management
Example-Demand Management
 
Example-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingExample-Business Project Sponsor Meeting
Example-Business Project Sponsor Meeting
 
Quality News Letter -Feb
Quality News Letter -FebQuality News Letter -Feb
Quality News Letter -Feb
 
COQ-Vestas
COQ-VestasCOQ-Vestas
COQ-Vestas
 
Reliability GB Project
Reliability GB ProjectReliability GB Project
Reliability GB Project
 
Vestas QPEX Plan
Vestas QPEX PlanVestas QPEX Plan
Vestas QPEX Plan
 
Certification
CertificationCertification
Certification
 
Example-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTExample-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORT
 
Example-Line Speed Demonstration 08KK
Example-Line Speed Demonstration 08KKExample-Line Speed Demonstration 08KK
Example-Line Speed Demonstration 08KK
 
8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack
 
Example -BB Powertrain
Example -BB PowertrainExample -BB Powertrain
Example -BB Powertrain
 
QPEX Introduction
QPEX IntroductionQPEX Introduction
QPEX Introduction
 
Regional Office Presentation_China
Regional Office Presentation_ChinaRegional Office Presentation_China
Regional Office Presentation_China
 
SF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesSF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and Responsibilities
 
DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF  DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF
 

Scorpion Motor Noise - JE BB (part)-1

  • 1. Excellence in motors since 1959 Page : 1 Project Title : Automotive Motor Noise Prepared By: Peter Zhou
  • 2. Excellence in motors since 1959 Page : 2 Define PhaseDefine Phase Team Charter Project Leader : Peter Zhou Name Functional Area Reporting to 1. Paul Tsang HA Q&R xxxx 2. CL Chiang C&S Shaft xxxx 3. JN Ta Corp. Engg xxxx 4. Howard IP Corp. Engg xxxx 5. Peter Lai HA Engg xxxx 6. LapLeong Ma HA Q&R xxxx 7. Pierre Wong JENA xxxx
  • 3. Excellence in motors since 1959 Page : 3 Define PhaseDefine Phase Problem Statement : End customer from N.A. complained about NVH issue (i.e. abnormal noise) by shaft gear mating when installed inside the pump unit. All inventory in N.A. has been rejected for sorting in China. For this brand new designed pilot product there was no objective noise measurement standard developed at both sides for grinding noise inspection at certain sensitive frequency (e.g. 1K and 2K Hz) Goal/Objective Statement : To reduce the current grinding noise defect rate from current 20000 PPM to 5000 PPM with well established shop floor outgoing inspection standard Projected Business Benefits : Increased market share with further business business expansion; Significant savings on both customer field returned/sorting and shop floor process scrap; Industry NVH application standard development, etc
  • 4. Excellence in motors since 1959 Page : 4 Define PhaseDefine Phase Defect DefinitionDefect Definition Customer Complained Two Typical Defects From Field Application - Noise Level Too Loud from Specific High Speed Range (i.e. Speed 10) - Abnormal Grinding Noise From Specified Frequency Bands Defined as Human Being Comfortable Zone (i.e. 1 KHz and 2 KHz ). A New Product Characteristic Has Been Developed As “ Sound Quality” For Measurement Before the customer complaints there were no specific technical spec. available. All field rejection was based on customer subjective judgement.
  • 5. Excellence in motors since 1959 Page : 5 Define PhaseDefine Phase Defect Graphic Demonstration By Sound MeasurementDefect Graphic Demonstration By Sound Measurement
  • 6. Excellence in motors since 1959 Page : 6 Practical Problem Statement: Customer CTQ (Y): Sound Quality of Gear Mating Measurable y’s: Noise dBA Level and Sound Quality Index Continuous or Attribute y? Continuous Unit: dBA Sound Quality Defect: 20000 PPM Customer Specification: To Be Developed By the Team Define PhaseDefine Phase
  • 7. Excellence in motors since 1959 Page : 7 Define Phase Process Trend Chart - BaselineProcess Trend Chart - Baseline 20000 0 5000 10000 15000 20000 25000 30000 Nov Jan Mar Apr May June July MeasureMeasure AnalyzeAnalyze ImproveImprove ControlControl RealizationRealization BASELINEBASELINE GOALGOAL
  • 8. Excellence in motors since 1959 Page : 8 Rating of Importance to Customer 7 9 8 9 9 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MotorTotal Length MotorShaftT.I.R. Input/Output Balancing MotorGrinding Noise MotorVibration Ass'yMotorShaft Concentricity Total Process Step Process Input 1 Lamination Height 9 0 0 0 0 0 63 2 Shaft Burrs 0 0 0 9 0 0 81 3 Shaft Teeth T.I.R. 0 0 7 3 0 90 4 Shaft Teeth Crowning Value 0 0 0 9 0 0 81 5 Shaft T.I.R. 0 3 3 3 7 127 6 Input Bracket Concentricity 0 0 0 0 1 7 58 7 Output Bracket Concentricity 0 0 0 0 1 7 58 8 Input Bearing Concentricity 0 0 0 0 1 5 44 9 Output Bearing Concentricity 0 0 0 0 1 5 44 10 Product Balancing Spec 0 0 9 0 1 0 81 11 Lam. Screw Hole Concentricity 0 0 0 0 0 9 63 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 0 Total 63 0 96 252 99 280 0 0 0 0 0 0 0 0 0 Lower Spec Target Upper Spec Cause and Effect Matrix This table provides the initial input to the FMEA. When each of the output variables (requirements) are not correct, that represents potential "EFFECTS". When each input variable is not correct, that represents "Failure Modes". Measure PhaseMeasure Phase
