SlideShare a Scribd company logo
1 of 34
Electrostatic Coating with Ligandless
Copper Nanoparticles:
Films, Surfactant Concentration, 3D Deposition
AVS-62, San José, CA
October 22, 2015
Lance Hubbard & Anthony Muscat
Department of Chemical & Environmental
Engineering
University of Arizona
Tucson, AZ 85721
Nanoparticles, Thin Films, Features
2
Substrate
Cu NP Film
Metallic Nanoparticles (NPs): Low
Temperature Metallization
Electroless Thin
Film Plating
Spectroscopy
Conductive Copper Nanoparticles
• Cu NP film
• Electroplating seed layer
• Atmospheric pressure and lower
temperatures
• Nanophase reduces sinter temp. by ↑
surface energy
• Suspended Cu metal
• Cu NPs oxidize quickly = not conductive
• Ligands (mol. bound to surface)
• Lowers conductivity
• Ionic liquid charge compensator
3
NP SEM Surface:
Cu NPs Bath
Coated Film:
Ligands and Charge Compensators
4
Ligands: Charge Compensator:
3.1±1.6 nm
Diameter
5
Approach to Deposit Blanket Films
SiO2
Pt Pt PtPt PtPt
Example Conventional Process:
(not to scale)
Electroless Coating Process:
SiO2
Diffusion Barrier
7 Å Amine
Terminated
Layer
TEM Bath Coated Cu Films
6
Ionic Liquid Added
Substrate
Cu NP Film
Control, No Ionic
Liquid Added
Substrate
Cu NP Film
Grain
Void
Light Absorbance vs. Ionic Liquid Conc.
7
Discontinuous Films
Continuous Films
Photoluminescence vs. IL Conc.
8
Bulk Conductivity
9
Electrical Conductivity of Films vs. Ionic
Liquid Concentration
Ellipsometry Model: Oscillators
• Woollam’s copper Palik layer
• Infrared: Lorentz
• Visible: Tauc-Lorentz
• Ultra Violet: Tauc-Lorentz
• Ultra Violet: Gauss
• Nanophase Cu response
• Alter strength/width
oscillators
• Nanophase/polydisperse
• Effective medium
Approximation
• Voids/ion shell
• Surface roughness 10
Si (1 mm)
SiO2 (16.8 Å)
APTMS (7.6 Å)
Cu NPs + Void EMA (Variable)
(not to scale)
X-Section High Angle SEM: Void
Increase vs. IL Conc.
11
0.5 mM
2.1 mM
4.3 mM
5 µm
5 µm
5 µm
EMA Fractions and Depolarization:
Interparticle interactions
12
Ellipsometry: Polydisperse NPs and
Increased Particle Interactions
13
• 2.1-2.5 mM:
• Increased
• Light absorbance
• Photoluminescence
• Conductivity
• Ellipsometry
• Polydisperse NPs
• Increased UV intensity
• Particle interactions
• Bulk like behavior
Conclusion
• Thin blanket Cu NP
films
• Smooth layers
• Electroplating seed
• Ionic Liquid Conc.
• 2.1-2.4 mM
• Interparticle
Interactions
• Increased Abs,
PL, conductivity 14
Substrate
Cu NP Film
Other Work: 3D Feature Deposition
15
Metallized Flexible-Bendable Substrates
Paper
Only:
Paper
CuNP
Film
CuNP
Reagents:
Cu NP/Wax Paper Film Sintered:
16
Acknowledgements
• Armando Luna
• LAM Research
• Sandia National Labs
• UA University Spectroscopy and Imaging
Facility
• Thank You for Your Time
17
Backup Slides
18
X-TEM: ≤3 nm Dia. Nanoparticles
19
1.9 mM
2.4 mM 4.3 mM
20 nm
20 nm 20 nm
≥ 3 nm Dia.
2.1 mM20 nm
≤ 3 nm Dia.
Cu NPs
SiO2/APTMS
Si
Cross Section SEM and Ellipsometry
20
Other Ellipsometry Parameters
