SlideShare a Scribd company logo
1 of 36
Download to read offline
 
Recognition	
  and	
  classification	
  of	
  arm	
  movement	
  
patterns	
  using	
  surface	
  electromyography	
  for	
  use	
  
in	
  myoelectric	
  prosthesis.	
  
DEN318	
  
Khalil	
  Omar	
  Alassi	
  
	
  
	
  
Abstract	
  
In	
  this	
  report	
  different	
  feature	
  extraction	
  techniques	
  were	
  investigated	
  
and	
  assessed.	
  This	
  was	
  done	
  in	
  order	
  to	
  see	
  what	
  features	
  would	
  lead	
  to	
  
good	
   classification,	
   which	
   would	
   be	
   used	
   as	
   an	
   input	
   signal	
   for	
  
myoelectric	
   prosthetic	
   arm.	
   The	
   hand	
   movements	
   carried	
   out	
   include,	
  
hand	
   relaxed	
   horizontally	
   at	
   a	
   90	
   degree	
   angle	
   to	
   the	
   elbow,	
   hand	
  
relaxed	
  vertically	
  down	
  forming	
  a	
  180	
  degree	
  angle	
  to	
  the	
  elbow,	
  hand	
  
open	
   (with	
   all	
   fingers	
   separated	
   from	
   each	
   other),	
   hand	
   grasp,	
   hand	
  
lateral	
  grasp	
  –	
  with	
  and	
  without	
  motion,	
  two-­‐finger	
  pinch	
  (separate	
  two	
  
fingers	
   in	
  one	
   EMG	
   signal),	
   wrist	
   flexion	
   and	
   wrist	
   extension.	
   The	
   raw	
  
signals	
   were	
   then	
   de-­‐noised	
   and	
   the	
   following	
   time-­‐domain	
   feature	
  
extraction	
  techniques	
  were	
  applied,	
  Zero	
  crossing,	
  mean	
  absolute	
  value,	
  
Willison	
  amplitude	
  and	
  log	
  detector.	
  The	
  best	
  feature	
  obtained	
  was	
  the	
  
zero	
   crossing	
   followed	
   by	
   Willison	
   amplitude.	
   The	
   mean	
   proved	
  
ineffectual	
  and	
  should	
  not	
  be	
  used	
  for	
  classification.	
  	
  
	
  
	
  
	
  
  2	
  
SCHOOL	
  OF	
  ENGINEERING	
  AND	
  MATERIALS	
  SCIENCE	
  
ENGINEERING	
  THIRD	
  YEAR	
  PROJECT	
  
DEN318	
  
April	
  2015	
  
DECLARATION	
  
	
  
This	
  report	
  is	
  entitled	
  
	
  
Recognition	
  and	
  classification	
  of	
  arm	
  movement	
  patterns	
  using	
  surface	
  
electromyography	
  for	
  use	
  in	
  myoelectric	
  prosthesis.	
  
	
  
Was	
  composed	
  by	
  me	
  and	
  is	
  based	
  on	
  my	
  own	
  work.	
  Where	
  the	
  work	
  
of	
  others	
  has	
  been	
  used,	
  it	
  is	
  fully	
  acknowledged	
  in	
  the	
  text	
  and	
  in	
  
captions	
  to	
  table	
  illustrations.	
  This	
  report	
  has	
  not	
  been	
  submitted	
  for	
  
any	
  other	
  qualification.	
  	
  
	
  
	
  
	
  
	
  
Name	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Khalil	
  Omar	
  Alassi	
  
	
  
Signed	
  	
  	
  	
  	
  	
  	
  	
  ……………...…...	
  
	
  
Date	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  …………………...	
  
	
  
	
  
	
  
  3	
  
Table	
  of	
  Contents	
  
Abstract	
  .................................................................................................................................	
  1	
  
List	
  of	
  Tables	
  .......................................................................................................................	
  4	
  
List	
  of	
  Figures	
  ......................................................................................................................	
  4	
  
List	
  of	
  Graphs	
  ......................................................................................................................	
  4	
  
Introduction	
  ........................................................................................................................	
  5	
  
Methods	
  and	
  Results	
  ........................................................................................................	
  8	
  
Data	
  collection	
  .............................................................................................................................	
  8	
  
Data	
  processing	
  ........................................................................................................................	
  10	
  
Feature	
  extraction	
  ..................................................................................................................	
  12	
  
Discrete	
  Wavelet	
  Transform	
  (DWT)	
  .................................................................................	
  12	
  
Wavelet	
  Packet	
  Decomposition	
  (WPD)	
  ...........................................................................	
  13	
  
Decomposition	
  trees	
  ..............................................................................................................	
  15	
  
Mean	
  Absolute	
  Value	
  (MAV)	
  ............................................................................................................	
  19	
  
Willison	
  amplitude	
  (WAMP)	
  ............................................................................................................	
  19	
  
Zero	
  crossing	
  (ZC)	
  ................................................................................................................................	
  20	
  
Log	
  detector	
  (LD)	
  .................................................................................................................................	
  20	
  
Comparison	
  of	
  each	
  Feature	
  extraction	
  technique	
  ......................................................	
  20	
  
Discussion	
  .........................................................................................................................	
  25	
  
Conclusion	
  .........................................................................................................................	
  29	
  
Acknowledgments	
  ..........................................................................................................	
  29	
  
References	
  ........................................................................................................................	
  30	
  
Appendix	
  ...........................................................................................................................	
  33	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  4	
  
List	
  of	
  Tables	
  
Table	
  1	
  Summary	
  of	
  the	
  advantages	
  and	
  disadvantages	
  of	
  the	
  support	
  vector	
  
machine,	
  the	
  artificial	
  neural	
  network	
  and	
  fuzzy	
  logic	
  .............................................	
  7	
  
Table	
  2	
  The	
  optimal	
  wavelet	
  component	
  and	
  function	
  for	
  the	
  surface	
  EMG	
  
features,	
  with	
  RES	
  indices	
  [19]	
  ........................................................................................	
  28	
  
	
  
List	
  of	
  Figures	
  
Figure	
  1	
  Processes	
  involved	
  in	
  EMG	
  extraction	
  and	
  Identification	
  [1]	
  .......................	
  6	
  
Figure	
  2	
  A	
  64	
  electrode	
  system,	
  with	
  the	
  ground	
  electrode	
  inserted	
  into	
  the	
  
upper	
  most	
  slot	
  ..........................................................................................................................	
  9	
  
Figure	
  3	
  The	
  different	
  hand	
  movements	
  labelled	
  corresponding	
  to	
  the	
  letters	
  
previously	
  mentioned	
  ..........................................................................................................	
  10	
  
Figure	
  4	
  Three	
  level	
  decomposition	
  wavelet	
  packet	
  tree	
  ..............................................	
  14	
  
Figure	
  5	
  Level	
  3	
  decomposition	
  using	
  wavelet	
  packet	
  transform,	
  A	
  representing	
  
approximation	
  coefficient	
  and	
  D	
  representing	
  Detail	
  coefficient	
  [15]	
  ...........	
  14	
  
Figure	
  6	
  db5	
  wavelet	
  functions	
  for	
  1	
  to	
  10	
  iterations	
  .....................................................	
  15	
  
Figure	
  7	
  Raw	
  Emg	
  signal	
  ...............................................................................................................	
  16	
  
Figure	
  8	
  Level	
  1	
  Detail	
  ...................................................................................................................	
  17	
  
Figure	
  9	
  Level	
  2	
  detail	
  ....................................................................................................................	
  17	
  
Figure	
  10	
  Level	
  3	
  detail	
  .................................................................................................................	
  18	
  
Figure	
  11	
  Level	
  3	
  approximation	
  ..............................................................................................	
  18	
  
List	
  of	
  Graphs	
  
Graph	
  1	
  Hand	
  Grip	
  ...........................................................................................................................	
  12	
  
Graph	
  2	
  ZC	
  comparison	
  for	
  different	
  movements	
  .............................................................	
  21	
  
Graph	
  3	
  Mean	
  comparison	
  for	
  the	
  different	
  movements	
  ...............................................	
  22	
  
Graph	
  4	
  MAV	
  comparison	
  for	
  different	
  movements	
  .........................................................	
  23	
  
Graph	
  5	
  WAMP	
  comparison	
  for	
  different	
  movements	
  ....................................................	
  24	
  
Graph	
  6	
  LD	
  comparison	
  for	
  different	
  movements	
  .............................................................	
  25	
  
Graph	
  7	
  Hand	
  Lateral	
  Grasp	
  ........................................................................................................	
  33	
  
Graph	
  8	
  Hand	
  Lateral	
  Grasp	
  with	
  Motion	
  .............................................................................	
  33	
  
Graph	
  9	
  Hand	
  open	
  ..........................................................................................................................	
  34	
  
Graph	
  10	
  Hand	
  Rest	
  Horizontal	
  (90	
  degrees)	
  .....................................................................	
  34	
  
Graph	
  11	
  Hand	
  Rest	
  Vertical	
  (180	
  degrees)	
  ........................................................................	
  35	
  
Graph	
  12	
  Two	
  Finger	
  Pinch	
  .........................................................................................................	
  35	
  
Graph	
  13	
  Wrist	
  Extension	
  ............................................................................................................	
  36	
  
Graph	
  14	
  Wrist	
  Flexion	
  .................................................................................................................	
  36	
  
	
  
	
  
	
  
	
  
	
   	
  
  5	
  
Introduction	
  
Myoelectric	
   prosthesis	
   is	
   an	
   ever-­‐expanding	
   field,	
   particularly	
   with	
   the	
  
exponential	
   increase	
   in	
   technology	
   over	
   the	
   past	
   two	
   decades	
   [29].	
   Software	
  
engineering	
   alongside	
   other	
   fields	
   have	
   opened	
   up	
   doors	
   for	
   prosthetics	
   to	
  
progress	
   from	
   being	
   for	
   aesthetic	
   purposes	
   to	
   having	
   increased	
   functionality.	
  
This	
   began	
   with	
   mechanical	
   movements	
   using	
   buttons	
   on	
   the	
   inside	
   of	
   the	
  
prosthetic,	
  to	
  using	
  nerve	
  signals	
  to	
  operate	
  and	
  control	
  the	
  prosthetic,	
  which	
  is	
  
where	
  current	
  research	
  is	
  being	
  undertaken,	
  in	
  order	
  to	
  improve	
  upon	
  current	
  
systems	
  in	
  numerous	
  ways.	
  
	
  
There	
  are	
  two	
  parts	
  to	
  myoelectric	
  prostheses.	
  The	
  first	
  is	
  the	
  physical	
  section.	
  
This	
  is	
  the	
  robotic	
  prosthetic	
  itself,	
  with	
  all	
  the	
  motors,	
  actuators	
  and	
  mechanical	
  
components	
  involved	
  in	
  it.	
  The	
  second	
  section	
  is	
  the	
  data	
  collection,	
  processing	
  
and	
  classifying,	
  the	
  part	
  that	
  is	
  involved	
  in	
  understanding	
  the	
  signals	
  produced	
  
and	
  carrying	
  out	
  the	
  correct	
  movement	
  corresponding	
  to	
  the	
  patients	
  will.	
  This	
  
report	
  investigates	
  the	
  gathering	
  of	
  the	
  signals	
  and	
  the	
  pre	
  and	
  post	
  processing	
  
of	
  the	
  EMG	
  signals	
  obtained	
  in	
  order	
  to	
  recognise	
  unique	
  signals	
  associated	
  with	
  
each	
  arm	
  movement.	
  
	
  
There	
  were	
  a	
  total	
  of	
  1.6	
  million	
  amputees	
  in	
  the	
  United	
  States	
  alone	
  in	
  2005.	
  
This	
  includes	
  upper,	
  lower,	
  major	
  and	
  minor	
  amputations.	
  In	
  this	
  report,	
  the	
  arm	
  
was	
  investigated.	
  Although	
  there	
  are	
  more	
  people	
  with	
  lower	
  limb	
  amputations	
  
world	
  wide,	
  the	
  loss	
  of	
  functionality	
  is	
  greater	
  with	
  the	
  arm	
  than	
  the	
  leg,	
  and	
  as	
  it	
  
currently	
  stands,	
  there	
  are	
  many	
  simple	
  devices	
  available	
  that	
  can	
  replace	
  the	
  
lower	
  limbs,	
  with	
  similar	
  functionality	
  [3].	
  
	
  
After	
  analysing	
  the	
  literature,	
  it	
  was	
  evident	
  that	
  there	
  were	
  no	
  papers	
  or	
  any	
  
databases	
   on	
   EMG	
   signals.	
   This	
   would	
   allow	
   for	
   the	
   simple	
   selection	
   of	
   the	
  
movements	
   the	
   manufacturer	
   or	
   user	
   want,	
   implement	
   it	
   onto	
   the	
   robotic	
  
system,	
   to	
   be	
   simply	
   selected	
   from	
   certain	
   categories	
   depending	
   on	
   the	
  
movements	
   that	
   the	
   user	
   wants	
   the	
   achieve.	
   However	
   to	
   do	
   that,	
   effective	
  
features	
  have	
  to	
  be	
  identified	
  and	
  classified	
  in	
  the	
  correct	
  method.	
  The	
  aim	
  of	
  
  6	
  
this	
  report	
  is	
  to	
  identify	
  the	
  effective	
  features,	
  and	
  suggest	
  a	
  good	
  classification	
  
method	
  to	
  be	
  used	
  in	
  order	
  to	
  get	
  the	
  final	
  result.	
  
