SlideShare a Scribd company logo
1 of 41
Download to read offline
Effects of modelling parameters on the accuracy of
modelling deformation in a coarse grain nickel based super
alloy
11th International Conference on Advances in Experimental Mechanics
University of Exeter, 05th September 2016
Luqmaan Fazal, João Quinta da Fonseca
University of Manchester
Wei Li
Rolls-Royce plc. (Derby)
Ø  Some nickel-based superalloys are employed in the manufacture of large
investment cast aerospace structural components.
Ø  Casting results in large grain sizes ranging from 0.5 - 3 mm
Image Courtesy of Helmink et al.
Industrial significance of material
Image Courtesy of Helmink et al.
Ø  Scatter makes it difficult to determine the exact fatigue life of the component
Image Courtesy of Helmink et al.
Industrial significance of material
Image Courtesy of Helmink et al.
Functionofstrain
Fatigue life
Graph courtesy of Rolls-Royce plc.
Ø  When specimens have a few coarse grains, the mechanical anisotropy of the
individual grains affect the overall mechanical properties of the test specimen
which will vary based on the arrangement of the grains.
Ø  This causes scatter for the different specimens that are tested
Research Hypothesis
Research Question
Ø  Can we use crystal plasticity finite element modelling (CPFEM) to predict the
scatter by taking into account grain anisotropy alone?
Research PlanUniaxialloading
1. Validate CPFE model
using a representative
experimental technique
2.Run CPFE model with
various grain configurations
in order to see the type of
scatter that is predicted
Cyclicloading
1. Validate CPFE model for
first cycle using a
representative experimental
technique
2. Validate CPFE model for
multiple (~5) cycles using
representative experimental
technique.
3. Run CPFE model with
various grain configurations in
order to see the type of scatter
that is predicted
Presentation Today
Material – RS5 nickel based superalloy
Ni Mn Si P S Cr Co Mo C
~58 0.01 0.01 0.0005 0.0009 15.92 10.03 4.92 0.064
W Nb Ti Ta Al B Fe Zr
2.01 4.83 2.68 1.32 0.98 0.0038 0.02 0.0116
Ø low Al/Ti ratio (1/2.7) allows good weldability
Ø Nb (4.8 wt.%) that has low diffusivity thereby slowing down the kinetics of γ'
precipitation
Material – RS5 nickel based superalloy
500 µm
200 µm
Grain boundary precipitates
Coarse grain structure(0.5-2mm) with both primary and
secondary dendrites
Experimental Technique – Digital Image Correlation
(DIC)
Ø  Digital image correlation requires a series of images taken by a CCD camera to be
taken while the sample is being deformed to measure strain across the sample.
Ø  Allows the history of sample deformation to be mapped
Image Courtesy of Devin Harris
Experimental Technique – Digital Image Correlation
(DIC)
Crystal Plasticity Finite Element Modelling
(CPFEM)
Ø  Finite element modelling is a discretisation technique involves breaking a
problem into discrete components of simple geometry called finite
elements.
Concepts for Integrating Plastic Anisotropy into Metal Forming Simulations D. Raabe et al
Crystal Plasticity Finite Element Modelling
(CPFEM)
Elas%c	
  deforma%on	
  -­‐	
  Elas%c	
  
Anisotropy	
  
Ø  Compliance	
  tensors	
  are	
  used	
  by	
  the	
  model	
  to	
  define	
  the	
  elas%c	
  
anisotropy	
  of	
  the	
  material	
  being	
  modelled.	
  
Ni	
  
z	
  
x	
  
y	
  
Python script courtesy of Dr. João Quinta da Fonseca
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  plas%city	
  –	
  Slip	
  systems	
  
Ø  The	
  type	
  of	
  slip	
  systems	
  that	
  are	
  ac%ve	
  depends	
  on	
  the	
  crystal	
  structure	
  
of	
  the	
  materials	
  and	
  the	
  temperature	
  at	
  which	
  the	
  deforma%on	
  takes	
  
place.	
  The	
  slip	
  systems	
  are	
  defined	
  in	
  terms	
  of	
  their	
  slip	
  plane	
  normals	
  
and	
  slip	
  direc%ons.	
  
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Plas%c	
  slip	
  
Ø  The	
  amount	
  of	
  slip	
  in	
  each	
  slip	
  system	
  is	
  propor%onal	
  to	
  the	
  applied	
  shear	
  
stress	
  and	
  inversely	
  propor%onal	
  to	
  the	
  instantaneous	
  slip	
  resistance.	
  	
  
Ø  The	
  smaller	
  the	
  value	
  of	
  the	
  strain	
  rate	
  sensi%vity	
  the	
  greater	
  the	
  amount	
  
of	
  slip	
  for	
  a	
  given	
  resolved	
  shear	
  stress	
  value.	
  
slip rate
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Plas%c	
  slip	
  
Ø  The	
  amount	
  of	
  slip	
  in	
  each	
  slip	
  system	
  is	
  propor%onal	
  to	
  the	
  applied	
  shear	
  
stress	
  and	
  inversely	
  propor%onal	
  to	
  the	
  instantaneous	
  slip	
  resistance.	
  	
