SlideShare a Scribd company logo
1 of 50
27/4/00
p. 1
Postacademic Course on
Telecommunications
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven/ESAT-SISTA
Module-3 : Transmission
Lecture-3 (27/4/00)
Marc Moonen
Dept. E.E./ESAT, K.U.Leuven
marc.moonen@esat.kuleuven.ac.be
www.esat.kuleuven.ac.be/sista/~moonen/
Postacademic Course on
Telecommunications
27/4/00
p. 2
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Lecture-3: Transmitter Design
Overview
• Transmitter : Constellation + Transmit filter
• Preliminaries : Passband vs. baseband transmission
• Constellations for linear modulation
->M-PAM / M-PSK / M-QAM
->BER performance in AWGN channel for transmission of
1 symbol (Gray coding, Matched filter reception)
• Transmission pulses :
->Zero-ISI-forcing design procedure for transmit pulse
(and receiver front-end filter), Nyquist pulses, RRC pulses
Postacademic Course on
Telecommunications
27/4/00
p. 3
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Lecture-3: Transmitter Design
Lecture partly adopted from
Module T2
`Digital Communication Principles’
M.Engels, M. Moeneclaey, G. Van Der Plas
1998 Postgraduate Course on Telecommunications
Special thanks to Prof. Marc Moeneclaey
Postacademic Course on
Telecommunications
27/4/00
p. 4
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmitter: Constellation + Transmit Filter
PS: channel coding (!) not considered here
s
k E
a .
r(t)
k
â
transmit
pulse
s(t)
n(t)
p(t) +
AWGN
transmitter receiver (to be defined)
h(t)
channel
...
constellation
transmit filter (linear modulation)
 

k
s
k
s kT
t
p
a
E
t
s )
(
.
.
)
(
Postacademic Course on
Telecommunications
27/4/00
p. 5
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmitter: Constellation + Transmit Filter
-> s(t) with infinite bandwidth, not the greatest choice for p(t)..
-> implementation: upsampling/digital filtering/D-to-A/S&H/...
s
k E
a .
transmit
pulse
s(t)
p(t)
transmitter
discrete-time
symbol sequence
continuous-time
transmit signal
t
p(t)
Example:
t
Postacademic Course on
Telecommunications
27/4/00
p. 6
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries: Passband vs. baseband transmission (I)
Baseband transmission
• transmitted signal is
(linear modulation)
• transmitted signals have to be real,
hence = real, p(t)=real
• baseband means for
f
B
-B
0
)
( 
f
SLP
B
f 
|
|
)
( f
SLP
 

k
s
k
s
LP kT
t
p
a
E
t
s )
(
.
.
)
(
k
a
Postacademic Course on
Telecommunications
27/4/00
p. 7
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (II)
Baseband transmission model/definitions
g(t)=p(t)*h(t)*f(t) (convolution)
everything is real here!
s
k E
a .
r(t)
k
â
transmit
pulse
s(t)
n(t)
p(t) + f(t)
front-end
filter
AWGN
1/Ts
transmitter
receiver
(first version, see also Lecture4)
h(t)
channel
Postacademic Course on
Telecommunications
27/4/00
p. 8
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (III)
Bandpass transmission
transmitted signal is modulated baseband signal
)
(t
sLP
)
.
2
cos( 0t
f

f
B
-B
)
( f
SLP
)
(t
sBP
-fo
f
)
( f
SBP
fo fo+B
Postacademic Course on
Telecommunications
27/4/00
p. 9
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (IV)
Bandpass transmission:
• note that modulated
signal has 2x larger
bandwidth, hence
inefficient scheme !
• solution = accommodate
2 baseband signals in 1
bandpass signal :
I =`in-phase signal’
Q=`quadrature signal’
such that energy in BP is
energy in LP
2
Postacademic Course on
Telecommunications
27/4/00
p. 10
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (V)
• Convenient notation for `two-signals-in-one’ is
complex notation :
• re-construct `complex envelope’ from BP-signal
(mathematics omitted)
)
(
.
)
(
)
( t
s
j
t
s
t
s Q
I
LP 

low-pass filter
Postacademic Course on
Telecommunications
27/4/00
p. 11
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Assignment 2.1
• Prove for yourself that this is indeed a correct
complex-envelope reconstruction procedure!
low-pass filter
Postacademic Course on
Telecommunications
27/4/00
p. 12
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (VI)
Passband transmission model/definitions
(mathematics omitted):
a convenient and consistent (baseband) model can be
obtained, based on complex envelope signals, that
does not have the modulation/demodulation steps:
k
â
f(t)
front-end
filter
1/Ts
receiver (first version)
r(t)
n’(t)
+
AWGN
s
k E
a .
transmit
pulse
s(t)
p(t)
transmitter
h’(t)
channel
Postacademic Course on
Telecommunications
27/4/00
p. 13
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (V)
k
â
f(t)
front-end
filter
1/Ts
receiver (first version)
r(t)
n’(t)
+
AWGN
s
k E
a .
transmit
pulse
s(t)
p(t)
transmitter
h’(t)
channel
=complex symbols
=usually a complex filter
)
(
)
(
' 0
2
t
h
e
t
h t
f
j 


=complex AWGN
=complex
=real-valued transmit pulse
Q
k
I
k
k a
j
a
a ,
, .