	
  
This	
  process	
  however	
  is	
  not	
  a	
  simple	
  one;	
  chains	
  of	
  events	
  have	
  to	
  occur	
  to	
  reach	
  
the	
  final	
  stage.	
  These	
  are	
  seen	
  in	
  Figure	
  1.	
  EMG	
  sensors	
  are	
  used	
  to	
  record	
  nerve	
  
signals	
   for	
   the	
   chosen	
   arm	
   movements,	
   these	
   are	
   then	
   processed	
   through	
  
MATLAB	
   for	
   noise	
   reduction,	
   feature	
   extraction,	
   dimensional	
   reduction	
   and	
  
classification,	
   which	
   finally	
   allows	
   for	
   that	
   movement	
   to	
   be	
   recognised	
   by	
   the	
  
prosthetic	
  arm	
  when	
  an	
  action	
  potential	
  is	
  propagated.	
  	
  
	
  
Figure	
  1	
  Processes	
  involved	
  in	
  EMG	
  extraction	
  and	
  Identification	
  [1]	
  
There	
  are	
  many	
  options	
  available	
  to	
  record	
  the	
  electrical	
  activity;	
  the	
  different	
  
sensors	
  are	
  used	
  for	
  their	
  different	
  properties,	
  for	
  example,	
  there	
  are	
  dry	
  and	
  
gelled	
   electrodes,	
   the	
   gelled	
   electrodes	
   are	
   favourable	
   due	
   to	
   the	
   reduction	
   of	
  
impedance,	
  however	
  they	
  are	
  lighter	
  than	
  the	
  dry	
  electrode	
  that	
  causes	
  handling	
  
difficulties.	
  Gelled	
  electrodes	
  weigh	
  in	
  the	
  region	
  of	
  20g	
  per	
  electrode	
  compared	
  
to	
  the	
  1g	
  of	
  the	
  dry	
  electrode	
  [4].	
  	
  
	
  
There	
   are	
   different	
   methods	
   to	
   carry	
   out	
   EMG	
   feature	
   extraction;	
   the	
   main	
  
techniques	
  are	
  split	
  into	
  three	
  categories,	
  time	
  domain,	
  frequency	
  domain	
  and	
  
time-­‐frequency	
   domain	
   (wavelet	
   transform).	
   These	
   can	
   be	
   carried	
   out	
   on	
  
MATLAB,	
   a	
   high	
   performance	
   program	
   for	
   technical	
   computing	
   [2].	
   Each	
   was	
  
further	
  discussed	
  and	
  investigated	
  in	
  the	
  literature	
  review.	
  
	
  
There	
   are	
   also	
   many	
   classification	
   techniques	
   available,	
   the	
   main	
   three	
   being	
  
support	
   vector	
   machine,	
   artificial	
   neural	
   network	
   and	
   fuzzy	
   logic.	
   These	
   were	
  
investigated	
  within	
  the	
  literature	
  review,	
  and	
  advantages	
  and	
  disadvantages	
  of	
  
each	
  were	
  discussed.	
  These	
  are	
  summarised	
  in	
  the	
  table	
  below:	
  
  7	
  
Table	
  1	
  Summary	
  of	
  the	
  advantages	
  and	
  disadvantages	
  of	
  the	
  support	
  vector	
  machine,	
  the	
  artificial	
  
neural	
  network	
  and	
  fuzzy	
  logic	
  
	
   Advantages	
   Disadvantages	
  
Support	
  Vector	
  Machine	
   -­‐ Linearly	
  separable	
  
-­‐ Uses	
  Kernal	
  
functions,	
  hence	
  it	
  
gains	
  flexibility	
  in	
  
form	
  of	
  the	
  set	
  
threshold	
  	
  
-­‐ Provide	
  a	
  good	
  
out	
  of	
  sample	
  
generalisation	
  
-­‐ Provides	
  a	
  unique	
  
solution	
  
-­‐ Can	
  alter	
  what	
  
factors	
  to	
  stress	
  
on	
  most	
  in	
  
comparison	
  to	
  
others	
  [5]	
  
-­‐ Due	
  to	
  high	
  
dimensions,	
  it	
  is	
  
difficult	
  to	
  
represent	
  results	
  
as	
  simple	
  
parametric	
  
functions	
  [6]	
  
-­‐ “High	
  algorithmic	
  
complexity	
  and	
  
extensive	
  memory	
  
requirement”	
  [7]	
  
-­‐ The	
  Kernel	
  
function	
  
parameters	
  
selection	
  
Artificial	
  Neural	
  Network	
   -­‐ Deals	
  best	
  with	
  
non-­‐linear	
  
dependence	
  
between	
  the	
  
inputs	
  and	
  
outputs	
  
-­‐ Easy	
  to	
  
conceptualise	
  
-­‐ Has	
  been	
  used	
  in	
  
industry	
  for	
  so	
  
many	
  years	
  
-­‐ High	
  tolerance	
  to	
  
data	
  containing	
  
noise	
  [8]	
  
-­‐ Requires	
  the	
  user	
  
to	
  understand	
  
parameters	
  
involved	
  in	
  the	
  
problem	
  
-­‐ Hard	
  to	
  train	
  and	
  
require	
  lots	
  of	
  
tuning	
  
-­‐ Black-­‐box	
  
modelling	
  [8]	
  
  8	
  
Fuzzy	
  Logic	
   -­‐ Simple	
  and	
  
insensitive	
  to	
  over	
  
training	
  [11]	
  
-­‐ Contradictions,	
  as	
  
may	
  be	
  the	
  case	
  in	
  
EMG	
  signals	
  can	
  
be	
  tolerated	
  
-­‐ Able	
  to	
  integrate	
  
valuable	
  
incomplete	
  
knowledge	
  [12]	
  
-­‐ Works	
  at	
  a	
  fast	
  
pace	
  
-­‐ Uses	
  descriptive	
  
language	
  
-­‐ Relatively	
  new	
  
field	
  in	
  EMG	
  [10]	
  
	
  
	
  
Methods	
  and	
  Results	
  
Data	
  collection	
  
A	
  64-­‐electrode	
  system	
  was	
  available,	
  as	
  shown	
  in	
  Figure	
  2.	
  Although	
  only	
  8	
  of	
  the	
  
electrodes	
  were	
  used;	
  this	
  is	
  due	
  to	
  previous	
  studies	
  showing	
  that	
  8	
  electrodes	
  
sufficiently	
  produce	
  results	
  comparable	
  to	
  that	
  of	
  12	
  and	
  more	
  electrodes	
  [30];	
  
hence	
  this	
  reduces	
  the	
  costs	
  associated	
  with	
  the	
  processing	
  of	
  these	
  results.	
  Also,	
  
handling	
  data	
  obtained	
  from	
  more	
  electrodes	
  would	
  overcomplicate	
  the	
  process	
  
and	
  the	
  accuracy	
  would	
  not	
  be	
  significantly	
  higher.	
  	
  
  9	
  
	
  
Figure	
  2	
  A	
  64	
  electrode	
  system,	
  with	
  the	
  ground	
  electrode	
  inserted	
  into	
  the	
  upper	
  most	
  slot	
  
Electrodes	
  had	
  to	
  be	
  prepared	
  using	
  a	
  set	
  of	
  provided	
  equipment,	
  due	
  to	
  the	
  lack	
  
of	
  washers	
  available.	
  To	
  prepare	
  the	
  electrodes,	
  holes	
  were	
  made	
  in	
  single	
  sided	
  
tape.	
  The	
  electrodes	
  had	
  a	
  diameter	
  of	
  10mm	
  and	
  were	
  placed	
  in	
  pairs	
  20mm	
  
apart.	
  The	
  single	
  sided	
  tape	
  was	
  reinforced	
  with	
  a	
  layer	
  of	
  double	
  sided	
  tape	
  to	
  
allow	
  ease	
  of	
  handling.	
  They	
  were	
  then	
  adhered	
  onto	
  the	
  tape,	
  with	
  the	
  sensor	
  
going	
   through	
   the	
   hole.	
   Silver/Silver	
   chloride	
   gel	
   was	
   then	
   applied	
   to	
   the	
  
electrode	
  and	
  this	
  was	
  applied	
  onto	
  the	
  patient	
  in	
  the	
  required	
  positions.	
  These	
  
were,	
  
(a) Flexor	
  Carpi	
  Radialis	
  	
  
(b) Flexor	
  Carpi	
  Ulnaris	
  
(c) Biceps	
  Brachii	
  
(d) Triceps	
  Brachii	
  
A	
  healthy	
  20-­‐year-­‐old	
  male	
  was	
  the	
  subject	
  of	
  this	
  experiment	
  and	
  was	
  prepared	
  
using	
  the	
  SENIAM	
  guidelines,	
  which	
  involved	
  shaving	
  and	
  cleaning	
  the	
  skin	
  with	
  
sterile	
  alcohol	
  swabs,	
  to	
  carry	
  out	
  the	
  following	
  daily	
  movements	
  for	
  EMG	
  signal	
  
collection:	
  
(a) Hand	
  relaxed	
  horizontally	
  at	
  a	
  90	
  degree	
  angle	
  to	
  the	
  elbow	
  
(b) Hand	
  relaxed	
  vertically	
  down	
  forming	
  a	
  180	
  degree	
  angle	
  to	
  the	
  elbow	
  
(c) Hand	
  open	
  (with	
  all	
  fingers	
  separated	
  from	
  each	
  other)	
  
  10	
  
(d) Hand	
  grasp	
  
(e) Hand	
  lateral	
  grasp	
  –	
  with	
  and	
  without	
  motion	
  
(f) Two-­‐finger	
  pinch	
  (separate	
  two	
  fingers	
  in	
  one	
  EMG	
  signal)	
  
(g) Wrist	
  flexion	
  
(h) Wrist	
  extension	
  
The	
  movements	
  are	
  displayed	
  in	
  Figure	
  3.	
  	
  
	
  
Figure	
  3	
  The	
  different	
  hand	
  movements	
  labelled	
  corresponding	
  to	
  the	
  letters	
  previously	
  mentioned	
  
The	
  signal	
  was	
  amplified	
  and	
  was	
  collected	
  at	
  the	
  rate	
  of	
  1000	
  samples	
  per	
  
second.	
  This	
  was	
  processed	
  on	
  MATLAB.	
  
Data	
  processing	
  
The	
   results	
   obtained	
   were	
   in	
   a	
   .SO0	
   and	
   .SO1	
   format,	
   this	
   was	
   not	
   MATLAB	
  
readable;	
  therefore	
  it	
  had	
  to	
  be	
  converted	
  in	
  preparation	
  for	
  use	
  with	
  MATLAB	
  
to	
  a	
  .mat	
  extension.	
  This	
  was	
  done	
  by	
  running	
  the	
  results	
  in	
  MATLAB	
  using	
  the	
  
following	
  code:	
  
	
  
a	
  b	
  
c	
  
d	
  
e	
  
f	
  
f	
  
g	
   h	
  
  11	
  
for i=1:length(FileInd);
TM=tmsi_convert('F:dataD D.287', FileInd(i).name);
clear OriEMG
for c=1:8
yy=TM.data{c}(400:end);
OriEMG(:,c)=yy;
plot(yy+4800-c*600)
hold on
end
ylim([0 4800])
Time=(1:length(yy))/2048;
MatFile=regexprep([FileOutDir FileInd(i).name], '.S01', '.mat',
'ignorecase');
save(MatFile, 'OriEMG','Time');
end
The	
  raw	
  EMG	
  data	
  was	
  then	
  plotted	
  using	
  the	
  following	
  code:	
  
Time=(1:length(OriEMG))/2048;
for i=1:8
plot(Time,OriEMG(:,i)+4800-i*600)
hold on
end
ylim([-600 4800])
xlabel('Time')
ylabel('Signal')
This	
  is	
  seen	
  in	
  Graphs	
  1	
  and	
  7-­‐14	
  below	
  and	
  in	
  the	
  appendix.	
  	
