SlideShare a Scribd company logo
1 of 109
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
CSIR NET LIFE
unit-1
Bioenergetics and Biochemical
Reaction Types
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
WELCOME
MERIT LIFE SCIENCESMERIT LIFE SCIENCES
e-TUTORIALe-TUTORIAL
NEET/NET JRF CSIR EXAM /JAM/DBT
DR SHEELENDRA Ph.D. FROM BHU
FACULTY: DR SHEELENDRA BHATT
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
UNIT-1
BIOENERGETICS-2
TIME 8:00-10:00PM
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
• Heat energy can be used to do work
only through a change of temperature.
Bioenergetics & ATPBioenergetics & ATP
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Standard free energy change (∆G°) of a
chemical reaction:
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
• When a reaction results in release of energy
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The free-energy change of a reaction (ΔG) divided
into 3 types:
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Standard free energy change (∆G°) of a
chemical reaction:
For every reaction ∆G can be calculated using:-
∆G° = - 2.303 RT log Keq
While:
R = Gas constant
T = AbsoluteTemp.
Keq = Equilibrium constant
Note:
∆G° indicates constant temperature & pressure and physiological pH 7.2
for cells.
Unites of free energy = calorie (cal) or kilocalorie (kcal) /mole
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Units of energy
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
• ΔG° is the free energy change for this reaction under
standard conditions that is, when each of the
reactants A, B, C, and D is present at a concentration
of 1.0 M (for a gas, the standard state is usually chosen
to be 1 atmosphere).
• Thus, the ΔG of a reaction depends on the nature of
the reactants (expressed in the ΔG° term of equation
1) and on their concentrations (expressed in the
logarithmic term of equation 1).
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
•The ΔG of a reaction depends only on the free energy
of the products (the final state) minus the free energy
of the reactants (the initial state).
•The ΔG of a reaction is independent of the path (or
molecular mechanism) of the transformation. The
mechanism of a reaction has no effect on ΔG.
•The ΔG provides no information about the rate of a
reaction.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G values of pathways can be
calculated
The ∆G value of an overall pathway can be calculated as
the algebraic sum of the ∆G values of the individual
reactions making the pathway:-
∆Gpathway= ∆G1 + ∆G2 + ∆G3 + ∆G4 + ∆G5
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Free energy of a reaction
The free energy change (∆G) of a reaction determines
its spontaneity. A reaction is spontaneous if ∆G is
negative (if the free energy of products is less than
that of reactants).
∆Go
' = standard free energy change (at pH 7, 1M
reactants & products); R = gas constant; T = temp.
For a reaction A + B  C + D
∆G = ∆Go
' + RT ln
[C] [D]
[A] [B]
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆Go
' of a reaction may be positive, & ∆G negative,
depending on cellular concentrations of reactants and
products.
Many reactions for which ∆Go
' is positive are
spontaneous because other reactions cause depletion
of products or maintenance of high substrate
concentration.
For a reaction A + B  C + D
∆G = ∆Gº' + RT ln
[A] [B]
[C] [D]
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
At equilibrium
∆G = 0.
K'eq, the ratio [C][D]/[A]
[B] at equilibrium, is the
equilibrium constant.
An equilibrium constant
(K'eq) greater than one
indicates a spontaneous
reaction (negative ∆G°').
∆G = ∆Gº' + RT ln
0 = ∆Gº' + RT ln
∆Gº' = - RTln
defining K'eq =
∆Gº' = - RT ln K'eq
[C] [D]
[A] [B]
[C] [D]
[A] [B]
[C] [D]
[A] [B]
[C] [D]
[A] [B]
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
K'eq
∆G º'
kJ/mol
Starting with 1 M reactants &
products, the reaction:
104
- 23 proceeds forward (spontaneous)
102
- 11 proceeds forward (spontaneous)
100
= 1 0 is at equilibrium
10
-2 + 11 reverses to form “reactants”
10
-4 + 23 reverses to form “reactants”
∆Go
' = − RT ln K'eq
Variation of equilibrium constant with ∆Go
‘ (25 o
C)
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Energy coupling
 A spontaneous reaction may drive a non-spontaneous reaction.
 Free energy changes of coupled reactions are additive.
A. Some enzyme-catalyzed reactions are
interpretable as two coupled half-reactions, one
spontaneous and the other non-spontaneous.
 At the enzyme active site, the coupled reaction is kinetically
facilitated, while individual half-reactions are prevented.
 Free energy changes of half reactions may be summed, to yield the
free energy of the coupled reaction.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
For example, in the reaction catalyzed by the Glycolysis
enzyme Hexokinase, the half-reactions are:
ATP + H2O ↔ ADP + Pi ∆Go
' = −31 kJ/mol
Pi + glucose ↔ glucose-6-P + H2O ∆Go
' = +14 kJ/mol
Coupled reaction:
ATP + glucose ↔ ADP + glucose-6-P ∆Go
' = −17 kJ/mol
The structure of the enzyme active site, from which H2O
is excluded, prevents the individual hydrolytic reactions,
while favoring the coupled reaction.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
B.Two separate reactions, occurring in the same cellular compartment, one
spontaneous and the other not, may be coupled by a common intermediate
(reactant or product).
A hypothetical, but typical, example involving PPi:
Enzyme 1:
A + ATP ↔ B + AMP + PPi ∆Go
' = + 15 kJ/mol
Enzyme 2:
PPi + H2O ↔ 2Pi ∆Go
' = – 33 kJ/mol
Overall spontaneous reaction:
A + ATP + H2O ↔ B + AMP + 2Pi ∆Go
' = – 18 kJ/mol
Pyrophosphate (PPi) is often the product of a reaction that needs a driving
force.
Its spontaneous hydrolysis, catalyzed by Pyrophosphatase enzyme, drives
the reaction for which PPi is a product.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Ion Transport may be coupled
to a chemical reaction, e.g.,
hydrolysis or synthesis of ATP.
In this diagram & below,
water is not shown. It should
be recalled that the ATP
hydrolysis/synthesis reaction
is: ATP + H2O ↔ ADP + Pi.
S1 S2
ATP
ADP + Pi
Side 1 Side 2
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The free energy change (electrochemical potential
difference) associated with transport of an ion S
across a membrane from side 1 to side 2 is:
R = gas constant, T = temperature, Z = charge on the ion,
F = Faraday constant, ∆Ψ = voltage.
∆G = R T ln + Z F ∆Ψ
[S]1
[S]2
S1 S2
Side 1 Side 2
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G for ion flux - varies with ion gradient & voltage.
∆G for chemical reaction - negative ∆Go
' for ATP
hydrolysis; ∆G depends also on [ATP], [ADP], [Pi].
Since free energy changes
are additive, the
spontaneous direction
for the coupled reaction
will depend on relative
magnitudes of:
S1 S2
ATP
ADP + Pi
Side 1 Side 2
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Two examples:
ActiveTransport: Spontaneous ATP hydrolysis
(negative ∆G) is coupled to (drives) ion flux against a
gradient (positive ∆G).
ATP synthesis: Spontaneous H+
flux (negative ∆G) is
coupled to (drives) ATP synthesis (positive ∆G).
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
“High energy” bonds
Phosphoanhydride bonds (formed by splitting out H2O
between 2 phosphoric acids or between carboxylic &
phosphoric acids) have a large negative ∆G of hydrolysis.
N
NN
N
NH2
O
OHOH
HH
H
CH2
H
OPOPOP-O
O
O- O-
O O
O-
adenine
ribose
ATP
adenosine triphosphate
phosphoanhydride
bonds (~)
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
N
NN
N
NH2
O
OHOH
HH
H
CH2
H
OPOPOP-O
O
O- O-
O O
O-
adenine
ribose
ATP
adenosine triphosphate
phosphoanhydride
bonds (~)
Phosphoanhydride linkages are said to be "high energy"
bonds. Bond energy is not high, just ∆G of hydrolysis.
"High energy" bonds are represented by the "~" symbol.
~P represents a phosphate group with a large negative
∆G of hydrolysis.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Compounds with “high energy bonds” are said to
have high group transfer potential.
For example, Pi may be spontaneously cleaved from
ATP for transfer to another compound (e.g., to a
hydroxyl group on glucose).
“High energy” bonds
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Example: AMPPNP.
Such analogs have been used to study the dependence of
coupled reactions onATP hydrolysis.
In addition, they have made it possible to crystallize an
enzyme that catalyzes ATP hydrolysis with an ATP analog
at the active site.
AMPPNP (ADPNP) ATP analog
N
NN
N
NH2
O
OHOH
HH
H
CH2
H
OPOPNP-O
O
O- O-
O O
O-
H
Artificial ATP
analogs have
been designed
that are resistant
to cleavage of
the terminal
phosphate by
hydrolysis.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
A reaction important for equilibrating ~P among
adenine nucleotides within a cell is that catalyzed by
Adenylate Kinase:
ATP + AMP ↔ 2 ADP
The Adenylate Kinase reaction is also important because
the substrate for ATP synthesis, e.g., by mitochondrial
ATP Synthase, is ADP, while some cellular reactions
dephosphorylate ATP all the way to AMP.
The enzyme Nucleoside Diphosphate Kinase (NuDiKi)
equilibrates ~P among the various nucleotides that are
needed, e.g., for synthesis of DNA & RNA.
NuDiKi catalyzes reversible reactions such as:
ATP + GDP ↔ ADP + GTP,
ATP + UDP ↔ ADP + UTP, etc.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Inorganic polyphosphate
Many organisms store energy as inorganic
polyphosphate, a chain of many phosphate residues
linked by phosphoanhydride bonds:
P~P~P~P~P...
Hydrolysis of Pi residues from polyphosphate may be
coupled to energy-dependent reactions.
Depending on the organism or cell type, inorganic
polyphosphate may have additional functions.
E.g., it may serve as a reservoir for Pi
, a chelator of
metal ions, a buffer, or a regulator.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Why do phosphoanhydride linkages have a high ∆G
of hydrolysis? Contributing factors for ATP & PPi
include:
 Resonance stabilization of products of hydrolysis exceeds resonance
stabilization of the compound itself.
 Electrostatic repulsion between negatively charged phosphate