  • 9. Excellence in motors since 1959 Page : 9 Sub-Assembly ComponentsSub-Assembly Components Process Capability MeasurementProcess Capability Measurement Measure PhaseMeasure Phase
  • 10. Excellence in motors since 1959 Page : 10 Customer Requirement (Output Variable) Measurement Technique %R&R or P/T Ratio Upper Spec Limit Target Lower Spec Limit Cp Cpk Sample Size Date Actions Shaft Crowning Shaft Teeth Mahr Mchine 77% 7.5 5 0 * -1.34 150 Nov-03 Need to Train Operator for Correct Measurement Method Shaft T.I.R. T.I.R. Indicator 52.88% 0.05 0.025 0 0.8 0.77 37 Nov-03 Need to Change the Measurement Gate Immediately Input Balancing Input Balancing Meter 8.90% 800 400 0 0.91 0.72 32 Nov-03 Good Gage Output Balancing Balancing Meter 9.27% 800 400 0 1 0.7 32 Nov-03 Good Gage Output Hub T.I.R. Hub T.I.R. Indicator 6.09% 0.1 0.05 0 1.17 0.92 31 Nov-03 Good Gage Key Process Output Variable Capability Status Sheet Measure PhaseMeasure Phase
  • 11. Excellence in motors since 1959 Page : 11 -6 -4 -2 0 2 4 6 8 10 LSL USL Process Capability Analysis For Shaft eeth Crowning Value USL Target LSL Mean Sample N StDev (Within) StDev (Overall) Z.Bench Z.USL Z.LSL Cpk Cpm Z.Bench Z.USL Z.LSL Ppk PPM< LSL PPM> USL PPMTotal PPM< LSL PPM> USL PPMTotal PPM < LSL PPM > USL PPM Total 10.0000 * 5.0000 -1.3379 150 1.57087 1.64989 -4.03 7.22 -4.03 -1.34 * -3.84 6.87 -3.84 -1.28 1000000.00 0.00 1000000.00 999972.66 0.00 999972.66 999938.84 0.00 999938.84 Process Data Potential (Within) Capability Overall Capability Observed Performance Exp. "Within" Performance Exp. "Overall" Performance Within Overall 2.00.5-1.0-2.5-4.0-5.5 95% Confidence Interval for Mu -1.05-1.15-1.25-1.35-1.45-1.55-1.65-1.75 95% Confidence Interval for Median Variable: History -1.70000 1.47945 -1.60368 Maximum 3rd Quartile Median 1st Quartile Minimum N Kurtosis Skewness Variance StDev Mean P-Value: A-Squared: -1.10000 1.85800 -1.07218 1.90000 0.00000 -1.40000 -2.50000 -6.10000 150 -3.6E-01 -1.3E-01 2.71302 1.64713 -1.33793 0.303 0.431 95% Confidence Interval for Median 95% Confidence Interval for Sigma 95% Confidence Interval for Mu Anderson-Darling Normality Test Descriptive Statistics Incoming Shaft Crowning Value CapabilityIncoming Shaft Crowning Value Capability Measure PhaseMeasure Phase
  • 12. Excellence in motors since 1959 Page : 12 0.0450.0350.0250.0150.005 95% Confidence Interval for Mu 0.0300.0250.020 95% Confidence Interval for Median Bare Shaft TIR 2.00E-02 8.70E-03 2.23E-02 Maximum 3rd Quartile Median 1st Quartile Minimum N Kurtosis Skewness Variance StDev Mean P-Value: A-Squared: 3.00E-02 1.39E-02 2.94E-02 5.00E-02 3.40E-02 2.50E-02 1.80E-02 5.00E-03 37 -4.7E-01 0.235228 1.14E-04 1.07E-02 2.58E-02 0.540 0.310 95% Confidence Interval for Median 95% Confidence Interval for Sigma 95% Confidence Interval for Mu Anderson-Darling Normality Test Descriptive Statistics 0.060.050.040.030.020.010.00-0.01 USLLSL Process Capability Analysis for Bare Shaft TIR PPMTotal PPM> USL PPM< LSL PPMTotal PPM> USL PPM< LSL PPMTotal PPM> USL PPM< LSL Ppk PPL PPU Pp Cpm Cpk CPL CPU Cp StDev (Overall) StDev (Within) Sample N Mean LSL Target USL 20695.95 12458.49 8237.47 17111.91 10395.49 6716.43 0.00 0.00 0.00 0.75 0.80 0.75 0.77 * 0.77 0.82 0.77 0.80 0.0107738 0.0104519 37 0.0258378 0.0000000 * 0.0500000 Exp. "Overall" PerformanceExp. "Within" PerformanceObserved PerformanceOverall Capability Potential (Within) Capability Process Data Within Overall Incoming Shaft T.I.R. CapabilityIncoming Shaft T.I.R. Capability Measure PhaseMeasure Phase
  • 13. Excellence in motors since 1959 Page : 13 Misc: Tolerance: Reported by: Date of study: Gage name: 0 13 12 11 21 Xbar Chart by OP SampleMean Mean=11.60 UCL=11.92 LCL=11.28 0 1.5 1.0 0.5 0.0 21 R Chart by OP SampleRange R=0.315 UCL=0.8109 LCL=0 10987654321 12.8 11.8 10.8 Part_No OP OP*Part_No Interaction Average 1 2 21 13 12 11 10 OP By OP 10987654321 13 12 11 10 Part_No By Part_No %Contribution %StudyVar Part-to-PartReprodRepeatGage R&R 100 50 0 Components of Variation Percent Gage R&R (ANOVA) for Shaft Teeth Mahr M/C Two-Way ANOVA Table With Interaction Source DF SS MS F P Part_No 9 11.5875 1.2875 5.1344 0.01148 OP 1 11.5282 11.5282 45.9730 0.00008 OP*Part_No 9 2.2568 0.2508 5.1881 0.00011 Repeatability 40 1.9333 0.0483 Total 59 27.3058 Shaft Teeth CH Value Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0.49172 74.00 Repeatability 0.04833 7.27 Reproducibility 0.44339 66.72 OP 0.37591 56.57 OP*Part_No 0.06748 10.15 Part-To-Part 0.17279 26.00 Total Variation 0.66451 100.00 StdDev Study Var %Study Var %Tolerance Source (SD) (5.15*SD) (%SV) (SV/Toler) Total Gage R&R 0.701229 3.61133 86.02 72.23 Repeatability 0.219848 1.13222 26.97 22.64 Reproducibility 0.665875 3.42925 81.68 68.59 OP 0.613118 3.15756 75.21 63.15 OP*Part_No 0.259760 1.33776 31.87 26.76 Part-To-Part 0.415680 2.14075 50.99 42.82 Total Variation 0.815176 4.19816 100.00 83.96 Number of Distinct Categories = 1 GR&R Study For Shaft Teeth CH Mahr M/CGR&R Study For Shaft Teeth CH Mahr M/C Operator w/ incorrect Measure Method Measure PhaseMeasure Phase