  The	
  scale	
  on	
  the	
  y-­‐
axis	
   is	
   not	
   important	
   as	
   it	
   is	
   just	
   used	
   to	
   separate	
   out	
   the	
   8	
   channels.	
   The	
  
channels	
  are	
  numbered	
  from	
  number	
  1	
  (the	
  highest	
  signal)	
  till	
  channel	
  8	
  (the	
  
lowest	
  signal)	
  as	
  follows:	
  
1. Flexor	
  Carpi	
  Radialis	
  	
  
2. Flexor	
  Carpi	
  Radialis	
  	
  
3. Biceps	
  Brachii	
  
4. Biceps	
  Brachii	
  
5. Triceps	
  Brachii	
  
6. Triceps	
  Brachii	
  
7. Flexor	
  Carpi	
  Ulnaris	
  
8. Flexor	
  Carpi	
  Ulnaris	
  
  12	
  
	
  
Graph	
  1	
  Hand	
  Grip	
  
Feature	
  extraction	
  
Out	
   of	
   the	
   three	
   most	
   commonly	
   used	
   feature	
   extraction	
   techniques	
   available,	
  
namely,	
   time-­‐domain,	
   frequency-­‐domain	
   and	
   wavelet	
   based	
   analysis;	
   wavelet	
  
based	
  analysis	
  was	
  carried	
  out,	
  this	
  is	
  due	
  to	
  it	
  being	
  the	
  “most	
  powerful	
  signal	
  
processing	
  tool”	
  available	
  [9].	
  However,	
  due	
  to	
  unforeseen	
  circumstances,	
  code	
  
provided	
  by	
  Dr	
  Vepa	
  used	
  previously	
  for	
  a	
  similar	
  application	
  was	
  applied	
  to	
  the	
  
set	
  of	
  results	
  above.	
  This	
  process	
  involved	
  decomposing	
  the	
  signal,	
  removing	
  the	
  
noise	
   and	
   reconstructing	
   the	
   relevant	
   signals.	
   This	
   was	
   followed	
   by	
   the	
  
application	
  of	
  the	
  relevant	
  time	
  domain	
  parameters	
  seen	
  in	
  the	
  sections	
  below.	
  
Discrete	
  Wavelet	
  Transform	
  (DWT)	
  
DWT	
   is	
   a	
   sub	
   band	
   coding	
   method	
   used	
   to	
   obtain	
   wavelet	
   transforms	
   at	
   high	
  
computational	
   speeds.	
   Unlike	
   the	
   continuous	
   wavelet	
   transform	
   (CWT),	
   DWT	
  
represents	
  the	
  data	
  using	
  time-­‐scale	
  parameters	
  by	
  digital	
  filtering	
  techniques	
  
rather	
  than	
  the	
  basic	
  functions	
  related	
  by	
  simple	
  scaling	
  and	
  translation.	
  DWT	
  
was	
   chosen	
   for	
   this	
   study	
   due	
   to	
   the	
   concentration	
   in	
   real-­‐time	
   engineering	
  
applications	
  [21-­‐23].	
  The	
  way	
  it	
  functions	
  is	
  as	
  follows	
  [16]	
  
1. The	
  signal	
  is	
  processed	
  through	
  filters	
  with	
  different	
  band	
  frequencies	
  at	
  
different	
  scales.	
  	
  
2. This	
  is	
  followed	
  by	
  a	
  decimation	
  operation	
  
3. The	
  signal	
  separates	
  into	
  two	
  bands	
  
  13	
  
4. First	
  band,	
  the	
  low	
  pass	
  filter,	
  extracts	
  the	
  rough	
  information	
  of	
  the	
  signal	
  
known	
  as	
  the	
  approximation	
  coefficients	
  
5. Second	
  band,	
  the	
  high	
  pass	
  filter,	
  extracts	
  the	
  finer	
  information	
  of	
  the	
  
signal	
  known	
  as	
  the	
  detail	
  coefficients	
  
6. The	
  filtered	
  data	
  is	
  then	
  deconstructed	
  
Wavelets	
  can	
  be	
  obtained	
  by	
  iterations	
  of	
  filters,	
  which	
  are	
  the	
  most	
  used	
  signal	
  
processing	
  functions	
  [15].	
  The	
  computation	
  of	
  the	
  DWT	
  through	
  both	
  low	
  and	
  
high	
   pass	
   filters	
   can	
   be	
   represented	
   by	
   a	
   Mallat	
   algorithm	
   or	
   Mallat-­‐tree	
  
decomposition	
  [15].	
  	
  
	
  
After	
  the	
  signal	
  is	
  split	
  into	
  different	
  levels,	
  the	
  half	
  band	
  filters	
  generate	
  signals	
  
that	
  cover	
  half	
  the	
  frequency	
  band.	
  Hence,	
  the	
  frequency	
  resolution	
  is	
  doubled.	
  
Following	
  Nyquist’s	
  rule,	
  if	
  the	
  highest	
  frequency	
  of	
  the	
  original	
  signal	
  of	
   𝛼,	
  with	
  
a	
  sampling	
  frequency	
  of	
  2 𝛼	
  radians,	
  hence,	
  the	
  highest	
  frequency	
  is	
   𝛼/2,	
  thus	
  it	
  
can	
   be	
   sampled	
   at	
   a	
   frequency	
   of	
   𝛼	
  radians,	
   which	
   removes	
   half	
   the	
   samples	
  
while	
  preserving	
  all	
  the	
  important	
  information	
  [15].	
  This	
  processes	
  is	
  repeated	
  
until	
   the	
   required	
   level	
   is	
   achieved.	
   The	
   length	
   of	
   the	
   signal	
   is	
   the	
   factor	
   that	
  
determines	
  the	
  maximum	
  number	
  of	
  levels.	
  	
  
Wavelet	
  Packet	
  Decomposition	
  (WPD)	
  
The	
   concept	
   of	
   WPD	
   is	
   that	
   it	
   transforms	
   a	
   signal	
   from	
   the	
   time	
   to	
   frequency	
  
domain	
  every	
  level	
  at	
  a	
  time.	
  As	
  previously	
  mentioned,	
  from	
  wavelet	
  analysis,	
  
two	
  coefficients	
  are	
  obtained,	
  namely,	
  the	
  approximation	
  and	
  detail	
  coefficients.	
  
The	
  main	
  difference	
  between	
  WT	
  and	
  wavelet	
  packet	
  transform	
  (WPT)	
  is	
  that	
  for	
  
WPT	
   both	
   coefficients	
   can	
   further	
   stem	
   into	
   approximation	
   and	
   detail	
  
coefficients	
  rather	
  than	
  just	
  the	
  approximation	
  further	
  stemming.	
  This	
  process	
  is	
  
iterated	
  throughout	
  the	
  levels,	
  in	
  this	
  report,	
  this	
  is	
  carried	
  out	
  over	
  three	
  levels	
  
and	
  can	
  be	
  represented	
  by	
  Figure	
  4	
  numerical	
  and	
  Figure	
  5	
  qualitatively.	
  Due	
  to	
  
both	
  coefficients	
  being	
  iterated,	
  a	
  complete	
  tree	
  basis	
  result	
  is	
  achieved.	
  What	
  
the	
  tree	
  shows,	
  is	
  an	
  increase	
  in	
  the	
  exchange	
  between	
  the	
  time	
  and	
  frequency	
  
resolutions.	
   The	
   highest	
   level	
   being	
   time	
   representative	
   in	
   comparison	
   to	
   the	
  
bottom,	
  which	
  is	
  frequency	
  representative	
  [15].	
  	
  
  14	
  
	
  
Figure	
  4	
  Three	
  level	
  decomposition	
  wavelet	
  packet	
  tree	
  
	
  
	
  
Figure	
  5	
  Level	
  3	
  decomposition	
  using	
  wavelet	
  packet	
  transform,	
  A	
  representing	
  approximation	
  
coefficient	
  and	
  D	
  representing	
  Detail	
  coefficient	
  [15]	
  
Due	
  to	
  the	
  nature	
  of	
  WPT	
  using	
  an	
  entropy-­‐based	
  criterion	
  to	
  choose	
  a	
  suitable	
  
decomposition	
   signal,	
   each	
   node	
   has	
   to	
   be	
   quantified	
   at	
   each	
   split.	
   There	
   are	
  
several	
   wavelet	
   families	
   that	
   are	
   important;	
   these	
   are,	
   in	
   no	
   particular	
   order,	
  
Haar,	
   Daubechies,	
   Symlets,	
   Coiflets,	
   and	
   biorthogonal	
   [15].	
   In	
   this	
   paper	
  
Daubechies	
  family	
  with	
  db5	
  wavelet	
  function	
  was	
  investigated.	
  This	
  is	
  displayed	
  
in	
  Figure	
  6.	
  	
  	
  
	
  
  15	
  
	
  
Figure	
  6	
  db5	
  wavelet	
  functions	
  for	
  1	
  to	
  10	
  iterations	
  
Decomposition	
  trees	
  
The	
  decomposition	
  tree	
  in	
  Figure	
  4	
  is	
  an	
  effective	
  visualisation	
  method	
  of	
  the	
  
different	
   filtering	
   that	
   has	
   been	
   applied	
   to	
   the	
   raw	
   EMG	
   signal	
   the	
   results	
   are	
  
seen	
  in	
  Figures	
  7-­‐11.	
  Moving	
  down	
  the	
  tree	
  from	
  the	
  top,	
  (0,0),	
  the	
  frequency	
  is	
  
divided	
  into	
  smaller	
  sections.	
  There	
  are	
  two	
  types	
  of	
  filtering	
  represented	
  in	
  the	
  
tree,	
   a	
   low	
   pass	
   filtering	
   operation	
   that	
   is	
   achieved	
   every	
   time	
   the	
   line	
   stems	
  
down	
  and	
  to	
  the	
  left,	
  and	
  a	
  high	
  pass	
  filtering	
  operation	
  that	
  is	
  achieved	
  every	
  
time	
  the	
  line	
  stems	
  down	
  and	
  to	
  the	
  right.	
  There	
  are	
  nodes	
  that	
  have	
  no	
  more	
  
nodes	
  stemming	
  down	
  from	
  them,	
  these	
  are	
  called	
  terminal	
  nodes,	
  but	
  can	
  also	
  
be	
  known	
  as,	
  leaves	
  or	
  sub	
  bands.	
  All	
  other	
  nodes	
  are	
  known	
  as	
  non-­‐terminal	
  or	
  
internal	
  nodes.	
  This	
  simple	
  mechanism	
  allows	
  for	
  a	
  simple	
  understanding	
  of	
  the	
  
tree	
  decomposition	
  diagram	
  [15].	
  	
  
	
  
For	
   the	
   nodes	
  ( 𝑗, 𝑘),	
   𝑗	
  represents	
   the	
   depth	
   within	
   the	
   tree	
   and	
   𝑘	
  refers	
   to	
   the	
  
position.	
  Beginning	
  with	
  node	
  (0,0),	
  the	
  raw	
  EMG	
  signal,	
  if	
  it	
  is	
  low	
  pass	
  filtered,	
  
the	
  node	
  (1,0)	
  is	
  achieved.	
  If	
  node	
  (0,0)	
  were	
  to	
  be	
  high	
  pass	
  filtered,	
  the	
  node	
  
(1,1)	
  is	
  obtained.	
  Gokhale	
  et	
  al.	
  defines	
  this	
  by	
  stating	
  “these	
  filtering	
  operations	
  
are	
  equivalent	
  to	
  finding	
  the	
  correlation	
  of	
  the	
  signal	
  with	
  the	
  scaling	
  function	
  
for	
   node	
   (1,0)	
   and	
   the	
   correlation	
   of	
   the	
   signal	
   with	
   the	
   wavelet	
   function	
   for	
  
node	
  (1,1)”	
  [15].	
  Dropping	
  down	
  a	
  level	
  to	
  (2,1)	
  and	
  (2,0)	
  from	
  (1,0),	
  the	
  samples	
  
at	
   (1,0)	
   have	
   been	
   re-­‐filtered	
   according	
   to	
   the	
   previous	
   principles.	
   Critical	
  
  16	
  
sampling	
  is	
  achieved,	
  which	
  is	
  due	
  to	
  the	
  sampling	
  of	
  the	
  coefficients	
  at	
  (1,0).	
  
This	
  is	
  known	
  as	
  multi-­‐resolution	
  [15].	
  
	
  
Figure	
  7	
  Raw	
  Emg	
  signal	
  
  17	
  
	
  
Figure	
  8	
  Level	
  1	
  Detail	
  
	
  
Figure	
  9	
  Level	
  2	
  detail	
  
  18	
  
	
  
Figure	
  10	
  Level	
  3	
  detail	
  
	
  
Figure	
  11	
  Level	
  3	
  approximation	
  
  19	
  
	
  
From	
  the	
  wavelet	
  decomposition	
  coefficients,	
  the	
  signals	
  can	
  be	
  reconstructed	
  
with	
   minimal	
   noise.	
   The	
   features	
   can	
   then	
   be	
   extracted	
   from	
   this	
   de-­‐noised	
  
signal.	
  This	
  has	
  proven	
  to	
  provide	
  better	
  performance	
  than	
  the	
  raw	
  signals	
  [17].	
  