Postacademic Course on
Telecommunications
27/4/00
p. 14
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Preliminaries : Passband vs. baseband transmission (VI)
• In the sequel, we will always use this baseband-
equivalent model, with minor notational changes
(h(t) and n(t), i.o. h’(t) and n’(t)).
Hence no major difference between baseband and
passband transmission/models (except that many
things (e.g. symbols) can become complex-valued).
• PS: modulation/demodulation steps are transparent
(hence may be omitted in baseband model) only if
receiver achieves perfect carrier synchronization
(frequency fo & phase).
Synchronization not addressed here
(see e.g. Lee & Messerschmitt, Chapter 16).
Postacademic Course on
Telecommunications
27/4/00
p. 15
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Constellations for linear modulation (I)
Transmitted signal (envelope) is:
Constellations:
PAM PSK QAM
pulse amplitude modulation phase-shift keying quadrature amplitude modulation
4-PAM (2bits) 8-PSK (3bits) 16-QAM (4bits)
ps: complex constellations for passband transmission
I
R
I
R
I
R
 

k
s
k
s kT
t
p
a
E
t
s )
(
.
.
)
(
Postacademic Course on
Telecommunications
27/4/00
p. 16
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Constellations for linear modulation (II)
M-PAM pulse amplitude modulation
• energy-normalized iff
• then distance between nearest neighbors is
larger d -> noise immunity (see below)
I
R
 
PAM
PAM
PAM
k A
M
A
A
a )
1
(
,.....,
3
, 




k
a
1
3
)
( 2


M
M
APAM
1
12
)
( 2


M
M
dPAM
d
Postacademic Course on
Telecommunications
27/4/00
p. 17
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Constellations for linear modulation (III)
M-PSK phase-shift keying
• energy-normalized iff ….
• Then distance between nearest neighbors is








 1
,...,
1
,
0
|
)
2
.
exp( M
m
M
m
j
ak 
k
a
)
sin(
.
2
)
(
M
M
dPSK


d
I
R
Postacademic Course on
Telecommunications
27/4/00
p. 18
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Constellations for linear modulation (IV)
M-QAM quadrature amplitude modulation
• distance between nearest neighbors is
1
6
)
(


M
M
dQAM
d
I
R
 
QAM
QAM
QAM
k
Q
k
I A
M
A
A
a
a )
1
(
,.....,
3
,
, ,
, 




k
Q
k
I
k a
j
a
a ,
, .


)
(
)
(
)
( M
d
M
d
M
d QAM
PSK
PAM 

Postacademic Course on
Telecommunications
27/4/00
p. 19
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
BER Performance for AWGN Channel
BER=(# bit errors)/(# transmitted bits)
g(t)=p(t)*f(t) (convolution)
n’(t)=n(t)*f(t)
BER for different constellations?
r(t)
k
â
transmit
pulse
s(t)
n(t)
p(t) +
s
k E
a .
f(t)
front-end
filter
AWGN
channel
1/Ts
transmitter receiver
r’(t)
Postacademic Course on
Telecommunications
27/4/00
p. 20
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
BER Performance for AWGN Channel
definitions:
- transmitted signal
- received signal (at front-end filter)
- received signal (at sampler)
g(t) =p(t)*f(t) = transmitted pulse p(t) filtered by front-end filter
n’(t) =n(t)*f(t) = AWGN filtered by front-end filter
)
(
'
)
(
.
.
)
(
' t
n
kT
t
g
a
E
t
r
k
s
k
s 

 
 

k
s
k
s kT
t
p
a
E
t
s )
(
.
.
)
(
)
(
)
(
.
.
)
( t
n
kT
t
p
a
E
t
r
k
s
k
s 

 
Postacademic Course on
Telecommunications
27/4/00
p. 21
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
BER Performance for AWGN Channel
Received signal sampled @ time t=k.Ts is...
1 = useful term
2= `ISI’, intersymbol interference (from symbols other than )
3= noise term
Strategy :
a) analyze BER in absence of ISI (=`transmission of 1 symbol’)
b) analyze pulses for which ISI-term = 0 (such that analysis
under a. applies)
c) for non-zero ISI, see Lecture 4-5






 

 




3
2
0
1
)
.
(
'
)
.
(
.
)
0
(
.
.
)
.
(
' s
m
s
m
k
k
s
s T
k
n
T
m
g
a
g
a
E
T
k
r 

 


k
a
Postacademic Course on
Telecommunications
27/4/00
p. 22
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (I)
BER for different constellations?
k
â
transmit
pulse
n(t)
p(t) +
s
E
a .
0
f(t)
front-end
filter
AWGN
channel
1/Ts
...take 1 sample at time 0.Ts
transmit 1 symbol at time 0.Ts ...
Postacademic Course on
Telecommunications
27/4/00
p. 23
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (II)
Received signal sampled @ time t=0.Ts is..
• `Minimum distance’ decision rule/device :
 







3
2
1
0 )
.
0
(
'
0
)
0
(
.
.
)
.
0
(
' s
s
s T
n
g
a
E
T
r 


n
s
s
M
n
i
s
s
i
g
E
T
r
g
E
T
r
a 

 






