SlideShare a Scribd company logo
1 of 20
Download to read offline
Blind FIR system identification
using a greatest common divisor
approach
Mayank and Ivan Markovsky
Dept. ELEC, Vrije Universiteit Brussel
1 / 20
Outline
• The blind system identification problem
• Greatest common divisor methods
2 / 20
Blind system identification
• Finite impulse response (FIR) system
y = u ∗ h
y(t) = (u ∗ h)(t) =
n
τ=0
h(τ) u(t − τ), t = 0, . . . , Ty
• Blind system identification: given y, find u and h
• Ill-posed problem: there are infinitely many solutions
3 / 20
Two experiments
20 40 60 80
−1
0
1
10 20 30 40
−1
0
1
20 40 60 80
−0.2
0
0.2
10 20 30 40
−1
0
1
4 / 20
Question: (y1
, y2
) → h
20 40 60 80
−1
0
1
20 40 60 80
−0.2
0
0.2
5 / 20
Answer: GCD(Y1
, Y2
) ↔ h
20 40 60 80
−1
0
1
20 40 60 80
−0.2
0
0.2
6 / 20
Z-transform
U(z) = Z(u) =
Tu
t=0
u(t)z−t
Convolution property. Let U, H and Y be the Z-tranform
of signals u, h and y, respectively
y = u ∗ h ⇐⇒ Y = U H
7 / 20
Greatest common divisor (GCD)
Let
Y1
=
T1
i=0
y1
i zi
and Y2
=
T2
i=0
y2
i zi
The GCD of Y1
and Y2
is a highest possible degree
polynomial, that is a factor of both Y1
and Y2
Example 1. Let
Y1
= z3
− 1 = (z − 1)(z2
+ z + 1),
Y2
= z3
+ 2z2
+ 2z + 1 = (z + 1)(z2
+ z + 1)
GCD(Y1
, Y2
) = z2
+ z + 1
8 / 20
Main result
Theorem. Let
yi
= ui
∗ h, for i = 1, 2,
where inputs u1
and u2
have finite support. Let U1
, U2
and Y1
, Y2
are the Z-transform of the input signals u1
, u2
and output signal y1
, y2
respectively. If input polynomials
U1
and U2
have no common roots, then
h = α Z−1
GCD(Y1
, Y2
) , α ∈ R
9 / 20
Link to linear algebra: Multiplication matrix
U H = Y















u0
u1 u0
... u1
...
un−1
...
... u0
un un−1
... u1
un
...
...
... un−1
un















Mn+1(U)





h0
h1
...
hn





=





y0
y1
...
yTy





10 / 20
Vandermonde matrix
• For the vector z = (z1, . . . , zn)
VT (z) =





(z1)0
(z2)0
· · · (zn)0
(z1)1
(z2)1
· · · (zn)1
...
...
...
...
(z1)T
(z2)T
· · · (zn)T





11 / 20
Shifting property of Vandermonde matrix





(z1)0
· · · (zn)0
(z1)1
· · · (zn)1
...
...
...
(z1)T−1
· · · (zn)T−1





VT (z)



z1
...
zn



diag(z)
=





(z1)1
· · · (zn)1
(z1)2
· · · (zn)2
...
...
...
(z1)T
· · · (zn)T





VT (z)
VT (z) diag(z) = VT (z)
12 / 20
Sylvester matrix
S (Y1
, Y2
) = MT2
(Y1
) MT1
(Y2
)
=















y1
0 y2
0
y1
1 y1
0 y2
1 y2
0
... y1
1
...
... y2
1
...
y1
n−1
...
... y1
0 y2
n−1
...
... y2
0
y1
n y1
n−1
... y1
1 y2
n y2
n−1
... y2
1
y1
n
...
... y2
n
...
...
... y1
n−1
... y2
n−1
y1
n y2
n