21
Ellipsometry Parameters
22
Synthesis and Characterization
23
No I.L.
I.L.
3.5±2 nm
15±7 nm
UV-Vis vs. IL Conc.: Max Abs. at
2.1-2.4 mM IL Conc.
24
Positive Charges on Substrate Influence
Film Formation
25
0.92
0.91
0.90
0.89
0.88
0.87
cos(AverageContactAngle)
12111098
pH
Glass and Amine Termination is
Influenced by Initial pH of Substrate
26
Cu NPs on Glass: Cu NPs on Amine-Glass:
Increasing Sinter Temperature Degrades
Amine Termination but not Ionic Liquid
27
SEM Bath Coated Cu Films
28
a
b
c
d
• Sinter reduces film
thickness
• Same interparticle
distance
SEM of Bath Coated Cu Films
• Sinter reduces irregularities in the Cu NP film
• Regularities do not expose underlying silica substrate
• Partial explanation to the decrease in film thickness seen in SEM
29
Substrate Void
ELD film 20oC N2 1hr: ELD film 200oC N2 1hr:
Copper Nanoparticles: Oxidation
• Improved particle oxidation from
minutes to months
• Changed solvent from diphenyl
ether to ethylene glycol
• Added µL amounts of ionic liquid as
a charge compensator
• Enabled Cu NPs stable in ambient
instead of nitrogen
30
0 100 200 300 400 500 600
2
4
6
8
10
12
14
16
18
20
22
24
Run 3 (~6min Air)
Run 2 (~3min Air)
Run 1
DLS Relative Count vs. Particle Diameter of CuNPs
Count(%)
Diameter (nm)
0 5 10 15 20 25 30
0
5
10
15
20 Diameter Increase
Oxidation
Initial DLS
After 1 Wk Air
After 2 Wks Air
After 3 Wks Air
DLS Count vs. Particle Diameter for CuNPs
in Ethylene Glycol Over 3 weeks
DLSRelativeIntensity(%)
Diameter (nm)
Solution Cycle Coating of Cu NPs
• Copper particles concentrate
• Mix with ethanol (EtOH),
centrifuge 30min; repeated 3X
• Silica substrates prepared with
MPTMS
• Increasing Cu NP SPR response
• 1st 4 cycles
• Cycle 5 response decreases
• Substrates dipped for 1 hr in Cu
NP/EtOH solution
• Cleaned with EtOH between
steps
• Dipped in ethane dithiol for 1 hr
• Repeated 5X
31
500 550 600 650 700
0.00
0.01
0.02
0.03
0.04
CuNP Film Response Increasing with Cycles
Up to Cycle 4, Decrease in Response at Cycle 5
CuNPs
UV-Vis Absorbance vs. Wavelength for CuNP Cycle Coat
on Glass 1mol% EDT 0.17mg/mL CuNPs in EtOH each
1hr Each EtOH wash Between, 10min Sinter FG 200
o
C
Cycle 1
Cycle 5
Cycle 4
Cycle 3
Cycle 2
Absorbance
Wavelength (nm)
Reaction Coating: Alternate Substrates
• Reaction Coating
• Films form on positively
charged substrate surfaces
• Metals
• Polymers
• Molybdenum
• ~80% conductivity of bulk Cu
• Steel
• ~20% conductivity of bulk Cu
• Reaction coating is applicable to
multiple materials
32
Cu NPs on Moly:Molybdenum:
Cu NPs on
Steel:
Cu NP Film on
Biopolymer:
Reaction Coat Cu NPs on Biopolymers:
Polysaccharide (i.e. Copy Paper)
• Paper reaction coated with Cu NPs
• Formed ~micron scale film
• Appears uniform on outer surface
• Little island growth seen upon sintering
33
Paper:160oC
EG Only:
Paper
Paper:160oC
Cu NP Reagents:
Cu
NP
Film
Cu NP/Paper Film Sintered
200oC ,N2, 30min:
AVS-62 San jose 2015 ELD Cu NPs Conc IL-V2