 )
0
(
.
)
.
0
(
'
min
)
0
(
.
)
.
0
(
'
ˆ
1
0
0
Postacademic Course on
Telecommunications
27/4/00
p. 24
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (III)
`Minimum distance’ decision rule :
Example : decision regions for 16-QAM
I
R
Postacademic Course on
Telecommunications
27/4/00
p. 25
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (IV)
Preliminaries :BER versus SER (symbol-error-rate)
• aim: each symbol error (1 symbol = n bits)
introduces only 1 bit error
• how? : GRAY CODING
make nearest neighbor symbols correspond to
groups of n bits that differ only in 1 bit position…
• …hence `nearest neighbor symbol errors’
(=most symbol errors) correspond to 1 bit error
Postacademic Course on
Telecommunications
27/4/00
p. 26
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (V)
Gray Coding for 8-PSK
Postacademic Course on
Telecommunications
27/4/00
p. 27
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (VI)
Gray Coding for 16-QAM
Postacademic Course on
Telecommunications
27/4/00
p. 28
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (VII)
• Computations : skipped
(compute probability that additive noise pushes received
sample in wrong decision region)
• Results:
neighbors
of
number
average
)
(
)
2
exp(
.
2
1
)
(
)
(
)
0
(
)
(
log
).
(
.
2
.
(
.
log
)
(
2
2
2
2
2
0
2













M
N
du
u
x
Q
df
f
F
g
M
M
d
N
E
Q
M
M
N
BER
x
b



Postacademic Course on
Telecommunications
27/4/00
p. 29
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (VIII)
Interpretation (I) : Eb/No
• Eb= energy-per-bit=Es/n=(signal power)/(bitrate)
• No=noise power per Hz bandwidth
lower BER for higher Eb/No
Postacademic Course on
Telecommunications
27/4/00
p. 30
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (IX)
Interpretation (II) : Constellation
for given Eb/No, it is found that…
BER(M-QAM) =< BER(M-PSK) =< BER(M-PAM)
BER(2-PAM) = BER(2-PSK) = BER(4-PSK) = BER(4-QAM)
higher BER for larger M (in each constellation family)
Postacademic Course on
Telecommunications
27/4/00
p. 31
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (X)
Interpretation (III): front-end filter f(t)
It is proven that
and that is obtained only when
this is known as the `matched filter receiver’
(see also Lecture-4)






df
f
F
g
2
2
)
(
)
0
(

1
0 

1


)
(
)
(
and
)
(
)
(
i.e.
,
)
(
)
(
2
*
*
f
P
f
G
t
p
t
f
f
P
f
F 



Postacademic Course on
Telecommunications
27/4/00
p. 32
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (XI)
Interpretation (IV)
with a matched filter receiver, obtained BER is
independent of pulse p(t)
Postacademic Course on
Telecommunications
27/4/00
p. 33
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (XII)
BER for M-PAM (matched filter reception)
Postacademic Course on
Telecommunications
27/4/00
p. 34
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (XIII)
BER for M-PSK (matched filter reception)
Postacademic Course on
Telecommunications
27/4/00
p. 35
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Transmission of 1 symbol over AWGN channel (XIV)
BER for M-QAM (matched filter reception)
Postacademic Course on
Telecommunications
27/4/00
p. 36
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Symbol sequence over AWGN channel (I)
• ISI (intersymbol interference) results if
• ISI results in increased BER
0
)
.
(
such that
0 

 s
T
m
g
m
g(t)=p(t)*f(t)
Postacademic Course on
Telecommunications
27/4/00
p. 37
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Symbol sequence over AWGN channel (II)
• No ISI (intersymbol interference) if
• zero ISI -> 1-symbol BER analysis still valid
• design zero-ISI pulses ?
0
)
.
(
:
0 

 s
T
m
g
m
Postacademic Course on
Telecommunications
27/4/00
p. 38
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (I)
• No ISI (intersymbol interference) if
• Equivalent frequency-domain criterion:
This is called the `Nyquist criterion for zero-ISI’
Pulses that satisfy this criterion are called `Nyquist pulses’
0
)
.
(
:
0 

 s
T
m
g
m
)
0
(
constant
)
(
1
g
T
k
f
G
T k s
s







Postacademic Course on
Telecommunications
27/4/00
p. 39
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (II)
• Nyquist Criterion for Bandwidth = 1/2Ts
Nyquist criterion can be fulfilled only when G(f)
is constant for |f|<B, hence ideal lowpass filter.
Postacademic Course on
Telecommunications
27/4/00
p. 40
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (III)
• Nyquist Criterion for Bandwidth < 1/2Ts
Nyquist criterion can never be fulfilled
Postacademic Course on
Telecommunications
27/4/00
p. 41
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (IV)
• Nyquist Criterion for Bandwidth > 1/2Ts
Infinitely many pulses satisfy Nyquist criterion
Postacademic Course on
Telecommunications
27/4/00
p. 42
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (V)
• Nyquist Criterion for Bandwidth > 1/2Ts
practical choices have 1/T>Bandwidth>1/2Ts
Example:
Raised Cosine (RC) Pulses
1
0
factor'
off
-
`roll
:



(%)
100
.
Bandwidth
Excess
2T
1
Bandwidth





s
Postacademic Course on
Telecommunications
27/4/00
p. 43
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (VI)
Example:
Raised Cosine Pulses
(time-domain)
Postacademic Course on
Telecommunications
27/4/00
p. 44
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (VII)
Procedure:
1. Construct Nyquist pulse G(f) (*)
e.g. G(f) = raised cosine pulse
(formulas, see Lee & Messerschmitt p.190)
2. Construct F(f) and P(f), such that (**)
F(f)=P*(f) and P(f).F(f)=G(f) -> P(f).P*(f)=G(f)
e.g. square-root raised cosine (RRC) pulse
(formulas, see Lee & Messerschmitt p.228)
(*) zero-ISI, hence 1-symbol BER performance
(**) matched filter reception = optimal performance
Postacademic Course on
Telecommunications
27/4/00
p. 45
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (VIII)
• PS: Excess BW simplifies implementation
-`shorter’ pulses (see time-domain plot)
- sampling instant less critical (see eye diagrams)
`eye diagram’ is `oscilloscope view’ of signal before
sampler, when symbol timing serves as a trigger
20%
excess-BW
100%
excess-BW
Postacademic Course on
Telecommunications
27/4/00
p. 46
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Zero-ISI-forcing pulse design (IX)
• PPS: From the eye diagrams, it is seen that
selecting a proper sampling instant is crucial
(for having zero-ISI)
->requires accurate clock synchronization,
a.k.a. `timing recovery’, at the receiver
(clock rate & phase)
->`timing recovery’ not addressed here
see e.g. Lee & Messerschmitt, Chapter 17
Postacademic Course on
Telecommunications
27/4/00
p. 47
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Questions….
1. What if channel is frequency-selective, cfr. h(t) ?
- Matched filter reception requires that F(f)=P*(f).H*(f)
- Zero-ISI requires that P(f).H(f).F(f)=Nyquist pulse
Is this an optimal design procedure ?
k
â
f(t)
front-end
filter
1/Ts
receiver (see lecture-4)
n(t)
+
AWGN
s
k E
a .
transmit
pulse
p(t)
transmitter
h(t)
channel
Postacademic Course on
Telecommunications
27/4/00
p. 48
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Assignment 2.2
Analyze this design procedure for the case where the
channel is given as
H(f) = Ho for |f|<B/2
H(f) = 0.1 Ho for B/2<|f|<B
discover a phenomenon known as `noise enhancement’
(=zero-ISI-forcing approach ignores the additive noise, hence may
lead to an excessively noise-amplifying receiver)
k
â
f(t)
front-end
filter
1/Ts
receiver (see lecture-4)
n(t)
+
AWGN
s
k E
a .
transmit
pulse
p(t)
transmitter
h(t)
channel
Postacademic Course on
Telecommunications
27/4/00
p. 49
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Questions….
2. Is the receiver structure (matched filter front-end +
symbol-rate sampler + slicer) optimal at all ?
Sampler works at symbol rate. With non-zero excess
bandwidth this is below the Nyquist rate.
Didn’t your signal processing teacher tell you never to do
sample below the Nyquist rate? Could this be o.k. ????
k
â
f(t)
front-end
filter
1/Ts
receiver (see lecture-4)
n(t)
+
AWGN
s
k E
a .
transmit
pulse
p(t)
transmitter
h(t)
channel
Postacademic Course on
Telecommunications
27/4/00
p. 50
Module-3 Transmission Marc Moonen
Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA
Conclusion
• Transmitter structure:
symbol constellation + transmit pulse p(t)
• Symbol constellation: PAM/PSK/QAM
BER-analysis for transmission of 1 symbol over AWGN-channel
-> Performance of matched filter receiver is independent of transmit pulse
• Transmit pulse p(t):
-> Zero-ISI-forcing design procedure for transmit pulse p(t)
and front-end filter f(t), for AWGN channels (-> RRC pulses)
-> Even though for more general channels this is not an optimal
procedure (see Lecture 4), transmit pulses are usually designed as
RRC’s.

More Related Content

Similar to lecture3.ppt

Amplitude modulation (Communication Electronics )
Amplitude modulation (Communication Electronics )Amplitude modulation (Communication Electronics )
Amplitude modulation (Communication Electronics )RahulDhuture
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerJim Jenkins
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signalingKannanKrishnana
 
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptMulti-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptStefan Oprea
 
Amplitude Modulation.ppt
Amplitude Modulation.pptAmplitude Modulation.ppt
Amplitude Modulation.pptAbyThomas54
 
Introduction to Modulation and Demodulation.pptx
Introduction to Modulation and Demodulation.pptxIntroduction to Modulation and Demodulation.pptx
Introduction to Modulation and Demodulation.pptxNiharranjanAdit
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroductionsrilaxmi524
 
CS_2011_5_Digital_Modulators.pdf
CS_2011_5_Digital_Modulators.pdfCS_2011_5_Digital_Modulators.pdf
CS_2011_5_Digital_Modulators.pdfssuser5962131
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMAHossam Zein
 