13 / 20
Lemma 1.
• deg GCD(Y1
, Y2
) = T1 + T2 − rank S(Y1
, Y2
)
dim ker(S(Y1,Y2))
Lemma 2. If ker S(Y1
, Y2
) = span(w1, . . . , wn),
there exist z = (z1, . . . , zn) such that,
• w1 · · · wd
W
G = VT (z), for some nonsingular G
• GCD(Y1
, Y2
) =
n
i=1
(z − zi)
14 / 20
Method 1: [w1 · · · wn] → (z1, . . . , zn)
• Let ker S(Y1)
, Y2
) = span(w1, . . . , wn)
• Define W = [w1 · · · wn], WG = VT (z)
• WG diag(z) = WG ← Shift-property
• WG diag(z) = WG
• G diag(z) G−1
= W†
W
• eig(W†
W) = (z1, . . . , zn) ← roots of the GCD
• H =
n
i=1
(z − zi)
15 / 20
Source code: Method 1
function H = fir_deconv1(Y1, Y2)
W = null (Sylvester_matrix(Y1, Y2));
W1 = W(1:end − 1, :);
W2 = W(2: end, :);
roots = eig(W1  W2);
H = poly(roots );
end
16 / 20
Method 2
Let H = GCD(Y1
, Y2
) of degree n and the degree of Y1
and Y2
are T1 and T2 such that
• Y1
= U1
H and Y2
= U2
H
•
Y1
U1
=
Y2
U2
= H
• Y1
U2
− Y2
U1
= 0
• MT2−n+1(Y1
) MT1−n+1(Y2
)
U2
−U1 =
0
0
• Y2
= U2
H ⇐⇒ Y2
= Mn+1(U2
)H
• H = Mn+1(U2
)
†
Y2
17 / 20
Source code: Method 2
function H = fir_deconv2(Y1, Y2)
M_Y1 = Multiplication_matrix (Y1, T2 − d + 1);
M_Y2 = Multiplication_matrix (Y2, T1 − d + 1);
M = [M_Y1 M_Y2];
z = null (M);
n = T2 + T1 − rank(Sylvester_matrix(Y1, Y2));
U2 = z(1:T2 − n + 1);
M_U2 = Multiplication_matrix (U2, n + 1);
H = M_U2  Y2;
end
18 / 20
Elapsed time: O(T3
y )
0 200 400 600 800 1000
−1
0
1
2
3
4
5
length of the signals Ty
Time(sec)
Method 1
Theoretical time
0 200 400 600 800 1000
−1
0
1
2
3
4
length of the signals Ty
Time(sec)
Method 2
Theoretical time
5
19 / 20
Future work
• Extend the GCD approach for the Blind FIR system
Identification to
• Noisy data
• Multivariate systems
20 / 20

More Related Content

What's hot

Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010akabaka12
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009akabaka12
 
3 2--_2_first-order_differential_equati
3  2--_2_first-order_differential_equati3  2--_2_first-order_differential_equati
3 2--_2_first-order_differential_equatiIsidroMateus
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec mathsAndrew Smith
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 
Limites trigonometricos1
Limites trigonometricos1Limites trigonometricos1
Limites trigonometricos1orvy
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solutionunemployedmba
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltosbellidomates
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Assnt Answers Linear M
Assnt Answers   Linear MAssnt Answers   Linear M
Assnt Answers Linear Mgueste5efd8
 
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...vogrizovic
 
Diifferential equation akshay
Diifferential equation akshayDiifferential equation akshay
Diifferential equation akshayakshay1234kumar
 

What's hot (20)

Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
3 2--_2_first-order_differential_equati
3  2--_2_first-order_differential_equati3  2--_2_first-order_differential_equati
3 2--_2_first-order_differential_equati
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Sect5 5
Sect5 5Sect5 5
Sect5 5
 
Limites trigonometricos1
Limites trigonometricos1Limites trigonometricos1
Limites trigonometricos1
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
R.S.A Encryption
R.S.A EncryptionR.S.A Encryption
R.S.A Encryption
 
Assnt Answers Linear M
Assnt Answers   Linear MAssnt Answers   Linear M
Assnt Answers Linear M
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
QMT202/SET2
QMT202/SET2QMT202/SET2
QMT202/SET2
 
G e hay's
G e hay'sG e hay's
G e hay's
 
Diifferential equation akshay
Diifferential equation akshayDiifferential equation akshay
Diifferential equation akshay
 

Viewers also liked

Firefighter interview tips
Firefighter interview tipsFirefighter interview tips
Firefighter interview tipsthompsonavery67
 
Tugas blog-matematika-kelompok-3
Tugas blog-matematika-kelompok-3Tugas blog-matematika-kelompok-3
Tugas blog-matematika-kelompok-3Sanjaya Pradana
 
Executive interview tips
Executive interview tipsExecutive interview tips
Executive interview tipsthompsonavery67
 
Negotiating effective contracts budgets jeff parke_june 2015
Negotiating effective contracts budgets jeff parke_june 2015Negotiating effective contracts budgets jeff parke_june 2015
Negotiating effective contracts budgets jeff parke_june 2015Jeff Parke
 
Digital Marketing Campaign.pptx (1)
Digital Marketing Campaign.pptx (1)Digital Marketing Campaign.pptx (1)
Digital Marketing Campaign.pptx (1)Jamie Arcinas
 