More Related Content

What's hot

Low Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO NanoparticlesLow Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO Nanoparticles
curtistaylor80
 
Edri Et Al. 2010 Uniform Coating of Light-Absorbing Semiconductors by Chem...
Edri Et Al.   2010  Uniform Coating of Light-Absorbing Semiconductors by Chem...Edri Et Al.   2010  Uniform Coating of Light-Absorbing Semiconductors by Chem...
Edri Et Al. 2010 Uniform Coating of Light-Absorbing Semiconductors by Chem...
edrier
 

What's hot (19)

Lithography techniques,types
Lithography techniques,typesLithography techniques,types
Lithography techniques,types
 
Interdiffusion, reactions, and transformations in thin film
Interdiffusion, reactions, and transformations in thin filmInterdiffusion, reactions, and transformations in thin film
Interdiffusion, reactions, and transformations in thin film
 
030
030030
030
 
Preparation and Characterization of nano particles pdf
Preparation and Characterization of nano particles pdfPreparation and Characterization of nano particles pdf
Preparation and Characterization of nano particles pdf
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
Hybrid Graphene and Carbon Nanotube Thin Films
Hybrid Graphene and Carbon Nanotube Thin FilmsHybrid Graphene and Carbon Nanotube Thin Films
Hybrid Graphene and Carbon Nanotube Thin Films
 
1 nanomaterial-synthesis-methods (1)
1 nanomaterial-synthesis-methods (1)1 nanomaterial-synthesis-methods (1)
1 nanomaterial-synthesis-methods (1)
 
Low Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO NanoparticlesLow Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO Nanoparticles
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
 
synthesis of nanomaterials
synthesis of nanomaterialssynthesis of nanomaterials
synthesis of nanomaterials
 
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 
Edri Et Al. 2010 Uniform Coating of Light-Absorbing Semiconductors by Chem...
Edri Et Al.   2010  Uniform Coating of Light-Absorbing Semiconductors by Chem...Edri Et Al.   2010  Uniform Coating of Light-Absorbing Semiconductors by Chem...
Edri Et Al. 2010 Uniform Coating of Light-Absorbing Semiconductors by Chem...
 
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal EvaporationZinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
Zinc Oxide Nanowires Prepared by Hot Tube Thermal Evaporation
 
PM575
PM575PM575
PM575
 
Optical Coherence Tomography
Optical Coherence TomographyOptical Coherence Tomography
Optical Coherence Tomography
 
Project Report on "Fabrication & Characterization of ZnO thin film based on P...
Project Report on "Fabrication & Characterization of ZnO thin film based on P...Project Report on "Fabrication & Characterization of ZnO thin film based on P...
Project Report on "Fabrication & Characterization of ZnO thin film based on P...
 
Carbon nano materials
Carbon nano materialsCarbon nano materials
Carbon nano materials
 
Presentation1.pptx cnt
Presentation1.pptx cntPresentation1.pptx cnt
Presentation1.pptx cnt
 

Similar to AVS-62 San jose 2015 ELD Cu NPs Conc IL-V2

Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
saromemarzadeh
 
Poster 18.3.15. FINALWOOOOOOOOOOOO
Poster 18.3.15. FINALWOOOOOOOOOOOOPoster 18.3.15. FINALWOOOOOOOOOOOO
Poster 18.3.15. FINALWOOOOOOOOOOOO
Chris Wilshaw
 
Yulia-Trenikhina-thin-films-2016
Yulia-Trenikhina-thin-films-2016Yulia-Trenikhina-thin-films-2016
Yulia-Trenikhina-thin-films-2016
Yulia Trenikhina
 

Similar to AVS-62 San jose 2015 ELD Cu NPs Conc IL-V2 (20)

Rani
RaniRani
Rani
 
Nanometirals
NanometiralsNanometirals
Nanometirals
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
M.S.ThesisDefense
M.S.ThesisDefenseM.S.ThesisDefense
M.S.ThesisDefense
 
Tobias junginger low energy muon spin rotation and point contact tunneling ...
Tobias junginger   low energy muon spin rotation and point contact tunneling ...Tobias junginger   low energy muon spin rotation and point contact tunneling ...
Tobias junginger low energy muon spin rotation and point contact tunneling ...
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
 
Fabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar CellFabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar Cell
 
In-situ TEM studies of tribo-induced bonding modification in near-frictionles...
In-situ TEM studies of tribo-induced bonding modification in near-frictionles...In-situ TEM studies of tribo-induced bonding modification in near-frictionles...
In-situ TEM studies of tribo-induced bonding modification in near-frictionles...
 
09 silicone nanocoatings-dubois-u mons
09 silicone nanocoatings-dubois-u mons09 silicone nanocoatings-dubois-u mons
09 silicone nanocoatings-dubois-u mons
 
Abhishek presentation
Abhishek presentationAbhishek presentation
Abhishek presentation
 
why and how thin films
why and how thin filmswhy and how thin films
why and how thin films
 
Poster 18.3.15. FINALWOOOOOOOOOOOO
Poster 18.3.15. FINALWOOOOOOOOOOOOPoster 18.3.15. FINALWOOOOOOOOOOOO
Poster 18.3.15. FINALWOOOOOOOOOOOO
 
Pnc
PncPnc
Pnc
 
carbon dots and its applications
carbon dots and its applicationscarbon dots and its applications
carbon dots and its applications
 
Yulia-Trenikhina-thin-films-2016
Yulia-Trenikhina-thin-films-2016Yulia-Trenikhina-thin-films-2016
Yulia-Trenikhina-thin-films-2016
 
Graphene
GrapheneGraphene
Graphene
 
Sia.6888
Sia.6888Sia.6888
Sia.6888
 
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...Rosa alejandra lukaszew   a review of the thin film techniques potentially ap...
Rosa alejandra lukaszew a review of the thin film techniques potentially ap...
 

