SlideShare a Scribd company logo
1 of 3
Download to read offline
www.postersession.com
Smart Grid Analysis of Centralized Cooling
for an Urban Community
Objectives
Introduction
Perform a techno-economic analysis of
a centralized cooling system for
an urban community of 10,000 people
in the context of day-ahead electricity prices.
Cooling Load
Figure 1 – Decentralized Cooling System.
Figure 2 – Centralized Cooling System.
The cooling load was obtained by adapting Cooling Load
Temperature Difference (CLTD) method proposed by the
ASHRAE to our case.
The electrical power due the cooling system:
Figure 3 – Cooling Load model
Figure 4 – Cooling load ( 𝑄 𝐾
𝐿
)
Then, the hourly cost and operational cost for case 1 are:
Figure 6 – Day ahead electricity price PJM (2012).
Figure 7 – Energy cost per hour.
Figure 5 – Electrical Chiller
𝐢𝑂𝑃𝐸𝐢 =
πΆπ‘œπ‘œπ‘™π‘–π‘›π‘” πΆπ‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦
𝐼𝑛𝑝𝑒𝑑 πΈπ‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘π‘–π‘‘π‘¦
= 1.14 tons/kW
Net Present Value
Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski
Results for Case 1:
Initial Costs: $14 million
Operational Costs: $14 million
NPV: $28 million
π‘ƒπ‘˜
𝐸𝐢
=
𝑄 𝐾
𝐿
𝐢𝑂𝑃 𝐸𝐢
OC =
π‘˜=0
𝑛
𝑐 π‘˜
𝑒
π‘ƒπ‘˜
𝐸𝐢
Decentralized Chiller
Case 1
Planning period ( n = 20 years ), Interest rate ( i = 7% )
NPV = IC + PV PV = OC
(1+𝑖) 𝑛 βˆ’1
𝑖(1+𝑖) 𝑛
www.postersession.com
Smart Grid Analysis of Centralized Cooling
for an Urban Community
Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski
Figure 9 – Power Plant process load diagram.
Figure 10 – Case 2 diagram: Plant + Absorption Chiller + Electrical
Chiller
Centralized System – Background
Figure 8 – Electrical and Absorption Chiller diagrams.
Case 2
Figure 11 –Results of case 2..
𝑂𝐢 = min
π‘˜=0
𝑛
𝑐 π‘˜
𝑒
𝐢𝑂𝑃𝐸𝐢
𝑄 π‘˜
𝐸𝐢
βˆ’ 𝑐 π‘˜
𝑒
π‘ƒπ‘˜
𝐺
+ 𝑐 π‘˜
𝑁𝐺
𝜈 π‘˜
𝑓
𝑄 π‘˜
𝐸𝐢
+ 𝑄 π‘˜
𝐴𝐢
= 𝑄 π‘˜
𝐿
βˆ’π‘„ π‘˜
𝐴𝐢
.
πœ‚ 𝑅
𝐢𝑂𝑃𝐴𝐢
+ 𝜈 π‘˜
𝑓
. πœ‚ 𝑃 βˆ’ π‘ƒπ‘˜
𝐺
= 0
0 ≀ 𝑄 π‘˜
𝐸𝐢
≀ 𝑄 𝑀𝐴𝑋
𝐸𝐢
0 ≀ 𝑄 π‘˜
𝐴𝐢
≀ 𝑄 𝑀𝐴𝑋
𝐴𝐢
0 ≀ 𝜈 π‘˜
𝑓
≀ 𝜈 𝑀𝐴𝑋
𝑓
0 ≀ π‘ƒπ‘˜
𝐺
≀ 𝑃 𝑀𝐴𝑋
𝐺
www.postersession.com
Smart Grid Analysis of Centralized Cooling
for an Urban Community
Thermal Energy Storage Preliminary Results
Figure 13 – Case 3 diagram: Plant + Absorption Chiller + Electrical
Chiller + Thermal Energy Storage
Figure 14 – Results of case 3
Case 2:
Initial Cost: $ 299 million
o Absorption Chiller: $7.4 million
o Electric Chiller: $4.2 million
o Distribution Network: $80 million
o Power Plant: $207 million
Operational Cost: -$1.08 billion
o Profit of the Power Plant: $102 million/year
NPV: - $781 million
Case 3:
Initial Cost: $ 307 million
o Thermal Energy Storage: $ 8 million
Operational Cost: -$1.09 billion
o Profit of the Power Plant: $103 million/year
NPV: - $783 million
References
1. American Society of Heating,Refrigerating and Air-Conditioning Engineers, and
Knovel (Firm). 1997. 1997 ASHRAE handbook: Fundamentals. SI ed. Atlanta, GA:
American Society of Heating, Refrigeration and Air-Conditioning Engineers
2. Feng, J., Brown, A., O’Brien, D., & Chmielewski, D. J. (2015). Smart grid coordination of a
chemical processing plant. Chemical Engineering Science
3. Roth, K., Zogg, R., & Brodrick, J. (2006). Cool thermal energy storage. ASHRAE journal,
48(9), 94-96
4. Newnan, D. G., Lavelle, J. P., Eschenbach, T. G. (1991). Engineering Economic Analysis. 12th
edition
5. Black, J. Cost and performance baseline for fossil energy plants. US Department of Energy.
September, 2013
6. PJM Data Miner - Energy Pricing. (n.d.). Retrieved June , 2015, from
https://dataminer.pjm.com/dataminerui/pages/public/energypricing.jsf
7. NCDC: Quality Controlled Local Climatological Data - Chicago Illinois. (n.d.). Retrieved
June, 2015, from http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N
8. Illinois Natural Gas Prices. (n.d.). Retrieved June, 2015, from
http://www.eia.gov/dnav/ng/ng_pri_sum_dcu_SIL_m.htm
Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski
Case 3
Figure 12 – Thermal Energy Storage
𝑄 π‘˜
𝐸𝐢
+ 𝑄 π‘˜
𝐴𝐢
= 𝑄 π‘˜
𝐿
𝑄 π‘˜
𝐸𝐢
+ 𝑄 π‘˜
𝐴𝐢
- 𝐸 π‘˜ + 𝐸 π‘˜+1= 𝑄 π‘˜
𝐿
- 𝐸 𝑀𝐴𝑋 ≀ 𝐸 π‘˜ ≀ 0
Acknowledgements