  • 14. Excellence in motors since 1959 Page : 14 In-Process Assembly DataIn-Process Assembly Data Measure PhaseMeasure Phase
  • 15. Excellence in motors since 1959 Page : 15 800700600500400300200 95% Confidence Interval for Mu 550500450400 95% Confidence Interval for Median Balancing Input 399.463 114.947 430.791 Maximum 3rd Quartile Median 1st Quartile Minimum N Kurtosis Skewness Variance StDev Mean P-Value: A-Squared: 540.537 190.619 534.178 799.000 581.625 481.750 376.000 211.500 32 -1.8E-01 0.364069 20557.4 143.379 482.484 0.662 0.268 95% Confidence Interval for Median 95% Confidence Interval for Sigma 95% Confidence Interval for Mu Anderson-Darling Normality Test Descriptive Statistics 10008006004002000 USLLSL Process Capability Analysis for Balancing Input PPM Total PPM > USL PPM < LSL PPM Total PPM > USL PPM < LSL PPM Total PPM > USL PPM < LSL Ppk PPL PPU Pp Cpm Cpk CPL CPU Cp StDev (Overall) StDev (Within) Sample N Mean LSL Target USL 14441.18 14019.40 421.79 15805.53 15297.00 508.52 0.00 0.00 0.00 0.73 1.11 0.73 0.92 * 0.72 1.10 0.72 0.91 144.539 146.841 32 482.484 0.000 * 800.000 Exp. "Overall" PerformanceExp. "Within" PerformanceObserved PerformanceOverall Capability Potential (Within) Capability Process Data Within Overall Input Balancing Process CapabilityInput Balancing Process Capability Measure PhaseMeasure Phase
  • 16. Excellence in motors since 1959 Page : 16 Misc: Tolerance: Reported by: Date of study: Gage name: 0 35.3 35.2 35.1 35.0 34.9 34.8 BA Xbar Chart by Operator SampleMean Mean=35.00 UCL=35.04 LCL=34.96 0 0.10 0.05 0.00 BA R Chart by Operator SampleRange R=0.021 UCL=0.06861 LCL=0 10987654321 35.2 35.1 35.0 34.9 34.8 Serial Operator Operator*Serial Interaction Average A B BA 35.3 35.2 35.1 35.0 34.9 34.8 Operator By Operator 10987654321 35.3 35.2 35.1 35.0 34.9 34.8 Serial By Serial %Contribution %StudyVar %Tolerance Part-to-PartReprodRepeatGage R&R 140 120 100 80 60 40 20 0 Components of Variation Percent Gage R&R (ANOVA) for Stator Lam. Height Two-Way ANOVA Table With Interaction Source DF SS MS F P Serial 9 0.65816 0.0731289 127.550 0.00000 Operator 1 0.00169 0.0016900 2.948 0.12013 Operator*Serial 9 0.00516 0.0005733 1.318 0.28850 Repeatability 20 0.00870 0.0004350 Total 39 0.67371 U9845 Stator Lamination Heigt Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0.000539 2.88 Repeatability 0.000478 2.56 Reproducibility 0.000061 0.32 Operator 0.000061 0.32 Part-To-Part 0.018163 97.12 Total Variation 0.018701 100.00 StdDev Study Var %Study Var %Tolerance Source (SD) (5.15*SD) (%SV) (SV/Toler) Total Gage R&R 0.023206 0.119513 16.97 23.90 Repeatability 0.021862 0.112587 15.99 22.52 Reproducibility 0.007785 0.040092 5.69 8.02 Operator 0.007785 0.040092 5.69 8.02 Part-To-Part 0.134769 0.694061 98.55 138.81 Total Variation 0.136753 0.704276 100.00 140.86 Number of Distinct Categories = 8 GR&R Study For Lamination Height CaliperGR&R Study For Lamination Height Caliper Good Gage Measure PhaseMeasure Phase
  • 17. Excellence in motors since 1959 Page : 17 Misc: Tolerance: Reported by: Date of study: Gage name: 0 0.06 0.05 0.04 0.03 0.02 BA Xbar Chart by Operator SampleMean Mean=0.04025 UCL=0.04307 LCL=0.03743 0 0.010 0.005 0.000 BA R Chart by Operator SampleRange R=0.0015 UCL=0.004901 LCL=0 10987654321 0.06 0.05 0.04 0.03 0.02 Serial Operator Operator*Serial Interaction Average A B BA 0.06 0.05 0.04 0.03 0.02 Operator By Operator 10987654321 0.06 0.05 0.04 0.03 0.02 Serial By Serial %Contribution %StudyVar %Tolerance Part-to-PartReprodRepeatGage R&R 100 50 0 Components of Variation Percent Gage R&R (ANOVA) for Output Bracket Hub (T.I.R) Two-Way ANOVA Table With Interaction Source DF SS MS F P Serial 9 0.0075725 0.0008414 43.8986 0.00000 Operator 1 0.0000025 0.0000025 0.1304 0.72631 Operator*Serial 9 0.0001725 0.0000192 2.5556 0.03864 Repeatability 20 0.0001500 0.0000075 Total 39 0.0078975 Output Bracket Hub T.I.R. Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 1.33E-05 6.09 Repeatability 7.50E-06 3.43 Reproducibility 5.83E-06 2.66 Operator 0.00E+00 0.00 Operator*Serial 5.83E-06 2.66 Part-To-Part 2.06E-04 93.91 Total Variation 2.19E-04 100.00 StdDev Study Var %Study Var %Tolerance Source (SD) (5.15*SD) (%SV) (SV/Toler) Total Gage R&R 3.65E-03 1.88E-02 24.68 18.81 Repeatability 2.74E-03 1.41E-02 18.51 14.10 Reproducibility 2.42E-03 1.24E-02 16.32 12.44 Operator 0.00E+00 0.00E+00 0.00 0.00 Operator*Serial 2.42E-03 1.24E-02 16.32 12.44 Part-To-Part 1.43E-02 7.38E-02 96.91 73.84 Total Variation 1.48E-02 7.62E-02 100.00 76.19 Number of Distinct Categories = 6 GR&R Study For Output Hub T.I.R. IndicatorGR&R Study For Output Hub T.I.R. Indicator Good Gage Measure PhaseMeasure Phase