AprTraining Basic Concept.pptx
AprTraining Basic Concept.pptxAprTraining Basic Concept.pptx
AprTraining Basic Concept.pptxRashiSharma658277
 
Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...slinpublishers
 

Similar to lecture3.ppt (20)

lecture1.ppt
lecture1.pptlecture1.ppt
lecture1.ppt
 
Final ppt
Final pptFinal ppt
Final ppt
 
Amplitude modulation (Communication Electronics )
Amplitude modulation (Communication Electronics )Amplitude modulation (Communication Electronics )
Amplitude modulation (Communication Electronics )
 
Ece414 chapter3 w12
Ece414 chapter3 w12Ece414 chapter3 w12
Ece414 chapter3 w12
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
EC 8395 - Communication Engineering - Unit 3   m - ary signalingEC 8395 - Communication Engineering - Unit 3   m - ary signaling
EC 8395 - Communication Engineering - Unit 3 m - ary signaling
 
OFDM Basics.ppt
OFDM Basics.pptOFDM Basics.ppt
OFDM Basics.ppt
 
Ofdm
OfdmOfdm
Ofdm
 
Multi-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.pptMulti-Carrier Transmission over Mobile Radio Channels.ppt
Multi-Carrier Transmission over Mobile Radio Channels.ppt
 
fading channels
 fading channels fading channels
fading channels
 
Amplitude Modulation.ppt
Amplitude Modulation.pptAmplitude Modulation.ppt
Amplitude Modulation.ppt
 
Introduction to Modulation and Demodulation.pptx
Introduction to Modulation and Demodulation.pptxIntroduction to Modulation and Demodulation.pptx
Introduction to Modulation and Demodulation.pptx
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
 
CS_2011_5_Digital_Modulators.pdf
CS_2011_5_Digital_Modulators.pdfCS_2011_5_Digital_Modulators.pdf
CS_2011_5_Digital_Modulators.pdf
 
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
Mini Project Communication Link Simulation  Digital Modulation Techniques Lec...Mini Project Communication Link Simulation  Digital Modulation Techniques Lec...
Mini Project Communication Link Simulation Digital Modulation Techniques Lec...
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMA
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
AMnew.ppt
AMnew.pptAMnew.ppt
AMnew.ppt
 
AprTraining Basic Concept.pptx
AprTraining Basic Concept.pptxAprTraining Basic Concept.pptx
AprTraining Basic Concept.pptx
 
Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...
 

Recently uploaded

Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 

Recently uploaded (20)

Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 

lecture3.ppt

  • 1. 27/4/00 p. 1 Postacademic Course on Telecommunications Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven/ESAT-SISTA Module-3 : Transmission Lecture-3 (27/4/00) Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.ac.be www.esat.kuleuven.ac.be/sista/~moonen/
  • 2. Postacademic Course on Telecommunications 27/4/00 p. 2 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Lecture-3: Transmitter Design Overview • Transmitter : Constellation + Transmit filter • Preliminaries : Passband vs. baseband transmission • Constellations for linear modulation ->M-PAM / M-PSK / M-QAM ->BER performance in AWGN channel for transmission of 1 symbol (Gray coding, Matched filter reception) • Transmission pulses : ->Zero-ISI-forcing design procedure for transmit pulse (and receiver front-end filter), Nyquist pulses, RRC pulses
  • 3. Postacademic Course on Telecommunications 27/4/00 p. 3 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Lecture-3: Transmitter Design Lecture partly adopted from Module T2 `Digital Communication Principles’ M.Engels, M. Moeneclaey, G. Van Der Plas 1998 Postgraduate Course on Telecommunications Special thanks to Prof. Marc Moeneclaey
  • 4. Postacademic Course on Telecommunications 27/4/00 p. 4 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmitter: Constellation + Transmit Filter PS: channel coding (!) not considered here s k E a . r(t) k â transmit pulse s(t) n(t) p(t) + AWGN transmitter receiver (to be defined) h(t) channel ... constellation transmit filter (linear modulation)    k s k s kT t p a E t s ) ( . . ) (
  • 5. Postacademic Course on Telecommunications 27/4/00 p. 5 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmitter: Constellation + Transmit Filter -> s(t) with infinite bandwidth, not the greatest choice for p(t).. -> implementation: upsampling/digital filtering/D-to-A/S&H/... s k E a . transmit pulse s(t) p(t) transmitter discrete-time symbol sequence continuous-time transmit signal t p(t) Example: t
  • 6. Postacademic Course on Telecommunications 27/4/00 p. 6 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries: Passband vs. baseband transmission (I) Baseband transmission • transmitted signal is (linear modulation) • transmitted signals have to be real, hence = real, p(t)=real • baseband means for f B -B 0 ) (  f SLP B f  | | ) ( f SLP    k s k s LP kT t p a E t s ) ( . . ) ( k a
  • 7. Postacademic Course on Telecommunications 27/4/00 p. 7 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (II) Baseband transmission model/definitions g(t)=p(t)*h(t)*f(t) (convolution) everything is real here! s k E a . r(t) k â transmit pulse s(t) n(t) p(t) + f(t) front-end filter AWGN 1/Ts transmitter receiver (first version, see also Lecture4) h(t) channel
  • 8. Postacademic Course on Telecommunications 27/4/00 p. 8 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (III) Bandpass transmission transmitted signal is modulated baseband signal ) (t sLP ) . 2 cos( 0t f  f B -B ) ( f SLP ) (t sBP -fo f ) ( f SBP fo fo+B
  • 9. Postacademic Course on Telecommunications 27/4/00 p. 9 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (IV) Bandpass transmission: • note that modulated signal has 2x larger bandwidth, hence inefficient scheme ! • solution = accommodate 2 baseband signals in 1 bandpass signal : I =`in-phase signal’ Q=`quadrature signal’ such that energy in BP is energy in LP 2
  • 10. Postacademic Course on Telecommunications 27/4/00 p. 10 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (V) • Convenient notation for `two-signals-in-one’ is complex notation : • re-construct `complex envelope’ from BP-signal (mathematics omitted) ) ( . ) ( ) ( t s j t s t s Q I LP   low-pass filter
  • 11. Postacademic Course on Telecommunications 27/4/00 p. 11 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Assignment 2.1 • Prove for yourself that this is indeed a correct complex-envelope reconstruction procedure! low-pass filter
  • 12. Postacademic Course on Telecommunications 27/4/00 p. 12 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (VI) Passband transmission model/definitions (mathematics omitted): a convenient and consistent (baseband) model can be obtained, based on complex envelope signals, that does not have the modulation/demodulation steps: k â f(t) front-end filter 1/Ts receiver (first version) r(t) n’(t) + AWGN s k E a . transmit pulse s(t) p(t) transmitter h’(t) channel
  • 13. Postacademic Course on Telecommunications 27/4/00 p. 13 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (V) k â f(t) front-end filter 1/Ts receiver (first version) r(t) n’(t) + AWGN s k E a . transmit pulse s(t) p(t) transmitter h’(t) channel =complex symbols =usually a complex filter ) ( ) ( ' 0 2 t h e t h t f j    =complex AWGN =complex =real-valued transmit pulse Q k I k k a j a a , , .  
  • 14. Postacademic Course on Telecommunications 27/4/00 p. 14 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Preliminaries : Passband vs. baseband transmission (VI) • In the sequel, we will always use this baseband- equivalent model, with minor notational changes (h(t) and n(t), i.o. h’(t) and n’(t)). Hence no major difference between baseband and passband transmission/models (except that many things (e.g. symbols) can become complex-valued). • PS: modulation/demodulation steps are transparent (hence may be omitted in baseband model) only if receiver achieves perfect carrier synchronization (frequency fo & phase). Synchronization not addressed here (see e.g. Lee & Messerschmitt, Chapter 16).
  • 15. Postacademic Course on Telecommunications 27/4/00 p. 15 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Constellations for linear modulation (I) Transmitted signal (envelope) is: Constellations: PAM PSK QAM pulse amplitude modulation phase-shift keying quadrature amplitude modulation 4-PAM (2bits) 8-PSK (3bits) 16-QAM (4bits) ps: complex constellations for passband transmission I R I R I R    k s k s kT t p a E t s ) ( . . ) (