  
Ø  The	
  smaller	
  the	
  value	
  of	
  the	
  strain	
  rate	
  sensi%vity	
  the	
  greater	
  the	
  amount	
  
of	
  slip	
  for	
  a	
  given	
  resolved	
  shear	
  stress	
  value.	
  
slip rate
nominal
reference slip
rate
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Plas%c	
  slip	
  
Ø  The	
  amount	
  of	
  slip	
  in	
  each	
  slip	
  system	
  is	
  propor%onal	
  to	
  the	
  applied	
  shear	
  
stress	
  and	
  inversely	
  propor%onal	
  to	
  the	
  instantaneous	
  slip	
  resistance.	
  	
  
Ø  The	
  smaller	
  the	
  value	
  of	
  the	
  strain	
  rate	
  sensi%vity	
  the	
  greater	
  the	
  amount	
  
of	
  slip	
  for	
  a	
  given	
  resolved	
  shear	
  stress	
  value.	
  
slip rate
nominal
reference slip
rate
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
resolved shear stress.
(Depends on the Schmid
factor and hence the
orientation of the grain)
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Plas%c	
  slip	
  
Ø  The	
  amount	
  of	
  slip	
  in	
  each	
  slip	
  system	
  is	
  propor%onal	
  to	
  the	
  applied	
  shear	
  
stress	
  and	
  inversely	
  propor%onal	
  to	
  the	
  instantaneous	
  slip	
  resistance.	
  	
  
Ø  The	
  smaller	
  the	
  value	
  of	
  the	
  strain	
  rate	
  sensi%vity	
  the	
  greater	
  the	
  amount	
  
of	
  slip	
  for	
  a	
  given	
  resolved	
  shear	
  stress	
  value.	
  
slip rate
nominal
reference slip
rate
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
resolved shear stress.
(Depends on the Schmid
factor and hence the
orientation of the grain)
strain rate
sensitivity
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Plas%c	
  slip	
  
Ø  The	
  amount	
  of	
  slip	
  in	
  each	
  slip	
  system	
  is	
  propor%onal	
  to	
  the	
  applied	
  shear	
  
stress	
  and	
  inversely	
  propor%onal	
  to	
  the	
  instantaneous	
  slip	
  resistance.	
  	
  
Ø  The	
  smaller	
  the	
  value	
  of	
  the	
  strain	
  rate	
  sensi%vity	
  the	
  greater	
  the	
  amount	
  
of	
  slip	
  for	
  a	
  given	
  resolved	
  shear	
  stress	
  value.	
  
slip rate
nominal
reference slip
rate
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
instantaneous slip
resistance for a given slip
system. Depends on the
hardening rate.
resolved shear stress.
(Depends on the Schmid
factor and hence the
orientation of the grain)
strain rate
sensitivity
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Hardening	
  
Ø  The	
  instantaneous	
  slip	
  resistance	
  evolves	
  at	
  the	
  end	
  of	
  each	
  %me	
  step	
  
according	
  to	
  an	
  empirical	
  Voce	
  law	
  hardening	
  equa%on.	
  
Ø  The	
  satura%on	
  slip	
  resistance	
  is	
  assumed	
  to	
  be	
  dependent	
  on	
  the	
  net	
  
local	
  plas%c	
  strain	
  rate	
  calculated	
  from	
  the	
  net	
  sum	
  of	
  the	
  local	
  plas%c	
  
strain	
  rates.	
  
Θ = ΘIV +Θ0 1−
τ
τs
α
sgn 1−
τ
τs
#
$
%
&
'
(
)
*
+
+
,
-
.
.
Final
hardening
rate
Initial
hardening rate
Saturation slip
resistance
Slip
resistance
Crystal Plasticity Finite Element Modelling
(CPFEM)
Crystal	
  Plas%city	
  –	
  Hardening	
  
Ø  The	
  instantaneous	
  slip	
  resistance	
  evolves	
  at	
  the	
  end	
  of	
  each	
  %me	
  step	
  
according	
  to	
  an	
  empirical	
  Voce	
  law	
  hardening	
  equa%on.	
  
Ø  The	
  satura%on	
  slip	
  resistance	
  is	
  assumed	
  to	
  be	
  dependent	
  on	
  the	
  net	
  
local	
  plas%c	
  strain	
  rate	
  calculated	
  from	
  the	
  net	
  sum	
  of	
  the	
  local	
  plas%c	
  
strain	
  rates.	
  
