SlideShare a Scribd company logo
1 of 37
Shell effects in atomic nuclei
Part 2: shapes and superheavy elements
Laurent Gaudefroy1, Alexandre Obertelli2
1CEA DAM, DIF, France
2CEA Saclay, IRFU, France
protons
neutrons
82
50
28
28
50
82
20
8
2
2
8
20
126
Changes in the nuclear shell structure
Lecture (part 1) given by Laurent Gaudefroy
Shapes of atomic nuclei
protons
neutrons
82
50
28
28
50
82
20
8
2
2
8
20
126
The vast majority of all nuclei shows
a non-spherical mass distribution
Z, N = magic numbers
Closed shell = spherical shape
Deformed
Spherical
8
20
28
50
2
sngle
particle
enegies
elongation
Nilsson diagram
Oblate Prolate
Nuclear structure description framework
[Addendum to yesterday’s lecture]
1- Shell-model:
• nucleus described in the laboratory frame
• the nucleus is described as a superposition of spherical configurations
• « intrinsic deformation » is implicitely contained in correlations
2- Mean-field like description:
• nucleus described in its intrinsic frame
• « angular momentum » is not a good quantum number
• intrinsic deformation is explicit
In this lecture, the deformed mean-field approach will be followed
Nilsson diagram
nlj=1f7/2 Kp=1/2-
Kp=3/2-
Kp=5/2-
Kp=7/2-
b
0
• core + single particle
• short range & attractive int.
• Pauli : orbit repulsion
Shapes and “deformation” parameters







  








 
 )
,
(
)
(
1
)
( 0 Y
t
a
R
t
R
quadrupole
octupole
hexadecapole

b cos
2
20 
a 
b sin
2
1
2
2
2
22 
 
a
a
oblate
non-collective
prolate
collective
b2 : elongation

prolate
non-collective
Lund
convention
spherical
oblate
collective
: triaxiality
Generic nuclear shapes can be described
by a development of spherical harmonics
a:deformation parameters
Tetrahedral Y32 deformation
Dynamic vibration
Static  rotation
Triaxial Y22 deformation
Shapes and “deformation” from experiment
quadrupole
 Quadrupole moments via low-energy Coulomb excitation
 Reorientation effect
projectile
target
Intrinsic quadrupole moment IK
E
M
IK
eQ )
2
(
5
16
2
/
1
0 






p
Jp=0+
Jp=2+
Jp=4+
Jp=6+
Jp=8+
even-even
)
1
(
2
)
(
2


 J
J
I
E

)
(
1
)
2
(
)
2
(
)
(
)
(
)
1
(
J
E
J
J
J
E
J
E
J
E
J
E
J
















Moment of inertia via rotational-band spectroscopy / model dependent
Coulomb field
*
excitation
de-excitation
photon
M. Girod, CEA
N=Z
Oblate deformed nuclei are far less abundant than prolate nuclei
Shape coexistence possible for certain regions of N & Z
Prolate
Quadrupole deformation of nuclei
Oblate Pb & Bi
N~Z
Fission
fragments
N~28 n-rich
actinides
Shape coexistence
oblate prolate
74Kr
b

M. Girod
M. Bender et al., PRC 74, 024312 (2006)
0+
0+
2+
2+
4+
4+
6+
6+
8+
Configuration mixing:












obl
pro
2
obl
pro
1
0
cos
0
sin
0
0
sin
0
cos
0




electric monopole (E0) transition
)
(
cos
sin
0
)
0
(
0 2
obl
2
pro
1
2 b
b

 