  • 18. Excellence in motors since 1959 Page : 18 Measurement Device : BK 4188 Sound Meter w/ Microphone Acoustic Room : 40 dBA Environment Chamber Installation Distance : 26.5 cm Above the Part PC Software : B&K Sound Quality 7698 System Sound Frequency : 1000 Hz 2000 Hz Measure PhaseMeasure Phase Sound Level MeasurementSound Level Measurement Measured Sound Level (dBA) Will Be Transformed Into Discrete Data In the Specified Frequency, Which Will Be Added Up Together as the Sound Quality Index.
  • 19. Excellence in motors since 1959 Page : 19 Speed 10 Frequency 949290888684 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Mean 88.89 StDev2.793 N 16 Histogram (with Normal Curve) of Speed 10 Speed10 95.0 92.5 90.0 87.5 85.0 Boxplot of Speed 10 Descriptive Statistics: dba-10 Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 dba-10 32 0 88.856 0.535 3.024 84.800 86.100 88.400 90.800 Variable Maximum dba-10 95.000 Measure PhaseMeasure Phase Sound Level Data at High Speed 10Sound Level Data at High Speed 10 No Customer Spec. Available Now!
  • 20. Excellence in motors since 1959 Page : 20 Measure PhaseMeasure Phase b. Abnormal Noise Defect From Shop floor Per Subjective Standardb. Abnormal Noise Defect From Shop floor Per Subjective Standard Sound Quality Index Will be Referred If There Was Any ConfusionSound Quality Index Will be Referred If There Was Any Confusion DPMO Z-Score Cpk Sigma Level 14000 2.20 0.73 3.7
  • 21. Excellence in motors since 1959 Page : 21 QFD - Noise (1)QFD - Noise (1) StackingPosition LaminationHeight FittingDimension Angle WireTension SpindleSpeed TricklingAmount TricklingTime SurfaceFinishing Roundness T.I.R. BalancingInput CuttingDepth CuttingLength InputT.I.R. Laminationheight SurfaceLeveling ScrewID WireTension SpindleSpeed CoilHeight Pressure Push-offForce Concentricity Pressure Push-offForce Concentricity Shaft Diameter, Crowning value, T.I.R.,Knurling Height, Roundness5 Magnet wire Diameter, Coating 2 Commutator Roundness, Bar-to-bar, Surface finishing 3 Cooling fan ID, Roundness 2 Lamination Height, Surface Finishing, Resistance 3 Magnet wire Diameter, Tension Strength, Coating 2 Lamination Height, Surface Finishing, Resistance 4 Carbon brush Hardness, Resistance 2 Ball bearing -input ID, OD, Roundness, Oil Content 3 Ball bearing - output ID, OD, Roundness, Oil Content 3 Bracket-input ID, OD, Surface Finishing, Roundness, Eccentric, Height5 Bracket -output ID, OD, Surface Finishing, Roundness, Eccentric, Height5 57.8+0.2/-0mm 34.5+0/-0.5mm 24.9+/-0.1mm 7.5+/-0.2deg 1000~1200g 4.6~5.6mleach 95-96/110-111sec 3.5-5.5um 3.0ummax 0.01mmMax 1.8mmMax 20mmMax 0.01mmMax 35.0+/-0.25mm 0.20Max 3000g 17.5mmMax 700-3000 20kgMin 60kgMin 72 27 72 72 18 18 36 36 27 27 42 9 27 27 24 36 36 36 12 12 27 12 141 12 141 Matrix Strong Medium Weak Weight 9 3 1 Process Capability How Importance Armature Ass'y CoilWinding Stator Ass'y StatorWelding Part Characteristic Values Process Parameters (Hows) Bracket Ass'y Importance Stacking CommutatorFitting CoilWinding Trickling Comm.Turning ArmatureBalancing InputBracket FittingBearing Process Parameter Values RotorStatorBracket Part Characteristics (Whats) OnputBracket FittingBearing 1st Priority - Bracket Ass’y Analyze PhaseAnalyze Phase
  • 22. Excellence in motors since 1959 Page : 22 QualityControl Maintenance MistakeProofing Training Stacking Position 2 2 2 2 1 16 Lamination Height 3 1 1 2 1 6 Fitting Dimension 3 3 2 3 2 108 Angle 3 2 1 3 2 36 Wire Tension 4 3 3 2 2 144 Spindle Speed 2 2 2 1 1 8 Trickling Amount 4 3 3 5 2 360 Trickling Time 4 1 2 4 2 64 Surface Finishing 3 1 1 3 2 18 Roundness 3 3 2 3 2 108 T.I.R. 3 2 1 3 2 36 Balancing Input 5 1 1 4 1 20 Cutting Depth 4 1 1 3 2 24 Cutting Length 4 1 1 3 2 24 Input T.I.R. 4 3 2 3 1 72 Lamination height 3 2 2 2 1 24 Surface Leveling 3 2 1 2 1 12 Screw ID 4 3 3 3 3 324 Wire Tension 4 3 3 2 2 144 Spindle Speed 2 2 2 1 1 8 Coil Height 3 2 2 2 1 24 Pressure 3 2 1 2 1 12 Push-off Force 3 2 1 2 1 12 Concentricity 4 3 2 3 3 216 Pressure 3 2 1 2 1 12 Push-off Force 3 2 1 2 1 12 Concentricity 4 3 2 3 3 216 Fitting Armature To Output Bracket Shaft Turning Freedom 4 3 3 3 2 216 Screw Fastening 3 2 2 3 1 36 Shaft Output T.I.R 4 3 3 3 2 216 Fitting Carbon Brush 0 Dimension 3 2 2 2 1 24 Push-off Force 3 2 2 2 1 24 FinalAss'y Final Ass'y Cooling Fan Fitting ArmatureAss'y Stacking Commutator Fitting Coil Winding Trickling Comm. Turning Armature Balancing StatorAss'y Stator Welding Coil Winding BracketAss'y Input Bracket Fitting Bearing Onput Bracket Fitting Bearing Remark Planning Requirement Severity Difficulty Frequency Process Parameters (WHAT) Production Requirement (HOWS) AbilitytoDetect TotalPoint Process Parameter Values Importance ProcessCapability QFD - Noise (2)QFD - Noise (2) 1st Priority to Monitor Noise Analyze PhaseAnalyze Phase
  • 23. Excellence in motors since 1959 Page : 23 Pareto Analysis Of QFD Process PlanningPareto Analysis Of QFD Process Planning 0 50 100 150 200 250 S haftO utputT.I.R S haftTurning Freedom C oncentricity (InputB racket) Concentricity(O utputB racket) Stacking P osition Fitting D im ension Angle C om m .T.I.R. Analyze PhaseAnalyze Phase