oxygen atoms favors separation of the phosphates.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Creatine Kinase catalyzes:
Phosphocreatine + ADP ↔ ATP + creatine
This is a reversible reaction, though the equilibrium
constant slightly favors phosphocreatine formation.
 Phosphocreatine is produced when ATP levels are high.
 When ATP is depleted during exercise in muscle, phosphate is transferred
from phosphocreatine to ADP, to replenish ATP.
−
O P
H
N C
O
O−
N
NH2
+
CH2
CH3
C
O
O−
phosphocreatine
Phosphocreatine (creatine
phosphate), another
compound with a "high
energy" phosphate linkage,
is used in nerve & muscle
for storage of ~P bonds.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Phosphoenolpyruvate (PEP), involved in ATP synthesis
in Glycolysis, has a very high ∆G of Pi hydrolysis.
Removal of Pi from ester linkage in PEP is spontaneous
because the enol spontaneously converts to a ketone.
The ester linkage in PEP is an exception.
C
C
O O−
OPO3
2−
CH2
C
C
O O−
O
CH3
C
C
O O−
OH
CH2
ADP ATP
H+
PEP enolpyruvate pyruvate
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Generally phosphate esters, formed by splitting out
water between a phosphoric acid and an OH group,
have a low but negative ∆G of hydrolysis. Examples:
 the linkage between the first phosphate and the ribose hydroxyl of ATP.
N
NN
N
NH2
O
OHOH
HH
H
CH2
H
OPOPOP-O
O
O- O-
O O
O-
adenine
ribose
ATP (adenosine triphosphate)
ester linkage
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Other examples of phosphate esters with low but
negative ∆G of hydrolysis:
 the linkage between phosphate & a hydroxyl group in glucose-6-
phosphate or glycerol-3-phosphate.
glycerol-3-phosphate
CH2
CH
CH2
OH
HO
O P
O
O−
O−
H O
OH
H
OHH
OH
CH2
H
OH
H
1
6
5
4
3 2
O P
O
OH
OH
glucose-6-phosphate
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
 the linkage between phosphate and the hydroxyl group of an amino
acid residue in a protein (serine, threonine or tyrosine).
Regulation of proteins by phosphorylation and dephosphorylation will
be discussed later.
Protein OH + ATP Protein O P
O
O−
O−
+ ADP
Pi H2O
Protein Kinase
Protein Phosphatase
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
ATP has special roles in energy coupling & Pi transfer.
∆G of phosphate hydrolysis from ATP is intermediate
among examples below.
ATP can thus act as a Pi donor, & ATP can be synthesized
by Pi transfer, e.g., from PEP.
Compound
∆Go
' of phosphate
hydrolysis, kJ/mol
Phosphoenolpyruvate (PEP) −61.9
Phosphocreatine −43.1
Pyrophosphate −33.5
ATP (to ADP) −30.5
Glucose-6-phosphate −13.8
Glycerol-3-phosphate −9.2
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Coenzyme A-SH + HO C
O
R
Coenzyme A-S C
O
R + H2O
A thioester forms between a carboxylic acid & a thiol
(SH), e.g., the thiol of coenzyme A (abbreviated CoA-SH).
Thioesters are ~ linkages. In contrast to phosphate esters,
thioesters have a large negative ∆G of hydrolysis.
Some other
“high energy”
bonds:
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The thiol of coenzyme A can react with a carboxyl
group of acetic acid (yielding acetyl-CoA) or a fatty
acid (yielding fatty acyl-CoA).
The spontaneity of thioester cleavage is essential to the
role of coenzyme A as an acyl group carrier.
Like ATP, CoA has a high group transfer potential.
Coenzyme A-SH + HO C
O
CH3
Coenzyme A-S C
O
CH3 + H2O
acetic acid
acetyl-CoA
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Coenzyme A includes
β-mercaptoethylamine,
in amide linkage to the
carboxyl group of the B
vitamin pantothenate.
The hydroxyl of
pantothenate is in ester
linkage to a phosphate
of ADP-3'-phosphate.
The functional group is
the thiol (SH) of
β-mercaptoethylamine.
N
N N
N
NH2
O
OHO
HH
H
CH2
H
OPOPOH2C
O−
O O
O−
P
O
O−−
O
C
C
C
NH
CH2
CH2
C
NH
CH3H3C
HHO
O
CH2
CH2
SH
O
β-mercaptoethylamine
pantothenate
ADP-3'-phosphate
Coenzyme A
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
3',5'-Cyclic AMP (cAMP), is used by
cells as a transient signal.
Adenylate Cyclase catalyzes cAMP
synthesis: ATP → cAMP + PPi.
The reaction is highly spontaneous
due to the production of PPi, which
spontaneously hydrolyzes.
Phosphodiesterase catalyzes
hydrolytic cleavage of one Pi ester
(red), converting cAMP → 5'-AMP.
N
N N
N
NH2
O
OHO
HH
H
H2
C
H
O
P
O
O-
1'
3'
5' 4'
2'
cAMP
This is a highly spontaneous reaction, because cAMP is
sterically constrained by having a phosphate with ester
links to 2 hydroxyls of the same ribose. The lability of
cAMP to hydrolysis makes it an excellent transient signal.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
List compounds exemplifying the following roles
of "high energy" bonds:
 Energy transfer or storage
ATP, PPi, polyphosphate, phosphocreatine
 Group transfer
ATP, Coenzyme A
 Transient signal
cyclic AMP
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Kinetics vsThermodynamics:
A high activation energy barrier usually causes
hydrolysis of a “high energy” bond to be very slow in
the absence of an enzyme catalyst.
This kinetic stability is essential to the role of ATP and
other compounds with ~ bonds.
If ATP would rapidly hydrolyze in the absence of a
catalyst, it could not serve its important roles in energy
metabolism and phosphate transfer.
Phosphate is removed from ATP only when the
reaction is coupled via enzyme catalysis to some other
reaction useful to the cell, such as transport of an ion,
phosphorylation of glucose, or regulation of an enzyme
by phosphorylation of a serine residue.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Oxidation & reduction
Oxidation & reduction will be covered in more detail later.
The evolution of photosynthesis, and the generation of
the oxygen that is now plentiful in our environment,
allowed development of metabolic pathways that derive
energy from transfer of electrons from various
reductants ultimately to molecular oxygen.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Oxidation of an iron atom involves loss of an electron
(to an acceptor): Fe++
(reduced)  Fe+++
(oxidized) + e-
Since electrons in a C-O bond are associated more with
O, increased oxidation of a C atom means increased
number of C-O bonds.
Oxidation of carbon is spontaneous (energy-yielding).
Two important e−
carriers in metabolism: NAD+
& FAD.
Increasing oxidation of carbon
H
CH H
H
H
CH OH
H
H
C
H
O
O
C
O
OH
C
H
O
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
NAD+
, Nicotinamide
Adenine Dinucleotide,
is an electronacceptor
in catabolic pathways.
The nicotinamide ring,
derived from the vitamin
niacin, accepts 2 e-
& 1 H+
(a hydride) in going to
the reduced state,
NADH.
NADP+
/NADPH is
similar except for Pi.
NADPH is e−
donor in
synthetic pathways.
H
C
NH2
O
CH2
H
N
H
OH OH
H H
O
OP
O
HH
OH OH
H H
O
CH2
N
N
N
NH2
OP
O
O
−
O
+
N−
O
nicotinamide
adenine
esterified to
Pi in NADP+
Nicotinamide
Adenine
Dinucleotide
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
NAD+
/NADH
The electron transfer reaction may be summarized
as :
NAD+
+ 2e−
+ H+
↔ NADH.
It may also be written as:
NAD+
+ 2e−
+ 2H+
↔ NADH + H+
N
R
H
C
NH2
O
N
R
C
NH2
O
H H
+
+ 2 e−
+ H+
NAD+
NADH
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
FAD (Flavin Adenine Dinucleotide), derived from the
vitamin riboflavin, functions as an e−
acceptor.
The dimethylisoalloxazine ring undergoes
reduction/oxidation.
FAD accepts 2e−
+ 2H+
in going to its reduced state:
FAD + 2e−
+ 2H+
↔ FADH2
C
C
C
H
C
C
H
C
N
C
C
N
N
C
NH
C
H3C
H3C
O
O
CH2
HC
HC
HC
H2C
OH
O P O P O
O
O-
O
O-
Ribose
OH
OH
Adenine
C
C
C
H
C
C
H
C
N
C
C
H
N
N
H
C
NH
C
H3C
H3C
O
O
CH2
HC
HC
HC
H2C
OH
O P O P O
O
O-
O
O-
Ribose
OH
OH
Adenine
FAD FADH2
2 e−
+ 2 H+
dimethylisoalloxazine
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
NAD+
is a coenzyme, that reversibly binds to
enzymes.
FAD is a prosthetic group, that remains tightly
bound at the active site of an enzyme.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Chemistry of ATP (Adenosine – tri –
phosphate):ATP is a nucleotide type molecule made of the following
components:-
1.The nitrogenous base adenine
2.The pentose sugar ribose
3.Three phosphate groups
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Chemistry of ATP (Adenosine – tri –
phosphate)
Thus:-Thus:-
ATP ADP + Pi ∆G = -7.3 kcal/mole
ADP AMP + Pi ∆G = -7.2 kcal/mole
AMP Adenosine + Pi ∆G = -3.2 kcal/mole
ATP, ADP and AMP are present in all forms of life. They
occur not only in the cytosol of cells but also in the
mitochondria & nucleus. In normal respiring cells ATP
makes up 80% of the three ribonucleotides. ADP & AMP
account for 20%.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Chemistry of ATP (Adenosine – tri –
phosphate):
At pH 7, ATP occurs as the multiply charged anion ATP4-
whereas ADP
occurs as ADP3-
. This is because their phosphate groups are completely
ionized at the intracellular PH. ATP and ADP occur inside cells as
magnesium complexes:-
ATP4-
+ Mg2+
(ATP-Mg)2-
ADP3-
+ Mg2+
(ADP-Mg)
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Chemistry of ATP (Adenosine – tri –
phosphate):
Inside cells the concentration of ATP remains normally relatively
constantly high. It’s rate of formation equals it’s rate of
hydrolysis. Thus the terminal phosphate group of ATP
undergoes continuous removal & replacement from the pool of
inorganic phosphate during cell metabolism.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G values for some characteristic
reactions
Super high energy compounds are compounds generated during
catabolism. They are phosphorylated compounds. Once formed along a
catabolic pathway, they undergo immediate hydrolysis
(dephosphorylation). As a result a large amount of energy is released
this is used by the cell to synthesize ATP from ADP and the hydrolyzed
inorganic phosphate.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G values for some characteristic
reactions
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The Bioenergetics of Muscle Contraction
The contraction of muscle requires a large amount of energy that
cannot be fulfilled by the ATP stored inside muscle tissue. In
addition to ATP there is a super-high energy compound stored in