E
M
Shape coexistence in light Krypton isotopes
0+
0+
2+
2+
4+
4+
6+
6+
8+
SPIRAL beams
76Kr 5105 pps
74Kr 104 pps
4.7 MeV/u
[24°, 55°] [55°, 74°] [67°, 97°] [97°, 145°]
74Kr
Shape coexistence in light Krypton isotopes
Coulomb excitation of 74,76Kr
78Kr
68.5 MeV/u
1012 pps
74Kr
4.7 MeV/u
104 pps
ECRIS
SPIRAL
target
CIME
78Kr source
CSS1
CSS2
Shape coexistence in light Krypton isotopes
Quadrupole moments
24
.
0
23
.
0
53
.
0 



s
Q
4
.
0
2
.
0
8
.
0 



s
Q
3
.
0
5
.
0
3
.
1 



s
Q
21
.
0
17
.
0
24
.
0 



s
Q
9
.
0
3
.
0
3
.
0 



s
Q
)
2
(
)
4
(
1
1




I
I
Fit matrix elements
(transitional and diagonal)
to reproduce experimental
-ray yields (as function of )
 14 B(E2) values
 5 quadrupole moments
E. Clément et al., PRC 75, 054313 (2007)
first reorientation measurement
with radioactive beam
SPIRAL1, GANIL (France), 2005
prolate oblate
Qs<0
prolate
Qs>0
oblate
experimental B(E2;) [e2fm4]
Comparison with ‘beyond-mean-field’ theory
K=2
 vibration
E. Clément et al.,
PRC 75, 054313 (2007)
GCM (GOA) calculation
q0, q2: triaxial deformation
Gogny D1S
M. Girod et al.
prolate oblate
GCM calculation
axial deformation
Skyrme SLy6
M. Bender et al.
PRC 74, 024312 (2006)
Extreme shapes and intruder orbitals
single-particle
energy
(Woods-Saxon)
quadrupole deformation
ND
235U
SD
152Dy
Z=48
HD
108Cd
p i13/2
 (N+1) intruder
 normal deformed, e.g. 235U
 (N+2) super-intruder
 Superdeformation, e.g. 152Dy, 80Zr
 (N+3) hyper-intruder
 Hyperdeformation in 108Cd, ?
N+2 shell
N+3 shell
N shell
N+1 shell
Fermi level
Energy
Deformation
The quest for high-spin superdeformation: 152Dy
 first discrete superdeformed band
 energy spacing: E = 47 keV
TESSA3 (12 detectors), Daresbury (UK)
P. Twin et al., Phys. Rev. Lett. 57, 811 (1986)
TESSA Ge array
Extracted moment of inertia
0+
2+
4+
6+
8+
even-even
)
1
(
2
)
(
2


 J
J
J
E

20 years later
Argonne National Lab.
Gammasphere
108 Ge detectors
T. Lauritsen et al., Phys. Rev. Lett. 88, 042501 (2002)
The quest for high-spin superdeformation: 152Dy
 Properties of the superdeformed band firmly established
Pushing the limits:
The quest for nuclear hyperdeformation
Hyperdeformation favored at high-spin
 Competition with fission
Fission barrier vs. High spin
stable beam
n-rich beam
 Need for intense neutron-rich beams
 Spiral2 : intense Kr and Sn neutron-rich beams
The AGATA germanium array
• 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters
• Digital electronics and sophisticated signal processing algorithms (PSA)
• Operation of Ge detectors in position sensitive mode  -ray tracking
> Efficiency ~ 40 %
Huge gain in γγ, γγγ, … efficiency
> Cristal rate up to 50 kHz
 Allow larger beam intensity
http://www-w2k.gsi.de/agata/
New generation gamma-detection array
based on the tracking method
Existence and structure
of heavy elements
208Pb
238U
~4.5 109 y
Limits of stability ?
Shell structure ?
Next magic number ?
Chart from http://www.nndc.bnl.gov/chart/
Synthesis of heavy elements in the universe
B. Pfeiffer et al., NPA (2001)
Cassiopea A supernova
Why SHE do not exist on earth ?
1- not stable
2- not formed during the r-process
Upper limit of stability : positron emission
Nuclei for Z larger than 173 become unstable against positron emission.
The most deeply bound electrons from the 1s1/2 shell reach an energy of -511 keV
W. Pieper, W. Greiner Z. Phys. A 218 (1968) 327
J. Reinhardt et al, Z. Phys. A 303 (1981) 173
Limits of stability : fission
• B(A,Z) = av A volume – nuclear attractive force
- as A2/3 less binding at the surface
- ac Z2/A1/3 Coulomb – proton repulsion
- aa (A-2Z)2/A asymmetry
+δ A-1/3 pairing
R a
b
V= 4/3pR3
S=4pR2
a=R(1+)
b=R(1+)-1/2
V=4/3pab2
S=4pR2(1+2/52+…)