Tips for telephone interview
Tips for telephone interviewTips for telephone interview
Tips for telephone interviewthompsonavery67
 
2016_project sheets
2016_project sheets2016_project sheets
2016_project sheetscathy kubany
 
CK_MAYFIELDBOOKLET
CK_MAYFIELDBOOKLETCK_MAYFIELDBOOKLET
CK_MAYFIELDBOOKLETcathy kubany
 
Customer service in clinical research markets jeff parke intellectual property
Customer service in clinical research markets jeff parke intellectual propertyCustomer service in clinical research markets jeff parke intellectual property
Customer service in clinical research markets jeff parke intellectual propertyJeff Parke
 
Ppt challenges-benefits of OER
Ppt challenges-benefits of OERPpt challenges-benefits of OER
Ppt challenges-benefits of OERdebmclseattle
 
OLGA PANZETTA'S RESUME
OLGA PANZETTA'S RESUMEOLGA PANZETTA'S RESUME
OLGA PANZETTA'S RESUMEOlga Panzetta
 
PSC 497---THESIS PAPER
PSC 497---THESIS PAPERPSC 497---THESIS PAPER
PSC 497---THESIS PAPERNash Jones
 

Viewers also liked (19)

Firefighter interview tips
Firefighter interview tipsFirefighter interview tips
Firefighter interview tips
 
Tugas blog-matematika-kelompok-3
Tugas blog-matematika-kelompok-3Tugas blog-matematika-kelompok-3
Tugas blog-matematika-kelompok-3
 
kids tea
kids teakids tea
kids tea
 
Executive interview tips
Executive interview tipsExecutive interview tips
Executive interview tips
 
Negotiating effective contracts budgets jeff parke_june 2015
Negotiating effective contracts budgets jeff parke_june 2015Negotiating effective contracts budgets jeff parke_june 2015
Negotiating effective contracts budgets jeff parke_june 2015
 
Digital Marketing Campaign.pptx (1)
Digital Marketing Campaign.pptx (1)Digital Marketing Campaign.pptx (1)
Digital Marketing Campaign.pptx (1)
 
Ali_murtadlo_pt_columbindo_perdana_00ff
Ali_murtadlo_pt_columbindo_perdana_00ffAli_murtadlo_pt_columbindo_perdana_00ff
Ali_murtadlo_pt_columbindo_perdana_00ff
 
Tips for telephone interview
Tips for telephone interviewTips for telephone interview
Tips for telephone interview
 
anusharesume03mar15
anusharesume03mar15anusharesume03mar15
anusharesume03mar15
 
Ziegler_Thesispptv2
Ziegler_Thesispptv2Ziegler_Thesispptv2
Ziegler_Thesispptv2
 
2016_project sheets
2016_project sheets2016_project sheets
2016_project sheets
 
RESUME ARTHUR K
RESUME ARTHUR KRESUME ARTHUR K
RESUME ARTHUR K
 
CK_MAYFIELDBOOKLET
CK_MAYFIELDBOOKLETCK_MAYFIELDBOOKLET
CK_MAYFIELDBOOKLET
 
Customer service in clinical research markets jeff parke intellectual property
Customer service in clinical research markets jeff parke intellectual propertyCustomer service in clinical research markets jeff parke intellectual property
Customer service in clinical research markets jeff parke intellectual property
 
Resume206
Resume206Resume206
Resume206
 
Ppt challenges-benefits of OER
Ppt challenges-benefits of OERPpt challenges-benefits of OER
Ppt challenges-benefits of OER
 
Banana Portfolio
Banana PortfolioBanana Portfolio
Banana Portfolio
 
OLGA PANZETTA'S RESUME
OLGA PANZETTA'S RESUMEOLGA PANZETTA'S RESUME
OLGA PANZETTA'S RESUME
 
PSC 497---THESIS PAPER
PSC 497---THESIS PAPERPSC 497---THESIS PAPER
PSC 497---THESIS PAPER
 

Similar to Blind FIR System Identification Using GCD Approach

Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAlex (Oleksiy) Varfolomiyev
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfWhitney Anderson
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
CS369-FDM-FEM.pptx
CS369-FDM-FEM.pptxCS369-FDM-FEM.pptx
CS369-FDM-FEM.pptxcourtoi
 
PhD_Theory_Probab.Appl
PhD_Theory_Probab.ApplPhD_Theory_Probab.Appl
PhD_Theory_Probab.ApplAndrey Lange
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformationsJohn Williams
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Ponencia en el XVIII CCM
Ponencia en el XVIII CCMPonencia en el XVIII CCM
Ponencia en el XVIII CCMrcanom
 
Vibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plateVibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plateAlexander Decker
 
11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plateAlexander Decker
 
Important formulas for JEE Main 2020 - Subject-wise List
Important formulas for JEE Main 2020 - Subject-wise ListImportant formulas for JEE Main 2020 - Subject-wise List
Important formulas for JEE Main 2020 - Subject-wise ListKanhaMalik
 
Lecture 15 DCT, Walsh and Hadamard Transform
Lecture 15 DCT, Walsh and Hadamard TransformLecture 15 DCT, Walsh and Hadamard Transform
Lecture 15 DCT, Walsh and Hadamard TransformVARUN KUMAR
 

Similar to Blind FIR System Identification Using GCD Approach (20)

Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface ProblemsAn Efficient Boundary Integral Method for Stiff Fluid Interface Problems
An Efficient Boundary Integral Method for Stiff Fluid Interface Problems
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
CS369-FDM-FEM.pptx
CS369-FDM-FEM.pptxCS369-FDM-FEM.pptx
CS369-FDM-FEM.pptx
 
PhD_Theory_Probab.Appl
PhD_Theory_Probab.ApplPhD_Theory_Probab.Appl
PhD_Theory_Probab.Appl
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformations
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 
Ponencia en el XVIII CCM
Ponencia en el XVIII CCMPonencia en el XVIII CCM
Ponencia en el XVIII CCM
 
Vibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plateVibration characteristics of non homogeneous visco-elastic square plate
Vibration characteristics of non homogeneous visco-elastic square plate
 
11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate11.vibration characteristics of non homogeneous visco-elastic square plate
11.vibration characteristics of non homogeneous visco-elastic square plate
 
Krishna
KrishnaKrishna
Krishna
 
Ch13
Ch13Ch13
Ch13
 
Important formulas for JEE Main 2020 - Subject-wise List
Important formulas for JEE Main 2020 - Subject-wise ListImportant formulas for JEE Main 2020 - Subject-wise List
Important formulas for JEE Main 2020 - Subject-wise List
 
Lecture 15 DCT, Walsh and Hadamard Transform
Lecture 15 DCT, Walsh and Hadamard TransformLecture 15 DCT, Walsh and Hadamard Transform
Lecture 15 DCT, Walsh and Hadamard Transform
 