muscle cells that plays a major role in the energetics of muscle. This
super-high energy compound is also present in large concentrations
in other contractile tissues such as brain & nerve tissue.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The Bioenergetics of Muscle Contraction
This compound is PHOSPHOCREATINE. It serves as a storage
form of high energy phosphate groups. The ∆G value for the
hydrolytic reaction of phosphocreatine is highly negative (-10.3
kcal/mole). This is greater than that of ATP. The energy released is
sufficient to allow coupled synthesis of ATP from ADP:-
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The Bioenergetics of Muscle
Contraction
Phosphocreatine thus functions to keep the ATP
concentration in muscle cells at constantly high level
whenever some of the ATP of muscle cells is used for
contraction, ADP is formed. Through the action of
creatine kinase phosphocreatine is quickly hydrolyzed
and donates its phosphate group to ADP to form ATP.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The phosphocreatine level inside muscle is 3-4 times greater
than that of ATP and thus stores enough high energy phosphate
groups to keep the ATP level constantly high during short
periods of intense muscular contraction.
The Bioenergetics of Muscle
Contraction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The Bioenergetics of Muscle
Contraction:
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Bioenergetics
• Bioenergetics
• The quantitative study of…
• Cellular energy transduction
• Nature and function of the chemical processes for energy
transductions
• Fundamental laws in thermodynamics governing
bioenergetics
• First law : Energy conservation
• Second law: Increase in entropy
Living Orgamism
1. Metabolism
2. Reproduction
Energy: work to survive and reproduce
Energy transduction in biological system
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Free Energy Change for Biological Reactions
• Thermodynamic quantities describing the energy changes in chemical
reaction
• Gibbs free energy, G
• The amount of energy capable of doing work during a reaction at constant
T and P
• Positive ∆G : endergonic
• Negative ∆G : exergonic, spontaneous reaction
• Enthalpy, H
• The heat content of the reacting system
• Number & kinds of chemical bonds in the reactants and products
• Positive ∆H : endothermic
• Negative ∆H : exothermic
• Entropy, S
• Quantitative expression for the randomness or disorder in a system
• ∆G = ∆H –T∆S
• Cells use free energy for reactions
• Energy source
• Heterotrope :Nutrient
• Autotrope: Solar energy
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Standard Free Energy Change vs. Equilibrium Constant
• aA + bB  cC + dD
• Equilibrium constant [Ceq]c
[Deq]d
[Aeq]a
[Beq]b
• ∆Go
: standard free energy change (J/mol)
• 298K=25o
C, 1M of initial reactants and products,1 atm (101.3 kPa)
• Standard transformed constants
• pH 7, 55.5M water, 1mM Mg2+
(ATP as reactant)
• ∆G’o
,K’eq
• ∆G’o
= -RT ln K’eq
• Spontaneous reaction
• K’’
eq >1
• ∆Go
: negative
Keq =
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G’o
for some representative chemical reactions
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
∆G’o
are additive
• Sequential chemical reactions
• (1) A  B : ∆G’1
o
,K’eq1
glucose + Pi  G-6P + H2O ; ∆G’o
= 13.8 kJ/mol
• (2) B  C : ∆G’2
o
,K’eq2
ATP + H2O  ADP + Pi ;∆G’o
= -30.5 kJ/mol
• (1) + (2) : A  C : ∆G’1
o
+ ∆G’1
o
,K’eq1 X K’eq2
ATP + glucose  ADP + Pi ; ∆G’o
= -16.7 kJ/mol
• Coupling of endergonic and exergonic reaction to make exergonic
reaction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The ΔG of a Reaction Depends on
Changes in Enthalpy (Bond Energy) and
Entropy
At any constant temperature and pressure, two factors determine
the ΔG of a reaction and thus whether the reaction will tend to
occur:
the change in bond energy between reactants and products and
the change in the randomness of the system. Gibbs showed that
free energy can be defined as
where H is the bond energy, or enthalpy, of the system; T is its
temperature in degrees Kelvin (K); and S is a measure of
randomness, called entropy.
If temperature remains
constant, a reaction proceeds
spontaneously only if the
free energy change ΔG in the
following equation is
negative:
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
In an exothermic reaction, the products contain less bond energy than the
reactants, the liberated energy is usually converted to heat (the energy of
molecular motion), and ΔH is negative.
In an endothermic reaction, the products contain more bond energy than the
reactants, heat is absorbed, and ΔH is positive.
Reactions tend to proceed if they liberate energy (if ΔH < 0), but this is only   
one of two important parameters of free energy to consider; the other is
entropy.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Entropy S is a measure of the degree of
randomness or disorder of a system.
Entropy increases as a system becomes more
disordered and decreases as it becomes more
structured.
Consider, for example, the diffusion of solutes from one
solution into another one in which their concentration is
lower.
This important biological reaction is driven only by an
increase in entropy; in such a process ΔH is near zero.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
suppose that a 0.1 M solution of glucose is
separated from a large volume of water by a
membrane through which glucose can diffuse.
Diffusion of glucose molecules across the
membrane will give them more room in which
to move, with the result that the randomness, or
entropy, of the system is increased.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Common Biochemical Reaction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Common Biochemical Reaction
Two basic chemical principle
1. A covalent bond can be broken in two general way: homolytic cleavage
and heterolytic cleavge
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
2. Biochemical reactions involve interactions between nucleophiles and
electrophiles
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Most of the reactions in living cells fall into one of five general
categories
1.Reaction that make or break carbon-carbon bond
2.Internal rearrangements, isomerization, and elimination
3.Free-radical reaction
4.Group transfer: acyl, glycosyl, phosphoryl
5.Oxidation-reduction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Reaction that make or break carbon-carbon bond
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Internal rearrangements, isomerization, and
elimination
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Internal rearrangements, isomerization, and
elimination
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Free-radical-mediated decarboxylation
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Acyl group transfer
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Phosphoryl group transfer
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
The oxidation states of carbon in biomolecules
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Oxidation-Reduction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Phosphoryl group transfers and ATP
The free energy change for ATP hydrolysis is large negative
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Other phosphorylated compounds also have large free
energies of hydrolysis
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
For hydrolysis reactions with large negative free-energy changes, the
products are more stable than the reactants for one or more of the
following reasons
1.The bond strain is relieved by charge separation (ATP).
2.The products are stabilized by ionization (ATP, 3-phosphoglycerate,
thioester) .
3.The products are stabilized by isomerization (PEP)
4.The products are stabilized by resonance (creatin, inorganic phosphate,
thioester)
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
ATP provides energy by group transfer
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
ATP serve as the universal energy currency in
all living cells Because of its intermediate
position on the scale of group transfer
potential.
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
ATP donates phosphoryl, pyrophosphoryl,
and adenyl group
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Transphosphorylation between nucleotide by
nucleotide diphosphate kinase
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Inorganic phosphate may serve as a reservoir
of phosphoryl group with high energy
transfer potential
Polyphosphate kinase-1 (in bacterial)
Polyphosphate kinase-2
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Biological oxidation-reduction reaction
1.The transfer of phosphoryl groups is a central feature of metabolism
2.Electron transfer in oxidation-reduction reaction is another important
transfer in living cells.
3.The flow of electrons is responsible for all work done by living organism
4.In heterotroph, the source of electron are reduced compounds (food)
5.In autotroph, the source of electron is a chemical species excited by the
absorption of light (e.g. H2O).
6.Cells contain a variety of molecular energy transducers, which convert
the every of electron flow into useful work
7.Biological oxidation often involve dehydrogenation
- alkane (-CH2-CH2-) convert to alkene (-CH=CH-)
- oxidation is coincident with the loss of hydrogen
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Oxidation states of carbon in the biosphere
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
A Few Types of Coenzymes and Proteins Serve as Universal Electron
1.Electrons from hundreds of different substrates into a few types of
universal electron carriers
2.NAD, NADP, FMN, and FAD are water soluble coenzymes that undergo
reversible oxidation and reduction in many of the electron-transfer
reactions of metabolism
3.Lipid-soluble quinones, such as ubiquinone, act as electorn carriers and
proton donors in membrane
4.Iron-sulfur proteins and cytochromes that undergo reversible oxidation-
reduction reaction
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620