  1
b2
a2
Surface prefers spherical nuclei  Coulomb favours deformation
If BE(ε) -BE(ε=0)> 0: gain in energy with deformation  fission
Fission barrier – liquid drop
Deformation β
Liquid
drop
energy
(MeV/A)
Limits of stability from liquid drop model
Stability = balance
between surface and coulomb
• Fissility parameter
x = Ecoulomb/ 2 Esurface
• ~ 1/50 Z2 / A
• scaling of the fission barrier
• x > 0.8 : no survival
• Possible definitions of SHE :
No macroscopic fission barrier
Bf < 1 MeV
x > 0.8
State of the art
Superheavy elements synthesized in laboratory
Shell effects balance fission and
are responsible for the existence of superheavies!
Superheavy elements Z 104
H
1
Li
3
Be
4
Na
11
Mg
12
Fr
87
Ra
88
119 120
K
19
Ca
20
Rb
37
Sr
38
Cs
55
Ba
56
Sc
21
Ti
22
Y
39
Zr
40
La
57
Hf
72
V
23
Cr
24
Nb
41
Mo
42
Ta
73
W
74
Mn
25
Fe
26
Tc
43
Ru
44
Re
75
Os
76
Co
27
Ni
28
Rh
45
Pd
46
Ir
77
Pt
78
Cu
29
Zn
30
Ag
47
Cd
48
Au
79
Hg
80
Ds Rg 112
Ga
31
Ge
32
In
49
Sn
50
Tl
81
Pb
82
113 114 115
As
33
Se
34
Sb
51
Te
52
Bi
83
Po
84
Br
35
Kr
36
I
53
Xe
54
At
85
Rn
86
116 117 118
F
9
Ne
10
Cl
17
Ar
18
N
7
O
8
P
15
S
16
B
5
C
6
Al
13
Si
14
He
2
Ce
58
Th
90
Pr
59
Pa
91
Nd
60
U
92
Pm
61
Np
93
Sm
62
Pu
94
Eu
63
Am
95
Gd
64
Cm
96
Tb
65
Bk
97
Dy
66
Cf
98
Ho
67
Es
99
Er
68
Fm
100
Tm
69
Md
101
Yb
70
No
102
Lu
71
Lr
103
Lanthanides
Actinides
Ac
89
Rf
104
Db
105
Sg
106
Bh
107
Hs
108
Mt
109 110 111
Point of view of chemist :
Actinides 90  Z  103
Transactinides 104  Z  121 (?)
Arbitrary point of view :
Superheavies: existence due to shell effects
Cn (2010)
copernicium
Chemist point of view
238U
~4.5 109 y
238U
Peninsula vs island of stability
Deformed 254No, 270Hs
Spherical 298114
LDM
LDM
LDM
LDM
LDM
LDM
162
184
152
M. Bender et al . PL B515 (2001) 42
Z N
W.S 114 184
HFB 126 184
RMF 120 172
Note 1 :Up to 208Pb : proton and neutron magic numbers identical.
Note 2 : Models rely on extrapolations –parameters are adjusted on
known cases
Modern-theory predictions
Theoretical challenges
Level density increases with A, Z
M.
Bender
et
al.,
Phys.
Lett.
B
515
(2001)
42
132Sn :
Large gap
Super-heavies :
Gap function of models
and not marked
Why is it so difficult to get information on SHE?
times needed to observe on
average 1 event
present sensitivity:
limit  1 pbarn
beam dose:
1.51018 projectiles
10 days
1 minute
1 hour
1 day
1 second
known
CN
277112
273110
269Hs
265Sg
261Rf
257No
11.45 MeV
280 s
11.08 MeV
110  s
9.23 MeV
19.7 s
4.60 MeV (escape)
7.4 s
8.52 MeV
4.7 s
253Fm
8.34 MeV
15.0 s
Date: 09-Feb-1996
Time: 22:37 h
277112
70Zn 208Pb 277112
n
kinematic separation
in flight identification
by a-a correlations
to known nuclides
Synthesis and Identification of SHE
JINR/FLNR
Dubna, Russia
GSI
State-of-the-art worldwhile
294118: Yu. Oganessian et al., J. Phys. G R165 (2007)
294117: Yu. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)
RIKEN
Tokyo, Japan
Spectroscopy of Transfermium elements
Access to high j deformed orbitals :
probe of higher lying spherical orbitals
R.-D. Herzberg et al., Nature 442, 896-899 (2006)
S.K. Tandel et al., PRL 97, 082502 (2006)
(courtesy of P.-H. Hennen)
Prompt and/or decay spectroscopy
M Block et al., Nature 463, 785-788 (2010)
Cyclotron resonance curve of 253No2.
Bridging the gap from heavies to superheavies
253,254,255No
mass measurement
The S3 spectrometer at SPIRAL2
A spectrometer for the high intensity stable ion beams of SPIRAL2 (from 2012)
Isotopic exploration
40-48Ca+238U275-283112+3,4n
S3 (I=20pµA)  40evt/week/pb
New elements
54Cr+248Cm299120+3n
S3 (I=10pµA)
 1evt/month@σest~0.01pb
?
Closed-shell deformed nucleus ???
40Ar+238U274Ds (+4n)  270Hs + α
S3 (I=50pµA) 190evt/week@σth=2pb
Summary
 superheavy elements exist only because of shell effects
 theory predicts deformed + spherical shell gaps
 next proton magic number still to be discovered
 very low production cross sections
 direct production and undirect experimental techniques
 SPIRAL2 and S3 spectrometer
shape coexistence: interplay between shell effects and macroscopic properties
essential to constrain collective nuclear models
 Very large deformations encoutered at high spin
 superdeformation evidenced / hyperdeformation still to be discovered
 AGATA high-resolution germanium array
 most nuclei are deformed
 prolate quadrupole deformation are the most common
Key questions and shell effects in nuclei
• What is the shape of a nucleus, how large can be nuclear deformation?
hyperdeformation, shape-coexistence
• Is there any island of stability for superheavy elements?
Next proton magic number, stabilizing deformed shell gaps
• Next-generation facilities and innovative detectors worldwhile built this decade
• How does shell structure evolve away from stability?
magic numbers, shell-model, spin-orbit, tensor
• How do nuclear clusters and molecules form?
few-body systems, halos, clusters