WorkHardeningRate(MPa)
0
10000
20000
30000
40000
50000
60000
175 3500 525 700
Shear Stress (MPa)
τs	
  =	
  580	
  MPa	
  
ΘIV=	
  50000	
  MPa	
  
Θ0=	
  500	
  MPa	
  
α	
  
Crystal Plasticity Finite Element Modelling
(CPFEM)
Hardening	
  values	
  calibra%on	
  
Ø  Hardening	
  values	
  are	
  selected	
  by	
  ploRng	
  simulated	
  polycrystalline	
  curves	
  
against	
  room	
  temperature	
  polycrystalline	
  curves	
  with	
  more	
  than	
  100	
  
grains	
  in	
  the	
  sample.	
  
TrueStress(MPa)
True Strain
Strain Calculation
Vector calculated
Gauss points within elements
Movement of nodes tracked
εyy calculated
Speckles in individual grids
Displacement of speckles tracked
Vector calculated
εyy calculated
Digital image correlation (DIC) Crystal plasticity finite element
model (CPFEM)
Tensile Sample Dimensions
28mm
3 mm
Ø  Flat ‘dogbone’ sample with a thickness of
1mm
DIC: Observed Region
8mm
3 mm
Region of gauge
observed by CCD
camera
Loading Direction
28mm
3 mm
Ø  DIC measures strain on a fraction of the
front surface
Surface etched
using Kalling’s
Waterless
Reagent
8mm
3 mm
Region of gauge
observed by CCD
camera
CPFEM: Obtaining Orientations
EBSDRegion
5mm
TD
RD
ND
Back FaceFront Face
111
101100
The orientation of
each grain is defined
in terms of 3 euler
angles φ1, Φ & φ2
EBSD Maps (IPFX)
Ø  Electron backscattered diffraction (EBSD)
used to obtain the grain orientations from
both the back and front faces.
Surface etched
using Kalling’s
Waterless
Reagent
8mm
3 mm
Region of gauge
observed by CCD
camera
CPFEM: Obtaining Orientations
EBSDRegion
5mm
TD
RD
ND
Back FaceFront Face
111
101100
These 3 euler angles
are assigned to each
element in the mesh
EBSD Maps (IPFX)
CPFE Mesh
Front Face
Back Face
(subsurface
grains)
Surface etched
using Kalling’s
Waterless
Reagent
8mm
3 mm
Region of gauge
observed by CCD
camera
CPFEM: Assumptions on grain shape
CPFERegion
CPFE Mesh
Front Face
Back Face
(subsurface
grains)
CPFE Mesh side view
Ø  The CPFE mesh assumes that the grains are
flat and one element thick
Front Face Back Face
Surface etched
using Kalling’s
Waterless
Reagent
8mm
3 mm
Region of gauge
observed by CCD
camera
CPFEM: Region of interest
DIC region in
CPFE mesh
Surface etched
using Kalling’s
Waterless
Reagent
45subsets
19 subsets
44elements
16 elements
DIC vs CPFEM – Resolution of measurement
Ø  Constructed CPFE mesh is coarser than
resolution used for strain measurements in
DIC
DIC vs CPFEM – Strain maps
Ø  Even at 0.8% strain some regions have strains going upto 2.5%
experimentally.
Average εyy=0.8%
DIC CPFEM
0.0
1.88
2.5
1.25
0.62
εyy%
DIC vs. CPFEM – effects of m
Average εyy=0.8%
CPFEM DIC
m= 0.5 m = 0.02 m = 0.001
0.0
1.88
2.5
1.25
0.62
εyy%
m
1
00
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
τ
τ
γ
γ
!
!
strain rate
sensitivity
DIC vs. CPFEM – effects of m
Average εyy=0.8%
εyy%
RelativeFrequency
0.8%
Ø  Experimental data shows more similarities towards a power law distribution.
tail indicates the high
local strain
DIC vs. CPFEM – effects of m
Average εyy=0.8%
εyy%
RelativeFrequency
0.8%
Ø  At m=0.5 the model shows a normal strain distribution which is not what is
observed experimentally.
tail indicates the high
local strain
At higher m values a greater
fraction of the slip systems
contribute to the local strain.
DIC vs. CPFEM – effects of m
Average εyy=0.8%
εyy%
RelativeFrequency
0.8%
Ø  The modeled data begins to show increased resemblance to a power law
distribution as the strain rate sensitivity value is reduced.
tail indicates the high
local strain
At lower m values, there are
fewer slip systems that have
significant contribution to the
local strain than at relatively
higher m values
DIC vs. CPFEM – effects of m
Average εyy=0.8%
εyy%
RelativeFrequency
0.8%
tail indicates the high
local strain
Ø  The modeled data begins to show increased resemblance to a power law
distribution as the strain rate sensitivity value is reduced.
DIC vs. CPFEM – effects of m
Average εyy=0.8%
εyy%
RelativeFrequency
0.8%
tail indicates the high
local strain
DICCPFEM
m=0.001
Ø  The regions of localised strain are still not the same.
DIC vs. CPFEM – effects of subsurface grains
Average εyy=0.8%
m = 0.001 m = 0.001
CPFEMDIC
0.0
1.88
2.5
1.25
0.62
εyy%
Including sub-
surface grains
Excluding sub-
surface grains
Summary
Ø  A simple uniaxial experiment was carried out to validate how well a simple CPFE
model predicted the local strain distribution of a coarse grain nickel based
superalloy during uniaxial loading
Ø  Strain heterogeneity is observed both experimentally and in the simulations
Ø  While the strain rate sensitivity has no physical meaning, reducing the strain rate
sensitivity to 0.001 results in better agreement between the model and
experimental results.
Ø  Excluding the sub-surface grains from the mesh does not affect the quantitative
strain distribution significantly but does have a noticeable effect on where the
strain actually localises.
Further Work
Ø  Extract a single grain thick sample and compare simulations with experimental
data
Ø  Slip line analysis to study the active slip systems
Ø  Digital image correlation at higher magnifications to observe if dendrites have any
effects on the strain localisation within the grains
Ø  Run simulations with synthetic microstructures to observe how the strain rate
sensitivity affects the scatter observed for different synthetic microstructures.
Acknowledgement
Ø  The author thanks Rolls-Royce plc for provision of test material and funding
support
Thank You
luqmaan.fazal@postgrad.manchester.ac.uk