More Related Content

What's hot

seminar report on power quality monitoring
seminar report on power quality monitoring  seminar report on power quality monitoring
seminar report on power quality monitoring khemraj298
Β 
Rooftop Solar Systems
Rooftop Solar SystemsRooftop Solar Systems
Rooftop Solar SystemsJay Ranvir
Β 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYVanita Thakkar
Β 
High efficiency solar thermophotovoltaic system
High efficiency solar thermophotovoltaic systemHigh efficiency solar thermophotovoltaic system
High efficiency solar thermophotovoltaic systemaswin jaladhar
Β 
Embedded green house automation system
Embedded green house automation systemEmbedded green house automation system
Embedded green house automation systemgajula vijaya lakshmi
Β 
Thermophotovoltaics
ThermophotovoltaicsThermophotovoltaics
ThermophotovoltaicsSali Tejaswi
Β 
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEM
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEMUnit 03 -SOLAR PHOTOVOLTAIC SYSTEM
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEMPremanandDesai
Β 
Introduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power systemIntroduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power systemShoeb Ali Khan
Β 
earthing-system.ppt
earthing-system.pptearthing-system.ppt
earthing-system.pptJosephPoplinger
Β 
wireless power transmission via LASER
wireless power transmission via LASERwireless power transmission via LASER
wireless power transmission via LASERChinmay Chepurwar
Β 
Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpointWilliam Wallace
Β 
thermo chemical energy storage system for solar plants
thermo chemical energy storage system for solar plantsthermo chemical energy storage system for solar plants
thermo chemical energy storage system for solar plantsRajneesh Gautam
Β 
Energy management-system-ppt
Energy management-system-pptEnergy management-system-ppt
Energy management-system-pptGulshan Mishra
Β 
Smart grid challenge
Smart grid challengeSmart grid challenge
Smart grid challengeAbhishek Kumar
Β 
A complete Presentation on SOLAR WATER HEATER by himanshu kumar
A complete Presentation on SOLAR WATER HEATER by himanshu kumarA complete Presentation on SOLAR WATER HEATER by himanshu kumar
A complete Presentation on SOLAR WATER HEATER by himanshu kumarrajaricky
Β 
EVS GE6351-unit 4
EVS GE6351-unit 4EVS GE6351-unit 4
EVS GE6351-unit 4SASI KUMAR C
Β 
Solar Energy in India
Solar Energy in IndiaSolar Energy in India
Solar Energy in IndiaShivam Mittal
Β 