  • 24. Excellence in motors since 1959 Page : 24 Item# Process / Product Parameter Keyprocess Inputs Variables [KPIVs](X's) KeyProcess OutputsVariables [KPOVs} (Y's) Levels of Interest (for each input) [Process Limit] Specification (for each input) Appropriate Test(s) / Analysis Is Input Vital (Yes/No)? Comments 1 Armature Stacking Gear Teeth Crowning Abnormal Noise (dBA/Sound Quality) Positive and Negative >5 Multi-Vari Yes Samples from one shift 2 Armature Balancing Input Balancing Abnormal Noise (dBA/Sound Quality) 200 - 1200 mg.cm 500 mg.cm Multi-Vari Yes Samples from one shift 3 Armature Balancing Output Balancing Abnormal Noise (dBA/Sound Quality) 200 - 1200 mg.cm 500 mg.cm Multi-Vari Yes Samples from one shift 4 Fitting Armature Into Bracket Bracket Shaft TIR Abnormal Noise (dBA/Sound Quality) 0.010 - 0.018 mm Nil T-Test No Samples from one shift KPIV Matrix Analyze PhaseAnalyze Phase
  • 25. Excellence in motors since 1959 Page : 25 67.5 68.5 69.5 70.5 71.5 72.5 73.5 95% Confidence Interval for Mu 67.8 68.3 68.8 69.3 95% Confidence Interval for Median Variable: dB A-Squared: P-Value: Mean StDev Variance Skewness Kurtosis N Minimum 1st Quartile Median 3rd Quartile Maximum 67.7576 0.4020 67.7714 0.271 0.529 68.4333 0.6439 0.414667 0.436417 -1.63033 6 67.7000 67.8500 68.3000 69.1500 69.3000 69.1091 1.5794 69.2286 TIR: 0.004 Anderson-Darling Normality Test 95% Confidence Interval for Mu 95% Confidence Interval for Sigma 95% Confidence Interval for Median Descriptive Statistics 67.5 68.5 69.5 70.5 71.5 72.5 73.5 95% Confidence Interval for Mu 67 68 69 70 71 72 73 74 95% Confidence Interval for Median Variable: dB A-Squared: P-Value: Mean StDev Variance Skewness Kurtosis N Minimum 1st Quartile Median 3rd Quartile Maximum 66.8151 1.5271 67.6000 0.405 0.206 69.9800 2.5489 6.497 0.626605 -2.47711 5 67.6000 67.9000 68.7000 72.7000 73.3000 73.1449 7.3245 73.3000 TIR: 0.006 Anderson-Darling Normality Test 95% Confidence Interval for Mu 95% Confidence Interval for Sigma 95% Confidence Interval for Median Descriptive Statistics 67.5 68.5 69.5 70.5 71.5 72.5 73.5 95% Confidence Interval for Mu 67.5 68.5 69.5 70.5 71.5 72.5 95% Confidence Interval for Median Variable: dB A-Squared: P-Value: Mean StDev Variance Skewness Kurtosis N Minimum 1st Quartile Median 3rd Quartile Maximum 68.0654 0.9817 67.9000 0.142 0.923 70.1000 1.6386 2.685 -1.5E-01 -3.8E-01 5 67.9000 68.5500 70.3000 71.5500 72.2000 72.1346 4.7086 72.2000 TIR: 0.002 Anderson-Darling Normality Test 95% Confidence Interval for Mu 95% Confidence Interval for Sigma 95% Confidence Interval for Median Descriptive Statistics 0 1 2 3 4 5 6 7 8 9 10 95% Confidence Intervals for Sigmas Bartlett's Test Test Statistic: 6.505 P-Value : 0.039 Levene's Test Test Statistic: 1.776 P-Value : 0.208 Factor Levels 0.002 0.004 0.006 Test for Equal Variances for dB Kruskal - Wallis Test For Shaft T.I.R. - (1)Kruskal - Wallis Test For Shaft T.I.R. - (1) Analyze PhaseAnalyze Phase
  • 26. Excellence in motors since 1959 Page : 26 Kruskal-Wallis Test: dB versus TIR Kruskal-Wallis Test on dB TIR N Median Ave Rank Z 0.002 5 70.30 10.7 1.25 0.004 6 68.30 6.3 -1.41 0.006 5 68.70 8.9 0.23 Overall 16 8.5 H = 2.35 DF = 2 P = 0.310 H = 2.35 DF = 2 P = 0.308 (adjusted for ties) P-Value: 0.889 A-Squared: 0.186 Anderson-Darling Normality Test N: 16 StDev: 1.60834 Average: -0.0000000 3210-1-2 .999 .99 .95 .80 .50 .20 .05 .01 .001 Probability RESI1 Normal Probability Plot Shaft T.I.R. is Not KPIV Kruskal - Wallis Test For Shaft T.I.R. - (2)Kruskal - Wallis Test For Shaft T.I.R. - (2) Analyze PhaseAnalyze Phase
  • 27. Excellence in motors since 1959 Page : 27 2000500 2000 500 2000 500 79 78 77 76 75 74 73 72 output balancing S1_dBA 5 -1 Multi-Vari Chart for Speed 1dBA by crowning/output/input balancing input balancing value crowning 2000500 2000 500 2000 500 83.5 82.5 81.5 80.5 79.5 output balan S5_dBA 5 -1 Multi-Vari Chart for S5_dBA by crowning/output/input balancing input balanc value crowning 2000500 2000 500 2000 500 91.8 90.8 89.8 88.8 87.8 86.8 85.8 output balan S10_dBA 5 -1 Multi-Vari Chart for S10_dBA by crowning/output/input balancing input balanc value crowning Ch/Input/Output are KPIVs for dBA Multi-Vari Study for KPIV - dBAMulti-Vari Study for KPIV - dBA Analyze PhaseAnalyze Phase
  • 28. Excellence in motors since 1959 Page : 28 2000500 2000 500 2000 500 41 36 31 output balancing S1_loud 5 -1 Multi-Vari Chart for S1_loud by crowning/output/input balancing input balancing value crowning 2000500 2000 500 2000 500 60 55 50 output balancing S5_loud 5 -1 Multi-Vari Chart for S5_loud by crowning/output/input balancing input balancing value crowning 2000500 2000 500 2000 500 90 80 70 output balancing S10_loud 5 -1 Multi-Vari Chart for S10_loud by crowning/output/input balancing input balancing value crowning Ch/Input/Output are KPIVs for Loudness Multi-Vari Study for KPIV - Sound LoudnessMulti-Vari Study for KPIV - Sound Loudness Analyze PhaseAnalyze Phase
