SlideShare a Scribd company logo
1 of 13
Download to read offline
R.S.A Encryption through
pell’s equation
By:- N.C.M
STEP 1
Select a secret ODD prime integer “R”
STEP 2
 Consider the Diophantine Equation:
Y2 – R X2 = 1
Let (Y0 , X0 ) be the least “positive”
integral
Solution of . Here X0,Y0 are kept secret.
1
1
STEP 3
Select two large ODD primes p,q
DEFINE:- N: = pq 2
STEP 4
 Define α:= [Y0+ φ(n)]2 – R [Xo + e]2;
Where “e” can be chosen such that
1<e< φ(n) and G.C.D ( e, φ(n)) = 1
Since G.C.D (e, φ(n))=1, there is a unique “positive” integer “d” such
that de≡1(Mod φ(n))
ASSUME
Here φ(n) = Euler’s φ function
3
d3 ≠ 1(Modφ(n))
e3 ≠ 1(Modφ(n))
STEP 5
 From (3), we have
α = Y0
2 +[φ(n)]2 + 2Yoφ(n) −R[Xo
2+e2+2X0e]
= Y0
2 −RXo
2 +[φ(n)]2 + 2Y0 φ(n)− Re2− 2X0eR
α ≡1 − Re2 − 2X0eR (Mod φ(n))
α + Re2 + 2X0eR ≡ 1 (Mod φ(n))
Multiply by d3 on both sides, of the above congruence
We get, αd3+ Rd + 2X0d2R ≡ d3 (Mod φ(n))
STEP 6
 Define:
S = αd3 + 2x0d2R + Rd
so, S ≡ d3 (Mod φ(n))
Step 7
 Represent the given message “m” in
the interval (0, n-1)
Step 8
 ASSUME G.C.D (m,n) =1
Step 9
Encryption :E ≡ mS (mod n)
≡ m +k∙φ(n) (mod n)
≡ m ∙[mφ(n)]k (mod n)
So, E ≡ m (mod n)
Public key : = S, n
Step 10
 Decryption = E (mod n)
= (m ) (mod n)
= m (mod n)
[d3e3 ≡1(mod φ(n)]
=m (mod n)
Step 10 Contd..
d3e3 = 1 +k1∙φ(n)
m = m∙[mφ(n)]k (Mod n)
= m(Mod n)
1
R.S.A Encryption

More Related Content

What's hot

Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplifiedmarwan a
 
Lec05 circle ellipse
Lec05 circle ellipseLec05 circle ellipse
Lec05 circle ellipseMaaz Rizwan
 
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Matthew Leingang
 
Computer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and EllipseComputer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and Ellipse2013901097
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
AP Derivatives
AP DerivativesAP Derivatives
AP Derivativestschmucker
 
Differentiation jan 21, 2014
Differentiation jan 21, 2014Differentiation jan 21, 2014
Differentiation jan 21, 2014Mohammed Ahmed
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009akabaka12
 
ระบบเลขฐานนี้ใช้ตัวเลข
ระบบเลขฐานนี้ใช้ตัวเลขระบบเลขฐานนี้ใช้ตัวเลข
ระบบเลขฐานนี้ใช้ตัวเลขjibjoy_butsaya
 
Antiderivatives
AntiderivativesAntiderivatives
AntiderivativesSilvius
 
Goal programming 2011
Goal programming 2011Goal programming 2011
Goal programming 2011chaitu87
 

What's hot (18)

Lista de derivadas e integrais
Lista de derivadas e integraisLista de derivadas e integrais
Lista de derivadas e integrais
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 
Lec05 circle ellipse
Lec05 circle ellipseLec05 circle ellipse
Lec05 circle ellipse
 
Lista de integrais2
Lista de integrais2Lista de integrais2
Lista de integrais2
 
Poset
PosetPoset
Poset
 
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
 
Tabela cal1
Tabela cal1Tabela cal1
Tabela cal1
 
Computer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and EllipseComputer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and Ellipse
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
AP Derivatives
AP DerivativesAP Derivatives
AP Derivatives
 
Differentiation jan 21, 2014
Differentiation jan 21, 2014Differentiation jan 21, 2014
Differentiation jan 21, 2014
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009
 
MATHS SYMBOLS - ROOTS and THEIR PROPERTIES
MATHS SYMBOLS - ROOTS and THEIR PROPERTIESMATHS SYMBOLS - ROOTS and THEIR PROPERTIES
MATHS SYMBOLS - ROOTS and THEIR PROPERTIES
 
ระบบเลขฐานนี้ใช้ตัวเลข
ระบบเลขฐานนี้ใช้ตัวเลขระบบเลขฐานนี้ใช้ตัวเลข
ระบบเลขฐานนี้ใช้ตัวเลข
 
MATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTSMATHS SYMBOLS - PROPERTIES of EXPONENTS
MATHS SYMBOLS - PROPERTIES of EXPONENTS
 
Antiderivatives
AntiderivativesAntiderivatives
Antiderivatives
 
Goal programming 2011
Goal programming 2011Goal programming 2011
Goal programming 2011
 

Similar to R.S.A Encryption

MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPK Lehre
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPer Kristian Lehre
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloClaudio Attaccalite
 
