SlideShare a Scribd company logo
1 of 32
Download to read offline
EMETTEUR - NOM DE LA PRESENTATION 00 MOIS 2011-
New Tools Team
Mehdi Lamee
Olorato Mosiane
Corinne Vassallo
Chedy Raissi
Mentor: Michael W. Busch
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Team New Tools
Mehdi Lamee
Phd candidate
University of Minnesota
Olorato Mosiane
Msc
North West University,
South Africa
Corinne Vassallo
Phd Candiate
University of Texas, Austin
Chedy Raïssi
Research Scientist
INRIA, France
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Motivation
• Asteroid Grand Challenge
-Find all asteroid threats to human populations and know what to do about them
Detect
Track
Characterize
Mitigate
Communicate
• Global effort
-Innovative solutions
-Accelerate the completion of the survey of main belt and potentially hazardous
asteroids
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Toutatis Itokawa Golevka
Motivation: Asteroid shape
modeling
• Planetary scientists need precise shape models and extra parameters to
compute precise orbits and plan safe robotic landings
Credits: Ian Webster,
http://www.asterank.com
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Existing Modeling Process
• Radar Imaging is a powerful technique to obtain information about solar system
bodies
- SHAPE modeling software uses radar and optical light curve observations to
produce 3D model of asteroids (Inverse problem).
SHAPE
inversion
software
1992UY4, Nick Duong.
?
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
SHAPE Software: An Overview
Generate
3D model
from radar
images
Radar
images
Project into
simulated radar
images
Compute
residuals
Vary Param
eters
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Motivation
• Existing Modeling Process: 1992 UY4
-processed by Nick Duong (REU Student @SETI)
Form
at
observation
files
1
day
Fitbasicm
odel
1
day
M
anualgrid
search
3
days
Fitspherical
harm
onicsm
odel
3
days
Fitting
vertices
m
odels
3
weeks
4 weeks!
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Context
• We wish to improve the speed and automation of asteroid shape modeling
-Two of the main time intensive steps:
1) The human-controlled manual grid search of spin axis orientations
2) Reliable and fast 3D shape generation (pre-process for SHAPE)
How to improve
the speed and
automation?
Spin axis
search
Fast 3D
shape
generation
Deep
Generative
models
Bayesian
Optimization
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Motivation
• Existing Modeling Process: 1992 UY4
-processed by Nick Duong (REU Student @SETI)
Form
at
observation
files
1
day
Fitbasicm
odel
1
day
M
anualgrid
search
3
days
Fitspherical
harm
onicsm
odel
3
days
Fitting
vertices
m
odels
3
weeks
{
Bayesian
Optimization
A few hours
{
Deep
Generative
Models
Inference: few seconds
1.5 week!
Refine
com
plex
vertexm
odel
1
week
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Context
How to improve
the speed and
automation?
Spin axis
search
Fast 3D
shape
generation
Deep
Generative
models
Bayesian
Optimization
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Bayesian Optimization: What are we
trying to find?
β
λ
Latitude
Longitude
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Bayesian Optimization
• Automate and reduce search area
• Global optimization rather than local
• Deals with unknown non-convex functions with no derivatives
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Bayesian Optimization
1. Start with some assumptions (prior) for the distribution of model parameters

2. Use the observations to predict a new distribution for the model parameters
(posterior)

3. Decide where to sample next in the parameter space to have the maximum
improvement in optimization 

Acquisition function

4. Posterior becomes the new prior for the next iteration
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Bayesian Optimization
https://github.com/fmfn/BayesianOptimization
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Bayesian Optimization
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Results
• Teams’ Results: 2008 EV5
-Runtime: ~24 hours
- Best parameters
Longitude: 255º
Latitude: -75º
χ2: ~1.641
-Michael Busch parameters:
~3 days
Longitude: 270º
Latitude: -84º
χ2: ~1.678
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Results
• Teams’ Results: 1992 UY4
-Runtime: ~6 hours
- Best parameters
Longitude: 0º
Latitude: 180º
χ2: ~1.43
-Nick Duong’s parameters:
~3 days
Longitude: 15º
Latitude: 170º
χ2: ~1.60
1992UY4
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Results
• Teams’ Results: 2000 RS11
-Runtime: ~4 hours
-Best parameters:
Longitude: 270º
Latitude: 45º
χ2: ~0.74463
-Kaley Brauer parameters:
~3 days


Longitude: 245º
Latitude: 60º
χ2: ~0.745825
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Context
How to improve
the speed and
automation?
Spin axis
search
Fast 3D
shape
generation
Deep
Generative
models
Bayesian
Optimization
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• What is a deep learning model?
-A directed acyclic graph
Multiple processing units (nodes of the graph) with linear / non-linear transformations
-Model high-level abstractions of the data through processing layers













cs231n, Andrej Karpathy
• How to force the model to discover and efficiently internalize the essence 

of the data in order to generate it?
-Use generative models
It works (somehow) for 2D images.