  • 29. Excellence in motors since 1959 Page : 29 Two-Sample T-Test and CI: S1_dBA, Shaft TIR Two-sample T for S1_dBA Shaft TI N Mean StDev SE Mean a 8 75.34 2.63 0.93 b 8 75.86 3.81 1.3 Difference = mu (a) - mu (b) Estimate for difference: -0.52 95% CI for difference: (-4.03, 2.98) T-Test of difference = 0 (vs not =): T-Value = -0.32 P-Value = 0.753 DF = 14 Both use Pooled StDev = 3.27 1 2 3 4 5 6 7 8 9 95% Confidence Intervals for Sigmas b a 70 75 80 Boxplots of Raw Data S1_dBA F-Test Test Statistic: 0.478 P-Value : 0.351 Levene's Test Test Statistic: 1.507 P-Value : 0.240 Factor Levels a b Test for Equal Variances for S1_dBA a b 70 75 80 Shaft TIR S1_dBA Boxplots of S1_dBA by Shaft TI (means are indicated by solid circles) 70 72 74 76 78 80 82 95% Confidence Interval for Mu 73 74 75 76 77 78 95% Confidence Interval for Median Variable: S1_dBA A-Squared: P-Value: Mean StDev Variance Skewness Kurtosis N Minimum 1st Quartile Median 3rd Quartile Maximum 73.1374 1.7400 73.5455 0.358 0.355 75.3375 2.6316 6.92554 0.471267 0.568964 8 71.3000 73.9000 74.9500 77.4000 79.9000 77.5376 5.3561 78.2158 Shaft TIR: a Anderson-Darling Normality Test 95% Confidence Interval for Mu 95% Confidence Interval for Sigma 95% Confidence Interval for Median Descriptive Statistics a=0.010 b=0.018 Shaft T.I.R. is Not KPIV Two Sample T-test For Shaft T.I.R.Two Sample T-test For Shaft T.I.R. Analyze PhaseAnalyze Phase
  • 30. Excellence in motors since 1959 Page : 30 Improve PhaseImprove Phase Problem Statement:Problem Statement: To optimize assembly process setting with minimum sound level (dBA) andTo optimize assembly process setting with minimum sound level (dBA) and sound quality indexsound quality index Objective:Objective: 2233 full factorial design to optimize the sound level and sound quality indexfull factorial design to optimize the sound level and sound quality index Study Factor:Study Factor: A Shaft teeth crowning value (Lo: -1, Hi: +5)A Shaft teeth crowning value (Lo: -1, Hi: +5) B Armature input balancing (Lo: 500, Hi: 2000)B Armature input balancing (Lo: 500, Hi: 2000) C Motor output balancing (Lo: 500, Hi: 2000)C Motor output balancing (Lo: 500, Hi: 2000) Response Interest:Response Interest: 1) Sound level (dBA)1) Sound level (dBA) 2) Sound Quality Index2) Sound Quality Index
  • 31. Excellence in motors since 1959 Page : 31 Scorpion Motor Speed Range:Scorpion Motor Speed Range: a.a. Speed 10 - High SpeedSpeed 10 - High Speed (Sound Level & Sound Quality)(Sound Level & Sound Quality) b.b. Speed 5 - Medium SpeedSpeed 5 - Medium Speed (Sound Quality Only)(Sound Quality Only) c.c. Speed 1 - Low SpeedSpeed 1 - Low Speed (Sound Quality Only)(Sound Quality Only) All the three speeds are interested in this DOE study,All the three speeds are interested in this DOE study, Which means the process optimization should resolveWhich means the process optimization should resolve all three speeds abnormal noise issue.all three speeds abnormal noise issue. Improve PhaseImprove Phase
  • 32. Excellence in motors since 1959 Page : 32 Improve PhaseImprove Phase cr owni ng val ue i nput bal anci ng out put bal anci ng Speed 10 - 1 500 500 94. 6 5 500 500 88. 3 5 500 2000 93. 8 - 1 2000 500 87 - 1 500 500 88. 6 5 2000 500 85. 9 5 2000 2000 85. 3 5 2000 2000 86. 9 - 1 2000 2000 86. 7 - 1 500 2000 88 - 1 2000 2000 88. 8 - 1 2000 500 92 5 2000 500 85. 9 5 500 2000 89. 2 5 500 500 90. 2 - 1 500 2000 91 cr owni ng val ue i nput bal anci ng out put bal anci ng Speed 1 Speed 5 Speed 10 - 1 500 500 40. 5 51 82. 1 5 500 500 30. 9 50. 8 70. 2 5 500 2000 41. 6 68. 3 97. 9 - 1 2000 500 34. 9 51. 8 71. 7 - 1 500 500 31. 3 51. 1 71 5 2000 500 29. 4 48. 8 63. 7 5 2000 2000 29. 9 50. 6 68. 2 5 2000 2000 32. 5 49. 7 68. 8 - 1 2000 2000 44. 3 57. 9 67. 9 - 1 500 2000 43. 6 56. 2 68. 9 - 1 2000 2000 36. 3 55 67 - 1 2000 500 34. 2 49. 1 75. 9 5 2000 500 32. 3 44. 7 65. 4 5 500 2000 36 51. 6 79. 7 5 500 500 36. 9 56. 6 82. 6 - 1 500 2000 38. 8 57. 1 85. 5 Sound Level (dBA)Sound Level (dBA) Sound QualitySound Quality
  • 33. Excellence in motors since 1959 Page : 33 Speed 10Speed 10 – High Speed Sound Level (dBA)– High Speed Sound Level (dBA) Improve PhaseImprove Phase
  • 34. Excellence in motors since 1959 Page : 34 0.0 0.5 1.0 1.5 2.0 2.5 C BC ABC AB A AC B Pareto Chart of the Standardized Effects (response is Speed 10, Alpha = .05) A: crowning B: input ba C: output b -2 -1 0 1 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Standardized Effect NormalScore B Normal Probability Plot of the Standardized Effects (response is Speed 10, Alpha = .05) A: crowning B: input ba C: output b Improve PhaseImprove Phase DOE Study On Sound Level dBADOE Study On Sound Level dBA
  • 35. Excellence in motors since 1959 Page : 35 crowning val input balanc output balan -1 5 500 2000 500 2000 87.4 88.2 89.0 89.8 90.6 Speed10 Main Effects Plot Speed 10 dBA Means 500 2000 500 2000 86 88 90 86 88 90crowning val input balanc output balan -1 5 500 2000 Interaction Plot For Speed 10 dBA Improve PhaseImprove Phase DOE Study On Sound Level dBADOE Study On Sound Level dBA