More Related Content

Viewers also liked

72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...
72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...
72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...Espi Sul
 
Ejemplos para tesis de pedagogía en artes plásticas
Ejemplos para tesis de pedagogía en artes plásticas Ejemplos para tesis de pedagogía en artes plásticas
Ejemplos para tesis de pedagogía en artes plásticas bastiano10
 
Você, eu, confiamos o suficiente
Você, eu, confiamos o suficienteVocê, eu, confiamos o suficiente
Você, eu, confiamos o suficienteIderaldo Catini
 
5º informação 9º, 12º devolução manuais escolares
5º informação 9º, 12º devolução manuais escolares5º informação 9º, 12º devolução manuais escolares
5º informação 9º, 12º devolução manuais escolaresesbocage
 
DEFETOS DE LA ESTRUCTURA CRISTALINA
DEFETOS DE LA ESTRUCTURA CRISTALINADEFETOS DE LA ESTRUCTURA CRISTALINA
DEFETOS DE LA ESTRUCTURA CRISTALINAgaticaninosca
 
Estamos vivendo nos ultimos dias ,,,
Estamos vivendo nos ultimos dias ,,,Estamos vivendo nos ultimos dias ,,,
Estamos vivendo nos ultimos dias ,,,Ideraldo Catini
 
Dica de evangelismo nº 10
Dica de evangelismo nº 10Dica de evangelismo nº 10
Dica de evangelismo nº 10felipe_higa
 
SIMO 2 CERT OF COMPETENCE
SIMO 2 CERT OF COMPETENCESIMO 2 CERT OF COMPETENCE
SIMO 2 CERT OF COMPETENCESimon Kimore
 
Calendário exames escola_equivnacional_1ªfase
Calendário exames escola_equivnacional_1ªfaseCalendário exames escola_equivnacional_1ªfase
Calendário exames escola_equivnacional_1ªfasePedro França
 
Luiz cavalcanti tab de vendas - junho 2014
Luiz cavalcanti   tab de vendas - junho 2014Luiz cavalcanti   tab de vendas - junho 2014
Luiz cavalcanti tab de vendas - junho 2014Alberto José Ahmed
 
Você, eu, confiamos o suficiente
Você, eu, confiamos o suficienteVocê, eu, confiamos o suficiente
Você, eu, confiamos o suficienteIderaldo Catini
 
Presentacion consulta adolescente 2004
Presentacion consulta adolescente 2004Presentacion consulta adolescente 2004
Presentacion consulta adolescente 2004Víctor M. Reñazco
 

Viewers also liked (20)

72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...
72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...
72 2015 altera_cmunicipal que regulamenta os conselhos municipais de educação...
 
E
EE
E
 
Ejemplos para tesis de pedagogía en artes plásticas
Ejemplos para tesis de pedagogía en artes plásticas Ejemplos para tesis de pedagogía en artes plásticas
Ejemplos para tesis de pedagogía en artes plásticas
 
Você, eu, confiamos o suficiente
Você, eu, confiamos o suficienteVocê, eu, confiamos o suficiente
Você, eu, confiamos o suficiente
 
5º informação 9º, 12º devolução manuais escolares
5º informação 9º, 12º devolução manuais escolares5º informação 9º, 12º devolução manuais escolares
5º informação 9º, 12º devolução manuais escolares
 
DEFETOS DE LA ESTRUCTURA CRISTALINA
DEFETOS DE LA ESTRUCTURA CRISTALINADEFETOS DE LA ESTRUCTURA CRISTALINA
DEFETOS DE LA ESTRUCTURA CRISTALINA
 
Estamos vivendo nos ultimos dias ,,,
Estamos vivendo nos ultimos dias ,,,Estamos vivendo nos ultimos dias ,,,
Estamos vivendo nos ultimos dias ,,,
 
Sistema respiratório
Sistema respiratórioSistema respiratório
Sistema respiratório
 