The	
  following	
  feature	
  extraction	
  techniques	
  were	
  applied:	
  
	
  
Mean	
  Absolute	
  Value	
  (MAV)	
  
MAV,	
  also	
  known	
  as	
  Integral	
  of	
  Absolute	
  Value	
  (IAV),	
  is	
  a	
  commonly	
  investigated	
  
feature	
  for	
  surface	
  EMG	
  analysis	
  [14].	
  The	
  MAV	
  was	
  chosen	
  as	
  one	
  of	
  the	
  time-­‐
domain	
  feature	
  extraction	
  techniques	
  rather	
  than	
  the	
  root	
  mean	
  square	
  (RMS)	
  
because	
  research	
  has	
  shown	
  that	
  both	
  methods	
  display	
  similar	
  results,	
  however,	
  
MAV	
  feature	
  is	
  better	
  in	
  terms	
  of	
  class	
  separability	
  [13].	
  It	
  is	
  calculated	
  using	
  the	
  
following	
  equation	
  
𝑀𝐴𝑉 =
1
𝑁
𝑥!
!!!
!!!
	
  
N	
  =	
  length	
  of	
  the	
  segment	
  
𝑥!  =	
   𝑖!!
	
  sample	
  
Willison	
  amplitude	
  (WAMP)	
  
WAMP	
   assesses	
   the	
   number	
   of	
   times	
   there	
   is	
   a	
   change	
   in	
   the	
   EMG	
   signal	
  
amplitude	
  that	
  exceeds	
  an	
  instated	
  threshold	
  value.	
  WAMP	
  investigates	
  muscle	
  
contraction	
  levels	
  by	
  acting	
  as	
  an	
  indicator	
  of	
  firing	
  of	
  MUAP	
  [14].	
  It	
  is	
  calculated	
  
using	
  the	
  following	
  equation	
  	
  
𝑊𝐴𝑀 =   𝑊 𝑥! − 𝑥!!!
!!!
!!!
	
  
𝑊 𝑥 =
1
0
  𝑖𝑓  𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	
  
The	
  threshold	
  value	
  =	
  10mV	
  
	
  
	
  
	
  
  20	
  
Zero	
  crossing	
  (ZC)	
  
ZC	
   is	
   a	
   simple	
   but	
   useful	
   technique,	
   it	
   counts	
   the	
   number	
   of	
   times	
   the	
   signal	
  
crosses	
  the	
  zero	
  amplitude	
  axis.	
  It	
  is	
  calculated	
  using	
  the	
  following	
  equation	
  
𝑍𝐶 = 𝑠𝑔𝑛 −𝑥! 𝑥!!!
!!!
!!!
	
  
Where,	
  
𝑠𝑔𝑛 𝑥 =
1
0
  
𝑖𝑓  𝑥 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	
  
	
  
Log	
  detector	
  (LD)	
  
Similar	
   to	
   WAMP,	
   the	
   information	
   gained	
   through	
   this	
   method	
   is	
   related	
   to	
  
construct	
  force;	
  this	
  is	
  calculated	
  using	
  the	
  following	
  equation	
  [14]	
  
𝐿𝐷 = 𝑒
!
!
!"# !!
!!!
!!! 	
  
Comparison	
  of	
  each	
  Feature	
  extraction	
  technique	
  
Graphs	
  2-­‐6	
  show	
  scatter	
  diagrams	
  of	
  all	
  the	
  different	
  features	
  extracted	
  using	
  the	
  
previously	
  mentioned	
  methods.	
  The	
  x-­‐axis	
  represents	
  the	
  different	
  channels	
  of	
  
which	
   data	
   was	
   collected;	
   the	
   y-­‐axis	
   is	
   the	
   extracted	
   feature.	
   The	
   key	
   is	
   as	
  
follows:	
  
	
  
  21	
  
	
  
Graph	
  2	
  ZC	
  comparison	
  for	
  different	
  movements	
  
Graph	
   2	
   above	
   shows	
   that	
   there	
   is	
   a	
   clear	
   pattern	
   with	
   most	
   of	
   the	
   hand	
  
movements	
   that	
   make	
   them	
   distinct	
   in	
   comparison	
   to	
   others.	
   The	
   only	
   two	
  
movements	
  that	
  seem	
  to	
  overlap	
  other	
  zero	
  crossing	
  values	
  of	
  other	
  movements	
  
are	
  the	
  wrist	
  flexion	
  and	
  extension.	
  	
  
500	
  
700	
  
900	
  
1100	
  
1300	
  
1500	
  
1700	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  
Zero	
  crossings	
  
Channel	
  
  22	
  
	
  
Graph	
  3	
  Mean	
  comparison	
  for	
  the	
  different	
  movements	
  
The	
  mean	
  has	
  shown	
  no	
  real	
  significance,	
  as	
  no	
  pattern	
  was	
  associated	
  with	
  the	
  
features	
   obtained.	
   There	
   are	
   many	
   features	
   that	
   overlap	
   between	
   movements,	
  
they	
   seem	
   heavily	
   clustered	
   around	
   the	
   third	
   to	
   the	
   sixth	
   electrodes,	
   which	
  
correspond	
  to	
  the	
  biceps	
  and	
  triceps	
  brachii.	
  All	
  the	
  values	
  vary	
  between	
  2	
  and	
  -­‐
2.5;	
   this	
   supports	
   the	
   argument	
   that	
   no	
   real	
   classification	
   can	
   be	
   carried	
   out	
  
effectively	
   using	
   this	
   feature	
   extraction	
   technique.	
   This	
   is	
   further	
   discussed	
   in	
  
the	
  discussion	
  section	
  below.	
  
-­‐3	
  
-­‐2.5	
  
-­‐2	
  
-­‐1.5	
  
-­‐1	
  
-­‐0.5	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  
Mean	
  
Channel	
  
  23	
  
	
  
Graph	
  4	
  MAV	
  comparison	
  for	
  different	
  movements	
  
This	
  feature	
  does	
  produce	
  patterns	
  for	
  some	
  movements	
  although	
  not	
  all,	
  due	
  to	
  
the	
  overlapping	
  and	
  clustering	
  of	
  the	
  features	
  between	
  the	
  different	
  movements.	
  
The	
  MAV	
  produces	
  features	
  that	
  are	
  more	
  viable	
  than	
  the	
  Mean	
  features;	
  this	
  is	
  
an	
  important	
  factor	
  to	
  consider	
  if	
  these	
  were	
  to	
  later	
  be	
  used	
  in	
  classification.	
  	
  
Movements	
  such	
  as	
  hand	
  open	
  and	
  hand	
  rest	
  overlap	
  in	
  more	
  than	
  one	
  channel.	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
140	
  
160	
  
180	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  
MAV	
  
Channel	
  
  24	
  
	
  
Graph	
  5	
  WAMP	
  comparison	
  for	
  different	
  movements	
  
WAMP	
   provided	
   useful	
   results,	
   however,	
   there	
   appears	
   to	
   be	
   some	
   clustered	
  
results	
   in	
   both	
   the	
   biceps	
   and	
   triceps	
   brachii,	
   and	
   this	
   could	
   be	
   due	
   to	
   many	
  
reasons	
  that	
  are	
  discussed	
  in	
  the	
  discussion.	
  	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
30	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  
WAMP	
  
Channel	
  
  25	
  
	
  
Graph	
  6	
  LD	
  comparison	
  for	
  different	
  movements	
  
LD	
  proved	
  valuable	
  for	
  movements	
  that	
  required	
  as	
  little	
  force	
  as	
  possible,	
  as	
  a	
  
clear	
   pattern	
   can	
   be	
   identified	
   with	
   ‘Hand	
   rest	
   vertical’	
   and	
   the	
   ‘Hand	
   rest’	
  
movements.	
  The	
  ‘Two	
  finger	
  pinch’	
  provided	
  the	
  highest	
  LD	
  values	
  followed	
  by	
  
the	
  ‘Hand	
  lateral	
  grasp’.	
  	
  There	
  is	
  a	
  good	
  separability	
  excluding	
  the	
  two-­‐finger	
  
pinch	
  movement.	
  
Discussion	
  
In	
  this	
  report,	
  EMG	
  signals	
  were	
  recorded	
  from	
  different	
  muscles	
  carrying	
  out	
  
different	
  movements,	
  all	
  of	
  which	
  are	
  described	
  in	
  previous	
  sections.	
  They	
  were	
  
subjected	
   to	
   db5	
   Daubechies	
   wavelet	
   function	
   shown	
   in	
   Figure	
   6.	
   It	
   is	
   proven	
  
that	
  for	
  most	
  types	
  of	
  natural	
  signals,	
  the	
  important	
  sections	
  of	
  the	
  signal	
  are	
  the	
  
low	
  frequency	
  components;	
  hence	
  everything	
  not	
  seen	
  in	
  the	
  figures	
  above	
  can	
  
be	
   assumed	
   as	
   noise	
   [24].	
   From	
   Figures	
   7-­‐11	
   it	
   is	
   observed	
   that	
   the	
   low	
  
frequency	
   sections	
   have	
   indirect	
   correspondence	
   and	
   have	
   non-­‐essential	
  
background	
  noise,	
  whereas	
  the	
  first	
  and	
  second	
  decomposition	
  levels	
  are	
  similar	
  
5.50E+03	
  
1.05E+04	
  
1.55E+04	
  
2.05E+04	
  
2.55E+04	
  
3.05E+04	
  
3.55E+04	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
  
LD	
  
Channel	
  
  26	
  
to	
   that	
   of	
   the	
   original	
   EMG	
   signal.	
   This	
   complies	
   with	
   the	
   trend	
   that	
   being	
  
removing	
  the	
  unwanted	
  high	
  frequencies	
  (fluctuations)	
  and	
  preserving	
  the	
  lower	
  
frequency	
   components,	
   meaning	
   the	
   important	
   information	
   is	
   presented	
   [25].	
  
The	
  results	
  for	
  the	
  other	
  channels	
  were	
  not	
  displayed	
  due	
  to	
  the	
  limited	
  space,	
  
however	
  they	
  were	
  found	
  to	
  follow	
  a	
  similar	
  trend.	
  
	
  
Graphs	
   2-­‐6	
   show	
   the	
   comparison	
   of	
   features	
   obtained	
   for	
   the	
   four	
   different	
  
feature	
  extraction	
  methods.	
  Each	
  of	
  the	
  four	
  previously	
  mentioned	
  muscles	
  was	
  
investigated	
  for	
  all	
  the	
  different	
  hand	
  movements.	
  They	
  were	
  plotted	
  on	
  scatter	
  
diagrams	
  in	
  order	
  to	
  identify	
  variations	
  in	
  the	
  signal.	
  	
  
Whilst	
  investigating	
  these	
  features,	
  a	
  few	
  points	
  have	
  to	
  be	
  remembered.	
  A	
  high	
  
quality	
  feature	
  has	
  to	
  have	
  three	
  properties	
  
1. Maximum	
  class	
  separability	
  
2. Robustness	
  
3. Complexity	
  
The	
  first	
  point	
  refers	
  to	
  the	
  features	
  having	
  very	
  little	
  overlapping	
  in	
  order	
  to	
  
identify	
  and	
  recognise	
  the	
  input	
  signals.	
  The	
  second	
  point	
  refers	
  to	
  the	
  features	
  
being	
   able	
   to	
   maintain	
   the	
   separability	
   in	
   noisy	
   environments.	
   Finally,	
   the	
  
features	
   computational	
   complexity	
   should	
   be	
   as	
   low	
   as	
   possible	
   in	
   order	
   to	
  
implement	
  the	
  same	
  procedure	
  using	
  mediocre	
  hardware	
  and	
  in	
  real-­‐time	
  [27].	
  
	
  
The	
  zero	
  crossing	
  features	
  from	
  Graph	
  2	
  show	
  clear	
  separation.	
  This	
  means	
  that	
  
the	
  EMG	
  feature	
  vector	
  produced	
  by	
  this	
  feature	
  extraction	
  technique	
  will	
  yield	
  
good	
   classification	
   results	
   in	
   the	
   classification	
   stage.	
   This	
   conforms	
   with	
   the	
  
research	
  done	
  by	
  Curtis	
  and	
  Oppenheim	
  that	
  state	
  a	
  “two-­‐dimensional,	
  periodic,	
  
band-­‐limited	
   signal	
   is	
   uniquely	
   specified	
   to	
   within	
   a	
   scale	
   factor	
   by	
   its	
   zero	
  
crossings	
   if	
   the	
   signal	
   is	
   non-­‐factorable	
   when	
   expressed	
   as	
   a	
   polynomial”,	
  
however,	
   not	
   only	
   that	
   but	
   it	
   can	
   also	
   be	
   applied	
   when	
   the	
   signal	
   is	
   of	
   finite	
  
length	
  and	
  when	
  crossing	
  an	
  arbitrary	
  threshold,	
  in	
  this	
  case,	
  factorable	
  signals	
  
would	
  still	
  produce	
  good	
  classification	
  results	
  [18].	
  Thus,	
  this	
  is	
  a	
  good	
  feature	
  
extraction	
   technique	
   that	
   produces	
   unique	
   results	
   for	
   every	
   movement	
   by	
   the	
  
different	
  muscles,	
  which	
  makes	
  it	
  replicable.	
  	