  • 36. Excellence in motors since 1959 Page : 36 543210-1-2-3-4-5 3 2 1 0 Residual Frequency Histogram of Residuals 151050 8 6 4 2 0 -2 -4 -6 -8 Observation Number Residual I Chart of Residuals Mean=-3.6E-15 UCL=6.755 LCL=-6.755 9190898887 5 0 -5 Fit Residual Residuals vs. Fits 210-1-2 5 0 -5 Normal Plot of Residuals Normal Score Residual Residual Plot For dBA Mean Improve PhaseImprove Phase DOE Study On Sound Level dBADOE Study On Sound Level dBA
  • 37. Excellence in motors since 1959 Page : 37 Hi Lo1.0000 D New Cur d = 1.0000 Minimum Speed 10 y = 85.90 500.0 2000.0 500.0 2000.0 -1.0 5.0 input ba output bcrowning [5.0000] [2000.0] [500.0] Improve PhaseImprove Phase Sound Level (dBA) Control OptimizationSound Level (dBA) Control Optimization Input Balance Plays Dominant to Reduce dBA
  • 38. Excellence in motors since 1959 Page : 38 86.10 85.90 91.50 89.25 87.75 89.50 89.50 91.60 output balan input balanc crowning val 5-1 2000 500 2000 500 Cube Plot for Speed 10 dBA Improve PhaseImprove Phase The optimal set-up for a minimum sound level (dBA) should be: Crowning value - 5, input balancing - 2000, output balancing - 500
  • 39. Excellence in motors since 1959 Page : 39 Speed 1– Low Speed Sound QualitySpeed 1– Low Speed Sound Quality
  • 40. Excellence in motors since 1959 Page : 40 210 A C B AB AC ABC BC Pareto Chart of the Standardized Effects (response is Speed 1, Alpha = .10) A: crowning B: input ba C: output b 210-1-2 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Standardized Effect NormalScore A C Normal Probability Plot of the Standardized Effects (response is Speed 1, Alpha = .10) A: crowning B: input ba C: output b Improve PhaseImprove Phase DOE Study On Sound Quality - Speed 1DOE Study On Sound Quality - Speed 1
  • 41. Excellence in motors since 1959 Page : 41 output balaninput balanccrowning val 2000 500 2000 500 5-1 38 37 36 35 34 Speed1 Main Effects Plot for Speed1 Sound Quality 2000 500 2000 500 41 36 31 41 36 31 crowning val input balanc output balan 2000 500 5 -1 Interaction Plot for Speed1 Sound Quality Improve PhaseImprove Phase DOE Study On Sound Quality - Speed 1DOE Study On Sound Quality - Speed 1
  • 42. Excellence in motors since 1959 Page : 42 -6 -4 -2 0 2 4 6 0 1 2 3 4 Residual Frequency Histogram of Residuals 0 5 10 15 -10 0 10 Observation Number Residual I Chart of Residuals Mean=-3.8E-15 UCL=11.12 LCL=-11.12 31 32 33 34 35 36 37 38 39 40 -5 0 5 Fit Residual Residuals vs. Fits -2 -1 0 1 2 -5 0 5 Normal Plot of Residuals Normal Score Residual Residual Plot For Sound Quality Mean Improve PhaseImprove Phase
  • 43. Excellence in motors since 1959 Page : 43 78.95 76.30 72.30 72.05 75.00 78.20 75.05 76.95 -1 5 crowning val input balanc output balan 500 2000 500 2000 Cube Plot (data means) for Speed 1 Improve PhaseImprove Phase The optimal set-up for a minimum sound quality should be: Crowning value - 5, input balancing - 2000, output balancing - 2000
  • 44. Excellence in motors since 1959 Page : 44 Speed 5– Medium Speed Sound QualitySpeed 5– Medium Speed Sound Quality Improve PhaseImprove Phase
  • 45. Excellence in motors since 1959 Page : 45 210 C B AB A ABC BC AC Pareto Chart of the Standardized Effects (response is Speed 5, Alpha = .10) A: crowning B: input ba C: output b 2.52.01.51.00.50.0-0.5-1.0-1.5-2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Standardized Effect NormalScore B C Normal Probability Plot of the Standardized Effects (response is Speed 5, Alpha = .10) A: crowning B: input ba C: output b Improve PhaseImprove Phase DOE Study On Sound Quality - Speed 5DOE Study On Sound Quality - Speed 5
  • 46. Excellence in motors since 1959 Page : 46 output balaninput balanccrowning val 2000 500 2000 500 5-1 55.8 54.6 53.4 52.2 51.0 Speed5 Main Effects Plot for Speed 5 Sound Quality Mean 2000 500 2000 500 58 53 48 58 53 48 crowning val input balanc output balan 2000 500 5 -1 Interaction Plot for Speed5 Sound Quality Mean Improve PhaseImprove Phase DOE Study On Sound Quality - Speed 5DOE Study On Sound Quality - Speed 5
  • 47. Excellence in motors since 1959 Page : 47 2000 500 2000 500 5-1 output balancing input balancing crowning value 68.50 88.8077.20 67.45 64.55 76.4076.55 73.80 Cube Plot (data means) for Speed 10 Improve PhaseImprove Phase The optimal set-up for a minimum sound quality should be: Crowning value - 5, input balancing - 2000, output balancing - 500
  • 48. Excellence in motors since 1959 Page : 48 31.20 30.85 38.80 33.90 40.30 34.55 41.20 35.90 output balan input balanc crowning val 5-1 2000 500 2000 500 Cube Plot for Speed1 Sound Quality Mean 50.15 46.75 59.95 53.70 56.45 50.45 56.65 51.05 output balan input balanc crowning val 5-1 2000 500 2000 500 Cube Plot for Speed5 Sound Quality Mean 68.50 64.55 88.80 76.40 67.45 73.80 77.20 76.55 output balan input balanc crowning val 5-1 2000 500 2000 500 Cube Plot for Speed10 Sound Quality Index Improve PhaseImprove Phase The Optimal Process Set-up In Each Speed is : Crowning value - 5, Input balancing - 2000, Output balancing - 500
  • 49. Excellence in motors since 1959 Page : 49 70.5 73.0 75.5 78.0 80.5 200015001000500 2000 1500 1000 500 input balancing outputbalancing Contour Plot of Speed 10 Hold values: crowning:-1.0 52.5 55.0 57.5 200015001000500 2000 1500 1000 500 input balancing outputbalancing Contour Plot of Speed 5 34 36 38 40 543210-1 2000 1500 1000 500 crowning value outputbalancing Contour Plot of Speed 1 Improve PhaseImprove Phase