Unsupervised Representation Learning
with Deep Convolutional Generative
Adversarial Networks
[Radford et al, 2015]
Not real images!
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Reliable and fast 3D shape
generation
• Our idea:
-Develop deep generative models to output 3D asteroid shapes
-Recover these structures from radar images via probabilistic inference
-Recent work from Google DeepMind
Unsupervised Learning of 3D Structure from Images, [Rezende et al. 2016.]
-Using Voxels representation, Variational Auto-Encoder
-3D shape as output
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Reliable and fast 3D shape generation
• BUT:
-Deep models (deep neural networks)
Need large set of data to represent the vast amount of asteroid shapes and orbits
-Our dataset is limited to asteroids that have been observed (light curves and
radar imaging)
Clearly not enough (less than 1650 models LC + radar!)

• First step in our work
-Create synthetic data by matching previously modeled asteroids with orbits
from different asteroids
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Dataset Generation: Process
• Acquire asteroid shapes:
-1620 in total from JPL echo database (radar) and DAMIT database (light curve)
-Transform to voxels
• Pull ephemeris from JPL’s Horizons: viewed only from Arecibo Observatory
More than 60 different orbits 

• Create fake observation files based on the orbits:
-1620 different shapes available
-Use different rotation angles 

• Generation of synthetic radar images
-Noise addition
• Total synthetic radar images: ~546000
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• What is the general idea?










• We decided to train a Variational Auto-encoder
Training as an autoencoder
pθ (x z)pθ (z x)
Training use maximum likelihood
of p(x) given the training data
OpenAI blog
Latent variables
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• Training use maximum likelihood of p(x) given the training data
-Problem: intractable posterior distribution p_θ (z | x)
-Solution: sampling (MCMC) or approximate p(z|x) with q(z|x)
Training as an autoencoder
pθ (x z)pθ (z x)
Training use maximum likelihood
of p(x) given the training data
Problem:
Cannot be calculated:
Solution:
•  MCMC (too costly)
•  Approximate p(z|x) with q(z|x)
pθ (z x)
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
{
Encoder {Decoder
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• Examples for 2D images
Variational auto encoders (idea of low dim manifold)
Kingma and Welling. “Auto-Encoding Variational Bayes, International Conference on Learning Representations.” ICLR, 2014. arXiv:1312.6114
Examples of successful unfolding (2D àR28x28, R20x26)
Frey Face dataset
2000 pictures of Brendan
Frey (20x26)
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• Asteroids generation
-Using 3D Convolutional neural networks
Roundness
Elongation
Condition the generation with
Radar
image
Get plausible 3D
shapes for asteroids!
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
The complete auto-encoder
qϕ (x z) pθ (x z)
Learning the parameters φ and θ via backpropagation
Determining the loss function
2D Convolutional NN + GRU
3D Convolutional VAE
At training timeAt inference time
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
3D Deep Generative Models
• Using Keras framework with Theano backend
-2 Nvidia TitanX used for training
• Preliminary results:



Input:
Output:
Real shape:
Object 2002 CE26 alphaObject 1992 SK
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Next Steps
• Bayesian Optimisation 

-New metrics instead of Chi Square
Having a minimum Chi square does not guarantee a physically accurate shape
Work with Naidu Shantanu (NASA JPL) and Michael Busch (SETI)

-Investigate bayesian optimisation with spherical harmonics model
-Develop a full web user interface
Simply upload the radar images and metadata



• Deep Generative Networks
-Try with different generative models
DCGAN (Deep Convolutional Generative Adversarial Networks) [Radford et al, 2015]
PixelRNN (Pixel Recurrent Neural Networks) [Oord et al, 2016]



-Add more parameters in the input (ephemeris, baud length, bandwidth)
00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
Next Steps
• Project sustainability

-Push the code and documentation as an open source project over
Scientific packaging
-Open Data: 

Share the generated data (synthetic radar images and shapes)

Increase visibility of the project through a challenge?
Successful data science challenge: https://www.kaggle.com/c/higgs-boson)
EMETTEUR - NOM DE LA PRESENTATION 00 MOIS 2011-
CONTACT INFO
D E F E N S E
ACCELERATOR
PLANETARY
D E V E L O P M E N T
FRONTIER
LAB
THANK YOU