Teste
TesteTeste
Teste
 
Canudos
CanudosCanudos
Canudos
 
21 e 22 de maio
21 e 22 de maio21 e 22 de maio
21 e 22 de maio
 
Dica de evangelismo nº 10
Dica de evangelismo nº 10Dica de evangelismo nº 10
Dica de evangelismo nº 10
 
SIMO 2 CERT OF COMPETENCE
SIMO 2 CERT OF COMPETENCESIMO 2 CERT OF COMPETENCE
SIMO 2 CERT OF COMPETENCE
 
Si mat 3º ano
Si mat 3º anoSi mat 3º ano
Si mat 3º ano
 
Calendário exames escola_equivnacional_1ªfase
Calendário exames escola_equivnacional_1ªfaseCalendário exames escola_equivnacional_1ªfase
Calendário exames escola_equivnacional_1ªfase
 
Capitalismo
CapitalismoCapitalismo
Capitalismo
 
Luiz cavalcanti tab de vendas - junho 2014
Luiz cavalcanti   tab de vendas - junho 2014Luiz cavalcanti   tab de vendas - junho 2014
Luiz cavalcanti tab de vendas - junho 2014
 
Você, eu, confiamos o suficiente
Você, eu, confiamos o suficienteVocê, eu, confiamos o suficiente
Você, eu, confiamos o suficiente
 
Presentacion consulta adolescente 2004
Presentacion consulta adolescente 2004Presentacion consulta adolescente 2004
Presentacion consulta adolescente 2004
 
Sequência didática
Sequência didáticaSequência didática
Sequência didática
 

Similar to BSSM_Conference_UOE__5th Sep 2016_compresed

Introduction to Crystal Plasticity Modelling
Introduction to Crystal Plasticity ModellingIntroduction to Crystal Plasticity Modelling
Introduction to Crystal Plasticity ModellingSuchandrima Das
 
journal club presentation- prosthodontics-Deformation and retentive force fol...
journal club presentation- prosthodontics-Deformation and retentive force fol...journal club presentation- prosthodontics-Deformation and retentive force fol...
journal club presentation- prosthodontics-Deformation and retentive force fol...NAMITHA ANAND
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defenseguestc121aae
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defenseguestc121aae
 
Edge effect in high speed slurry erosion wear tests of steels and elastomers
Edge effect in high speed slurry erosion wear tests of steels and elastomersEdge effect in high speed slurry erosion wear tests of steels and elastomers
Edge effect in high speed slurry erosion wear tests of steels and elastomersNiko Ojala
 
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...IRJET Journal
 
Chapter 8. Mechanical Failure - Failure mechanisms
Chapter 8. Mechanical Failure - Failure mechanismsChapter 8. Mechanical Failure - Failure mechanisms
Chapter 8. Mechanical Failure - Failure mechanismsNamHuuTran
 
Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid feaHugh Liu
 
Introduction to Microsystems for Bio Applications
Introduction to Microsystems for Bio ApplicationsIntroduction to Microsystems for Bio Applications
Introduction to Microsystems for Bio ApplicationsHelpWithAssignment.com
 
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....
Rebound hammer & UPV-  Non destructive test. Concrete NDT. Civil engineering....Rebound hammer & UPV-  Non destructive test. Concrete NDT. Civil engineering....
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....Yash Shah
 
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration Excitation
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration ExcitationEvaluation of the Turbine Bladed Disc Design for Resonant Vibration Excitation
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration ExcitationIRJET Journal
 

Similar to BSSM_Conference_UOE__5th Sep 2016_compresed (20)

Introduction to Crystal Plasticity Modelling
Introduction to Crystal Plasticity ModellingIntroduction to Crystal Plasticity Modelling
Introduction to Crystal Plasticity Modelling
 
Lecture 04
Lecture 04Lecture 04
Lecture 04
 
journal club presentation- prosthodontics-Deformation and retentive force fol...
journal club presentation- prosthodontics-Deformation and retentive force fol...journal club presentation- prosthodontics-Deformation and retentive force fol...
journal club presentation- prosthodontics-Deformation and retentive force fol...
 
Dr.R.Narayanasamy - Super Plasticity
Dr.R.Narayanasamy - Super PlasticityDr.R.Narayanasamy - Super Plasticity
Dr.R.Narayanasamy - Super Plasticity
 
Micromec2014
Micromec2014Micromec2014
Micromec2014
 
SalzmanPoster_optifab 2008
SalzmanPoster_optifab 2008SalzmanPoster_optifab 2008
SalzmanPoster_optifab 2008
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defense
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defense
 
Nishil Malde - Anton Paar
Nishil Malde  - Anton PaarNishil Malde  - Anton Paar
Nishil Malde - Anton Paar
 
Edge effect in high speed slurry erosion wear tests of steels and elastomers
Edge effect in high speed slurry erosion wear tests of steels and elastomersEdge effect in high speed slurry erosion wear tests of steels and elastomers
Edge effect in high speed slurry erosion wear tests of steels and elastomers
 
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...
Analysing and Comparing the Behaviours of Cylindrical Fatigue Specimens Made ...
 