More Related Content

Similar to Shell effects and shapes of atomic nuclei

Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Daniel Riley
 
F5 c5 radioactivity
F5 c5 radioactivityF5 c5 radioactivity
F5 c5 radioactivityCammry Anna
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyAntônio Arapiraca
 
Simulating Membrane Channels, E. Tajkhorshid, Part 2
Simulating Membrane Channels, E. Tajkhorshid, Part 2Simulating Membrane Channels, E. Tajkhorshid, Part 2
Simulating Membrane Channels, E. Tajkhorshid, Part 2TCBG
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015Swayandipta Dey
 
Charla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOECharla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOETeresaKurtukianNieto
 
Restrained refinement using Reflex
Restrained refinement using ReflexRestrained refinement using Reflex
Restrained refinement using Reflexzavalij
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+niba50
 
Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction ssuser3eb6b21
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclearblachman
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 

Similar to Shell effects and shapes of atomic nuclei (20)

Introduction to
Introduction to Introduction to
Introduction to
 
Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112
 
F5 c5 radioactivity
F5 c5 radioactivityF5 c5 radioactivity
F5 c5 radioactivity
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 
Simulating Membrane Channels, E. Tajkhorshid, Part 2
Simulating Membrane Channels, E. Tajkhorshid, Part 2Simulating Membrane Channels, E. Tajkhorshid, Part 2
Simulating Membrane Channels, E. Tajkhorshid, Part 2
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
11 Nuclear
11 Nuclear11 Nuclear
11 Nuclear
 
Charla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOECharla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOE
 
Restrained refinement using Reflex
Restrained refinement using ReflexRestrained refinement using Reflex
Restrained refinement using Reflex
 
Nucleating Nematic Droplets
Nucleating Nematic DropletsNucleating Nematic Droplets
Nucleating Nematic Droplets
 
final_exam
final_examfinal_exam
final_exam
 
OSAPS Poster
OSAPS PosterOSAPS Poster
OSAPS Poster
 
Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+Uv Vis Calculated Of Mv2+ And Mv+
Uv Vis Calculated Of Mv2+ And Mv+
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction
 
Laser drivenplasma
Laser drivenplasmaLaser drivenplasma
Laser drivenplasma
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 
Xrd presentation
Xrd presentationXrd presentation
Xrd presentation
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 

Recently uploaded

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Recently uploaded (20)