What's hot (20)

seminar report on power quality monitoring
seminar report on power quality monitoring  seminar report on power quality monitoring
seminar report on power quality monitoring
Β 
Rooftop Solar Systems
Rooftop Solar SystemsRooftop Solar Systems
Rooftop Solar Systems
Β 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGY
Β 
High efficiency solar thermophotovoltaic system
High efficiency solar thermophotovoltaic systemHigh efficiency solar thermophotovoltaic system
High efficiency solar thermophotovoltaic system
Β 
Demand Side Management
Demand Side ManagementDemand Side Management
Demand Side Management
Β 
Embedded green house automation system
Embedded green house automation systemEmbedded green house automation system
Embedded green house automation system
Β 
Ilumination schemes
Ilumination schemes Ilumination schemes
Ilumination schemes
Β 
Thermophotovoltaics
ThermophotovoltaicsThermophotovoltaics
Thermophotovoltaics
Β 
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEM
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEMUnit 03 -SOLAR PHOTOVOLTAIC SYSTEM
Unit 03 -SOLAR PHOTOVOLTAIC SYSTEM
Β 
Introduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power systemIntroduction to Off Grid Solar Power system
Introduction to Off Grid Solar Power system
Β 
earthing-system.ppt
earthing-system.pptearthing-system.ppt
earthing-system.ppt
Β 
wireless power transmission via LASER
wireless power transmission via LASERwireless power transmission via LASER
wireless power transmission via LASER
Β 
Solar photovoltaic powerpoint
Solar photovoltaic powerpointSolar photovoltaic powerpoint
Solar photovoltaic powerpoint
Β 
thermo chemical energy storage system for solar plants
thermo chemical energy storage system for solar plantsthermo chemical energy storage system for solar plants
thermo chemical energy storage system for solar plants
Β 
Energy management-system-ppt
Energy management-system-pptEnergy management-system-ppt
Energy management-system-ppt
Β 
Smart grid challenge
Smart grid challengeSmart grid challenge
Smart grid challenge
Β 
A complete Presentation on SOLAR WATER HEATER by himanshu kumar
A complete Presentation on SOLAR WATER HEATER by himanshu kumarA complete Presentation on SOLAR WATER HEATER by himanshu kumar
A complete Presentation on SOLAR WATER HEATER by himanshu kumar
Β 
EVS GE6351-unit 4
EVS GE6351-unit 4EVS GE6351-unit 4
EVS GE6351-unit 4
Β 
Optimazation energy ppt
Optimazation energy pptOptimazation energy ppt
Optimazation energy ppt
Β 
Solar Energy in India
Solar Energy in IndiaSolar Energy in India
Solar Energy in India
Β 

Viewers also liked

Thomas TST Program 4
Thomas TST Program 4Thomas TST Program 4
Thomas TST Program 4Lawrence Armour
Β 
Patryk Bomba 1semestr Logistyka Zaoczne
Patryk Bomba 1semestr Logistyka ZaocznePatryk Bomba 1semestr Logistyka Zaoczne
Patryk Bomba 1semestr Logistyka ZaoczneBombaBP
Β 
Systems of Engagement WSR_Sept2015
Systems of Engagement WSR_Sept2015Systems of Engagement WSR_Sept2015
Systems of Engagement WSR_Sept2015Erik Alvarado
Β 
CURRICULUM VITAE OF LERATO MAKATE
CURRICULUM VITAE OF LERATO MAKATECURRICULUM VITAE OF LERATO MAKATE
CURRICULUM VITAE OF LERATO MAKATELERATO Makate
Β 
Leyendas Urbanas
Leyendas UrbanasLeyendas Urbanas
Leyendas Urbanaserickerom8570
Β 
Do you like the magazine advert?
Do you like the magazine advert?Do you like the magazine advert?
Do you like the magazine advert?sophiaforrester
Β 
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENS
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENSA GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENS
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENSUnified wireless INC
Β 
HISTORY YEAR 9 - DICTATORSHIP
HISTORY YEAR 9 - DICTATORSHIPHISTORY YEAR 9 - DICTATORSHIP
HISTORY YEAR 9 - DICTATORSHIPGeorge Dumitrache
Β 

Viewers also liked (11)