Ti nano
Ti nanoTi nano
Ti nano
 
Chapter 8. Mechanical Failure - Failure mechanisms
Chapter 8. Mechanical Failure - Failure mechanismsChapter 8. Mechanical Failure - Failure mechanisms
Chapter 8. Mechanical Failure - Failure mechanisms
 
Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid fea
 
Goals of Microfabrication Module
Goals of Microfabrication ModuleGoals of Microfabrication Module
Goals of Microfabrication Module
 
Introduction to Microsystems for Bio Applications
Introduction to Microsystems for Bio ApplicationsIntroduction to Microsystems for Bio Applications
Introduction to Microsystems for Bio Applications
 
Published paper
Published paperPublished paper
Published paper
 
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....
Rebound hammer & UPV-  Non destructive test. Concrete NDT. Civil engineering....Rebound hammer & UPV-  Non destructive test. Concrete NDT. Civil engineering....
Rebound hammer & UPV- Non destructive test. Concrete NDT. Civil engineering....
 
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration Excitation
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration ExcitationEvaluation of the Turbine Bladed Disc Design for Resonant Vibration Excitation
Evaluation of the Turbine Bladed Disc Design for Resonant Vibration Excitation
 
FEA_STRUCTURE.pptx
FEA_STRUCTURE.pptxFEA_STRUCTURE.pptx
FEA_STRUCTURE.pptx
 

BSSM_Conference_UOE__5th Sep 2016_compresed

  • 1. Effects of modelling parameters on the accuracy of modelling deformation in a coarse grain nickel based super alloy 11th International Conference on Advances in Experimental Mechanics University of Exeter, 05th September 2016 Luqmaan Fazal, João Quinta da Fonseca University of Manchester Wei Li Rolls-Royce plc. (Derby)
  • 2. Ø  Some nickel-based superalloys are employed in the manufacture of large investment cast aerospace structural components. Ø  Casting results in large grain sizes ranging from 0.5 - 3 mm Image Courtesy of Helmink et al. Industrial significance of material Image Courtesy of Helmink et al.
  • 3. Ø  Scatter makes it difficult to determine the exact fatigue life of the component Image Courtesy of Helmink et al. Industrial significance of material Image Courtesy of Helmink et al. Functionofstrain Fatigue life Graph courtesy of Rolls-Royce plc.
  • 4. Ø  When specimens have a few coarse grains, the mechanical anisotropy of the individual grains affect the overall mechanical properties of the test specimen which will vary based on the arrangement of the grains. Ø  This causes scatter for the different specimens that are tested Research Hypothesis
  • 5. Research Question Ø  Can we use crystal plasticity finite element modelling (CPFEM) to predict the scatter by taking into account grain anisotropy alone?
  • 6. Research PlanUniaxialloading 1. Validate CPFE model using a representative experimental technique 2.Run CPFE model with various grain configurations in order to see the type of scatter that is predicted Cyclicloading 1. Validate CPFE model for first cycle using a representative experimental technique 2. Validate CPFE model for multiple (~5) cycles using representative experimental technique. 3. Run CPFE model with various grain configurations in order to see the type of scatter that is predicted Presentation Today
  • 7. Material – RS5 nickel based superalloy Ni Mn Si P S Cr Co Mo C ~58 0.01 0.01 0.0005 0.0009 15.92 10.03 4.92 0.064 W Nb Ti Ta Al B Fe Zr 2.01 4.83 2.68 1.32 0.98 0.0038 0.02 0.0116 Ø low Al/Ti ratio (1/2.7) allows good weldability Ø Nb (4.8 wt.%) that has low diffusivity thereby slowing down the kinetics of γ' precipitation
  • 8. Material – RS5 nickel based superalloy 500 µm 200 µm Grain boundary precipitates Coarse grain structure(0.5-2mm) with both primary and secondary dendrites
  • 9. Experimental Technique – Digital Image Correlation (DIC) Ø  Digital image correlation requires a series of images taken by a CCD camera to be taken while the sample is being deformed to measure strain across the sample. Ø  Allows the history of sample deformation to be mapped Image Courtesy of Devin Harris
  • 10. Experimental Technique – Digital Image Correlation (DIC)
  • 11. Crystal Plasticity Finite Element Modelling (CPFEM) Ø  Finite element modelling is a discretisation technique involves breaking a problem into discrete components of simple geometry called finite elements. Concepts for Integrating Plastic Anisotropy into Metal Forming Simulations D. Raabe et al
  • 12. Crystal Plasticity Finite Element Modelling (CPFEM) Elas%c  deforma%on  -­‐  Elas%c   Anisotropy   Ø  Compliance  tensors  are  used  by  the  model  to  define  the  elas%c   anisotropy  of  the  material  being  modelled.   Ni   z   x   y   Python script courtesy of Dr. João Quinta da Fonseca