  
	
  
  27	
  
The	
   Mean	
   features	
   produce	
   some	
   separable	
   results,	
   although	
   there	
   are	
   a	
   few	
  
overlaps.	
  The	
  range	
  is	
  small;	
  hence	
  they	
  are	
  compact	
  in	
  one	
  section.	
  This	
  would	
  
make	
   it	
   difficult	
   to	
   simply	
   identify	
   the	
   different	
   movements,	
   as	
   a	
   small	
  
fluctuation	
  in	
  the	
  signals	
  would	
  lead	
  to	
  noticeable	
  alterations,	
  which	
  may	
  lead	
  to	
  
further	
   overlapping.	
   Classification	
   using	
   this	
   feature	
   would	
   not	
   lead	
   to	
   ideal	
  
results,	
  as	
  the	
  results	
  are	
  not	
  significantly	
  different,	
  the	
  clustering	
  of	
  results	
  is	
  
seen	
  clearly	
  between	
  channels	
  four	
  to	
  eight.	
  The	
  disregard	
  of	
  this	
  technique	
  by	
  
many	
   research	
   papers	
   [16-­‐20]	
   and	
   more	
   is	
   enough	
   to	
   justify	
   why	
   it	
   is	
   a	
   bad	
  
method.	
   Rather,	
   the	
   MAV	
   is	
   used,	
   which	
   produces	
   unique	
   separable	
   results	
   at	
  
low	
   level	
   reconstructed	
   signals,	
   particularly	
   for	
   ‘Hand	
   lateral	
   grasp	
   and	
   wrist	
  
flexion’.	
   However,	
   MAV	
   obtained	
   from	
   the	
   high-­‐level	
   reconstructed	
   signal	
  
present	
   poor	
   separability.	
   Studies	
   have	
   shown	
   this	
   to	
   be	
   the	
   trend	
   in	
   other	
  
studies	
  [19].	
  	
  
	
  
Willison	
  Amplitude	
  provides	
  excellent	
  features	
  for	
  classification,	
  as	
  the	
  majority	
  
of	
  the	
  results	
  are	
  separable.	
  This	
  trend	
  of	
  results	
  is	
  not	
  only	
  witnessed	
  in	
  this	
  
study,	
  but	
  also	
  in	
  other	
  studies	
  by	
  Phinyomark	
  et	
  al.,	
  [9,19,26].	
  The	
  final	
  feature	
  
that	
  also	
  proved	
  to	
  give	
  a	
  pattern	
  when	
  produced	
  on	
  a	
  scatter	
  diagram	
  is	
  the	
  Log	
  
detector.	
  Visually	
  it	
  is	
  noticed	
  that	
  the	
  results	
  are	
  separated,	
  thus	
  they	
  can	
  be	
  
classified	
  well	
  enough	
  for	
  the	
  signal	
  to	
  be	
  replicated.	
  	
  
	
  
In	
  order	
  to	
  quantify	
  the	
  suitability	
  of	
  the	
  features,	
  two	
  different	
  methods	
  could	
  
be	
  applied.	
  Namely,	
  using	
  classification	
  to	
  obtain	
  an	
  estimate	
  of	
  the	
  
misclassification	
  rate,	
  or	
  using	
  certain	
  separability	
  measures.	
  The	
  recommended	
  
approach	
  would	
  be	
  the	
  use	
  of	
  Davies-­‐Bouldin	
  Cluster	
  Separation	
  Measure,	
  which	
  
directly	
  solves	
  the	
  problem	
  of	
  class	
  separability	
  [27].	
  This	
  can	
  be	
  done	
  in	
  the	
  
future	
  in	
  order	
  to	
  expand	
  on	
  current	
  work.	
  	
  
	
  
Investigating	
  the	
  wavelet	
  functions,	
  research	
  carried	
  out	
  Phinyomark	
  et	
  al	
  [19],	
  
shows	
  that	
  the	
  optimal	
  wavelet	
  function	
  used	
  is	
  db7	
  rather	
  than	
  the	
  db5	
  used	
  in	
  
this	
  study	
  and	
  the	
  optimal	
  wavelet	
  component	
  is	
  D2,	
  which	
  refers	
  to	
  the	
  second	
  
level	
  detail	
  node.	
  Although	
  a	
  higher	
  wavelet	
  function	
  does	
  yield	
  better	
  results,	
  
this	
  has	
  to	
  be	
  compromised	
  with	
  computational	
  complexity	
  in	
  order	
  to	
  have	
  the	
  
  28	
  
highest	
   quality	
   feature	
   [28].	
   The	
   two	
   highest	
   RES	
   index	
   values	
   from	
   the	
  
experimented	
   features	
   were	
   zero	
   crossing	
   and	
   Willison	
   amplitude,	
   both	
   that	
  
proved	
  excellent	
  in	
  this	
  study.	
  	
  
	
  
Table	
  2	
  The	
  optimal	
  wavelet	
  component	
  and	
  function	
  for	
  the	
  surface	
  EMG	
  features,	
  with	
  RES	
  indices	
  
[19]	
  
	
  
	
  
From	
  the	
  raw	
  EMG	
  signals,	
  it	
  can	
  be	
  seen	
  that	
  there	
  is	
  a	
  lot	
  of	
  noise.	
  This	
  noise	
  
was	
  due	
  to	
  the	
  electrical	
  appliances	
  found	
  around	
  the	
  electrodes	
  and	
  amplifier.	
  
The	
   lab	
   used	
   had	
   a	
   number	
   of	
   sockets,	
   computers	
   and	
   other	
   biomechanical	
  
testing	
  equipment,	
  which	
  all	
  emit	
  signals.	
  An	
  attempt	
  to	
  reduce	
  the	
  effect	
  of	
  noise	
  
was	
   to	
   carry	
   out	
   in	
   the	
   corner	
   of	
   the	
   room	
   with	
   least	
   appliances.	
   To	
   further	
  
improve	
  upon	
  this	
  experiment.	
  Ideally,	
  to	
  reduce	
  this	
  ambient	
  noise	
  a	
  small	
  room	
  
with	
  no	
  electrical	
  equipment	
  should	
  be	
  used.	
  	
  	
  
	
  
  29	
  
Finally,	
   due	
   to	
   unaccounted	
   problems,	
   the	
   lab	
   time	
   was	
   delayed;	
   hence	
   the	
  
classification	
   of	
   the	
   signals	
   using	
   the	
   features	
   obtained	
   was	
   not	
   carried	
   out.	
  
However,	
  a	
  plan	
  was	
  made	
  to	
  use	
  a	
  combination	
  of	
  both	
  support	
  vector	
  machine	
  
and	
   artificial	
   neural	
   network	
   to	
   complete	
   this	
   task.	
   This	
   would	
   of	
   yielded	
   the	
  
final	
  set	
  of	
  presentable	
  results.	
  This	
  could	
  be	
  done	
  in	
  the	
  future	
  to	
  finalise	
  the	
  
project.	
  	
  To	
  further	
  improve	
  upon	
  this	
  study,	
  using	
  a	
  larger	
  number	
  of	
  subjects	
  to	
  
obtain	
  signals	
  would	
  give	
  a	
  better	
  overview,	
  and	
  quantifying	
  the	
  separability	
  of	
  
the	
  features	
  to	
  find	
  its	
  statistical	
  significance.	
  	
  
Conclusion	
  
In	
   this	
   study,	
   a	
   healthy	
   male	
   subject	
   was	
   used	
   to	
   carry	
   out	
   the	
   following	
  
movements,	
  Hand	
  relaxed	
  horizontally	
  at	
  a	
  90	
  degree	
  angle	
  to	
  the	
  elbow,	
  Hand	
  
relaxed	
   vertically	
   down	
   forming	
   a	
   180	
   degree	
   angle	
   to	
   the	
   elbow,	
   Hand	
   open	
  
(with	
  all	
  fingers	
  separated	
  from	
  each	
  other),	
  Hand	
  grasp,	
  Hand	
  lateral	
  grasp	
  –	
  
with	
   and	
   without	
   motion,	
   Two-­‐finger	
   pinch	
   (separate	
   two	
   fingers	
   in	
   one	
   EMG	
  
signal),	
   Wrist	
   flexion,	
   Wrist	
   extension.	
   The	
   raw	
   EMG	
   data	
   was	
   then	
  
deconstructed,	
   noise	
   was	
   removed	
   using	
   discrete	
   wavelet	
   transform,	
   and	
   the	
  
signals	
   were	
   reconstructed.	
   Thereafter,	
   the	
   feature	
   extraction	
   processes	
   took	
  
place	
  using	
  time-­‐domain	
  features.	
  These	
  include,	
  MAV,	
  WAMP,	
  LD	
  and	
  ZC.	
  The	
  
mean	
  was	
  also	
  measured	
  although	
  this	
  was	
  found	
  to	
  produce	
  insignificant	
  data.	
  
The	
  best	
  feature	
  was	
  found	
  to	
  be	
  zero	
  crossing	
  followed	
  by	
  Willison	
  amplitude	
  
and	
  Log	
  detector.	
  For	
  future	
  work,	
  quantifying	
  the	
  separability	
  would	
  be	
  the	
  next	
  
step	
  using	
  Davies-­‐Bouldin	
  cluster	
  separation	
  measure	
  and	
  finally	
  classifying	
  the	
  
results	
  using	
  a	
  combination	
  of	
  SVM	
  and	
  ANN.	
  	
  
Acknowledgments	
  
This	
   project	
   has	
   required	
   a	
   lot	
   of	
   time	
   and	
   effort;	
   it	
   would	
   have	
   been	
   a	
   very	
  
difficult	
  journey	
  without	
  the	
  support	
  of	
  my	
  supervisor,	
  friends	
  and	
  family	
  and	
  to	
  
all	
  who	
  contributed.	
  I	
  am	
  highly	
  thankful	
  to	
  Dr	
  Ranjan	
  Vepa	
  for	
  his	
  supervision	
  
and	
  guidance	
  throughout	
  the	
  project,	
  while	
  providing	
  insightful	
  information	
  to	
  
help	
  me	
  excel	
  in	
  the	
  field,	
  his	
  continuous	
  support	
  helped	
  me	
  complete	
  the	
  project	
  
with	
  a	
  high	
  level	
  of	
  understanding.	
  	
  I	
  would	
  also	
  like	
  to	
  take	
  this	
  opportunity	
  to	
  
  30	
  
thank	
  Dr	
  Richard	
  Twycross-­‐Lewis	
  for	
  his	
  help	
  in	
  using	
  the	
  equipment	
  required	
  
for	
   the	
   experiments	
   carried	
   out	
   in	
   the	
   EMG	
   lab	
   at	
   Queen	
   Mary	
   University	
   of	
  
London.	
  	
  
References	
  
	
  
1. Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K. and Chang, T.
(2013). Surface Electromyography Signal Processing and Classification
Techniques. Sensors, 13(9), pp.12431-°©‐12466.
2. Cimss.ssec.wisc.edu,	
  (2015).	
  What	
  is	
  Matlab.	
  [online]	
  Available	
  at:	
  
http://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.h
tm	
  [Accessed	
  30	
  Mar.	
  2015].
3. Ziegler-­‐Graham,	
  K.,	
  MacKenzie,	
  E.,	
  Ephraim,	
  P.,	
  Travison,	
  T.	
  and	
  
Brookmeyer,	
  R.	
  (2008).	
  Estimating	
  the	
  Prevalence	
  of	
  Limb	
  Loss	
  in	
  the	
  
United	
  States:	
  2005	
  to	
  2050.	
  Archives	
  of	
  Physical	
  Medicine	
  and	
  
Rehabilitation,	
  89(3),	
  pp.422-­‐429.
4. Dr. Scott Day. 2014. Important Factors In Surface EMG Measurement.
[ONLINE] Available at:
http://andrewsterian.com/214/EMG_measurement_and_recording.pdf.
[Accessed 02 December 14].
5. Auria,	
  L.	
  and	
  Moro,	
  R.	
  (2008).	
  Support	
  Vector	
  Machines	
  (SVM)	
  as	
  a	
  
Technique	
  for	
  Solvency	
  Analysis.	
  SSRN	
  Journal.
6. Beyerer,	
  J.,	
  Puente	
  León,	
  F.	
  and	
  Längle,	
  T.	
  (2015).	
  OCM	
  2015	
  -­‐	
  Optical	
  
Characterization	
  of	
  Materials	
  -­‐	
  conference	
  proceedings.	
  Karlsruhe:	
  KIT	
  
Scientific	
  Publishing,	
  p.78.
7. Olson,	
  D.	
  and	
  Delen,	
  D.	
  (2008).	
  Advanced	
  data	
  mining	
  techniques.	
  Berlin:	
  
Springer,	
  pp.122	
  -­‐	
  123.	
  
8. Basheer,	
  I.	
  and	
  Hajmeer,	
  M.	
  (2000).	
  Artificial	
  neural	
  networks:	
  
fundamentals,	
  computing,	
  design,	
  and	
  application.	
  Journal	
  of	
  
Microbiological	
  Methods,	
  43(1),	
  pp.3-­‐31.	
  
9. Phinyomark,	
  A.,	
  Limsakul,	
  C.	
  and	
  Phukpattaranont,	
  P.	
  (2011).	
  Application	
  
of	
  Wavelet	
  Analysis	
  in	
  EMG	
  Feature	
  Extraction	
  for	
  Pattern	
  Classification.	
  