Thomas TST Program 4
Thomas TST Program 4Thomas TST Program 4
Thomas TST Program 4
Β 
Patryk Bomba 1semestr Logistyka Zaoczne
Patryk Bomba 1semestr Logistyka ZaocznePatryk Bomba 1semestr Logistyka Zaoczne
Patryk Bomba 1semestr Logistyka Zaoczne
Β 
Systems of Engagement WSR_Sept2015
Systems of Engagement WSR_Sept2015Systems of Engagement WSR_Sept2015
Systems of Engagement WSR_Sept2015
Β 
Comienza el ministerio
Comienza el ministerioComienza el ministerio
Comienza el ministerio
Β 
CURRICULUM VITAE OF LERATO MAKATE
CURRICULUM VITAE OF LERATO MAKATECURRICULUM VITAE OF LERATO MAKATE
CURRICULUM VITAE OF LERATO MAKATE
Β 
Leyendas Urbanas
Leyendas UrbanasLeyendas Urbanas
Leyendas Urbanas
Β 
Do you like the magazine advert?
Do you like the magazine advert?Do you like the magazine advert?
Do you like the magazine advert?
Β 
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENS
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENSA GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENS
A GUIDE OF BUYING WHOLESALE SMARTPHONE LCD SCREENS
Β 
PM Symposium 2009 Apply Risk Techniques on RAI Prj
PM Symposium 2009 Apply Risk Techniques on RAI PrjPM Symposium 2009 Apply Risk Techniques on RAI Prj
PM Symposium 2009 Apply Risk Techniques on RAI Prj
Β 
HISTORY YEAR 9 - DICTATORSHIP
HISTORY YEAR 9 - DICTATORSHIPHISTORY YEAR 9 - DICTATORSHIP
HISTORY YEAR 9 - DICTATORSHIP
Β 
Bordes y sombreado
Bordes y sombreadoBordes y sombreado
Bordes y sombreado
Β 

Similar to Centralized Cooling Analysis for Urban Communities

Feasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanFeasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanyamile diaz torres
Β 
Renewable energy based_refrigeration_system (1) (2)
Renewable energy based_refrigeration_system (1) (2)Renewable energy based_refrigeration_system (1) (2)
Renewable energy based_refrigeration_system (1) (2)S PARVEEN SINGH
Β 
Symposium Poster
Symposium PosterSymposium Poster
Symposium PosterMichael Durr
Β 
20110120 system integration project 2, final progress meeting
20110120 system integration project 2, final progress meeting20110120 system integration project 2, final progress meeting
20110120 system integration project 2, final progress meetingJeroenvanhellenberghubar
Β 
Numerical simulation of Hybrid Generation System: a case study
Numerical simulation of Hybrid Generation System: a case studyNumerical simulation of Hybrid Generation System: a case study
Numerical simulation of Hybrid Generation System: a case studyIRJET Journal
Β 
Hybrid energy(PV wind and conventional sources)
Hybrid energy(PV wind and conventional sources)Hybrid energy(PV wind and conventional sources)
Hybrid energy(PV wind and conventional sources)Chandan
Β 
Green Charge: Managing Renewable Energy using Piezo Sensors
Green Charge: Managing Renewable Energy using Piezo SensorsGreen Charge: Managing Renewable Energy using Piezo Sensors
Green Charge: Managing Renewable Energy using Piezo SensorsIRJET Journal
Β 
IRJET - Thermoelectric Power Generation by Bike Silencer
IRJET - Thermoelectric Power Generation by Bike SilencerIRJET - Thermoelectric Power Generation by Bike Silencer
IRJET - Thermoelectric Power Generation by Bike SilencerIRJET Journal
Β 
Review on Solar Powered Thermoelectric Cooler
Review on Solar Powered Thermoelectric CoolerReview on Solar Powered Thermoelectric Cooler
Review on Solar Powered Thermoelectric CoolerIRJET Journal
Β 
IRJET- Solar Air Cooler
IRJET-  	  Solar Air CoolerIRJET-  	  Solar Air Cooler
IRJET- Solar Air CoolerIRJET Journal
Β 

Similar to Centralized Cooling Analysis for Urban Communities (20)