Unit23
Unit23Unit23
Unit23
 

Blind FIR System Identification Using GCD Approach

  • 1. Blind FIR system identification using a greatest common divisor approach Mayank and Ivan Markovsky Dept. ELEC, Vrije Universiteit Brussel 1 / 20
  • 2. Outline • The blind system identification problem • Greatest common divisor methods 2 / 20
  • 3. Blind system identification • Finite impulse response (FIR) system y = u ∗ h y(t) = (u ∗ h)(t) = n τ=0 h(τ) u(t − τ), t = 0, . . . , Ty • Blind system identification: given y, find u and h • Ill-posed problem: there are infinitely many solutions 3 / 20
  • 4. Two experiments 20 40 60 80 −1 0 1 10 20 30 40 −1 0 1 20 40 60 80 −0.2 0 0.2 10 20 30 40 −1 0 1 4 / 20
  • 5. Question: (y1 , y2 ) → h 20 40 60 80 −1 0 1 20 40 60 80 −0.2 0 0.2 5 / 20
  • 6. Answer: GCD(Y1 , Y2 ) ↔ h 20 40 60 80 −1 0 1 20 40 60 80 −0.2 0 0.2 6 / 20
  • 7. Z-transform U(z) = Z(u) = Tu t=0 u(t)z−t Convolution property. Let U, H and Y be the Z-tranform of signals u, h and y, respectively y = u ∗ h ⇐⇒ Y = U H 7 / 20
  • 8. Greatest common divisor (GCD) Let Y1 = T1 i=0 y1 i zi and Y2 = T2 i=0 y2 i zi The GCD of Y1 and Y2 is a highest possible degree polynomial, that is a factor of both Y1 and Y2 Example 1. Let Y1 = z3 − 1 = (z − 1)(z2 + z + 1), Y2 = z3 + 2z2 + 2z + 1 = (z + 1)(z2 + z + 1) GCD(Y1 , Y2 ) = z2 + z + 1 8 / 20
  • 9. Main result Theorem. Let yi = ui ∗ h, for i = 1, 2, where inputs u1 and u2 have finite support. Let U1 , U2 and Y1 , Y2 are the Z-transform of the input signals u1 , u2 and output signal y1 , y2 respectively. If input polynomials U1 and U2 have no common roots, then h = α Z−1 GCD(Y1 , Y2 ) , α ∈ R 9 / 20
  • 10. Link to linear algebra: Multiplication matrix U H = Y                u0 u1 u0 ... u1 ... un−1 ... ... u0 un un−1 ... u1 un ... ... ... un−1 un                Mn+1(U)      h0 h1 ... hn      =      y0 y1 ... yTy      10 / 20
  • 11. Vandermonde matrix • For the vector z = (z1, . . . , zn) VT (z) =      (z1)0 (z2)0 · · · (zn)0 (z1)1 (z2)1 · · · (zn)1 ... ... ... ... (z1)T (z2)T · · · (zn)T      11 / 20
  • 12. Shifting property of Vandermonde matrix      (z1)0 · · · (zn)0 (z1)1 · · · (zn)1 ... ... ... (z1)T−1 · · · (zn)T−1      VT (z)    z1 ... zn    diag(z) =      (z1)1 · · · (zn)1 (z1)2 · · · (zn)2 ... ... ... (z1)T · · · (zn)T      VT (z) VT (z) diag(z) = VT (z) 12 / 20
  • 13. Sylvester matrix S (Y1 , Y2 ) = MT2 (Y1 ) MT1 (Y2 ) =                y1 0 y2 0 y1 1 y1 0 y2 1 y2 0 ... y1 1 ... ... y2 1 ... y1 n−1 ... ... y1 0 y2 n−1 ... ... y2 0 y1 n y1 n−1 ... y1 1 y2 n y2 n−1 ... y2 1 y1 n ... ... y2 n ... ... ... y1 n−1 ... y2 n−1 y1 n y2 n                13 / 20
  • 14. Lemma 1. • deg GCD(Y1 , Y2 ) = T1 + T2 − rank S(Y1 , Y2 ) dim ker(S(Y1,Y2)) Lemma 2. If ker S(Y1 , Y2 ) = span(w1, . . . , wn), there exist z = (z1, . . . , zn) such that, • w1 · · · wd W G = VT (z), for some nonsingular G • GCD(Y1 , Y2 ) = n i=1 (z − zi) 14 / 20
  • 15. Method 1: [w1 · · · wn] → (z1, . . . , zn) • Let ker S(Y1) , Y2 ) = span(w1, . . . , wn) • Define W = [w1 · · · wn], WG = VT (z) • WG diag(z) = WG ← Shift-property • WG diag(z) = WG • G diag(z) G−1 = W† W • eig(W† W) = (z1, . . . , zn) ← roots of the GCD • H = n i=1 (z − zi) 15 / 20
  • 16. Source code: Method 1 function H = fir_deconv1(Y1, Y2) W = null (Sylvester_matrix(Y1, Y2)); W1 = W(1:end − 1, :); W2 = W(2: end, :); roots = eig(W1 W2); H = poly(roots ); end 16 / 20
  • 17. Method 2 Let H = GCD(Y1 , Y2 ) of degree n and the degree of Y1 and Y2 are T1 and T2 such that • Y1 = U1 H and Y2 = U2 H • Y1 U1 = Y2 U2 = H • Y1 U2 − Y2 U1 = 0 • MT2−n+1(Y1 ) MT1−n+1(Y2 ) U2 −U1 = 0 0 • Y2 = U2 H ⇐⇒ Y2 = Mn+1(U2 )H • H = Mn+1(U2 ) † Y2 17 / 20
  • 18. Source code: Method 2 function H = fir_deconv2(Y1, Y2) M_Y1 = Multiplication_matrix (Y1, T2 − d + 1); M_Y2 = Multiplication_matrix (Y2, T1 − d + 1); M = [M_Y1 M_Y2]; z = null (M); n = T2 + T1 − rank(Sylvester_matrix(Y1, Y2)); U2 = z(1:T2 − n + 1); M_U2 = Multiplication_matrix (U2, n + 1); H = M_U2 Y2; end 18 / 20
  • 19. Elapsed time: O(T3 y ) 0 200 400 600 800 1000 −1 0 1 2 3 4 5 length of the signals Ty Time(sec) Method 1 Theoretical time 0 200 400 600 800 1000 −1 0 1 2 3 4 length of the signals Ty Time(sec) Method 2 Theoretical time 5 19 / 20
  • 20. Future work • Extend the GCD approach for the Blind FIR system Identification to • Noisy data • Multivariate systems 20 / 20