More Related Content

What's hot

The effect of dielectric constant on the kinetics of reaction between plasm...
The effect of dielectric constant on the kinetics  of reaction  between plasm...The effect of dielectric constant on the kinetics  of reaction  between plasm...
The effect of dielectric constant on the kinetics of reaction between plasm...Alexander Decker
 
chapter 4
chapter 4chapter 4
chapter 4aglasem
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Maciej Przybyłek
 
Chemical kinetics lecture
Chemical kinetics lectureChemical kinetics lecture
Chemical kinetics lectureFelix Lidoro
 
Rate and order of reaction
Rate and order of reaction Rate and order of reaction
Rate and order of reaction Asad Bilal
 
Chemical Kinetics in Unit Processes
Chemical Kinetics in Unit ProcessesChemical Kinetics in Unit Processes
Chemical Kinetics in Unit ProcessesRahul Gaur
 
Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free EnergyMary Beth Smith
 
Cmc chapter 15
Cmc chapter 15Cmc chapter 15
Cmc chapter 15Jane Hamze
 
Cmc chapter 17
Cmc chapter 17Cmc chapter 17
Cmc chapter 17Jane Hamze
 
Cmc chapter 16
Cmc chapter 16Cmc chapter 16
Cmc chapter 16Jane Hamze
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactionsDr Ahmad Fahmi
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kineticsKiran Rodge
 
chemical equilibrium for iit jee
chemical equilibrium for iit jeechemical equilibrium for iit jee
chemical equilibrium for iit jeeAbhishek Choudhary
 
New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13caneman1
 
Cmc chapter 19
Cmc chapter 19Cmc chapter 19
Cmc chapter 19Jane Hamze
 
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...xrqtchemistry
 
Cmc chapter 11
Cmc chapter 11Cmc chapter 11
Cmc chapter 11Jane Hamze
 
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...IJEACS
 

What's hot (19)

The effect of dielectric constant on the kinetics of reaction between plasm...
The effect of dielectric constant on the kinetics  of reaction  between plasm...The effect of dielectric constant on the kinetics  of reaction  between plasm...
The effect of dielectric constant on the kinetics of reaction between plasm...
 
chapter 4
chapter 4chapter 4
chapter 4
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
 
Chemical kinetics lecture
Chemical kinetics lectureChemical kinetics lecture
Chemical kinetics lecture
 
Rate and order of reaction
Rate and order of reaction Rate and order of reaction
Rate and order of reaction
 
Chemical Kinetics in Unit Processes
Chemical Kinetics in Unit ProcessesChemical Kinetics in Unit Processes
Chemical Kinetics in Unit Processes
 
Lecture 18.4- Free Energy
Lecture 18.4- Free EnergyLecture 18.4- Free Energy
Lecture 18.4- Free Energy
 
Cmc chapter 15
Cmc chapter 15Cmc chapter 15
Cmc chapter 15
 
Cmc chapter 17
Cmc chapter 17Cmc chapter 17
Cmc chapter 17
 
Cmc chapter 16
Cmc chapter 16Cmc chapter 16
Cmc chapter 16
 
05c reversible reactions
05c reversible reactions05c reversible reactions
05c reversible reactions
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
chemical equilibrium for iit jee
chemical equilibrium for iit jeechemical equilibrium for iit jee
chemical equilibrium for iit jee
 
New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13New chm 152 unit 1 power points sp13
New chm 152 unit 1 power points sp13
 
Cmc chapter 19
Cmc chapter 19Cmc chapter 19
Cmc chapter 19
 
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...
Dra Núria López - IN SITU SURFACE COVERAGE ANALYSIS OF RUO2-CATALYSED HCL OXI...
 
Cmc chapter 11
Cmc chapter 11Cmc chapter 11
Cmc chapter 11
 
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...
The Influence of Solvent on the Solvolysis of Ethyl Cinnamate in Water Aceton...
 
BioEnergetics
BioEnergeticsBioEnergetics
BioEnergetics
 

Similar to Bioenergetics 2

4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.pptNarenova
 
Biochemical Thermodynamics for Biotechnology
Biochemical Thermodynamics for BiotechnologyBiochemical Thermodynamics for Biotechnology
Biochemical Thermodynamics for Biotechnologyssusere9cd97
 
bioenergetics.pptx
bioenergetics.pptxbioenergetics.pptx
bioenergetics.pptxRAJNKIT
 
Chemical Equilibrium.pptx
Chemical Equilibrium.pptxChemical Equilibrium.pptx
Chemical Equilibrium.pptxbujji9398834456
 
Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02Cleophas Rwemera
 
Cellular Energy pt.1
Cellular Energy pt.1Cellular Energy pt.1
Cellular Energy pt.1Jolie Yu
 
Bioenergetics Practice Questions
 Bioenergetics Practice Questions Bioenergetics Practice Questions
Bioenergetics Practice Questionszizu zidu
 
Capitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICACapitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICAGynna Sierra
 
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yr
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yrUnit 1 Bioenergetics.pdf biochemistry b pharm 1st. yr
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yrtvlogers67
 
IRJET- Compressibility of a Periodic Lattice of Atomic Hydrogen
IRJET-  	  Compressibility of a Periodic Lattice of Atomic HydrogenIRJET-  	  Compressibility of a Periodic Lattice of Atomic Hydrogen
IRJET- Compressibility of a Periodic Lattice of Atomic HydrogenIRJET Journal
 
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdf
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdfCHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdf
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdfWeldebrhan Tesfaye
 
Assignment chemical equilibrium_jh_sir-4168
Assignment chemical equilibrium_jh_sir-4168Assignment chemical equilibrium_jh_sir-4168
Assignment chemical equilibrium_jh_sir-4168NEETRICKSJEE
 
Enzyme Kinetics and thermodynamic analysis
Enzyme Kinetics and thermodynamic analysisEnzyme Kinetics and thermodynamic analysis
Enzyme Kinetics and thermodynamic analysisKAUSHAL SAHU
 

Similar to Bioenergetics 2 (20)

Biochemistry.pptx
Biochemistry.pptxBiochemistry.pptx
Biochemistry.pptx
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.ppt
 
Biochemical Thermodynamics for Biotechnology
Biochemical Thermodynamics for BiotechnologyBiochemical Thermodynamics for Biotechnology
Biochemical Thermodynamics for Biotechnology
 
bioenergetics.pptx
bioenergetics.pptxbioenergetics.pptx
bioenergetics.pptx
 
Chemical Equilibrium.pptx
Chemical Equilibrium.pptxChemical Equilibrium.pptx
Chemical Equilibrium.pptx
 
Tanisha ppt
Tanisha ppt     Tanisha ppt
Tanisha ppt
 
Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02
 
Cellular Energy pt.1
Cellular Energy pt.1Cellular Energy pt.1
Cellular Energy pt.1
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Bioenergetics Practice Questions
 Bioenergetics Practice Questions Bioenergetics Practice Questions
Bioenergetics Practice Questions
 
Capitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICACapitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICA
 
L3 energy new_slide30
L3 energy new_slide30L3 energy new_slide30
L3 energy new_slide30
 
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yr
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yrUnit 1 Bioenergetics.pdf biochemistry b pharm 1st. yr
Unit 1 Bioenergetics.pdf biochemistry b pharm 1st. yr
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
IRJET- Compressibility of a Periodic Lattice of Atomic Hydrogen
IRJET-  	  Compressibility of a Periodic Lattice of Atomic HydrogenIRJET-  	  Compressibility of a Periodic Lattice of Atomic Hydrogen
IRJET- Compressibility of a Periodic Lattice of Atomic Hydrogen
 
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdf
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdfCHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdf
CHAPTER 2 THERMODYNAMIC PRINCIPLE OF EXTRACTIOn.pdf
 
Assignment chemical equilibrium_jh_sir-4168
Assignment chemical equilibrium_jh_sir-4168Assignment chemical equilibrium_jh_sir-4168
Assignment chemical equilibrium_jh_sir-4168
 
Enzyme Kinetics and thermodynamic analysis
Enzyme Kinetics and thermodynamic analysisEnzyme Kinetics and thermodynamic analysis
Enzyme Kinetics and thermodynamic analysis
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 