Measurement	
  Science	
  Review,	
  11(2).	
  
10. Shamim,	
  M.,	
  Enam,	
  S.,	
  Qidwai,	
  U.	
  and	
  Godil,	
  S.	
  (2011).	
  Fuzzy	
  logic:	
  A	
  
"simple"	
  solution	
  for	
  complexities	
  in	
  neurosciences?.	
  Surg	
  Neurol	
  Int,	
  
2(1),	
  p.24.
11. Chowdhury,	
  R.,	
  Reaz,	
  M.,	
  Ali,	
  M.,	
  Bakar,	
  A.,	
  Chellappan,	
  K.	
  and	
  Chang,	
  T.	
  
(2013).	
  Surface	
  Electromyography	
  Signal	
  Processing	
  and	
  Classification	
  
Techniques.	
  Sensors,	
  13(9),	
  pp.12431-­‐12466.
12. Ahsan,	
  R.,	
  Ibrahimy,	
  M.	
  and	
  Khalifa,	
  O.	
  (2010).	
  Advances	
  in	
  
Electromyogram	
  Signal	
  Classification	
  to	
  Improve	
  the	
  Quality	
  of	
  Life	
  for	
  
the	
  Disabled	
  and	
  Aged	
  People.	
  Journal	
  of	
  Computer	
  Science,	
  6(7),	
  pp.706-­‐
715.
13. Phinyomark,	
  A.,	
  Hirunviriya,	
  S.,	
  Limsakul,	
  C.	
  and	
  Phukpattaranont,	
  P.	
  
(2010).	
  Evaluation	
  of	
  EMG	
  feature	
  extraction	
  for	
  hand	
  movement	
  
recognition	
  based	
  on	
  euclidean	
  distance	
  and	
  standard	
  deviation.	
  7th	
  
International	
  Conference	
  on	
  Electrical	
  Engineering/Electronics,	
  
  31	
  
Computer,	
  Telecommunica-­‐tions	
  and	
  Information	
  Technolo,	
  1(1),	
  pp.856	
  
-­‐	
  460.
14. Zardoshti-­‐Kermani,	
  M.,	
  Wheeler,	
  B.,	
  Badie,	
  K.	
  and	
  Hashemi,	
  R.	
  (1995).	
  
EMG	
  feature	
  evaluation	
  for	
  movement	
  control	
  of	
  upper	
  extremity	
  
prostheses.	
  IEEE	
  Trans.	
  Rehab.	
  Eng.,	
  3(4),	
  pp.324-­‐333.
15. Gokhale,	
  M.	
  and	
  Khanduja,	
  D.	
  (2010).	
  Time	
  Domain	
  Signal	
  Analysis	
  Using	
  
Wavelet	
  Packet	
  Decomposition	
  Approach.	
  International	
  Journal	
  of	
  
Communications,	
  Network	
  and	
  System	
  Sciences,	
  03(03),	
  pp.321-­‐329.
16. Hibare,	
  R.	
  and	
  Vibhute,	
  A.	
  (2014).	
  Feature	
  Extraction	
  Techniques	
  in	
  
Speech	
  Processing:	
  A	
  Survey.	
  International	
  Journal	
  of	
  Computer	
  
Applications,	
  0975(8887),	
  pp.1	
  -­‐	
  8.	
  
17. A.	
  Phinyomark.	
  S.	
  Hirunviriya.	
  C.	
  Limsakul.	
  P.	
  Phukpattaranont	
  In	
  
Evaluation	
  of	
  EMG	
  feature	
  extraction	
  for	
  hand	
  movement	
  recognition	
  
based	
  on	
  Euclidean	
  distance	
  and	
  standard	
  deviation,	
  Electrical	
  
Engineering/Electronics	
  Computer	
  Telecommunications	
  and	
  Information	
  
Technology	
  (ECTI-­‐CON),	
  2010	
  International	
  Conference	
  on,	
  IEEE:	
  2010;	
  
pp.	
  856-­‐860.	
  	
  
18. Curtis,	
  S.	
  and	
  Oppenheim,	
  A.	
  (1987).	
  Reconstruction	
  of	
  multidimensional	
  
signals	
  from	
  zero	
  crossings.	
  J.	
  Opt.	
  Soc.	
  Am.	
  A,	
  4(1),	
  p.221.	
  
19. Phinyomark,	
  A.,	
  Nuidod,	
  A.,	
  Phukpattaranont,	
  P.	
  and	
  Limsakul,	
  C.	
  (2012).	
  
Feature	
  Extraction	
  and	
  Reduction	
  of	
  Wavelet	
  Transform	
  Coefficients	
  for	
  
EMG	
  Pattern	
  Classification.	
  Electronics	
  and	
  Electrical	
  Engineering,	
  122(6).	
  
20. Hamedi,	
  M.,	
  Salleh,	
  S.,	
  Noor,	
  A.,	
  Swee,	
  T.	
  and	
  Aflzam,	
  I.	
  (2012).	
  Comparison	
  
of	
  Different	
  Time-­‐domain	
  Feature	
  Extraction	
  Methods	
  on	
  Facial	
  Gestures’	
  
EMGs.	
  Progress	
  in	
  Electromagnetics	
  Research	
  Symposium	
  Proceedings,	
  
pp.1897	
  -­‐	
  1900.	
  
21. Boisset,	
  S.	
  and	
  Goubel,	
  F.	
  (1972).	
  Integrated	
  electromyography	
  activity	
  
and	
  muscle	
  work.	
  Journal	
  of	
  applied	
  Physiol,	
  35,	
  pp.695	
  -­‐	
  702.	
  
22. Canal,	
  M.	
  (2008).	
  Comparison	
  of	
  Wavelet	
  and	
  Short	
  Time	
  Fourier	
  
Transform	
  Methods	
  in	
  the	
  Analysis	
  of	
  EMG	
  Signals.	
  J	
  Med	
  Syst,	
  34(1),	
  
pp.91-­‐94.	
  
23. Asghari	
  Oskoei,	
  M.	
  and	
  Hu,	
  H.	
  (2007).	
  Myoelectric	
  control	
  systems—A	
  
survey.	
  Biomedical	
  Signal	
  Processing	
  and	
  Control,	
  2(4),	
  pp.275-­‐294.	
  
24. Misiti,	
  M.,	
  Misiti,	
  Y.,	
  Oppenheim,	
  G.	
  and	
  Poggi,	
  J.	
  (2015).	
  Wavelet	
  Toolbox	
  
For	
  Use	
  with	
  MATLAB.	
  The	
  MathWorks.	
  Retrieved	
  April	
  7th	
  2015	
  from	
  
http://in.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf	
  	
  
25. Sharma,	
  S.	
  and	
  Kumar,	
  G.	
  (2012).	
  Wavelet	
  analysis	
  based	
  feature	
  
extraction	
  for	
  pattern	
  classification	
  from	
  Single	
  channel	
  acquired	
  EMG	
  
signal.	
  Elixer	
  Control	
  Engineering,	
  50,	
  pp.10320	
  -­‐	
  10324.	
  
26. Phinyomark,	
  A.,	
  Limsakul,	
  C.	
  and	
  Phukpattaranont,	
  P.	
  (2008).	
  EMG	
  feature	
  
extraction	
  for	
  tolerance	
  of	
  white	
  Gaussian	
  noise.	
  International	
  workshop	
  
and	
  symposium	
  on	
  science	
  and	
  technology,	
  pp.178	
  -­‐	
  183.	
  
27. Zardoshti-­‐Kermani,	
  M.,	
  Wheeler,	
  B.,	
  Badie,	
  K.	
  and	
  Hashemi,	
  R.	
  (1995).	
  
EMG	
  feature	
  evaluation	
  for	
  movement	
  control	
  of	
  upper	
  extremity	
  
prostheses.	
  IEEE	
  Trans.	
  Rehab.	
  Eng.,	
  3(4),	
  pp.324-­‐333.	
  
28. Goel,	
  P.,	
  Rai,	
  S.,	
  Chandra,	
  M.	
  and	
  Gupta,	
  V.	
  (2013).	
  Analysis	
  of	
  LMS	
  
Algorithm	
  in	
  Wavelet	
  Domain.	
  Atlantis	
  press,	
  pp.734	
  -­‐	
  738.	
  
  32	
  
29. DNews,	
  (2012).	
  5	
  Major	
  advances	
  in	
  Robotic	
  Prosthetics:	
  DNews.	
  [onlne]	
  
Available	
  at:	
  http://news.discovery.com/tech/robotics/five-°©-­‐‑major-­‐‑
advances-­‐‑robotic-prosthetics.htm [Accessed 1 April. 2014].	
  
30. G. Li, A. E. Schultz and T. A. Kuiken,“Quantifying Pattern Recognition—
Based Myoeletric Control of Multi-Functional Transradial Prosthesis,” IEEE
Transactions Neural System Rehabilitation Engineering, Vol.18, No.2, 2010,
pp.185-­‐‑192. doi:10.1109/TNSRE.2009.2039619	
  
	
  
  33	
  
Appendix	
  
	
  
Graph	
  7	
  Hand	
  Lateral	
  Grasp	
  
	
  
Graph	
  8	
  Hand	
  Lateral	
  Grasp	
  with	
  Motion	
  
  34	
  
	
  
Graph	
  9	
  Hand	
  open	
  
	
  
Graph	
  10	
  Hand	
  Rest	
  Horizontal	
  (90	
  degrees)	
  
  35	
  
	
  
Graph	
  11	
  Hand	
  Rest	
  Vertical	
  (180	
  degrees)	
  
	
  
Graph	
  12	
  Two	
  Finger	
  Pinch	
  
  36	
  
	
  
Graph	
  13	
  Wrist	
  Extension
	
  
Graph	
  14	
  Wrist	
  Flexion	
  
	
  
	
  
	
  

More Related Content

Viewers also liked

Different sources of energy
Different sources of energyDifferent sources of energy
Different sources of energymaria_skeva
 
Presentación daniela alvarado
Presentación  daniela alvaradoPresentación  daniela alvarado
Presentación daniela alvaradoDanialva20
 
Survival guide - JADE trainings 10-15/12/2013
Survival guide - JADE trainings 10-15/12/2013Survival guide - JADE trainings 10-15/12/2013
Survival guide - JADE trainings 10-15/12/2013Aistė Vaisėtaitė
 
676.комплексная региональная программа профилактики стоматологических заболев...
676.комплексная региональная программа профилактики стоматологических заболев...676.комплексная региональная программа профилактики стоматологических заболев...
676.комплексная региональная программа профилактики стоматологических заболев...efwd2ws2qws2qsdw
 
Survival guide - JADE trainings 2013/12/10-15
Survival guide - JADE trainings 2013/12/10-15Survival guide - JADE trainings 2013/12/10-15
Survival guide - JADE trainings 2013/12/10-15Aistė Vaisėtaitė
 
Actividad individual danny sanchez (3)
Actividad individual danny sanchez (3)Actividad individual danny sanchez (3)
Actividad individual danny sanchez (3)paolachirivi
 
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...alikemalergelen
 
Textual analysis
Textual analysis Textual analysis
Textual analysis mollyfurey
 
674.физическая культура ч3 методические указания для студентов, занимающихся ...
674.физическая культура ч3 методические указания для студентов, занимающихся ...674.физическая культура ч3 методические указания для студентов, занимающихся ...
674.физическая культура ч3 методические указания для студентов, занимающихся ...efwd2ws2qws2qsdw
 
Evaluación subdirector
Evaluación  subdirectorEvaluación  subdirector
Evaluación subdirectorRobertohhdez
 
670.история литургии свт иоанна златоуста т 4 диптихи
670.история литургии свт иоанна златоуста т 4  диптихи670.история литургии свт иоанна златоуста т 4  диптихи
670.история литургии свт иоанна златоуста т 4 диптихиefwd2ws2qws2qsdw
 
662.учитель личность деятельность
662.учитель личность деятельность662.учитель личность деятельность
662.учитель личность деятельностьefwd2ws2qws2qsdw
 
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...efwd2ws2qws2qsdw
 
Natália Boaventura - Facebook: De onde veio? Para onde vai?
Natália Boaventura - Facebook: De onde veio? Para onde vai?Natália Boaventura - Facebook: De onde veio? Para onde vai?
Natália Boaventura - Facebook: De onde veio? Para onde vai?Semana de Mídias Sociais UNA
 
Luxury Cashmere
Luxury CashmereLuxury Cashmere
Luxury CashmereHirmer
 
Uppföljning Rapex notifikationer
Uppföljning Rapex notifikationerUppföljning Rapex notifikationer
Uppföljning Rapex notifikationerLena Backlund
 
Poster 26.11 blog post
Poster 26.11 blog postPoster 26.11 blog post
Poster 26.11 blog postGS6142
 
Eletiva 1º encontro (12-3-2015)
Eletiva 1º encontro (12-3-2015)Eletiva 1º encontro (12-3-2015)
Eletiva 1º encontro (12-3-2015)helena takahashi
 

Viewers also liked (20)

Different sources of energy
Different sources of energyDifferent sources of energy
Different sources of energy
 
Presentación daniela alvarado
Presentación  daniela alvaradoPresentación  daniela alvarado
Presentación daniela alvarado
 
Survival guide - JADE trainings 10-15/12/2013
Survival guide - JADE trainings 10-15/12/2013Survival guide - JADE trainings 10-15/12/2013
Survival guide - JADE trainings 10-15/12/2013
 
676.комплексная региональная программа профилактики стоматологических заболев...
676.комплексная региональная программа профилактики стоматологических заболев...676.комплексная региональная программа профилактики стоматологических заболев...
676.комплексная региональная программа профилактики стоматологических заболев...
 