Paper Final
Paper FinalPaper Final
Paper Final
Β 
Feasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanFeasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cuban
Β 
Renewable energy based_refrigeration_system (1) (2)
Renewable energy based_refrigeration_system (1) (2)Renewable energy based_refrigeration_system (1) (2)
Renewable energy based_refrigeration_system (1) (2)
Β 
45 design
45 design45 design
45 design
Β 
Symposium Poster
Symposium PosterSymposium Poster
Symposium Poster
Β 
Energy, economic and environmental analysis of fuzzy logic controllers used i...
Energy, economic and environmental analysis of fuzzy logic controllers used i...Energy, economic and environmental analysis of fuzzy logic controllers used i...
Energy, economic and environmental analysis of fuzzy logic controllers used i...
Β 
20110120 system integration project 2, final progress meeting
20110120 system integration project 2, final progress meeting20110120 system integration project 2, final progress meeting
20110120 system integration project 2, final progress meeting
Β 
57 ganguly
57 ganguly57 ganguly
57 ganguly
Β 
Modeling of photovoltaic system with maximum power point tracking control by ...
Modeling of photovoltaic system with maximum power point tracking control by ...Modeling of photovoltaic system with maximum power point tracking control by ...
Modeling of photovoltaic system with maximum power point tracking control by ...
Β 
L1303038388
L1303038388L1303038388
L1303038388
Β 
L1303038388
L1303038388L1303038388
L1303038388
Β 
Numerical simulation of Hybrid Generation System: a case study
Numerical simulation of Hybrid Generation System: a case studyNumerical simulation of Hybrid Generation System: a case study
Numerical simulation of Hybrid Generation System: a case study
Β 
Hybrid energy(PV wind and conventional sources)
Hybrid energy(PV wind and conventional sources)Hybrid energy(PV wind and conventional sources)
Hybrid energy(PV wind and conventional sources)
Β 
Green Charge: Managing Renewable Energy using Piezo Sensors
Green Charge: Managing Renewable Energy using Piezo SensorsGreen Charge: Managing Renewable Energy using Piezo Sensors
Green Charge: Managing Renewable Energy using Piezo Sensors
Β 
IRJET - Thermoelectric Power Generation by Bike Silencer
IRJET - Thermoelectric Power Generation by Bike SilencerIRJET - Thermoelectric Power Generation by Bike Silencer
IRJET - Thermoelectric Power Generation by Bike Silencer
Β 
Review on Solar Powered Thermoelectric Cooler
Review on Solar Powered Thermoelectric CoolerReview on Solar Powered Thermoelectric Cooler
Review on Solar Powered Thermoelectric Cooler
Β 
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Β 
Ijmet 06 07_011
Ijmet 06 07_011Ijmet 06 07_011
Ijmet 06 07_011
Β 
Ijmet 06 07_011
Ijmet 06 07_011Ijmet 06 07_011
Ijmet 06 07_011
Β 
IRJET- Solar Air Cooler
IRJET-  	  Solar Air CoolerIRJET-  	  Solar Air Cooler
IRJET- Solar Air Cooler
Β 