  • 50. Excellence in motors since 1959 Page : 50 Improve PhaseImprove Phase KPIV Set Up Optimization From DOE StudyKPIV Set Up Optimization From DOE Study Key Process Input Variables (KPIV - Xs) Sound Level ( dBA) Speed 10 Speed 1 Speed 5 Speed 10 Shaft Teeth Crown 5 5 5 5 Armature Input Balance 2000 2000 2000 2000 Motor Output Balance 500 2000 500 500 Sound Qual i t y Out put ( Y) Crowning value – 5 Input balancing – 2000 Output balancing - 500
  • 51. Excellence in motors since 1959 Page : 51 Improve PhaseImprove Phase a. Restricted Noise dBA Spec.: USL<a. Restricted Noise dBA Spec.: USL<9090 dBAdBA, LSL>40 dBA, LSL>40 dBA 9184777063564942 LSL USL Process Data Sample N 16 StDev(Within) 1.47754 StDev(Overall) 1.74767 LSL 40 Target * USL 92 Sample Mean 85.5312 Potential (Within) Capability CCpk 5.87 Overall Capability Pp 4.96 PPL 8.68 PPU 1.23 Ppk Cp 1.23 Cpm * 5.87 CPL 10.27 CPU 1.46 Cpk 1.46 Observed Performance PPM < LSL 0.00 PPM > USL 0.00 PPM Total 0.00 Exp. Within Performance PPM < LSL 0.00 PPM > USL 5.99 PPM Total 5.99 Exp. Overall Performance PPM < LSL 0.00 PPM > USL 107.23 PPM Total 107.23 Within Overall Process Capability of Speed 10
  • 52. Excellence in motors since 1959 Page : 52 Control PhaseControl Phase BeforeBefore AfterAfter Assembly Line Scrap – Abnormal NoiseAssembly Line Scrap – Abnormal Noise
  • 53. Excellence in motors since 1959 Page : 53 Control PhaseControl Phase b. Abnormal Noise Defect From Shopfloorb. Abnormal Noise Defect From Shopfloor DPMO Z-Score Cpk Sigma Level 4000 2.65 0.88 4.15
  • 54. Excellence in motors since 1959 Page : 54 Control PhaseControl Phase T.I.R. Meter ImprovementT.I.R. Meter Improvement BeforeAfter BK Sound Meter DeviceBK Sound Meter Device HardwareSoftware
  • 55. Excellence in motors since 1959 Page : 55 Control PhaseControl Phase
  • 56. Excellence in motors since 1959 Page : 56 S a m ple SampleCount 60544842363024181261 20 15 10 5 0 _ _ NP = 4. 47 UCL = 10.79 LCL= 0 Befor e After 1 11 1 N P C h a r t o f D e f e c t _ 1 b y N a t u r e T ests perfor m ed w ith unequal sa m ple sizes Assembly Line SPC – Abnormal NoiseAssembly Line SPC – Abnormal Noise Control PhaseControl Phase
  • 57. Excellence in motors since 1959 Page : 57 Control PhaseControl Phase JE Qual i t y Document Revi si on Ti t l e Responsi bl e Due Dat e St at us DBDQC-CL-HC010-14 Rev.4 WPUN88C0127A Bracket Comm- Quality Control Checklist Simon Tan Nov-03 Done DBDQC-CL-HC010-12 Rev.3 WPUN88C0126C Bracket Comm- Quality Control Checklist Simon Tan Dec-03 Done 9708197 Rev.03 Teeth Helica Gear Drawing Peter Lai Dec-03 Done DBDQC-HA-QC010-01 Rev.02 Scorpion Motor R35000 (U9835) PFMEA Peter Zhou Mar-04 Done DBEBC-PC-R101006 Rev.03 WPUN98B02005D W.I. Ping Zhao Jan-03 Done DBEBC-EN-R350001 Rev.01 Noise Measurement Standard JN Ta Jan-03 Done Corrective Activities ImplementationCorrective Activities Implementation
  • 58. Excellence in motors since 1959 Page : 58 Process Trend Chart - AchievementProcess Trend Chart - Achievement 20000 15000 8000 5500 5000 4600 0 5000 10000 15000 20000 25000 30000 Nov Jan Feb Mar Apr May June July MeasureMeasure AnalyzeAnalyze ImproveImprove ControlControl RealizationRealization BASELINEBASELINE GOALGOAL Control PhaseControl Phase
  • 59. Excellence in motors since 1959 Page : 59 JEHA Customer Situation Settlement 13 13 0 5 10 15 20 25 30 35 40 45 50 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec #CS 0.0 20.0 40.0 60.0 80.0 100.0 120.0 SCT/DCT Sev erity 2-X Sev erity 1 # of CS cases Ent. DCT SCT DCT Entitlement JEHA Customer Situation Settlement 21 19 0 5 10 15 20 25 30 35 40 45 50 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 #CS 0.0 20.0 40.0 60.0 80.0 100.0 120.0 SCT/DCT Sev erity 2-X Sev erity 1 # of CS cases Ent. DCT SCT DCT Entitlement BeforeBefore AfterAfter Control PhaseControl Phase Customer Field Return – High NoiseCustomer Field Return – High Noise

Editor's Notes

  1. Review Questions: What are the dimensional units of measure for y? Are the data for this y attributal or continuous? If the data are attributal, what is the definition of a unit, each oDDortunity, and the defects? If the data are continuous, what are the lower and uDDer specifications for defectiveness (acceptability)? If the data are continuous, what is the customer targeted value?
  2. Review Questions: Who is/are the Customer(s)? What is/are the CTQ(s) (Big Y(s) - output) What is/are the Little y(s)? How is the output (Big Y) related to a Customer or Business need? What is the link of the CTQ to the little y? What tool was used to flowdown to the little y? Is the CTQ measurable? Which business objective does the CTQ address? Will other projects (with related y’s) need to be undertaken in order to affect the CTQ? What are the dimensional units of measure for y? Definition: CTQ - Critical Quality Characteristic is The Characteristic of a product or Service that satisfies a key requirement of an internal or external customer.