Bioenergetics 2

  • 1. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 CSIR NET LIFE unit-1 Bioenergetics and Biochemical Reaction Types
  • 2. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 WELCOME MERIT LIFE SCIENCESMERIT LIFE SCIENCES e-TUTORIALe-TUTORIAL NEET/NET JRF CSIR EXAM /JAM/DBT DR SHEELENDRA Ph.D. FROM BHU FACULTY: DR SHEELENDRA BHATT
  • 3. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 UNIT-1 BIOENERGETICS-2 TIME 8:00-10:00PM
  • 4. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 • Heat energy can be used to do work only through a change of temperature. Bioenergetics & ATPBioenergetics & ATP
  • 5. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 6. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Standard free energy change (∆G°) of a chemical reaction:
  • 7. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 • When a reaction results in release of energy
  • 8. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 9. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The free-energy change of a reaction (ΔG) divided into 3 types:
  • 10. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Standard free energy change (∆G°) of a chemical reaction: For every reaction ∆G can be calculated using:- ∆G° = - 2.303 RT log Keq While: R = Gas constant T = AbsoluteTemp. Keq = Equilibrium constant Note: ∆G° indicates constant temperature & pressure and physiological pH 7.2 for cells. Unites of free energy = calorie (cal) or kilocalorie (kcal) /mole
  • 11. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Units of energy
  • 12. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 13. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 • ΔG° is the free energy change for this reaction under standard conditions that is, when each of the reactants A, B, C, and D is present at a concentration of 1.0 M (for a gas, the standard state is usually chosen to be 1 atmosphere). • Thus, the ΔG of a reaction depends on the nature of the reactants (expressed in the ΔG° term of equation 1) and on their concentrations (expressed in the logarithmic term of equation 1).
  • 14. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 •The ΔG of a reaction depends only on the free energy of the products (the final state) minus the free energy of the reactants (the initial state). •The ΔG of a reaction is independent of the path (or molecular mechanism) of the transformation. The mechanism of a reaction has no effect on ΔG. •The ΔG provides no information about the rate of a reaction.
  • 15. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G values of pathways can be calculated The ∆G value of an overall pathway can be calculated as the algebraic sum of the ∆G values of the individual reactions making the pathway:- ∆Gpathway= ∆G1 + ∆G2 + ∆G3 + ∆G4 + ∆G5
  • 16. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Free energy of a reaction The free energy change (∆G) of a reaction determines its spontaneity. A reaction is spontaneous if ∆G is negative (if the free energy of products is less than that of reactants). ∆Go ' = standard free energy change (at pH 7, 1M reactants & products); R = gas constant; T = temp. For a reaction A + B  C + D ∆G = ∆Go ' + RT ln [C] [D] [A] [B]
  • 17. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆Go ' of a reaction may be positive, & ∆G negative, depending on cellular concentrations of reactants and products. Many reactions for which ∆Go ' is positive are spontaneous because other reactions cause depletion of products or maintenance of high substrate concentration. For a reaction A + B  C + D ∆G = ∆Gº' + RT ln [A] [B] [C] [D]
  • 18. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 At equilibrium ∆G = 0. K'eq, the ratio [C][D]/[A] [B] at equilibrium, is the equilibrium constant. An equilibrium constant (K'eq) greater than one indicates a spontaneous reaction (negative ∆G°'). ∆G = ∆Gº' + RT ln 0 = ∆Gº' + RT ln ∆Gº' = - RTln defining K'eq = ∆Gº' = - RT ln K'eq [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B]
  • 19. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 K'eq ∆G º' kJ/mol Starting with 1 M reactants & products, the reaction: 104 - 23 proceeds forward (spontaneous) 102 - 11 proceeds forward (spontaneous) 100 = 1 0 is at equilibrium 10 -2 + 11 reverses to form “reactants” 10 -4 + 23 reverses to form “reactants” ∆Go ' = − RT ln K'eq Variation of equilibrium constant with ∆Go ‘ (25 o C)
  • 20. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Energy coupling  A spontaneous reaction may drive a non-spontaneous reaction.  Free energy changes of coupled reactions are additive. A. Some enzyme-catalyzed reactions are interpretable as two coupled half-reactions, one spontaneous and the other non-spontaneous.  At the enzyme active site, the coupled reaction is kinetically facilitated, while individual half-reactions are prevented.  Free energy changes of half reactions may be summed, to yield the free energy of the coupled reaction.
  • 21. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 For example, in the reaction catalyzed by the Glycolysis enzyme Hexokinase, the half-reactions are: ATP + H2O ↔ ADP + Pi ∆Go ' = −31 kJ/mol Pi + glucose ↔ glucose-6-P + H2O ∆Go ' = +14 kJ/mol Coupled reaction: ATP + glucose ↔ ADP + glucose-6-P ∆Go ' = −17 kJ/mol The structure of the enzyme active site, from which H2O is excluded, prevents the individual hydrolytic reactions, while favoring the coupled reaction.
  • 22. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 B.Two separate reactions, occurring in the same cellular compartment, one spontaneous and the other not, may be coupled by a common intermediate (reactant or product). A hypothetical, but typical, example involving PPi: Enzyme 1: A + ATP ↔ B + AMP + PPi ∆Go ' = + 15 kJ/mol Enzyme 2: PPi + H2O ↔ 2Pi ∆Go ' = – 33 kJ/mol Overall spontaneous reaction: A + ATP + H2O ↔ B + AMP + 2Pi ∆Go ' = – 18 kJ/mol Pyrophosphate (PPi) is often the product of a reaction that needs a driving force. Its spontaneous hydrolysis, catalyzed by Pyrophosphatase enzyme, drives the reaction for which PPi is a product.
  • 23. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Ion Transport may be coupled to a chemical reaction, e.g., hydrolysis or synthesis of ATP. In this diagram & below, water is not shown. It should be recalled that the ATP hydrolysis/synthesis reaction is: ATP + H2O ↔ ADP + Pi. S1 S2 ATP ADP + Pi Side 1 Side 2
  • 24. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The free energy change (electrochemical potential difference) associated with transport of an ion S across a membrane from side 1 to side 2 is: R = gas constant, T = temperature, Z = charge on the ion, F = Faraday constant, ∆Ψ = voltage. ∆G = R T ln + Z F ∆Ψ [S]1 [S]2 S1 S2 Side 1 Side 2
  • 25. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G for ion flux - varies with ion gradient & voltage. ∆G for chemical reaction - negative ∆Go ' for ATP hydrolysis; ∆G depends also on [ATP], [ADP], [Pi]. Since free energy changes are additive, the spontaneous direction for the coupled reaction will depend on relative magnitudes of: S1 S2 ATP ADP + Pi Side 1 Side 2
  • 26. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Two examples: ActiveTransport: Spontaneous ATP hydrolysis (negative ∆G) is coupled to (drives) ion flux against a gradient (positive ∆G). ATP synthesis: Spontaneous H+ flux (negative ∆G) is coupled to (drives) ATP synthesis (positive ∆G).
  • 27. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 “High energy” bonds Phosphoanhydride bonds (formed by splitting out H2O between 2 phosphoric acids or between carboxylic & phosphoric acids) have a large negative ∆G of hydrolysis. N NN N NH2 O OHOH HH H CH2 H OPOPOP-O O O- O- O O O- adenine ribose ATP adenosine triphosphate phosphoanhydride bonds (~)
  • 28. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 N NN N NH2 O OHOH HH H CH2 H OPOPOP-O O O- O- O O O- adenine ribose ATP adenosine triphosphate phosphoanhydride bonds (~) Phosphoanhydride linkages are said to be "high energy" bonds. Bond energy is not high, just ∆G of hydrolysis. "High energy" bonds are represented by the "~" symbol. ~P represents a phosphate group with a large negative ∆G of hydrolysis.
  • 29. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Compounds with “high energy bonds” are said to have high group transfer potential. For example, Pi may be spontaneously cleaved from ATP for transfer to another compound (e.g., to a hydroxyl group on glucose). “High energy” bonds
  • 30. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 31. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 32. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Example: AMPPNP. Such analogs have been used to study the dependence of coupled reactions onATP hydrolysis. In addition, they have made it possible to crystallize an enzyme that catalyzes ATP hydrolysis with an ATP analog at the active site. AMPPNP (ADPNP) ATP analog N NN N NH2 O OHOH HH H CH2 H OPOPNP-O O O- O- O O O- H Artificial ATP analogs have been designed that are resistant to cleavage of the terminal phosphate by hydrolysis.
  • 33. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 A reaction important for equilibrating ~P among adenine nucleotides within a cell is that catalyzed by Adenylate Kinase: ATP + AMP ↔ 2 ADP The Adenylate Kinase reaction is also important because the substrate for ATP synthesis, e.g., by mitochondrial ATP Synthase, is ADP, while some cellular reactions dephosphorylate ATP all the way to AMP. The enzyme Nucleoside Diphosphate Kinase (NuDiKi) equilibrates ~P among the various nucleotides that are needed, e.g., for synthesis of DNA & RNA. NuDiKi catalyzes reversible reactions such as: ATP + GDP ↔ ADP + GTP, ATP + UDP ↔ ADP + UTP, etc.
  • 34. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Inorganic polyphosphate Many organisms store energy as inorganic polyphosphate, a chain of many phosphate residues linked by phosphoanhydride bonds: P~P~P~P~P... Hydrolysis of Pi residues from polyphosphate may be coupled to energy-dependent reactions. Depending on the organism or cell type, inorganic polyphosphate may have additional functions. E.g., it may serve as a reservoir for Pi , a chelator of metal ions, a buffer, or a regulator.
  • 35. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Why do phosphoanhydride linkages have a high ∆G of hydrolysis? Contributing factors for ATP & PPi include:  Resonance stabilization of products of hydrolysis exceeds resonance stabilization of the compound itself.  Electrostatic repulsion between negatively charged phosphate oxygen atoms favors separation of the phosphates.