More Related Content

Similar to Final_Talk_Tool_Team

Agile Systems Engineering & Agile at SKA Scale
Agile Systems Engineering & Agile at SKA ScaleAgile Systems Engineering & Agile at SKA Scale
Agile Systems Engineering & Agile at SKA ScaleJoint ALMA Observatory
 
Developing Computational Skills in the Sciences with Matlab Webinar 2017
Developing Computational Skills in the Sciences with Matlab Webinar 2017Developing Computational Skills in the Sciences with Matlab Webinar 2017
Developing Computational Skills in the Sciences with Matlab Webinar 2017SERC at Carleton College
 
[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...NAVER D2
 
The John Henry lens design challenge
The John Henry lens design challengeThe John Henry lens design challenge
The John Henry lens design challengeDave Shafer
 
Quantum Gaussian Processes - Gawel Kus
Quantum Gaussian Processes - Gawel KusQuantum Gaussian Processes - Gawel Kus
Quantum Gaussian Processes - Gawel KusAdvanced-Concepts-Team
 
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler..."Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...Dataconomy Media
 
Lecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingLecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingcairo university
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])Masaya Kaneko
 
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler..."Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...Dataconomy Media
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distddm314
 
Reverse Engineering for additive manufacturing
Reverse Engineering for additive manufacturingReverse Engineering for additive manufacturing
Reverse Engineering for additive manufacturingAchmadRifaie4
 
Techniques for effective and efficient fire detection from social media images
Techniques for effective and efficient fire detection from social media imagesTechniques for effective and efficient fire detection from social media images
Techniques for effective and efficient fire detection from social media imagesUniversidade de São Paulo
 
Wannier tutorial
Wannier tutorialWannier tutorial
Wannier tutorialsairajdream
 
Software Testing:
 A Research Travelogue 
(2000–2014)
Software Testing:
 A Research Travelogue 
(2000–2014)Software Testing:
 A Research Travelogue 
(2000–2014)
Software Testing:
 A Research Travelogue 
(2000–2014)Alex Orso
 
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServer
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServerText Mining Applied to SQL Queries: a Case Study for SDSS SkyServer
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServerVitor Hirota Makiyama
 
Human Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesHuman Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesBarış Üstündağ
 
How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?Anubhav Jain
 

Similar to Final_Talk_Tool_Team (20)

Agile Systems Engineering & Agile at SKA Scale
Agile Systems Engineering & Agile at SKA ScaleAgile Systems Engineering & Agile at SKA Scale
Agile Systems Engineering & Agile at SKA Scale
 
Developing Computational Skills in the Sciences with Matlab Webinar 2017
Developing Computational Skills in the Sciences with Matlab Webinar 2017Developing Computational Skills in the Sciences with Matlab Webinar 2017
Developing Computational Skills in the Sciences with Matlab Webinar 2017
 
[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...
 
The John Henry lens design challenge
The John Henry lens design challengeThe John Henry lens design challenge
The John Henry lens design challenge
 
Step zhedong
Step zhedongStep zhedong
Step zhedong
 
Quantum Gaussian Processes - Gawel Kus
Quantum Gaussian Processes - Gawel KusQuantum Gaussian Processes - Gawel Kus
Quantum Gaussian Processes - Gawel Kus
 
Part2
Part2Part2
Part2
 
Engineering Careers in Astronomy
Engineering Careers in AstronomyEngineering Careers in Astronomy
Engineering Careers in Astronomy
 
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler..."Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
 
Lecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matchingLecture 6-computer vision features descriptors matching
Lecture 6-computer vision features descriptors matching
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
 
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler..."Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...
"Quantum clustering - physics inspired clustering algorithm", Sigalit Bechler...
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 dist
 
Reverse Engineering for additive manufacturing
Reverse Engineering for additive manufacturingReverse Engineering for additive manufacturing
Reverse Engineering for additive manufacturing
 
Techniques for effective and efficient fire detection from social media images
Techniques for effective and efficient fire detection from social media imagesTechniques for effective and efficient fire detection from social media images
Techniques for effective and efficient fire detection from social media images
 
Wannier tutorial
Wannier tutorialWannier tutorial
Wannier tutorial
 
Software Testing:
 A Research Travelogue 
(2000–2014)
Software Testing:
 A Research Travelogue 
(2000–2014)Software Testing:
 A Research Travelogue 
(2000–2014)
Software Testing:
 A Research Travelogue 
(2000–2014)
 
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServer
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServerText Mining Applied to SQL Queries: a Case Study for SDSS SkyServer
Text Mining Applied to SQL Queries: a Case Study for SDSS SkyServer
 
Human Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD FeaturesHuman Action Recognition Using 3D Joint Information and HOOFD Features
Human Action Recognition Using 3D Joint Information and HOOFD Features
 
How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?How might machine learning help advance solar PV research?
How might machine learning help advance solar PV research?
 