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

Shell effects and shapes of atomic nuclei

  • 1. Shell effects in atomic nuclei Part 2: shapes and superheavy elements Laurent Gaudefroy1, Alexandre Obertelli2 1CEA DAM, DIF, France 2CEA Saclay, IRFU, France
  • 2. protons neutrons 82 50 28 28 50 82 20 8 2 2 8 20 126 Changes in the nuclear shell structure Lecture (part 1) given by Laurent Gaudefroy
  • 3. Shapes of atomic nuclei protons neutrons 82 50 28 28 50 82 20 8 2 2 8 20 126 The vast majority of all nuclei shows a non-spherical mass distribution Z, N = magic numbers Closed shell = spherical shape Deformed Spherical 8 20 28 50 2 sngle particle enegies elongation Nilsson diagram Oblate Prolate
  • 4. Nuclear structure description framework [Addendum to yesterday’s lecture] 1- Shell-model: • nucleus described in the laboratory frame • the nucleus is described as a superposition of spherical configurations • « intrinsic deformation » is implicitely contained in correlations 2- Mean-field like description: • nucleus described in its intrinsic frame • « angular momentum » is not a good quantum number • intrinsic deformation is explicit In this lecture, the deformed mean-field approach will be followed
  • 5. Nilsson diagram nlj=1f7/2 Kp=1/2- Kp=3/2- Kp=5/2- Kp=7/2- b 0 • core + single particle • short range & attractive int. • Pauli : orbit repulsion
  • 6. Shapes and “deformation” parameters                      ) , ( ) ( 1 ) ( 0 Y t a R t R quadrupole octupole hexadecapole  b cos 2 20  a  b sin 2 1 2 2 2 22    a a oblate non-collective prolate collective b2 : elongation  prolate non-collective Lund convention spherical oblate collective : triaxiality Generic nuclear shapes can be described by a development of spherical harmonics a:deformation parameters Tetrahedral Y32 deformation Dynamic vibration Static  rotation Triaxial Y22 deformation
  • 7. Shapes and “deformation” from experiment quadrupole  Quadrupole moments via low-energy Coulomb excitation  Reorientation effect projectile target Intrinsic quadrupole moment IK E M IK eQ ) 2 ( 5 16 2 / 1 0        p Jp=0+ Jp=2+ Jp=4+ Jp=6+ Jp=8+ even-even ) 1 ( 2 ) ( 2    J J I E  ) ( 1 ) 2 ( ) 2 ( ) ( ) ( ) 1 ( J E J J J E J E J E J E J                 Moment of inertia via rotational-band spectroscopy / model dependent Coulomb field * excitation de-excitation photon
  • 8. M. Girod, CEA N=Z Oblate deformed nuclei are far less abundant than prolate nuclei Shape coexistence possible for certain regions of N & Z Prolate Quadrupole deformation of nuclei Oblate Pb & Bi N~Z Fission fragments N~28 n-rich actinides
  • 9. Shape coexistence oblate prolate 74Kr b  M. Girod M. Bender et al., PRC 74, 024312 (2006) 0+ 0+ 2+ 2+ 4+ 4+ 6+ 6+ 8+ Configuration mixing:             obl pro 2 obl pro 1 0 cos 0 sin 0 0 sin 0 cos 0     electric monopole (E0) transition ) ( cos sin 0 ) 0 ( 0 2 obl 2 pro 1 2 b b       E M