  • 36. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Creatine Kinase catalyzes: Phosphocreatine + ADP ↔ ATP + creatine This is a reversible reaction, though the equilibrium constant slightly favors phosphocreatine formation.  Phosphocreatine is produced when ATP levels are high.  When ATP is depleted during exercise in muscle, phosphate is transferred from phosphocreatine to ADP, to replenish ATP. − O P H N C O O− N NH2 + CH2 CH3 C O O− phosphocreatine Phosphocreatine (creatine phosphate), another compound with a "high energy" phosphate linkage, is used in nerve & muscle for storage of ~P bonds.
  • 37. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Phosphoenolpyruvate (PEP), involved in ATP synthesis in Glycolysis, has a very high ∆G of Pi hydrolysis. Removal of Pi from ester linkage in PEP is spontaneous because the enol spontaneously converts to a ketone. The ester linkage in PEP is an exception. C C O O− OPO3 2− CH2 C C O O− O CH3 C C O O− OH CH2 ADP ATP H+ PEP enolpyruvate pyruvate
  • 38. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Generally phosphate esters, formed by splitting out water between a phosphoric acid and an OH group, have a low but negative ∆G of hydrolysis. Examples:  the linkage between the first phosphate and the ribose hydroxyl of ATP. N NN N NH2 O OHOH HH H CH2 H OPOPOP-O O O- O- O O O- adenine ribose ATP (adenosine triphosphate) ester linkage
  • 39. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Other examples of phosphate esters with low but negative ∆G of hydrolysis:  the linkage between phosphate & a hydroxyl group in glucose-6- phosphate or glycerol-3-phosphate. glycerol-3-phosphate CH2 CH CH2 OH HO O P O O− O− H O OH H OHH OH CH2 H OH H 1 6 5 4 3 2 O P O OH OH glucose-6-phosphate
  • 40. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620  the linkage between phosphate and the hydroxyl group of an amino acid residue in a protein (serine, threonine or tyrosine). Regulation of proteins by phosphorylation and dephosphorylation will be discussed later. Protein OH + ATP Protein O P O O− O− + ADP Pi H2O Protein Kinase Protein Phosphatase
  • 41. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ATP has special roles in energy coupling & Pi transfer. ∆G of phosphate hydrolysis from ATP is intermediate among examples below. ATP can thus act as a Pi donor, & ATP can be synthesized by Pi transfer, e.g., from PEP. Compound ∆Go ' of phosphate hydrolysis, kJ/mol Phosphoenolpyruvate (PEP) −61.9 Phosphocreatine −43.1 Pyrophosphate −33.5 ATP (to ADP) −30.5 Glucose-6-phosphate −13.8 Glycerol-3-phosphate −9.2
  • 42. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Coenzyme A-SH + HO C O R Coenzyme A-S C O R + H2O A thioester forms between a carboxylic acid & a thiol (SH), e.g., the thiol of coenzyme A (abbreviated CoA-SH). Thioesters are ~ linkages. In contrast to phosphate esters, thioesters have a large negative ∆G of hydrolysis. Some other “high energy” bonds:
  • 43. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The thiol of coenzyme A can react with a carboxyl group of acetic acid (yielding acetyl-CoA) or a fatty acid (yielding fatty acyl-CoA). The spontaneity of thioester cleavage is essential to the role of coenzyme A as an acyl group carrier. Like ATP, CoA has a high group transfer potential. Coenzyme A-SH + HO C O CH3 Coenzyme A-S C O CH3 + H2O acetic acid acetyl-CoA
  • 44. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Coenzyme A includes β-mercaptoethylamine, in amide linkage to the carboxyl group of the B vitamin pantothenate. The hydroxyl of pantothenate is in ester linkage to a phosphate of ADP-3'-phosphate. The functional group is the thiol (SH) of β-mercaptoethylamine. N N N N NH2 O OHO HH H CH2 H OPOPOH2C O− O O O− P O O−− O C C C NH CH2 CH2 C NH CH3H3C HHO O CH2 CH2 SH O β-mercaptoethylamine pantothenate ADP-3'-phosphate Coenzyme A
  • 45. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 3',5'-Cyclic AMP (cAMP), is used by cells as a transient signal. Adenylate Cyclase catalyzes cAMP synthesis: ATP → cAMP + PPi. The reaction is highly spontaneous due to the production of PPi, which spontaneously hydrolyzes. Phosphodiesterase catalyzes hydrolytic cleavage of one Pi ester (red), converting cAMP → 5'-AMP. N N N N NH2 O OHO HH H H2 C H O P O O- 1' 3' 5' 4' 2' cAMP This is a highly spontaneous reaction, because cAMP is sterically constrained by having a phosphate with ester links to 2 hydroxyls of the same ribose. The lability of cAMP to hydrolysis makes it an excellent transient signal.
  • 46. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 List compounds exemplifying the following roles of "high energy" bonds:  Energy transfer or storage ATP, PPi, polyphosphate, phosphocreatine  Group transfer ATP, Coenzyme A  Transient signal cyclic AMP
  • 47. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Kinetics vsThermodynamics: A high activation energy barrier usually causes hydrolysis of a “high energy” bond to be very slow in the absence of an enzyme catalyst. This kinetic stability is essential to the role of ATP and other compounds with ~ bonds. If ATP would rapidly hydrolyze in the absence of a catalyst, it could not serve its important roles in energy metabolism and phosphate transfer. Phosphate is removed from ATP only when the reaction is coupled via enzyme catalysis to some other reaction useful to the cell, such as transport of an ion, phosphorylation of glucose, or regulation of an enzyme by phosphorylation of a serine residue.
  • 48. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Oxidation & reduction Oxidation & reduction will be covered in more detail later. The evolution of photosynthesis, and the generation of the oxygen that is now plentiful in our environment, allowed development of metabolic pathways that derive energy from transfer of electrons from various reductants ultimately to molecular oxygen.
  • 49. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Oxidation of an iron atom involves loss of an electron (to an acceptor): Fe++ (reduced)  Fe+++ (oxidized) + e- Since electrons in a C-O bond are associated more with O, increased oxidation of a C atom means increased number of C-O bonds. Oxidation of carbon is spontaneous (energy-yielding). Two important e− carriers in metabolism: NAD+ & FAD. Increasing oxidation of carbon H CH H H H CH OH H H C H O O C O OH C H O
  • 50. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 NAD+ , Nicotinamide Adenine Dinucleotide, is an electronacceptor in catabolic pathways. The nicotinamide ring, derived from the vitamin niacin, accepts 2 e- & 1 H+ (a hydride) in going to the reduced state, NADH. NADP+ /NADPH is similar except for Pi. NADPH is e− donor in synthetic pathways. H C NH2 O CH2 H N H OH OH H H O OP O HH OH OH H H O CH2 N N N NH2 OP O O − O + N− O nicotinamide adenine esterified to Pi in NADP+ Nicotinamide Adenine Dinucleotide
  • 51. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 NAD+ /NADH The electron transfer reaction may be summarized as : NAD+ + 2e− + H+ ↔ NADH. It may also be written as: NAD+ + 2e− + 2H+ ↔ NADH + H+ N R H C NH2 O N R C NH2 O H H + + 2 e− + H+ NAD+ NADH
  • 52. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 FAD (Flavin Adenine Dinucleotide), derived from the vitamin riboflavin, functions as an e− acceptor. The dimethylisoalloxazine ring undergoes reduction/oxidation. FAD accepts 2e− + 2H+ in going to its reduced state: FAD + 2e− + 2H+ ↔ FADH2 C C C H C C H C N C C N N C NH C H3C H3C O O CH2 HC HC HC H2C OH O P O P O O O- O O- Ribose OH OH Adenine C C C H C C H C N C C H N N H C NH C H3C H3C O O CH2 HC HC HC H2C OH O P O P O O O- O O- Ribose OH OH Adenine FAD FADH2 2 e− + 2 H+ dimethylisoalloxazine
  • 53. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 NAD+ is a coenzyme, that reversibly binds to enzymes. FAD is a prosthetic group, that remains tightly bound at the active site of an enzyme.
  • 54. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 55. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Chemistry of ATP (Adenosine – tri – phosphate):ATP is a nucleotide type molecule made of the following components:- 1.The nitrogenous base adenine 2.The pentose sugar ribose 3.Three phosphate groups
  • 56. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Chemistry of ATP (Adenosine – tri – phosphate) Thus:-Thus:- ATP ADP + Pi ∆G = -7.3 kcal/mole ADP AMP + Pi ∆G = -7.2 kcal/mole AMP Adenosine + Pi ∆G = -3.2 kcal/mole ATP, ADP and AMP are present in all forms of life. They occur not only in the cytosol of cells but also in the mitochondria & nucleus. In normal respiring cells ATP makes up 80% of the three ribonucleotides. ADP & AMP account for 20%.
  • 57. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Chemistry of ATP (Adenosine – tri – phosphate): At pH 7, ATP occurs as the multiply charged anion ATP4- whereas ADP occurs as ADP3- . This is because their phosphate groups are completely ionized at the intracellular PH. ATP and ADP occur inside cells as magnesium complexes:- ATP4- + Mg2+ (ATP-Mg)2- ADP3- + Mg2+ (ADP-Mg)
  • 58. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Chemistry of ATP (Adenosine – tri – phosphate): Inside cells the concentration of ATP remains normally relatively constantly high. It’s rate of formation equals it’s rate of hydrolysis. Thus the terminal phosphate group of ATP undergoes continuous removal & replacement from the pool of inorganic phosphate during cell metabolism.
  • 59. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G values for some characteristic reactions Super high energy compounds are compounds generated during catabolism. They are phosphorylated compounds. Once formed along a catabolic pathway, they undergo immediate hydrolysis (dephosphorylation). As a result a large amount of energy is released this is used by the cell to synthesize ATP from ADP and the hydrolyzed inorganic phosphate.
  • 60. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G values for some characteristic reactions
  • 61. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The Bioenergetics of Muscle Contraction The contraction of muscle requires a large amount of energy that cannot be fulfilled by the ATP stored inside muscle tissue. In addition to ATP there is a super-high energy compound stored in muscle cells that plays a major role in the energetics of muscle. This super-high energy compound is also present in large concentrations in other contractile tissues such as brain & nerve tissue.