Final_Talk_Tool_Team

  • 1. EMETTEUR - NOM DE LA PRESENTATION 00 MOIS 2011- New Tools Team Mehdi Lamee Olorato Mosiane Corinne Vassallo Chedy Raissi Mentor: Michael W. Busch
  • 2. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Team New Tools Mehdi Lamee Phd candidate University of Minnesota Olorato Mosiane Msc North West University, South Africa Corinne Vassallo Phd Candiate University of Texas, Austin Chedy Raïssi Research Scientist INRIA, France
  • 3. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Motivation • Asteroid Grand Challenge -Find all asteroid threats to human populations and know what to do about them Detect Track Characterize Mitigate Communicate • Global effort -Innovative solutions -Accelerate the completion of the survey of main belt and potentially hazardous asteroids
  • 4. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Toutatis Itokawa Golevka Motivation: Asteroid shape modeling • Planetary scientists need precise shape models and extra parameters to compute precise orbits and plan safe robotic landings Credits: Ian Webster, http://www.asterank.com
  • 5. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Existing Modeling Process • Radar Imaging is a powerful technique to obtain information about solar system bodies - SHAPE modeling software uses radar and optical light curve observations to produce 3D model of asteroids (Inverse problem). SHAPE inversion software 1992UY4, Nick Duong. ?
  • 6. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB SHAPE Software: An Overview Generate 3D model from radar images Radar images Project into simulated radar images Compute residuals Vary Param eters
  • 7. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Motivation • Existing Modeling Process: 1992 UY4 -processed by Nick Duong (REU Student @SETI) Form at observation files 1 day Fitbasicm odel 1 day M anualgrid search 3 days Fitspherical harm onicsm odel 3 days Fitting vertices m odels 3 weeks 4 weeks!
  • 8. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Context • We wish to improve the speed and automation of asteroid shape modeling -Two of the main time intensive steps: 1) The human-controlled manual grid search of spin axis orientations 2) Reliable and fast 3D shape generation (pre-process for SHAPE) How to improve the speed and automation? Spin axis search Fast 3D shape generation Deep Generative models Bayesian Optimization
  • 9. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Motivation • Existing Modeling Process: 1992 UY4 -processed by Nick Duong (REU Student @SETI) Form at observation files 1 day Fitbasicm odel 1 day M anualgrid search 3 days Fitspherical harm onicsm odel 3 days Fitting vertices m odels 3 weeks { Bayesian Optimization A few hours { Deep Generative Models Inference: few seconds 1.5 week! Refine com plex vertexm odel 1 week
  • 10. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Context How to improve the speed and automation? Spin axis search Fast 3D shape generation Deep Generative models Bayesian Optimization
  • 11. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Bayesian Optimization: What are we trying to find? β λ Latitude Longitude
  • 12. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Bayesian Optimization • Automate and reduce search area • Global optimization rather than local • Deals with unknown non-convex functions with no derivatives
  • 13. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Bayesian Optimization 1. Start with some assumptions (prior) for the distribution of model parameters
 2. Use the observations to predict a new distribution for the model parameters (posterior)
 3. Decide where to sample next in the parameter space to have the maximum improvement in optimization 
 Acquisition function
 4. Posterior becomes the new prior for the next iteration
  • 14. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Bayesian Optimization https://github.com/fmfn/BayesianOptimization
  • 15. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Bayesian Optimization
  • 16. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Results • Teams’ Results: 2008 EV5 -Runtime: ~24 hours - Best parameters Longitude: 255º Latitude: -75º χ2: ~1.641 -Michael Busch parameters: ~3 days Longitude: 270º Latitude: -84º χ2: ~1.678
  • 17. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Results • Teams’ Results: 1992 UY4 -Runtime: ~6 hours - Best parameters Longitude: 0º Latitude: 180º χ2: ~1.43 -Nick Duong’s parameters: ~3 days Longitude: 15º Latitude: 170º χ2: ~1.60 1992UY4
  • 18. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Results • Teams’ Results: 2000 RS11 -Runtime: ~4 hours -Best parameters: Longitude: 270º Latitude: 45º χ2: ~0.74463 -Kaley Brauer parameters: ~3 days 
 Longitude: 245º Latitude: 60º χ2: ~0.745825
  • 19. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Context How to improve the speed and automation? Spin axis search Fast 3D shape generation Deep Generative models Bayesian Optimization
  • 20. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • What is a deep learning model? -A directed acyclic graph Multiple processing units (nodes of the graph) with linear / non-linear transformations -Model high-level abstractions of the data through processing layers
 