Centralized Cooling Analysis for Urban Communities

  • 1. www.postersession.com Smart Grid Analysis of Centralized Cooling for an Urban Community Objectives Introduction Perform a techno-economic analysis of a centralized cooling system for an urban community of 10,000 people in the context of day-ahead electricity prices. Cooling Load Figure 1 – Decentralized Cooling System. Figure 2 – Centralized Cooling System. The cooling load was obtained by adapting Cooling Load Temperature Difference (CLTD) method proposed by the ASHRAE to our case. The electrical power due the cooling system: Figure 3 – Cooling Load model Figure 4 – Cooling load ( 𝑄 𝐾 𝐿 ) Then, the hourly cost and operational cost for case 1 are: Figure 6 – Day ahead electricity price PJM (2012). Figure 7 – Energy cost per hour. Figure 5 – Electrical Chiller 𝐢𝑂𝑃𝐸𝐢 = πΆπ‘œπ‘œπ‘™π‘–π‘›π‘” πΆπ‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ 𝐼𝑛𝑝𝑒𝑑 πΈπ‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘π‘–π‘‘π‘¦ = 1.14 tons/kW Net Present Value Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski Results for Case 1: Initial Costs: $14 million Operational Costs: $14 million NPV: $28 million π‘ƒπ‘˜ 𝐸𝐢 = 𝑄 𝐾 𝐿 𝐢𝑂𝑃 𝐸𝐢 OC = π‘˜=0 𝑛 𝑐 π‘˜ 𝑒 π‘ƒπ‘˜ 𝐸𝐢 Decentralized Chiller Case 1 Planning period ( n = 20 years ), Interest rate ( i = 7% ) NPV = IC + PV PV = OC (1+𝑖) 𝑛 βˆ’1 𝑖(1+𝑖) 𝑛
  • 2. www.postersession.com Smart Grid Analysis of Centralized Cooling for an Urban Community Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski Figure 9 – Power Plant process load diagram. Figure 10 – Case 2 diagram: Plant + Absorption Chiller + Electrical Chiller Centralized System – Background Figure 8 – Electrical and Absorption Chiller diagrams. Case 2 Figure 11 –Results of case 2.. 𝑂𝐢 = min π‘˜=0 𝑛 𝑐 π‘˜ 𝑒 𝐢𝑂𝑃𝐸𝐢 𝑄 π‘˜ 𝐸𝐢 βˆ’ 𝑐 π‘˜ 𝑒 π‘ƒπ‘˜ 𝐺 + 𝑐 π‘˜ 𝑁𝐺 𝜈 π‘˜ 𝑓 𝑄 π‘˜ 𝐸𝐢 + 𝑄 π‘˜ 𝐴𝐢 = 𝑄 π‘˜ 𝐿 βˆ’π‘„ π‘˜ 𝐴𝐢 . πœ‚ 𝑅 𝐢𝑂𝑃𝐴𝐢 + 𝜈 π‘˜ 𝑓 . πœ‚ 𝑃 βˆ’ π‘ƒπ‘˜ 𝐺 = 0 0 ≀ 𝑄 π‘˜ 𝐸𝐢 ≀ 𝑄 𝑀𝐴𝑋 𝐸𝐢 0 ≀ 𝑄 π‘˜ 𝐴𝐢 ≀ 𝑄 𝑀𝐴𝑋 𝐴𝐢 0 ≀ 𝜈 π‘˜ 𝑓 ≀ 𝜈 𝑀𝐴𝑋 𝑓 0 ≀ π‘ƒπ‘˜ 𝐺 ≀ 𝑃 𝑀𝐴𝑋 𝐺
  • 3. www.postersession.com Smart Grid Analysis of Centralized Cooling for an Urban Community Thermal Energy Storage Preliminary Results Figure 13 – Case 3 diagram: Plant + Absorption Chiller + Electrical Chiller + Thermal Energy Storage Figure 14 – Results of case 3 Case 2: Initial Cost: $ 299 million o Absorption Chiller: $7.4 million o Electric Chiller: $4.2 million o Distribution Network: $80 million o Power Plant: $207 million Operational Cost: -$1.08 billion o Profit of the Power Plant: $102 million/year NPV: - $781 million Case 3: Initial Cost: $ 307 million o Thermal Energy Storage: $ 8 million Operational Cost: -$1.09 billion o Profit of the Power Plant: $103 million/year NPV: - $783 million References 1. American Society of Heating,Refrigerating and Air-Conditioning Engineers, and Knovel (Firm). 1997. 1997 ASHRAE handbook: Fundamentals. SI ed. Atlanta, GA: American Society of Heating, Refrigeration and Air-Conditioning Engineers 2. Feng, J., Brown, A., O’Brien, D., & Chmielewski, D. J. (2015). Smart grid coordination of a chemical processing plant. Chemical Engineering Science 3. Roth, K., Zogg, R., & Brodrick, J. (2006). Cool thermal energy storage. ASHRAE journal, 48(9), 94-96 4. Newnan, D. G., Lavelle, J. P., Eschenbach, T. G. (1991). Engineering Economic Analysis. 12th edition 5. Black, J. Cost and performance baseline for fossil energy plants. US Department of Energy. September, 2013 6. PJM Data Miner - Energy Pricing. (n.d.). Retrieved June , 2015, from https://dataminer.pjm.com/dataminerui/pages/public/energypricing.jsf 7. NCDC: Quality Controlled Local Climatological Data - Chicago Illinois. (n.d.). Retrieved June, 2015, from http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N 8. Illinois Natural Gas Prices. (n.d.). Retrieved June, 2015, from http://www.eia.gov/dnav/ng/ng_pri_sum_dcu_SIL_m.htm Vieira, F.L; Henriques, J.M.M; Soares, L.S; Rezende, L.L; Martins, M.S; de Melo Neto, R; D. J.Chmielewski Case 3 Figure 12 – Thermal Energy Storage 𝑄 π‘˜ 𝐸𝐢 + 𝑄 π‘˜ 𝐴𝐢 = 𝑄 π‘˜ 𝐿 𝑄 π‘˜ 𝐸𝐢 + 𝑄 π‘˜ 𝐴𝐢 - 𝐸 π‘˜ + 𝐸 π‘˜+1= 𝑄 π‘˜ 𝐿 - 𝐸 𝑀𝐴𝑋 ≀ 𝐸 π‘˜ ≀ 0 Acknowledgements