  • 13. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  plas%city  –  Slip  systems   Ø  The  type  of  slip  systems  that  are  ac%ve  depends  on  the  crystal  structure   of  the  materials  and  the  temperature  at  which  the  deforma%on  takes   place.  The  slip  systems  are  defined  in  terms  of  their  slip  plane  normals   and  slip  direc%ons.  
  • 14. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Plas%c  slip   Ø  The  amount  of  slip  in  each  slip  system  is  propor%onal  to  the  applied  shear   stress  and  inversely  propor%onal  to  the  instantaneous  slip  resistance.     Ø  The  smaller  the  value  of  the  strain  rate  sensi%vity  the  greater  the  amount   of  slip  for  a  given  resolved  shear  stress  value.   slip rate m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! !
  • 15. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Plas%c  slip   Ø  The  amount  of  slip  in  each  slip  system  is  propor%onal  to  the  applied  shear   stress  and  inversely  propor%onal  to  the  instantaneous  slip  resistance.     Ø  The  smaller  the  value  of  the  strain  rate  sensi%vity  the  greater  the  amount   of  slip  for  a  given  resolved  shear  stress  value.   slip rate nominal reference slip rate m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! !
  • 16. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Plas%c  slip   Ø  The  amount  of  slip  in  each  slip  system  is  propor%onal  to  the  applied  shear   stress  and  inversely  propor%onal  to  the  instantaneous  slip  resistance.     Ø  The  smaller  the  value  of  the  strain  rate  sensi%vity  the  greater  the  amount   of  slip  for  a  given  resolved  shear  stress  value.   slip rate nominal reference slip rate m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! ! resolved shear stress. (Depends on the Schmid factor and hence the orientation of the grain)
  • 17. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Plas%c  slip   Ø  The  amount  of  slip  in  each  slip  system  is  propor%onal  to  the  applied  shear   stress  and  inversely  propor%onal  to  the  instantaneous  slip  resistance.     Ø  The  smaller  the  value  of  the  strain  rate  sensi%vity  the  greater  the  amount   of  slip  for  a  given  resolved  shear  stress  value.   slip rate nominal reference slip rate m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! ! resolved shear stress. (Depends on the Schmid factor and hence the orientation of the grain) strain rate sensitivity
  • 18. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Plas%c  slip   Ø  The  amount  of  slip  in  each  slip  system  is  propor%onal  to  the  applied  shear   stress  and  inversely  propor%onal  to  the  instantaneous  slip  resistance.     Ø  The  smaller  the  value  of  the  strain  rate  sensi%vity  the  greater  the  amount   of  slip  for  a  given  resolved  shear  stress  value.   slip rate nominal reference slip rate m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! ! instantaneous slip resistance for a given slip system. Depends on the hardening rate. resolved shear stress. (Depends on the Schmid factor and hence the orientation of the grain) strain rate sensitivity
  • 19. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Hardening   Ø  The  instantaneous  slip  resistance  evolves  at  the  end  of  each  %me  step   according  to  an  empirical  Voce  law  hardening  equa%on.   Ø  The  satura%on  slip  resistance  is  assumed  to  be  dependent  on  the  net   local  plas%c  strain  rate  calculated  from  the  net  sum  of  the  local  plas%c   strain  rates.   Θ = ΘIV +Θ0 1− τ τs α sgn 1− τ τs # $ % & ' ( ) * + + , - . . Final hardening rate Initial hardening rate Saturation slip resistance Slip resistance
  • 20. Crystal Plasticity Finite Element Modelling (CPFEM) Crystal  Plas%city  –  Hardening   Ø  The  instantaneous  slip  resistance  evolves  at  the  end  of  each  %me  step   according  to  an  empirical  Voce  law  hardening  equa%on.   Ø  The  satura%on  slip  resistance  is  assumed  to  be  dependent  on  the  net   local  plas%c  strain  rate  calculated  from  the  net  sum  of  the  local  plas%c   strain  rates.   WorkHardeningRate(MPa) 0 10000 20000 30000 40000 50000 60000 175 3500 525 700 Shear Stress (MPa) τs  =  580  MPa   ΘIV=  50000  MPa   Θ0=  500  MPa   α  
  • 21. Crystal Plasticity Finite Element Modelling (CPFEM) Hardening  values  calibra%on   Ø  Hardening  values  are  selected  by  ploRng  simulated  polycrystalline  curves   against  room  temperature  polycrystalline  curves  with  more  than  100   grains  in  the  sample.   TrueStress(MPa) True Strain
  • 22. Strain Calculation Vector calculated Gauss points within elements Movement of nodes tracked εyy calculated Speckles in individual grids Displacement of speckles tracked Vector calculated εyy calculated Digital image correlation (DIC) Crystal plasticity finite element model (CPFEM)