Survival guide - JADE trainings 2013/12/10-15
Survival guide - JADE trainings 2013/12/10-15Survival guide - JADE trainings 2013/12/10-15
Survival guide - JADE trainings 2013/12/10-15
 
Actividad individual danny sanchez (3)
Actividad individual danny sanchez (3)Actividad individual danny sanchez (3)
Actividad individual danny sanchez (3)
 
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...
FB-GS & BJK-FB derbileri skorer.tv uğur meleke yorum programı + canlı maç anl...
 
Textual analysis
Textual analysis Textual analysis
Textual analysis
 
Practica 22
Practica 22Practica 22
Practica 22
 
674.физическая культура ч3 методические указания для студентов, занимающихся ...
674.физическая культура ч3 методические указания для студентов, занимающихся ...674.физическая культура ч3 методические указания для студентов, занимающихся ...
674.физическая культура ч3 методические указания для студентов, занимающихся ...
 
Evaluación subdirector
Evaluación  subdirectorEvaluación  subdirector
Evaluación subdirector
 
670.история литургии свт иоанна златоуста т 4 диптихи
670.история литургии свт иоанна златоуста т 4  диптихи670.история литургии свт иоанна златоуста т 4  диптихи
670.история литургии свт иоанна златоуста т 4 диптихи
 
662.учитель личность деятельность
662.учитель личность деятельность662.учитель личность деятельность
662.учитель личность деятельность
 
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...
678.технико тактическая подготовка борцов греко-римского стиля на этапе спорт...
 
Quizlet1
Quizlet1Quizlet1
Quizlet1
 
Natália Boaventura - Facebook: De onde veio? Para onde vai?
Natália Boaventura - Facebook: De onde veio? Para onde vai?Natália Boaventura - Facebook: De onde veio? Para onde vai?
Natália Boaventura - Facebook: De onde veio? Para onde vai?
 
Luxury Cashmere
Luxury CashmereLuxury Cashmere
Luxury Cashmere
 
Uppföljning Rapex notifikationer
Uppföljning Rapex notifikationerUppföljning Rapex notifikationer
Uppföljning Rapex notifikationer
 
Poster 26.11 blog post
Poster 26.11 blog postPoster 26.11 blog post
Poster 26.11 blog post
 
Eletiva 1º encontro (12-3-2015)
Eletiva 1º encontro (12-3-2015)Eletiva 1º encontro (12-3-2015)
Eletiva 1º encontro (12-3-2015)
 

Similar to dissertation

Analytical Report (1)
Analytical Report (1)Analytical Report (1)
Analytical Report (1)Kade Schmitz
 
Prosthetic Arm for Amputees
Prosthetic Arm for AmputeesProsthetic Arm for Amputees
Prosthetic Arm for Amputeesvivatechijri
 
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORT
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORTHUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORT
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORTgautam221094
 
IRJET - A Novel Technology for Shooting Sports
IRJET - A Novel Technology for Shooting SportsIRJET - A Novel Technology for Shooting Sports
IRJET - A Novel Technology for Shooting SportsIRJET Journal
 
Evolutionary optimization of bio-inspired controllers for modular soft robots...
Evolutionary optimization of bio-inspired controllers for modular soft robots...Evolutionary optimization of bio-inspired controllers for modular soft robots...
Evolutionary optimization of bio-inspired controllers for modular soft robots...GiorgiaNadizar
 
Correlation Analysis of Electromyogram Signals
Correlation Analysis of Electromyogram SignalsCorrelation Analysis of Electromyogram Signals
Correlation Analysis of Electromyogram SignalsIJMTST Journal
 
Comparative analysis of machine learning algorithms on myoelectric signal fro...
Comparative analysis of machine learning algorithms on myoelectric signal fro...Comparative analysis of machine learning algorithms on myoelectric signal fro...
Comparative analysis of machine learning algorithms on myoelectric signal fro...IAESIJAI
 
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASES
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASESWAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASES
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASESIRJET Journal
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance ImagingOğuz Gençer
 
Detailed_Design_Report (final)
Detailed_Design_Report (final)Detailed_Design_Report (final)
Detailed_Design_Report (final)Keith Ming
 
Classification and Detection of ECG-signals using Artificial Neural Networks
Classification and Detection of ECG-signals using Artificial Neural NetworksClassification and Detection of ECG-signals using Artificial Neural Networks
Classification and Detection of ECG-signals using Artificial Neural NetworksGaurav upadhyay
 
Implementation of Radon Transformation for Electrical Impedance Tomography (E...
Implementation of Radon Transformation for Electrical Impedance Tomography (E...Implementation of Radon Transformation for Electrical Impedance Tomography (E...
Implementation of Radon Transformation for Electrical Impedance Tomography (E...ijistjournal
 

Similar to dissertation (20)

Analytical Report (1)
Analytical Report (1)Analytical Report (1)
Analytical Report (1)
 
W P Biomechanics
W P  BiomechanicsW P  Biomechanics
W P Biomechanics
 
Prosthetic Arm for Amputees
Prosthetic Arm for AmputeesProsthetic Arm for Amputees
Prosthetic Arm for Amputees
 
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORT
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORTHUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORT
HUMAN MACHINE INTERFACE THROUGH ELECTROMYOGRAPHY MINOR PROJECT FULL REPORT
 
IRJET - A Novel Technology for Shooting Sports
IRJET - A Novel Technology for Shooting SportsIRJET - A Novel Technology for Shooting Sports
IRJET - A Novel Technology for Shooting Sports
 
thesis
thesisthesis
thesis
 
Evolutionary optimization of bio-inspired controllers for modular soft robots...
Evolutionary optimization of bio-inspired controllers for modular soft robots...Evolutionary optimization of bio-inspired controllers for modular soft robots...
Evolutionary optimization of bio-inspired controllers for modular soft robots...
 
Correlation Analysis of Electromyogram Signals
Correlation Analysis of Electromyogram SignalsCorrelation Analysis of Electromyogram Signals
Correlation Analysis of Electromyogram Signals
 
G1103034042
G1103034042G1103034042
G1103034042
 
L41047379
L41047379L41047379
L41047379
 
Comparative analysis of machine learning algorithms on myoelectric signal fro...
Comparative analysis of machine learning algorithms on myoelectric signal fro...Comparative analysis of machine learning algorithms on myoelectric signal fro...
Comparative analysis of machine learning algorithms on myoelectric signal fro...
 
K44095156
K44095156K44095156
K44095156
 
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASES
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASESWAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASES
WAVELET DECOMPOSITION METHOD BASED AUTOMATED DIAGNOSIS OF MUSCLE DISEASES
 
IMEKo2013
IMEKo2013IMEKo2013
IMEKo2013
 
40220140504002
4022014050400240220140504002
40220140504002
 
Magnetic Resonance Imaging
Magnetic Resonance ImagingMagnetic Resonance Imaging
Magnetic Resonance Imaging
 
Detailed_Design_Report (final)
Detailed_Design_Report (final)Detailed_Design_Report (final)
Detailed_Design_Report (final)
 
Classification and Detection of ECG-signals using Artificial Neural Networks
Classification and Detection of ECG-signals using Artificial Neural NetworksClassification and Detection of ECG-signals using Artificial Neural Networks
Classification and Detection of ECG-signals using Artificial Neural Networks
 
PPT template
PPT templatePPT template
PPT template
 
Implementation of Radon Transformation for Electrical Impedance Tomography (E...
Implementation of Radon Transformation for Electrical Impedance Tomography (E...Implementation of Radon Transformation for Electrical Impedance Tomography (E...
Implementation of Radon Transformation for Electrical Impedance Tomography (E...
 