  • 62. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The Bioenergetics of Muscle Contraction This compound is PHOSPHOCREATINE. It serves as a storage form of high energy phosphate groups. The ∆G value for the hydrolytic reaction of phosphocreatine is highly negative (-10.3 kcal/mole). This is greater than that of ATP. The energy released is sufficient to allow coupled synthesis of ATP from ADP:-
  • 63. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The Bioenergetics of Muscle Contraction Phosphocreatine thus functions to keep the ATP concentration in muscle cells at constantly high level whenever some of the ATP of muscle cells is used for contraction, ADP is formed. Through the action of creatine kinase phosphocreatine is quickly hydrolyzed and donates its phosphate group to ADP to form ATP.
  • 64. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The phosphocreatine level inside muscle is 3-4 times greater than that of ATP and thus stores enough high energy phosphate groups to keep the ATP level constantly high during short periods of intense muscular contraction. The Bioenergetics of Muscle Contraction
  • 65. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The Bioenergetics of Muscle Contraction:
  • 66. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 67. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 68. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Bioenergetics • Bioenergetics • The quantitative study of… • Cellular energy transduction • Nature and function of the chemical processes for energy transductions • Fundamental laws in thermodynamics governing bioenergetics • First law : Energy conservation • Second law: Increase in entropy Living Orgamism 1. Metabolism 2. Reproduction Energy: work to survive and reproduce Energy transduction in biological system
  • 69. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Free Energy Change for Biological Reactions • Thermodynamic quantities describing the energy changes in chemical reaction • Gibbs free energy, G • The amount of energy capable of doing work during a reaction at constant T and P • Positive ∆G : endergonic • Negative ∆G : exergonic, spontaneous reaction • Enthalpy, H • The heat content of the reacting system • Number & kinds of chemical bonds in the reactants and products • Positive ∆H : endothermic • Negative ∆H : exothermic • Entropy, S • Quantitative expression for the randomness or disorder in a system • ∆G = ∆H –T∆S • Cells use free energy for reactions • Energy source • Heterotrope :Nutrient • Autotrope: Solar energy
  • 70. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Standard Free Energy Change vs. Equilibrium Constant • aA + bB  cC + dD • Equilibrium constant [Ceq]c [Deq]d [Aeq]a [Beq]b • ∆Go : standard free energy change (J/mol) • 298K=25o C, 1M of initial reactants and products,1 atm (101.3 kPa) • Standard transformed constants • pH 7, 55.5M water, 1mM Mg2+ (ATP as reactant) • ∆G’o ,K’eq • ∆G’o = -RT ln K’eq • Spontaneous reaction • K’’ eq >1 • ∆Go : negative Keq =
  • 71. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G’o for some representative chemical reactions
  • 72. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ∆G’o are additive • Sequential chemical reactions • (1) A  B : ∆G’1 o ,K’eq1 glucose + Pi  G-6P + H2O ; ∆G’o = 13.8 kJ/mol • (2) B  C : ∆G’2 o ,K’eq2 ATP + H2O  ADP + Pi ;∆G’o = -30.5 kJ/mol • (1) + (2) : A  C : ∆G’1 o + ∆G’1 o ,K’eq1 X K’eq2 ATP + glucose  ADP + Pi ; ∆G’o = -16.7 kJ/mol • Coupling of endergonic and exergonic reaction to make exergonic reaction
  • 73. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The ΔG of a Reaction Depends on Changes in Enthalpy (Bond Energy) and Entropy At any constant temperature and pressure, two factors determine the ΔG of a reaction and thus whether the reaction will tend to occur: the change in bond energy between reactants and products and the change in the randomness of the system. Gibbs showed that free energy can be defined as where H is the bond energy, or enthalpy, of the system; T is its temperature in degrees Kelvin (K); and S is a measure of randomness, called entropy. If temperature remains constant, a reaction proceeds spontaneously only if the free energy change ΔG in the following equation is negative:
  • 74. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 In an exothermic reaction, the products contain less bond energy than the reactants, the liberated energy is usually converted to heat (the energy of molecular motion), and ΔH is negative. In an endothermic reaction, the products contain more bond energy than the reactants, heat is absorbed, and ΔH is positive. Reactions tend to proceed if they liberate energy (if ΔH < 0), but this is only    one of two important parameters of free energy to consider; the other is entropy.
  • 75. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Entropy S is a measure of the degree of randomness or disorder of a system. Entropy increases as a system becomes more disordered and decreases as it becomes more structured. Consider, for example, the diffusion of solutes from one solution into another one in which their concentration is lower. This important biological reaction is driven only by an increase in entropy; in such a process ΔH is near zero.
  • 76. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 suppose that a 0.1 M solution of glucose is separated from a large volume of water by a membrane through which glucose can diffuse. Diffusion of glucose molecules across the membrane will give them more room in which to move, with the result that the randomness, or entropy, of the system is increased.
  • 77. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 78. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Common Biochemical Reaction
  • 79. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Common Biochemical Reaction Two basic chemical principle 1. A covalent bond can be broken in two general way: homolytic cleavage and heterolytic cleavge
  • 80. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 2. Biochemical reactions involve interactions between nucleophiles and electrophiles
  • 81. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Most of the reactions in living cells fall into one of five general categories 1.Reaction that make or break carbon-carbon bond 2.Internal rearrangements, isomerization, and elimination 3.Free-radical reaction 4.Group transfer: acyl, glycosyl, phosphoryl 5.Oxidation-reduction
  • 82. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Reaction that make or break carbon-carbon bond
  • 83. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Internal rearrangements, isomerization, and elimination
  • 84. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Internal rearrangements, isomerization, and elimination
  • 85. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Free-radical-mediated decarboxylation
  • 86. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Acyl group transfer
  • 87. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Phosphoryl group transfer
  • 88. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 The oxidation states of carbon in biomolecules
  • 89. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Oxidation-Reduction
  • 90. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Phosphoryl group transfers and ATP The free energy change for ATP hydrolysis is large negative
  • 91. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Other phosphorylated compounds also have large free energies of hydrolysis
  • 92. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 93. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 94. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 95. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 96. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 97. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 For hydrolysis reactions with large negative free-energy changes, the products are more stable than the reactants for one or more of the following reasons 1.The bond strain is relieved by charge separation (ATP). 2.The products are stabilized by ionization (ATP, 3-phosphoglycerate, thioester) . 3.The products are stabilized by isomerization (PEP) 4.The products are stabilized by resonance (creatin, inorganic phosphate, thioester)
  • 98. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ATP provides energy by group transfer
  • 99. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ATP serve as the universal energy currency in all living cells Because of its intermediate position on the scale of group transfer potential.
  • 100. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 ATP donates phosphoryl, pyrophosphoryl, and adenyl group
  • 101. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 102. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 103. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Transphosphorylation between nucleotide by nucleotide diphosphate kinase
  • 104. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Inorganic phosphate may serve as a reservoir of phosphoryl group with high energy transfer potential Polyphosphate kinase-1 (in bacterial) Polyphosphate kinase-2
  • 105. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Biological oxidation-reduction reaction 1.The transfer of phosphoryl groups is a central feature of metabolism 2.Electron transfer in oxidation-reduction reaction is another important transfer in living cells. 3.The flow of electrons is responsible for all work done by living organism 4.In heterotroph, the source of electron are reduced compounds (food) 5.In autotroph, the source of electron is a chemical species excited by the absorption of light (e.g. H2O). 6.Cells contain a variety of molecular energy transducers, which convert the every of electron flow into useful work 7.Biological oxidation often involve dehydrogenation - alkane (-CH2-CH2-) convert to alkene (-CH=CH-) - oxidation is coincident with the loss of hydrogen
  • 106. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 Oxidation states of carbon in the biosphere
  • 107. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620 A Few Types of Coenzymes and Proteins Serve as Universal Electron 1.Electrons from hundreds of different substrates into a few types of universal electron carriers 2.NAD, NADP, FMN, and FAD are water soluble coenzymes that undergo reversible oxidation and reduction in many of the electron-transfer reactions of metabolism 3.Lipid-soluble quinones, such as ubiquinone, act as electorn carriers and proton donors in membrane 4.Iron-sulfur proteins and cytochromes that undergo reversible oxidation- reduction reaction
  • 108. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620
  • 109. Enroll in merit life sciences CSIR , GATE, NEET UG 2019 CALL 8556092620