  • 16. Postacademic Course on Telecommunications 27/4/00 p. 16 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Constellations for linear modulation (II) M-PAM pulse amplitude modulation • energy-normalized iff • then distance between nearest neighbors is larger d -> noise immunity (see below) I R   PAM PAM PAM k A M A A a ) 1 ( ,....., 3 ,      k a 1 3 ) ( 2   M M APAM 1 12 ) ( 2   M M dPAM d
  • 17. Postacademic Course on Telecommunications 27/4/00 p. 17 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Constellations for linear modulation (III) M-PSK phase-shift keying • energy-normalized iff …. • Then distance between nearest neighbors is          1 ,..., 1 , 0 | ) 2 . exp( M m M m j ak  k a ) sin( . 2 ) ( M M dPSK   d I R
  • 18. Postacademic Course on Telecommunications 27/4/00 p. 18 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Constellations for linear modulation (IV) M-QAM quadrature amplitude modulation • distance between nearest neighbors is 1 6 ) (   M M dQAM d I R   QAM QAM QAM k Q k I A M A A a a ) 1 ( ,....., 3 , , , ,      k Q k I k a j a a , , .   ) ( ) ( ) ( M d M d M d QAM PSK PAM  
  • 19. Postacademic Course on Telecommunications 27/4/00 p. 19 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA BER Performance for AWGN Channel BER=(# bit errors)/(# transmitted bits) g(t)=p(t)*f(t) (convolution) n’(t)=n(t)*f(t) BER for different constellations? r(t) k â transmit pulse s(t) n(t) p(t) + s k E a . f(t) front-end filter AWGN channel 1/Ts transmitter receiver r’(t)
  • 20. Postacademic Course on Telecommunications 27/4/00 p. 20 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA BER Performance for AWGN Channel definitions: - transmitted signal - received signal (at front-end filter) - received signal (at sampler) g(t) =p(t)*f(t) = transmitted pulse p(t) filtered by front-end filter n’(t) =n(t)*f(t) = AWGN filtered by front-end filter ) ( ' ) ( . . ) ( ' t n kT t g a E t r k s k s        k s k s kT t p a E t s ) ( . . ) ( ) ( ) ( . . ) ( t n kT t p a E t r k s k s    
  • 21. Postacademic Course on Telecommunications 27/4/00 p. 21 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA BER Performance for AWGN Channel Received signal sampled @ time t=k.Ts is... 1 = useful term 2= `ISI’, intersymbol interference (from symbols other than ) 3= noise term Strategy : a) analyze BER in absence of ISI (=`transmission of 1 symbol’) b) analyze pulses for which ISI-term = 0 (such that analysis under a. applies) c) for non-zero ISI, see Lecture 4-5                3 2 0 1 ) . ( ' ) . ( . ) 0 ( . . ) . ( ' s m s m k k s s T k n T m g a g a E T k r       k a
  • 22. Postacademic Course on Telecommunications 27/4/00 p. 22 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (I) BER for different constellations? k â transmit pulse n(t) p(t) + s E a . 0 f(t) front-end filter AWGN channel 1/Ts ...take 1 sample at time 0.Ts transmit 1 symbol at time 0.Ts ...
  • 23. Postacademic Course on Telecommunications 27/4/00 p. 23 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (II) Received signal sampled @ time t=0.Ts is.. • `Minimum distance’ decision rule/device :          3 2 1 0 ) . 0 ( ' 0 ) 0 ( . . ) . 0 ( ' s s s T n g a E T r    n s s M n i s s i g E T r g E T r a            ) 0 ( . ) . 0 ( ' min ) 0 ( . ) . 0 ( ' ˆ 1 0 0
  • 24. Postacademic Course on Telecommunications 27/4/00 p. 24 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (III) `Minimum distance’ decision rule : Example : decision regions for 16-QAM I R
  • 25. Postacademic Course on Telecommunications 27/4/00 p. 25 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (IV) Preliminaries :BER versus SER (symbol-error-rate) • aim: each symbol error (1 symbol = n bits) introduces only 1 bit error • how? : GRAY CODING make nearest neighbor symbols correspond to groups of n bits that differ only in 1 bit position… • …hence `nearest neighbor symbol errors’ (=most symbol errors) correspond to 1 bit error
  • 26. Postacademic Course on Telecommunications 27/4/00 p. 26 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (V) Gray Coding for 8-PSK
  • 27. Postacademic Course on Telecommunications 27/4/00 p. 27 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (VI) Gray Coding for 16-QAM
  • 28. Postacademic Course on Telecommunications 27/4/00 p. 28 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (VII) • Computations : skipped (compute probability that additive noise pushes received sample in wrong decision region) • Results: neighbors of number average ) ( ) 2 exp( . 2 1 ) ( ) ( ) 0 ( ) ( log ). ( . 2 . ( . log ) ( 2 2 2 2 2 0 2              M N du u x Q df f F g M M d N E Q M M N BER x b   
  • 29. Postacademic Course on Telecommunications 27/4/00 p. 29 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (VIII) Interpretation (I) : Eb/No • Eb= energy-per-bit=Es/n=(signal power)/(bitrate) • No=noise power per Hz bandwidth lower BER for higher Eb/No
  • 30. Postacademic Course on Telecommunications 27/4/00 p. 30 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (IX) Interpretation (II) : Constellation for given Eb/No, it is found that… BER(M-QAM) =< BER(M-PSK) =< BER(M-PAM) BER(2-PAM) = BER(2-PSK) = BER(4-PSK) = BER(4-QAM) higher BER for larger M (in each constellation family)
  • 31. Postacademic Course on Telecommunications 27/4/00 p. 31 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (X) Interpretation (III): front-end filter f(t) It is proven that and that is obtained only when this is known as the `matched filter receiver’ (see also Lecture-4)       df f F g 2 2 ) ( ) 0 (  1 0   1   ) ( ) ( and ) ( ) ( i.e. , ) ( ) ( 2 * * f P f G t p t f f P f F    
  • 32. Postacademic Course on Telecommunications 27/4/00 p. 32 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (XI) Interpretation (IV) with a matched filter receiver, obtained BER is independent of pulse p(t)
  • 33. Postacademic Course on Telecommunications 27/4/00 p. 33 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (XII) BER for M-PAM (matched filter reception)