  • 23. Tensile Sample Dimensions 28mm 3 mm Ø  Flat ‘dogbone’ sample with a thickness of 1mm
  • 24. DIC: Observed Region 8mm 3 mm Region of gauge observed by CCD camera Loading Direction 28mm 3 mm Ø  DIC measures strain on a fraction of the front surface Surface etched using Kalling’s Waterless Reagent
  • 25. 8mm 3 mm Region of gauge observed by CCD camera CPFEM: Obtaining Orientations EBSDRegion 5mm TD RD ND Back FaceFront Face 111 101100 The orientation of each grain is defined in terms of 3 euler angles φ1, Φ & φ2 EBSD Maps (IPFX) Ø  Electron backscattered diffraction (EBSD) used to obtain the grain orientations from both the back and front faces. Surface etched using Kalling’s Waterless Reagent
  • 26. 8mm 3 mm Region of gauge observed by CCD camera CPFEM: Obtaining Orientations EBSDRegion 5mm TD RD ND Back FaceFront Face 111 101100 These 3 euler angles are assigned to each element in the mesh EBSD Maps (IPFX) CPFE Mesh Front Face Back Face (subsurface grains) Surface etched using Kalling’s Waterless Reagent
  • 27. 8mm 3 mm Region of gauge observed by CCD camera CPFEM: Assumptions on grain shape CPFERegion CPFE Mesh Front Face Back Face (subsurface grains) CPFE Mesh side view Ø  The CPFE mesh assumes that the grains are flat and one element thick Front Face Back Face Surface etched using Kalling’s Waterless Reagent
  • 28. 8mm 3 mm Region of gauge observed by CCD camera CPFEM: Region of interest DIC region in CPFE mesh Surface etched using Kalling’s Waterless Reagent
  • 29. 45subsets 19 subsets 44elements 16 elements DIC vs CPFEM – Resolution of measurement Ø  Constructed CPFE mesh is coarser than resolution used for strain measurements in DIC
  • 30. DIC vs CPFEM – Strain maps Ø  Even at 0.8% strain some regions have strains going upto 2.5% experimentally. Average εyy=0.8% DIC CPFEM 0.0 1.88 2.5 1.25 0.62 εyy%
  • 31. DIC vs. CPFEM – effects of m Average εyy=0.8% CPFEM DIC m= 0.5 m = 0.02 m = 0.001 0.0 1.88 2.5 1.25 0.62 εyy% m 1 00 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = τ τ γ γ ! ! strain rate sensitivity
  • 32. DIC vs. CPFEM – effects of m Average εyy=0.8% εyy% RelativeFrequency 0.8% Ø  Experimental data shows more similarities towards a power law distribution. tail indicates the high local strain
  • 33. DIC vs. CPFEM – effects of m Average εyy=0.8% εyy% RelativeFrequency 0.8% Ø  At m=0.5 the model shows a normal strain distribution which is not what is observed experimentally. tail indicates the high local strain At higher m values a greater fraction of the slip systems contribute to the local strain.
  • 34. DIC vs. CPFEM – effects of m Average εyy=0.8% εyy% RelativeFrequency 0.8% Ø  The modeled data begins to show increased resemblance to a power law distribution as the strain rate sensitivity value is reduced. tail indicates the high local strain At lower m values, there are fewer slip systems that have significant contribution to the local strain than at relatively higher m values
  • 35. DIC vs. CPFEM – effects of m Average εyy=0.8% εyy% RelativeFrequency 0.8% tail indicates the high local strain Ø  The modeled data begins to show increased resemblance to a power law distribution as the strain rate sensitivity value is reduced.
  • 36. DIC vs. CPFEM – effects of m Average εyy=0.8% εyy% RelativeFrequency 0.8% tail indicates the high local strain DICCPFEM m=0.001 Ø  The regions of localised strain are still not the same.
  • 37. DIC vs. CPFEM – effects of subsurface grains Average εyy=0.8% m = 0.001 m = 0.001 CPFEMDIC 0.0 1.88 2.5 1.25 0.62 εyy% Including sub- surface grains Excluding sub- surface grains
  • 38. Summary Ø  A simple uniaxial experiment was carried out to validate how well a simple CPFE model predicted the local strain distribution of a coarse grain nickel based superalloy during uniaxial loading Ø  Strain heterogeneity is observed both experimentally and in the simulations Ø  While the strain rate sensitivity has no physical meaning, reducing the strain rate sensitivity to 0.001 results in better agreement between the model and experimental results. Ø  Excluding the sub-surface grains from the mesh does not affect the quantitative strain distribution significantly but does have a noticeable effect on where the strain actually localises.
  • 39. Further Work Ø  Extract a single grain thick sample and compare simulations with experimental data Ø  Slip line analysis to study the active slip systems Ø  Digital image correlation at higher magnifications to observe if dendrites have any effects on the strain localisation within the grains Ø  Run simulations with synthetic microstructures to observe how the strain rate sensitivity affects the scatter observed for different synthetic microstructures.
  • 40. Acknowledgement Ø  The author thanks Rolls-Royce plc for provision of test material and funding support