  • 10. Shape coexistence in light Krypton isotopes 0+ 0+ 2+ 2+ 4+ 4+ 6+ 6+ 8+
  • 11. SPIRAL beams 76Kr 5105 pps 74Kr 104 pps 4.7 MeV/u [24°, 55°] [55°, 74°] [67°, 97°] [97°, 145°] 74Kr Shape coexistence in light Krypton isotopes Coulomb excitation of 74,76Kr 78Kr 68.5 MeV/u 1012 pps 74Kr 4.7 MeV/u 104 pps ECRIS SPIRAL target CIME 78Kr source CSS1 CSS2
  • 12. Shape coexistence in light Krypton isotopes Quadrupole moments 24 . 0 23 . 0 53 . 0     s Q 4 . 0 2 . 0 8 . 0     s Q 3 . 0 5 . 0 3 . 1     s Q 21 . 0 17 . 0 24 . 0     s Q 9 . 0 3 . 0 3 . 0     s Q ) 2 ( ) 4 ( 1 1     I I Fit matrix elements (transitional and diagonal) to reproduce experimental -ray yields (as function of )  14 B(E2) values  5 quadrupole moments E. Clément et al., PRC 75, 054313 (2007) first reorientation measurement with radioactive beam SPIRAL1, GANIL (France), 2005
  • 13. prolate oblate Qs<0 prolate Qs>0 oblate experimental B(E2;) [e2fm4] Comparison with ‘beyond-mean-field’ theory K=2  vibration E. Clément et al., PRC 75, 054313 (2007) GCM (GOA) calculation q0, q2: triaxial deformation Gogny D1S M. Girod et al. prolate oblate GCM calculation axial deformation Skyrme SLy6 M. Bender et al. PRC 74, 024312 (2006)
  • 14. Extreme shapes and intruder orbitals single-particle energy (Woods-Saxon) quadrupole deformation ND 235U SD 152Dy Z=48 HD 108Cd p i13/2  (N+1) intruder  normal deformed, e.g. 235U  (N+2) super-intruder  Superdeformation, e.g. 152Dy, 80Zr  (N+3) hyper-intruder  Hyperdeformation in 108Cd, ? N+2 shell N+3 shell N shell N+1 shell Fermi level Energy Deformation
  • 15. The quest for high-spin superdeformation: 152Dy  first discrete superdeformed band  energy spacing: E = 47 keV TESSA3 (12 detectors), Daresbury (UK) P. Twin et al., Phys. Rev. Lett. 57, 811 (1986) TESSA Ge array Extracted moment of inertia 0+ 2+ 4+ 6+ 8+ even-even ) 1 ( 2 ) ( 2    J J J E 
  • 16. 20 years later Argonne National Lab. Gammasphere 108 Ge detectors T. Lauritsen et al., Phys. Rev. Lett. 88, 042501 (2002) The quest for high-spin superdeformation: 152Dy  Properties of the superdeformed band firmly established
  • 17. Pushing the limits: The quest for nuclear hyperdeformation Hyperdeformation favored at high-spin  Competition with fission Fission barrier vs. High spin stable beam n-rich beam  Need for intense neutron-rich beams  Spiral2 : intense Kr and Sn neutron-rich beams
  • 18. The AGATA germanium array • 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters • Digital electronics and sophisticated signal processing algorithms (PSA) • Operation of Ge detectors in position sensitive mode  -ray tracking > Efficiency ~ 40 % Huge gain in γγ, γγγ, … efficiency > Cristal rate up to 50 kHz  Allow larger beam intensity http://www-w2k.gsi.de/agata/ New generation gamma-detection array based on the tracking method