Editor's Notes

  1. FIGURE 13-2 Common nucleophiles and electrophiles in biochemical reactions. Chemical reaction mechanisms, which trace the formation and breakage of covalent bonds, are communicated with dots and curved arrows, a convention known informally as &amp;quot;electron pushing.&amp;quot; A covalent bond consists of a shared pair of electrons. Nonbonded electrons important to the reaction mechanism are designated by dots. Curved arrows represent the movement of electron pairs. For movement of a single electron (as in a free radical reaction), a single-headed (fishhook-type) arrow is used. Most reaction steps involve an unshared electron pair.
  2. FIGURE 13-4 Some common reactions that form and break C—C bonds in biological systems. For both the aldol condensation and the Claisen condensation, a carbanion serves as nucleophile and the carbon of a carbonyl group serves as electrophile. The carbanion is stabilized in each case by another carbonyl at the adjoining carbon. In the decarboxylation reaction, a carbanion is formed on the carbon shaded blue as the CO2 leaves. The reaction would not occur at an appreciable rate without the stabilizing effect of the carbonyl adjacent to the carbanion carbon. Wherever a carbanion is shown, a stabilizing resonance with the adjacent carbonyl, as shown in Figure 13-3b, is assumed. An imine (Figure 13-3c) or other electron-withdrawing group (including certain enzymatic cofactors such as pyridoxal) can replace the carbonyl group in the stabilization of carbanions.
  3. FIGURE 13-6a Isomerization and elimination reactions. (a) The conversion of glucose 6-phosphate to fructose 6-phosphate, a reaction of sugar metabolism catalyzed by phosphohexose isomerase.
  4. FIGURE 13-7 A free radicalミinitiated decarboxylation reaction. The biosynthesis of heme (see Figure 22-24) in Escherichia coli includes a decarboxylation step in which propionyl side chains on the coproporphyrinogen III intermediate are converted to the vinyl side chains of protoporphyrinogen IX. When the bacteria are grown anaerobically, the enzyme oxygen-independent coproporphyrinogen III oxidase, also called HemN protein, promotes decarboxylation via the free-radical mechanism shown here. The acceptor of the released electron is not known. For simplicity, only the relevant portions of the large coproporphyrinogen III and protoporphyrinogen molecules are shown; the entire structures are given in Figure 22-24. When E. coli are grown in the presence of oxygen, this reaction is an oxidative decarboxylation and is catalyzed by a different enzyme.
  5. FIGURE 13-8c Alternative ways of showing the structure of inorganic orthophosphate. (c) When a nucleophile Z (in this case, the —OH on C-6 of glucose) attacks ATP, it displaces ADP (W). In this SN2 reaction, a pentacovalent intermediate (d) forms transiently.
  6. FIGURE 13-9 The oxidation states of carbon in biomolecules. Each compound is formed by oxidation of the red carbon in the compound shown immediately above. Carbon dioxide is the most highly oxidized form of carbon found in living systems.
  7. FIGURE 13-10 An oxidation-reduction reaction. Shown here is the oxidation of lactate to pyruvate. In this dehydrogenation, two electrons and two hydrogen ions (the equivalent of two hydrogen atoms) are removed from C-2 of lactate, an alcohol, to form pyruvate, a ketone. In cells the reaction is catalyzed by lactate dehydrogenase and the electrons are transferred to the cofactor nicotinamide adenine dinucleotide (NAD). This reaction is fully reversible; pyruvate can be reduced by electrons transferred from the cofactor.
  8. FIGURE 13-11 Chemical basis for the large free-energy change associated with ATP hydrolysis. 1 The charge separation that results from hydrolysis relieves electrostatic repulsion among the four negative charges on ATP. 2 The product inorganic phosphate (Pi) is stabilized by formation of a resonance hybrid, in which each of the four phosphorusミoxygen bonds has the same degree of double-bond character and the hydrogen ion is not permanently associated with any one of the oxygens. (Some degree of resonance stabilization also occurs in phosphates involved in ester or anhydride linkages, but fewer resonance forms are possible than for Pi.) 3 The product ADP2– immediately ionizes, releasing a proton into a medium of very low [H+] (pH 7). A fourth factor (not shown) that favors ATP hydrolysis is the greater degree of solvation (hydration) of the products Pi and ADP relative to ATP, which further stabilizes the products relative to the reactants.
  9. FIGURE 13-13 Hydrolysis of phosphoenolpyruvate (PEP). Catalyzed by pyruvate kinase, this reaction is followed by spontaneous tautomerization of the product, pyruvate. Tautomerization is not possible in PEP, and thus the products of hydrolysis are stabilized relative to the reactants. Resonance stabilization of Pi also occurs, as shown in Figure 13-11.
  10. FIGURE 13-14 Hydrolysis of 1,3-bisphosphoglycerate. The direct product of hydrolysis is 3-phosphoglyceric acid, with an undissociated carboxylic acid group, but dissociation occurs immediately. This ionization and the resonance structures it makes possible stabilize the product relative to the reactants. Resonance stabilization of Pi further contributes to the negative free-energy change.
  11. FIGURE 13-15 Hydrolysis of phosphocreatine. Breakage of the P—N bond in phosphocreatine produces creatine, which is stabilized by formation of a resonance hybrid. The other product, Pi, is also resonance stabilized.
  12. FIGURE 13-16 Hydrolysis of acetyl-coenzyme A. Acetyl-CoA is a thioester with a large, negative, standard free energy of hydrolysis. Thioesters contain a sulfur atom in the position occupied by an oxygen atom in oxygen esters. The complete structure of coenzyme A (CoA, or CoASH) is shown in Figure 8-38.
  13. FIGURE 13-17 Free energy of hydrolysis for thioesters and oxygen esters. The products of both types of hydrolysis reaction have about the same free-energy content (G), but the thioester has a higher free-energy content than the oxygen ester. Orbital overlap between the O and C atoms allows resonance stabilization in oxygen esters; orbital overlap between S and C atoms is poorer and provides little resonance stabilization.
  14. FIGURE 13-18 ATP hydrolysis in two steps. (a) The contribution of ATP to a reaction is often shown as a single step, but is almost always a twostep process. (b) Shown here is the reaction catalyzed by ATP-dependent glutamine synthetase. 1 A phosphoryl group is transferred from ATP to glutamate, then 2 the phosphoryl group is displaced by NH3 and released as Pi.
  15. FIGURE 13-19 Ranking of biological phosphate compounds by standard free energies of hydrolysis. This shows the flow of phosphoryl groups, represented by P, from high-energy phosphoryl group donors via ATP to acceptor molecules (such as glucose and glycerol) to form their low-energy phosphate derivatives. This flow of phosphoryl groups, catalyzed by kinases, proceeds with an overall loss of free energy under intracellular conditions. Hydrolysis of low-energy phosphate compounds releases Pi, which has an even lower phosphoryl group transfer potential (as defined in the text).
  16. FIGURE 13-20 Nucleophilic displacement reactions of ATP. Any of the three P atoms (α, β, or γ) may serve as the electrophilic target for nucleophilic attack—in this case, by the labeled nucleophile R—18O:. The nucleophile may be an alcohol (ROH), a carboxyl group (RCOO–), or a phosphoanhydride (a nucleoside mono- or diphosphate, for example). (a) When the oxygen of the nucleophile attacks the γ position, the bridge oxygen of the product is labeled, indicating that the group transferred from ATP is a phosphoryl (—PO32–), not a phosphate (—OPO32–). (b) Attack on the β position displaces AMP and leads to the transfer of a pyrophosphoryl (not pyrophosphate) group to the nucleophile. (c) Attack on the α position displaces PPi and transfers the adenylyl group to the nucleophile.
  17. BOX 13-1 FIGURE 1a The firefly, a beetle of the Lampyridae family.
  18. BOX 13-1 FIGURE 1b Important components in the firefly bioluminescence cycle.
  19. FIGURE 13-21 Ping-Pong mechanism of nucleoside diphosphate kinase. The enzyme binds its first substrate (ATP in our example), and a phosphoryl group is transferred to the side chain of a His residue. ADP departs, and another nucleoside (or deoxynucleoside) diphosphate replaces it, and this is converted to the corresponding triphosphate by transfer of the phosphoryl group from the phosphohistidine residue.
  20. FIGURE 13-22 Oxidation states of carbon in the biosphere. The oxidation states are illustrated with some representative compounds. Focus on the red carbon atom and its bonding electrons. When this carbon is bonded to the less electronegative H atom, both bonding electrons (red) are assigned to the carbon. When carbon is bonded to another carbon, bonding electrons are shared equally, so one of the two electrons is assigned to the red carbon. When the red carbon is bonded to the more electronegative O atom, the bonding electrons are assigned to the oxygen. The number to the right of each compound is the number of electrons &amp;quot;owned&amp;quot; by the red carbon, a rough expression of the oxidation state of that carbon. As the red carbon undergoes oxidation (loses electrons), the number gets smaller. Thus the oxidation state increases from top to bottom of the list.
  21. FIGURE 13-24 NAD and NADP. (a) Nicotinamide adenine dinucleotide, NAD+, and its phosphorylated analog NADP+ undergo reduction to NADH and NADPH, accepting a hydride ion (two electrons and one proton) from an oxidizable substrate. The hydride ion is added to either the front (the A side) or the back (the B side) of the planar nicotinamide ring (see Table 13-8). (b) The UV absorption spectra of NAD+ and NADH. Reduction of the nicotinamide ring produces a new, broad absorption band with a maximum at 340 nm. The production of NADH during an enzyme-catalyzed reaction can be conveniently followed by observing the appearance of the absorbance at 340 nm (molar extinction coefficient ε340 = 6,200 M–1cm–1).
  22. FIGURE 13-27 Oxidized and reduced FAD and FMN. FMN consists of the structure above the dashed line on the FAD (oxidized form). The flavin nucleotides accept two hydrogen atoms (two electrons and two protons), both of which appear in the flavin ring system. When FAD or FMN accepts only one hydrogen atom, the semiquinone, a stable free radical, forms.