 
 
 
 
 
 cs231n, Andrej Karpathy • How to force the model to discover and efficiently internalize the essence 
 of the data in order to generate it? -Use generative models It works (somehow) for 2D images.
 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [Radford et al, 2015] Not real images!
  • 21. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Reliable and fast 3D shape generation • Our idea: -Develop deep generative models to output 3D asteroid shapes -Recover these structures from radar images via probabilistic inference -Recent work from Google DeepMind Unsupervised Learning of 3D Structure from Images, [Rezende et al. 2016.] -Using Voxels representation, Variational Auto-Encoder -3D shape as output
  • 22. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Reliable and fast 3D shape generation • BUT: -Deep models (deep neural networks) Need large set of data to represent the vast amount of asteroid shapes and orbits -Our dataset is limited to asteroids that have been observed (light curves and radar imaging) Clearly not enough (less than 1650 models LC + radar!)
 • First step in our work -Create synthetic data by matching previously modeled asteroids with orbits from different asteroids
  • 23. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Dataset Generation: Process • Acquire asteroid shapes: -1620 in total from JPL echo database (radar) and DAMIT database (light curve) -Transform to voxels • Pull ephemeris from JPL’s Horizons: viewed only from Arecibo Observatory More than 60 different orbits 
 • Create fake observation files based on the orbits: -1620 different shapes available -Use different rotation angles 
 • Generation of synthetic radar images -Noise addition • Total synthetic radar images: ~546000
  • 24. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • What is the general idea? 
 
 
 
 
 • We decided to train a Variational Auto-encoder Training as an autoencoder pθ (x z)pθ (z x) Training use maximum likelihood of p(x) given the training data OpenAI blog Latent variables
  • 25. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • Training use maximum likelihood of p(x) given the training data -Problem: intractable posterior distribution p_θ (z | x) -Solution: sampling (MCMC) or approximate p(z|x) with q(z|x) Training as an autoencoder pθ (x z)pθ (z x) Training use maximum likelihood of p(x) given the training data Problem: Cannot be calculated: Solution: •  MCMC (too costly) •  Approximate p(z|x) with q(z|x) pθ (z x) The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function { Encoder {Decoder
  • 26. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • Examples for 2D images Variational auto encoders (idea of low dim manifold) Kingma and Welling. “Auto-Encoding Variational Bayes, International Conference on Learning Representations.” ICLR, 2014. arXiv:1312.6114 Examples of successful unfolding (2D àR28x28, R20x26) Frey Face dataset 2000 pictures of Brendan Frey (20x26)
  • 27. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • Asteroids generation -Using 3D Convolutional neural networks Roundness Elongation Condition the generation with Radar image Get plausible 3D shapes for asteroids!
  • 28. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function The complete auto-encoder qϕ (x z) pθ (x z) Learning the parameters φ and θ via backpropagation Determining the loss function 2D Convolutional NN + GRU 3D Convolutional VAE At training timeAt inference time
  • 29. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB 3D Deep Generative Models • Using Keras framework with Theano backend -2 Nvidia TitanX used for training • Preliminary results:
 
 Input: Output: Real shape: Object 2002 CE26 alphaObject 1992 SK
  • 30. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Next Steps • Bayesian Optimisation 
 -New metrics instead of Chi Square Having a minimum Chi square does not guarantee a physically accurate shape Work with Naidu Shantanu (NASA JPL) and Michael Busch (SETI)
 -Investigate bayesian optimisation with spherical harmonics model -Develop a full web user interface Simply upload the radar images and metadata
 
 • Deep Generative Networks -Try with different generative models DCGAN (Deep Convolutional Generative Adversarial Networks) [Radford et al, 2015] PixelRNN (Pixel Recurrent Neural Networks) [Oord et al, 2016]
 
 -Add more parameters in the input (ephemeris, baud length, bandwidth)
  • 31. 00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB Next Steps • Project sustainability
 -Push the code and documentation as an open source project over Scientific packaging -Open Data: 
 Share the generated data (synthetic radar images and shapes)
 Increase visibility of the project through a challenge? Successful data science challenge: https://www.kaggle.com/c/higgs-boson)
  • 32. EMETTEUR - NOM DE LA PRESENTATION 00 MOIS 2011- CONTACT INFO D E F E N S E ACCELERATOR PLANETARY D E V E L O P M E N T FRONTIER LAB THANK YOU