  • 19. Existence and structure of heavy elements 208Pb 238U ~4.5 109 y Limits of stability ? Shell structure ? Next magic number ? Chart from http://www.nndc.bnl.gov/chart/
  • 20. Synthesis of heavy elements in the universe B. Pfeiffer et al., NPA (2001) Cassiopea A supernova Why SHE do not exist on earth ? 1- not stable 2- not formed during the r-process
  • 21. Upper limit of stability : positron emission Nuclei for Z larger than 173 become unstable against positron emission. The most deeply bound electrons from the 1s1/2 shell reach an energy of -511 keV W. Pieper, W. Greiner Z. Phys. A 218 (1968) 327 J. Reinhardt et al, Z. Phys. A 303 (1981) 173
  • 22. Limits of stability : fission • B(A,Z) = av A volume – nuclear attractive force - as A2/3 less binding at the surface - ac Z2/A1/3 Coulomb – proton repulsion - aa (A-2Z)2/A asymmetry +δ A-1/3 pairing R a b V= 4/3pR3 S=4pR2 a=R(1+) b=R(1+)-1/2 V=4/3pab2 S=4pR2(1+2/52+…)    1 b2 a2 Surface prefers spherical nuclei  Coulomb favours deformation If BE(ε) -BE(ε=0)> 0: gain in energy with deformation  fission
  • 23. Fission barrier – liquid drop Deformation β Liquid drop energy (MeV/A)
  • 24. Limits of stability from liquid drop model Stability = balance between surface and coulomb • Fissility parameter x = Ecoulomb/ 2 Esurface • ~ 1/50 Z2 / A • scaling of the fission barrier • x > 0.8 : no survival • Possible definitions of SHE : No macroscopic fission barrier Bf < 1 MeV x > 0.8
  • 25. State of the art Superheavy elements synthesized in laboratory Shell effects balance fission and are responsible for the existence of superheavies! Superheavy elements Z 104
  • 26. H 1 Li 3 Be 4 Na 11 Mg 12 Fr 87 Ra 88 119 120 K 19 Ca 20 Rb 37 Sr 38 Cs 55 Ba 56 Sc 21 Ti 22 Y 39 Zr 40 La 57 Hf 72 V 23 Cr 24 Nb 41 Mo 42 Ta 73 W 74 Mn 25 Fe 26 Tc 43 Ru 44 Re 75 Os 76 Co 27 Ni 28 Rh 45 Pd 46 Ir 77 Pt 78 Cu 29 Zn 30 Ag 47 Cd 48 Au 79 Hg 80 Ds Rg 112 Ga 31 Ge 32 In 49 Sn 50 Tl 81 Pb 82 113 114 115 As 33 Se 34 Sb 51 Te 52 Bi 83 Po 84 Br 35 Kr 36 I 53 Xe 54 At 85 Rn 86 116 117 118 F 9 Ne 10 Cl 17 Ar 18 N 7 O 8 P 15 S 16 B 5 C 6 Al 13 Si 14 He 2 Ce 58 Th 90 Pr 59 Pa 91 Nd 60 U 92 Pm 61 Np 93 Sm 62 Pu 94 Eu 63 Am 95 Gd 64 Cm 96 Tb 65 Bk 97 Dy 66 Cf 98 Ho 67 Es 99 Er 68 Fm 100 Tm 69 Md 101 Yb 70 No 102 Lu 71 Lr 103 Lanthanides Actinides Ac 89 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 110 111 Point of view of chemist : Actinides 90  Z  103 Transactinides 104  Z  121 (?) Arbitrary point of view : Superheavies: existence due to shell effects Cn (2010) copernicium Chemist point of view
  • 27. 238U ~4.5 109 y 238U Peninsula vs island of stability Deformed 254No, 270Hs Spherical 298114 LDM LDM LDM LDM LDM LDM 162 184 152
  • 28. M. Bender et al . PL B515 (2001) 42 Z N W.S 114 184 HFB 126 184 RMF 120 172 Note 1 :Up to 208Pb : proton and neutron magic numbers identical. Note 2 : Models rely on extrapolations –parameters are adjusted on known cases Modern-theory predictions