  • 34. Postacademic Course on Telecommunications 27/4/00 p. 34 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (XIII) BER for M-PSK (matched filter reception)
  • 35. Postacademic Course on Telecommunications 27/4/00 p. 35 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Transmission of 1 symbol over AWGN channel (XIV) BER for M-QAM (matched filter reception)
  • 36. Postacademic Course on Telecommunications 27/4/00 p. 36 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Symbol sequence over AWGN channel (I) • ISI (intersymbol interference) results if • ISI results in increased BER 0 ) . ( such that 0    s T m g m g(t)=p(t)*f(t)
  • 37. Postacademic Course on Telecommunications 27/4/00 p. 37 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Symbol sequence over AWGN channel (II) • No ISI (intersymbol interference) if • zero ISI -> 1-symbol BER analysis still valid • design zero-ISI pulses ? 0 ) . ( : 0    s T m g m
  • 38. Postacademic Course on Telecommunications 27/4/00 p. 38 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (I) • No ISI (intersymbol interference) if • Equivalent frequency-domain criterion: This is called the `Nyquist criterion for zero-ISI’ Pulses that satisfy this criterion are called `Nyquist pulses’ 0 ) . ( : 0    s T m g m ) 0 ( constant ) ( 1 g T k f G T k s s       
  • 39. Postacademic Course on Telecommunications 27/4/00 p. 39 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (II) • Nyquist Criterion for Bandwidth = 1/2Ts Nyquist criterion can be fulfilled only when G(f) is constant for |f|<B, hence ideal lowpass filter.
  • 40. Postacademic Course on Telecommunications 27/4/00 p. 40 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (III) • Nyquist Criterion for Bandwidth < 1/2Ts Nyquist criterion can never be fulfilled
  • 41. Postacademic Course on Telecommunications 27/4/00 p. 41 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (IV) • Nyquist Criterion for Bandwidth > 1/2Ts Infinitely many pulses satisfy Nyquist criterion
  • 42. Postacademic Course on Telecommunications 27/4/00 p. 42 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (V) • Nyquist Criterion for Bandwidth > 1/2Ts practical choices have 1/T>Bandwidth>1/2Ts Example: Raised Cosine (RC) Pulses 1 0 factor' off - `roll :    (%) 100 . Bandwidth Excess 2T 1 Bandwidth      s
  • 43. Postacademic Course on Telecommunications 27/4/00 p. 43 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (VI) Example: Raised Cosine Pulses (time-domain)
  • 44. Postacademic Course on Telecommunications 27/4/00 p. 44 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (VII) Procedure: 1. Construct Nyquist pulse G(f) (*) e.g. G(f) = raised cosine pulse (formulas, see Lee & Messerschmitt p.190) 2. Construct F(f) and P(f), such that (**) F(f)=P*(f) and P(f).F(f)=G(f) -> P(f).P*(f)=G(f) e.g. square-root raised cosine (RRC) pulse (formulas, see Lee & Messerschmitt p.228) (*) zero-ISI, hence 1-symbol BER performance (**) matched filter reception = optimal performance
  • 45. Postacademic Course on Telecommunications 27/4/00 p. 45 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (VIII) • PS: Excess BW simplifies implementation -`shorter’ pulses (see time-domain plot) - sampling instant less critical (see eye diagrams) `eye diagram’ is `oscilloscope view’ of signal before sampler, when symbol timing serves as a trigger 20% excess-BW 100% excess-BW
  • 46. Postacademic Course on Telecommunications 27/4/00 p. 46 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Zero-ISI-forcing pulse design (IX) • PPS: From the eye diagrams, it is seen that selecting a proper sampling instant is crucial (for having zero-ISI) ->requires accurate clock synchronization, a.k.a. `timing recovery’, at the receiver (clock rate & phase) ->`timing recovery’ not addressed here see e.g. Lee & Messerschmitt, Chapter 17
  • 47. Postacademic Course on Telecommunications 27/4/00 p. 47 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Questions…. 1. What if channel is frequency-selective, cfr. h(t) ? - Matched filter reception requires that F(f)=P*(f).H*(f) - Zero-ISI requires that P(f).H(f).F(f)=Nyquist pulse Is this an optimal design procedure ? k â f(t) front-end filter 1/Ts receiver (see lecture-4) n(t) + AWGN s k E a . transmit pulse p(t) transmitter h(t) channel
  • 48. Postacademic Course on Telecommunications 27/4/00 p. 48 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Assignment 2.2 Analyze this design procedure for the case where the channel is given as H(f) = Ho for |f|<B/2 H(f) = 0.1 Ho for B/2<|f|<B discover a phenomenon known as `noise enhancement’ (=zero-ISI-forcing approach ignores the additive noise, hence may lead to an excessively noise-amplifying receiver) k â f(t) front-end filter 1/Ts receiver (see lecture-4) n(t) + AWGN s k E a . transmit pulse p(t) transmitter h(t) channel
  • 49. Postacademic Course on Telecommunications 27/4/00 p. 49 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Questions…. 2. Is the receiver structure (matched filter front-end + symbol-rate sampler + slicer) optimal at all ? Sampler works at symbol rate. With non-zero excess bandwidth this is below the Nyquist rate. Didn’t your signal processing teacher tell you never to do sample below the Nyquist rate? Could this be o.k. ???? k â f(t) front-end filter 1/Ts receiver (see lecture-4) n(t) + AWGN s k E a . transmit pulse p(t) transmitter h(t) channel
  • 50. Postacademic Course on Telecommunications 27/4/00 p. 50 Module-3 Transmission Marc Moonen Lecture-3 Transmitter Design K.U.Leuven-ESAT/SISTA Conclusion • Transmitter structure: symbol constellation + transmit pulse p(t) • Symbol constellation: PAM/PSK/QAM BER-analysis for transmission of 1 symbol over AWGN-channel -> Performance of matched filter receiver is independent of transmit pulse • Transmit pulse p(t): -> Zero-ISI-forcing design procedure for transmit pulse p(t) and front-end filter f(t), for AWGN channels (-> RRC pulses) -> Even though for more general channels this is not an optimal procedure (see Lecture 4), transmit pulses are usually designed as RRC’s.