On The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsOn The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsIJMER
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processingaj ahmed
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 

Similar to R.S.A Encryption (20)

Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Lecture5
Lecture5Lecture5
Lecture5
 
Number theory lecture (part 2)
Number theory lecture (part 2)Number theory lecture (part 2)
Number theory lecture (part 2)
 
Ch05 2
Ch05 2Ch05 2
Ch05 2
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Introduction to Diffusion Monte Carlo
Introduction to Diffusion Monte CarloIntroduction to Diffusion Monte Carlo
Introduction to Diffusion Monte Carlo
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
stochastic processes assignment help
stochastic processes assignment helpstochastic processes assignment help
stochastic processes assignment help
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Math report
Math reportMath report
Math report
 
Liner Differential Equation
Liner Differential EquationLiner Differential Equation
Liner Differential Equation
 
On The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of PolynomialsOn The Zeros of Certain Class of Polynomials
On The Zeros of Certain Class of Polynomials
 
MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 
Derivatives
DerivativesDerivatives
Derivatives
 
Rousseau
RousseauRousseau
Rousseau
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 

More from Chandramowliswaran NARAYANASWAMY

More from Chandramowliswaran NARAYANASWAMY (20)

M.tech.quiz (1)
M.tech.quiz (1)M.tech.quiz (1)
M.tech.quiz (1)
 
number theory chandramowliswaran theorem
number theory chandramowliswaran theoremnumber theory chandramowliswaran theorem
number theory chandramowliswaran theorem
 
tree-gen-algo
tree-gen-algotree-gen-algo
tree-gen-algo
 
invited-seminar-libre(1)
invited-seminar-libre(1)invited-seminar-libre(1)
invited-seminar-libre(1)
 
testimonial_iit_3_(3)
testimonial_iit_3_(3)testimonial_iit_3_(3)
testimonial_iit_3_(3)
 
Passman
PassmanPassman
Passman
 
graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)
 
recom
recomrecom
recom
 
higman
higmanhigman
higman
 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
 
April2012ART_01(1)
April2012ART_01(1)April2012ART_01(1)
April2012ART_01(1)
 
DDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDD
 
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
 
PETERSON BERGE
PETERSON BERGEPETERSON BERGE
PETERSON BERGE
 
FDP SumCourse Schedule July 2009 (1)
FDP SumCourse Schedule July  2009 (1)FDP SumCourse Schedule July  2009 (1)
FDP SumCourse Schedule July 2009 (1)
 
kyoto-seminar
kyoto-seminarkyoto-seminar
kyoto-seminar
 
japan-invite
japan-invitejapan-invite
japan-invite
 
scsvmv-testimonial
scsvmv-testimonialscsvmv-testimonial
scsvmv-testimonial
 
feedback_IIM_Indore
feedback_IIM_Indorefeedback_IIM_Indore
feedback_IIM_Indore
 

R.S.A Encryption

  • 1. R.S.A Encryption through pell’s equation By:- N.C.M
  • 2. STEP 1 Select a secret ODD prime integer “R”
  • 3. STEP 2  Consider the Diophantine Equation: Y2 – R X2 = 1 Let (Y0 , X0 ) be the least “positive” integral Solution of . Here X0,Y0 are kept secret. 1 1
  • 4. STEP 3 Select two large ODD primes p,q DEFINE:- N: = pq 2
  • 5. STEP 4  Define α:= [Y0+ φ(n)]2 – R [Xo + e]2; Where “e” can be chosen such that 1<e< φ(n) and G.C.D ( e, φ(n)) = 1 Since G.C.D (e, φ(n))=1, there is a unique “positive” integer “d” such that de≡1(Mod φ(n)) ASSUME Here φ(n) = Euler’s φ function 3 d3 ≠ 1(Modφ(n)) e3 ≠ 1(Modφ(n))
  • 6. STEP 5  From (3), we have α = Y0 2 +[φ(n)]2 + 2Yoφ(n) −R[Xo 2+e2+2X0e] = Y0 2 −RXo 2 +[φ(n)]2 + 2Y0 φ(n)− Re2− 2X0eR α ≡1 − Re2 − 2X0eR (Mod φ(n)) α + Re2 + 2X0eR ≡ 1 (Mod φ(n)) Multiply by d3 on both sides, of the above congruence We get, αd3+ Rd + 2X0d2R ≡ d3 (Mod φ(n))
  • 7. STEP 6  Define: S = αd3 + 2x0d2R + Rd so, S ≡ d3 (Mod φ(n))
  • 8. Step 7  Represent the given message “m” in the interval (0, n-1)
  • 9. Step 8  ASSUME G.C.D (m,n) =1
  • 10. Step 9 Encryption :E ≡ mS (mod n) ≡ m +k∙φ(n) (mod n) ≡ m ∙[mφ(n)]k (mod n) So, E ≡ m (mod n) Public key : = S, n
  • 11. Step 10  Decryption = E (mod n) = (m ) (mod n) = m (mod n) [d3e3 ≡1(mod φ(n)] =m (mod n)
  • 12. Step 10 Contd.. d3e3 = 1 +k1∙φ(n) m = m∙[mφ(n)]k (Mod n) = m(Mod n) 1