  • 29. Theoretical challenges Level density increases with A, Z M. Bender et al., Phys. Lett. B 515 (2001) 42 132Sn : Large gap Super-heavies : Gap function of models and not marked
  • 30. Why is it so difficult to get information on SHE? times needed to observe on average 1 event present sensitivity: limit  1 pbarn beam dose: 1.51018 projectiles 10 days 1 minute 1 hour 1 day 1 second
  • 31. known CN 277112 273110 269Hs 265Sg 261Rf 257No 11.45 MeV 280 s 11.08 MeV 110  s 9.23 MeV 19.7 s 4.60 MeV (escape) 7.4 s 8.52 MeV 4.7 s 253Fm 8.34 MeV 15.0 s Date: 09-Feb-1996 Time: 22:37 h 277112 70Zn 208Pb 277112 n kinematic separation in flight identification by a-a correlations to known nuclides Synthesis and Identification of SHE
  • 32. JINR/FLNR Dubna, Russia GSI State-of-the-art worldwhile 294118: Yu. Oganessian et al., J. Phys. G R165 (2007) 294117: Yu. Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010) RIKEN Tokyo, Japan
  • 33. Spectroscopy of Transfermium elements Access to high j deformed orbitals : probe of higher lying spherical orbitals R.-D. Herzberg et al., Nature 442, 896-899 (2006) S.K. Tandel et al., PRL 97, 082502 (2006) (courtesy of P.-H. Hennen) Prompt and/or decay spectroscopy
  • 34. M Block et al., Nature 463, 785-788 (2010) Cyclotron resonance curve of 253No2. Bridging the gap from heavies to superheavies 253,254,255No mass measurement
  • 35. The S3 spectrometer at SPIRAL2 A spectrometer for the high intensity stable ion beams of SPIRAL2 (from 2012) Isotopic exploration 40-48Ca+238U275-283112+3,4n S3 (I=20pµA)  40evt/week/pb New elements 54Cr+248Cm299120+3n S3 (I=10pµA)  1evt/month@σest~0.01pb ? Closed-shell deformed nucleus ??? 40Ar+238U274Ds (+4n)  270Hs + α S3 (I=50pµA) 190evt/week@σth=2pb
  • 36. Summary  superheavy elements exist only because of shell effects  theory predicts deformed + spherical shell gaps  next proton magic number still to be discovered  very low production cross sections  direct production and undirect experimental techniques  SPIRAL2 and S3 spectrometer shape coexistence: interplay between shell effects and macroscopic properties essential to constrain collective nuclear models  Very large deformations encoutered at high spin  superdeformation evidenced / hyperdeformation still to be discovered  AGATA high-resolution germanium array  most nuclei are deformed  prolate quadrupole deformation are the most common
  • 37. Key questions and shell effects in nuclei • What is the shape of a nucleus, how large can be nuclear deformation? hyperdeformation, shape-coexistence • Is there any island of stability for superheavy elements? Next proton magic number, stabilizing deformed shell gaps • Next-generation facilities and innovative detectors worldwhile built this decade • How does shell structure evolve away from stability? magic numbers, shell-model, spin-orbit, tensor • How do nuclear clusters and molecules form? few-body systems, halos, clusters