AVS-62 San jose 2015 ELD Cu NPs Conc IL-V2

  • 1. Electrostatic Coating with Ligandless Copper Nanoparticles: Films, Surfactant Concentration, 3D Deposition AVS-62, San José, CA October 22, 2015 Lance Hubbard & Anthony Muscat Department of Chemical & Environmental Engineering University of Arizona Tucson, AZ 85721
  • 2. Nanoparticles, Thin Films, Features 2 Substrate Cu NP Film Metallic Nanoparticles (NPs): Low Temperature Metallization Electroless Thin Film Plating Spectroscopy
  • 3. Conductive Copper Nanoparticles • Cu NP film • Electroplating seed layer • Atmospheric pressure and lower temperatures • Nanophase reduces sinter temp. by ↑ surface energy • Suspended Cu metal • Cu NPs oxidize quickly = not conductive • Ligands (mol. bound to surface) • Lowers conductivity • Ionic liquid charge compensator 3 NP SEM Surface: Cu NPs Bath Coated Film:
  • 4. Ligands and Charge Compensators 4 Ligands: Charge Compensator: 3.1±1.6 nm Diameter
  • 5. 5 Approach to Deposit Blanket Films SiO2 Pt Pt PtPt PtPt Example Conventional Process: (not to scale) Electroless Coating Process: SiO2 Diffusion Barrier 7 Å Amine Terminated Layer
  • 6. TEM Bath Coated Cu Films 6 Ionic Liquid Added Substrate Cu NP Film Control, No Ionic Liquid Added Substrate Cu NP Film Grain Void
  • 7. Light Absorbance vs. Ionic Liquid Conc. 7 Discontinuous Films Continuous Films
  • 9. Bulk Conductivity 9 Electrical Conductivity of Films vs. Ionic Liquid Concentration
  • 10. Ellipsometry Model: Oscillators • Woollam’s copper Palik layer • Infrared: Lorentz • Visible: Tauc-Lorentz • Ultra Violet: Tauc-Lorentz • Ultra Violet: Gauss • Nanophase Cu response • Alter strength/width oscillators • Nanophase/polydisperse • Effective medium Approximation • Voids/ion shell • Surface roughness 10 Si (1 mm) SiO2 (16.8 Å) APTMS (7.6 Å) Cu NPs + Void EMA (Variable) (not to scale)
  • 11. X-Section High Angle SEM: Void Increase vs. IL Conc. 11 0.5 mM 2.1 mM 4.3 mM 5 µm 5 µm 5 µm
  • 12. EMA Fractions and Depolarization: Interparticle interactions 12
  • 13. Ellipsometry: Polydisperse NPs and Increased Particle Interactions 13 • 2.1-2.5 mM: • Increased • Light absorbance • Photoluminescence • Conductivity • Ellipsometry • Polydisperse NPs • Increased UV intensity • Particle interactions • Bulk like behavior
  • 14. Conclusion • Thin blanket Cu NP films • Smooth layers • Electroplating seed • Ionic Liquid Conc. • 2.1-2.4 mM • Interparticle Interactions • Increased Abs, PL, conductivity 14 Substrate Cu NP Film
  • 15. Other Work: 3D Feature Deposition 15
  • 17. Acknowledgements • Armando Luna • LAM Research • Sandia National Labs • UA University Spectroscopy and Imaging Facility • Thank You for Your Time 17
  • 19. X-TEM: ≤3 nm Dia. Nanoparticles 19 1.9 mM 2.4 mM 4.3 mM 20 nm 20 nm 20 nm ≥ 3 nm Dia. 2.1 mM20 nm ≤ 3 nm Dia. Cu NPs SiO2/APTMS Si
  • 20. Cross Section SEM and Ellipsometry 20
  • 23. Synthesis and Characterization 23 No I.L. I.L. 3.5±2 nm 15±7 nm
  • 24. UV-Vis vs. IL Conc.: Max Abs. at 2.1-2.4 mM IL Conc. 24
  • 25. Positive Charges on Substrate Influence Film Formation 25 0.92 0.91 0.90 0.89 0.88 0.87 cos(AverageContactAngle) 12111098 pH
  • 26. Glass and Amine Termination is Influenced by Initial pH of Substrate 26 Cu NPs on Glass: Cu NPs on Amine-Glass:
  • 27. Increasing Sinter Temperature Degrades Amine Termination but not Ionic Liquid 27
  • 28. SEM Bath Coated Cu Films 28 a b c d • Sinter reduces film thickness • Same interparticle distance
  • 29. SEM of Bath Coated Cu Films • Sinter reduces irregularities in the Cu NP film • Regularities do not expose underlying silica substrate • Partial explanation to the decrease in film thickness seen in SEM 29 Substrate Void ELD film 20oC N2 1hr: ELD film 200oC N2 1hr:
  • 30. Copper Nanoparticles: Oxidation • Improved particle oxidation from minutes to months • Changed solvent from diphenyl ether to ethylene glycol • Added µL amounts of ionic liquid as a charge compensator • Enabled Cu NPs stable in ambient instead of nitrogen 30 0 100 200 300 400 500 600 2 4 6 8 10 12 14 16 18 20 22 24 Run 3 (~6min Air) Run 2 (~3min Air) Run 1 DLS Relative Count vs. Particle Diameter of CuNPs Count(%) Diameter (nm) 0 5 10 15 20 25 30 0 5 10 15 20 Diameter Increase Oxidation Initial DLS After 1 Wk Air After 2 Wks Air After 3 Wks Air DLS Count vs. Particle Diameter for CuNPs in Ethylene Glycol Over 3 weeks DLSRelativeIntensity(%) Diameter (nm)
  • 31. Solution Cycle Coating of Cu NPs • Copper particles concentrate • Mix with ethanol (EtOH), centrifuge 30min; repeated 3X • Silica substrates prepared with MPTMS • Increasing Cu NP SPR response • 1st 4 cycles • Cycle 5 response decreases • Substrates dipped for 1 hr in Cu NP/EtOH solution • Cleaned with EtOH between steps • Dipped in ethane dithiol for 1 hr • Repeated 5X 31 500 550 600 650 700 0.00 0.01 0.02 0.03 0.04 CuNP Film Response Increasing with Cycles Up to Cycle 4, Decrease in Response at Cycle 5 CuNPs UV-Vis Absorbance vs. Wavelength for CuNP Cycle Coat on Glass 1mol% EDT 0.17mg/mL CuNPs in EtOH each 1hr Each EtOH wash Between, 10min Sinter FG 200 o C Cycle 1 Cycle 5 Cycle 4 Cycle 3 Cycle 2 Absorbance Wavelength (nm)
  • 32. Reaction Coating: Alternate Substrates • Reaction Coating • Films form on positively charged substrate surfaces • Metals • Polymers • Molybdenum • ~80% conductivity of bulk Cu • Steel • ~20% conductivity of bulk Cu • Reaction coating is applicable to multiple materials 32 Cu NPs on Moly:Molybdenum: Cu NPs on Steel: Cu NP Film on Biopolymer:
  • 33. Reaction Coat Cu NPs on Biopolymers: Polysaccharide (i.e. Copy Paper) • Paper reaction coated with Cu NPs • Formed ~micron scale film • Appears uniform on outer surface • Little island growth seen upon sintering 33 Paper:160oC EG Only: Paper Paper:160oC Cu NP Reagents: Cu NP Film Cu NP/Paper Film Sintered 200oC ,N2, 30min:

Editor's Notes

  1. Use Ionic Liquid to protect against agglomeration/oxidation and to not impede film formation,
  2. Ligand Complexed to Cu NP surface Slow oxidation from OH- Repel particles/solvent interaction Decreases e- conductivity Ionic Liquid [Bmim]+[BF4]- Loosely associated with NPs Slow oxidation from OH- Repel particles Slows agglomeration and settling
  3. [bmim][BF4]
  4. 4 pt probe e- conductivity stable over time ELD increases conductivity Improves silica conductivity Order of mag. diff. bulk Cu
  5. 0.02 mol% CuCl2 , 0.31 mol% NaOH, 0.03 mol% ionic liquid