dissertation

  • 1.   Recognition  and  classification  of  arm  movement   patterns  using  surface  electromyography  for  use   in  myoelectric  prosthesis.   DEN318   Khalil  Omar  Alassi       Abstract   In  this  report  different  feature  extraction  techniques  were  investigated   and  assessed.  This  was  done  in  order  to  see  what  features  would  lead  to   good   classification,   which   would   be   used   as   an   input   signal   for   myoelectric   prosthetic   arm.   The   hand   movements   carried   out   include,   hand   relaxed   horizontally   at   a   90   degree   angle   to   the   elbow,   hand   relaxed  vertically  down  forming  a  180  degree  angle  to  the  elbow,  hand   open   (with   all   fingers   separated   from   each   other),   hand   grasp,   hand   lateral  grasp  –  with  and  without  motion,  two-­‐finger  pinch  (separate  two   fingers   in  one   EMG   signal),   wrist   flexion   and   wrist   extension.   The   raw   signals   were   then   de-­‐noised   and   the   following   time-­‐domain   feature   extraction  techniques  were  applied,  Zero  crossing,  mean  absolute  value,   Willison  amplitude  and  log  detector.  The  best  feature  obtained  was  the   zero   crossing   followed   by   Willison   amplitude.   The   mean   proved   ineffectual  and  should  not  be  used  for  classification.          
  • 2.   2   SCHOOL  OF  ENGINEERING  AND  MATERIALS  SCIENCE   ENGINEERING  THIRD  YEAR  PROJECT   DEN318   April  2015   DECLARATION     This  report  is  entitled     Recognition  and  classification  of  arm  movement  patterns  using  surface   electromyography  for  use  in  myoelectric  prosthesis.     Was  composed  by  me  and  is  based  on  my  own  work.  Where  the  work   of  others  has  been  used,  it  is  fully  acknowledged  in  the  text  and  in   captions  to  table  illustrations.  This  report  has  not  been  submitted  for   any  other  qualification.             Name                    Khalil  Omar  Alassi     Signed                ……………...…...     Date                      …………………...        
  • 3.   3   Table  of  Contents   Abstract  .................................................................................................................................  1   List  of  Tables  .......................................................................................................................  4   List  of  Figures  ......................................................................................................................  4   List  of  Graphs  ......................................................................................................................  4   Introduction  ........................................................................................................................  5   Methods  and  Results  ........................................................................................................  8   Data  collection  .............................................................................................................................  8   Data  processing  ........................................................................................................................  10   Feature  extraction  ..................................................................................................................  12   Discrete  Wavelet  Transform  (DWT)  .................................................................................  12   Wavelet  Packet  Decomposition  (WPD)  ...........................................................................  13   Decomposition  trees  ..............................................................................................................  15   Mean  Absolute  Value  (MAV)  ............................................................................................................  19   Willison  amplitude  (WAMP)  ............................................................................................................  19   Zero  crossing  (ZC)  ................................................................................................................................  20   Log  detector  (LD)  .................................................................................................................................  20   Comparison  of  each  Feature  extraction  technique  ......................................................  20   Discussion  .........................................................................................................................  25   Conclusion  .........................................................................................................................  29   Acknowledgments  ..........................................................................................................  29   References  ........................................................................................................................  30   Appendix  ...........................................................................................................................  33                                            
  • 4.   4   List  of  Tables   Table  1  Summary  of  the  advantages  and  disadvantages  of  the  support  vector   machine,  the  artificial  neural  network  and  fuzzy  logic  .............................................  7   Table  2  The  optimal  wavelet  component  and  function  for  the  surface  EMG   features,  with  RES  indices  [19]  ........................................................................................  28     List  of  Figures   Figure  1  Processes  involved  in  EMG  extraction  and  Identification  [1]  .......................  6   Figure  2  A  64  electrode  system,  with  the  ground  electrode  inserted  into  the   upper  most  slot  ..........................................................................................................................  9   Figure  3  The  different  hand  movements  labelled  corresponding  to  the  letters   previously  mentioned  ..........................................................................................................  10   Figure  4  Three  level  decomposition  wavelet  packet  tree  ..............................................  14   Figure  5  Level  3  decomposition  using  wavelet  packet  transform,  A  representing   approximation  coefficient  and  D  representing  Detail  coefficient  [15]  ...........  14   Figure  6  db5  wavelet  functions  for  1  to  10  iterations  .....................................................  15   Figure  7  Raw  Emg  signal  ...............................................................................................................  16   Figure  8  Level  1  Detail  ...................................................................................................................  17   Figure  9  Level  2  detail  ....................................................................................................................  17   Figure  10  Level  3  detail  .................................................................................................................  18   Figure  11  Level  3  approximation  ..............................................................................................  18   List  of  Graphs   Graph  1  Hand  Grip  ...........................................................................................................................  12   Graph  2  ZC  comparison  for  different  movements  .............................................................  21   Graph  3  Mean  comparison  for  the  different  movements  ...............................................  22   Graph  4  MAV  comparison  for  different  movements  .........................................................  23   Graph  5  WAMP  comparison  for  different  movements  ....................................................  24   Graph  6  LD  comparison  for  different  movements  .............................................................  25   Graph  7  Hand  Lateral  Grasp  ........................................................................................................  33   Graph  8  Hand  Lateral  Grasp  with  Motion  .............................................................................  33   Graph  9  Hand  open  ..........................................................................................................................  34   Graph  10  Hand  Rest  Horizontal  (90  degrees)  .....................................................................  34   Graph  11  Hand  Rest  Vertical  (180  degrees)  ........................................................................  35   Graph  12  Two  Finger  Pinch  .........................................................................................................  35   Graph  13  Wrist  Extension  ............................................................................................................  36   Graph  14  Wrist  Flexion  .................................................................................................................  36              
  • 5.   5   Introduction   Myoelectric   prosthesis   is   an   ever-­‐expanding   field,   particularly   with   the   exponential   increase   in   technology   over   the   past   two   decades   [29].   Software   engineering   alongside   other   fields   have   opened   up   doors   for   prosthetics   to   progress   from   being   for   aesthetic   purposes   to   having   increased   functionality.   This   began   with   mechanical   movements   using   buttons   on   the   inside   of   the   prosthetic,  to  using  nerve  signals  to  operate  and  control  the  prosthetic,  which  is   where  current  research  is  being  undertaken,  in  order  to  improve  upon  current   systems  in  numerous  ways.     There  are  two  parts  to  myoelectric  prostheses.  The  first  is  the  physical  section.   This  is  the  robotic  prosthetic  itself,  with  all  the  motors,  actuators  and  mechanical   components  involved  in  it.  The  second  section  is  the  data  collection,  processing   and  classifying,  the  part  that  is  involved  in  understanding  the  signals  produced   and  carrying  out  the  correct  movement  corresponding  to  the  patients  will.  This   report  investigates  the  gathering  of  the  signals  and  the  pre  and  post  processing   of  the  EMG  signals  obtained  in  order  to  recognise  unique  signals  associated  with   each  arm  movement.     There  were  a  total  of  1.6  million  amputees  in  the  United  States  alone  in  2005.   This  includes  upper,  lower,  major  and  minor  amputations.  In  this  report,  the  arm   was  investigated.  Although  there  are  more  people  with  lower  limb  amputations   world  wide,  the  loss  of  functionality  is  greater  with  the  arm  than  the  leg,  and  as  it   currently  stands,  there  are  many  simple  devices  available  that  can  replace  the   lower  limbs,  with  similar  functionality  [3].     After  analysing  the  literature,  it  was  evident  that  there  were  no  papers  or  any   databases   on   EMG   signals.   This   would   allow   for   the   simple   selection   of   the   movements   the   manufacturer   or   user   want,   implement   it   onto   the   robotic   system,   to   be   simply   selected   from   certain   categories   depending   on   the   movements   that   the   user   wants   the   achieve.   However   to   do   that,   effective   features  have  to  be  identified  and  classified  in  the  correct  method.  The  aim  of  
  • 6.   6   this  report  is  to  identify  the  effective  features,  and  suggest  a  good  classification   method  to  be  used  in  order  to  get  the  final  result.     This  process  however  is  not  a  simple  one;  chains  of  events  have  to  occur  to  reach   the  final  stage.  These  are  seen  in  Figure  1.  EMG  sensors  are  used  to  record  nerve   signals   for   the   chosen   arm   movements,   these   are   then   processed   through   MATLAB   for   noise   reduction,   feature   extraction,   dimensional   reduction   and   classification,   which   finally   allows   for   that   movement   to   be   recognised   by   the   prosthetic  arm  when  an  action  potential  is  propagated.       Figure  1  Processes  involved  in  EMG  extraction  and  Identification  [1]   There  are  many  options  available  to  record  the  electrical  activity;  the  different   sensors  are  used  for  their  different  properties,  for  example,  there  are  dry  and   gelled   electrodes,   the   gelled   electrodes   are   favourable   due   to   the   reduction   of   impedance,  however  they  are  lighter  than  the  dry  electrode  that  causes  handling   difficulties.  Gelled  electrodes  weigh  in  the  region  of  20g  per  electrode  compared   to  the  1g  of  the  dry  electrode  [4].       There   are   different   methods   to   carry   out   EMG   feature   extraction;   the   main   techniques  are  split  into  three  categories,  time  domain,  frequency  domain  and   time-­‐frequency   domain   (wavelet   transform).   These   can   be   carried   out   on   MATLAB,   a   high   performance   program   for   technical   computing   [2].   Each   was   further  discussed  and  investigated  in  the  literature  review.     There   are   also   many   classification   techniques   available,   the   main   three   being   support   vector   machine,   artificial   neural   network   and   fuzzy   logic.   These   were   investigated  within  the  literature  review,  and  advantages  and  disadvantages  of   each  were  discussed.  These  are  summarised  in  the  table  below:  
  • 7.   7   Table  1  Summary  of  the  advantages  and  disadvantages  of  the  support  vector  machine,  the  artificial   neural  network  and  fuzzy  logic     Advantages   Disadvantages   Support  Vector  Machine   -­‐ Linearly  separable   -­‐ Uses  Kernal   functions,  hence  it   gains  flexibility  in   form  of  the  set   threshold     -­‐ Provide  a  good   out  of  sample   generalisation   -­‐ Provides  a  unique   solution   -­‐ Can  alter  what   factors  to  stress   on  most  in   comparison  to   others  [5]   -­‐ Due  to  high   dimensions,  it  is   difficult  to   represent  results   as  simple   parametric   functions  [6]   -­‐ “High  algorithmic   complexity  and   extensive  memory   requirement”  [7]   -­‐ The  Kernel   function   parameters   selection   Artificial  Neural  Network   -­‐ Deals  best  with   non-­‐linear   dependence   between  the   inputs  and   outputs   -­‐ Easy  to   conceptualise   -­‐ Has  been  used  in   industry  for  so   many  years   -­‐ High  tolerance  to   data  containing   noise  [8]   -­‐ Requires  the  user   to  understand   parameters   involved  in  the   problem   -­‐ Hard  to  train  and   require  lots  of   tuning   -­‐ Black-­‐box   modelling  [8]  
  • 8.   8   Fuzzy  Logic   -­‐ Simple  and   insensitive  to  over   training  [11]   -­‐ Contradictions,  as   may  be  the  case  in   EMG  signals  can   be  tolerated   -­‐ Able  to  integrate   valuable   incomplete   knowledge  [12]   -­‐ Works  at  a  fast   pace   -­‐ Uses  descriptive   language   -­‐ Relatively  new   field  in  EMG  [10]       Methods  and  Results   Data  collection   A  64-­‐electrode  system  was  available,  as  shown  in  Figure  2.  Although  only  8  of  the   electrodes  were  used;  this  is  due  to  previous  studies  showing  that  8  electrodes   sufficiently  produce  results  comparable  to  that  of  12  and  more  electrodes  [30];   hence  this  reduces  the  costs  associated  with  the  processing  of  these  results.  Also,   handling  data  obtained  from  more  electrodes  would  overcomplicate  the  process   and  the  accuracy  would  not  be  significantly  higher.    
  • 9.   9     Figure  2  A  64  electrode  system,  with  the  ground  electrode  inserted  into  the  upper  most  slot   Electrodes  had  to  be  prepared  using  a  set  of  provided  equipment,  due  to  the  lack   of  washers  available.  To  prepare  the  electrodes,  holes  were  made  in  single  sided   tape.  The  electrodes  had  a  diameter  of  10mm  and  were  placed  in  pairs  20mm   apart.  The  single  sided  tape  was  reinforced  with  a  layer  of  double  sided  tape  to   allow  ease  of  handling.  They  were  then  adhered  onto  the  tape,  with  the  sensor   going   through   the   hole.   Silver/Silver   chloride   gel   was   then   applied   to   the   electrode  and  this  was  applied  onto  the  patient  in  the  required  positions.  These   were,   (a) Flexor  Carpi  Radialis     (b) Flexor  Carpi  Ulnaris   (c) Biceps  Brachii   (d) Triceps  Brachii   A  healthy  20-­‐year-­‐old  male  was  the  subject  of  this  experiment  and  was  prepared   using  the  SENIAM  guidelines,  which  involved  shaving  and  cleaning  the  skin  with   sterile  alcohol  swabs,  to  carry  out  the  following  daily  movements  for  EMG  signal   collection:   (a) Hand  relaxed  horizontally  at  a  90  degree  angle  to  the  elbow   (b) Hand  relaxed  vertically  down  forming  a  180  degree  angle  to  the  elbow   (c) Hand  open  (with  all  fingers  separated  from  each  other)  
  • 10.   10   (d) Hand  grasp   (e) Hand  lateral  grasp  –  with  and  without  motion   (f) Two-­‐finger  pinch  (separate  two  fingers  in  one  EMG  signal)   (g) Wrist  flexion   (h) Wrist  extension   The  movements  are  displayed  in  Figure  3.       Figure  3  The  different  hand  movements  labelled  corresponding  to  the  letters  previously  mentioned   The  signal  was  amplified  and  was  collected  at  the  rate  of  1000  samples  per   second.  This  was  processed  on  MATLAB.   Data  processing   The   results   obtained   were   in   a   .SO0   and   .SO1   format,   this   was   not   MATLAB   readable;  therefore  it  had  to  be  converted  in  preparation  for  use  with  MATLAB   to  a  .mat  extension.  This  was  done  by  running  the  results  in  MATLAB  using  the   following  code:     a  b   c   d   e   f   f   g   h  
  • 11.   11   for i=1:length(FileInd); TM=tmsi_convert('F:dataD D.287', FileInd(i).name); clear OriEMG for c=1:8 yy=TM.data{c}(400:end); OriEMG(:,c)=yy; plot(yy+4800-c*600) hold on end ylim([0 4800]) Time=(1:length(yy))/2048; MatFile=regexprep([FileOutDir FileInd(i).name], '.S01', '.mat', 'ignorecase'); save(MatFile, 'OriEMG','Time'); end The  raw  EMG  data  was  then  plotted  using  the  following  code:   Time=(1:length(OriEMG))/2048; for i=1:8 plot(Time,OriEMG(:,i)+4800-i*600) hold on end ylim([-600 4800]) xlabel('Time') ylabel('Signal') This  is  seen  in  Graphs  1  and  7-­‐14  below  and  in  the  appendix.    The  scale  on  the  y-­‐ axis   is   not   important   as   it   is   just   used   to   separate   out   the   8   channels.   The   channels  are  numbered  from  number  1  (the  highest  signal)  till  channel  8  (the   lowest  signal)  as  follows:   1. Flexor  Carpi  Radialis     2. Flexor  Carpi  Radialis     3. Biceps  Brachii   4. Biceps  Brachii   5. Triceps  Brachii   6. Triceps  Brachii   7. Flexor  Carpi  Ulnaris   8. Flexor  Carpi  Ulnaris  
  • 12.   12     Graph  1  Hand  Grip   Feature  extraction   Out   of   the   three   most   commonly   used   feature   extraction   techniques   available,   namely,   time-­‐domain,   frequency-­‐domain   and   wavelet   based   analysis;   wavelet   based  analysis  was  carried  out,  this  is  due  to  it  being  the  “most  powerful  signal   processing  tool”  available  [9].  However,  due  to  unforeseen  circumstances,  code   provided  by  Dr  Vepa  used  previously  for  a  similar  application  was  applied  to  the   set  of  results  above.  This  process  involved  decomposing  the  signal,  removing  the   noise   and   reconstructing   the   relevant   signals.   This   was   followed   by   the   application  of  the  relevant  time  domain  parameters  seen  in  the  sections  below.   Discrete  Wavelet  Transform  (DWT)   DWT   is   a   sub   band   coding   method   used   to   obtain   wavelet   transforms   at   high   computational   speeds.   Unlike   the   continuous   wavelet   transform   (CWT),   DWT   represents  the  data  using  time-­‐scale  parameters  by  digital  filtering  techniques   rather  than  the  basic  functions  related  by  simple  scaling  and  translation.  DWT   was   chosen   for   this   study   due   to   the   concentration   in   real-­‐time   engineering   applications  [21-­‐23].  The  way  it  functions  is  as  follows  [16]   1. The  signal  is  processed  through  filters  with  different  band  frequencies  at   different  scales.     2. This  is  followed  by  a  decimation  operation   3. The  signal  separates  into  two  bands  
  • 13.   13   4. First  band,  the  low  pass  filter,  extracts  the  rough  information  of  the  signal   known  as  the  approximation  coefficients   5. Second  band,  the  high  pass  filter,  extracts  the  finer  information  of  the   signal  known  as  the  detail  coefficients   6. The  filtered  data  is  then  deconstructed   Wavelets  can  be  obtained  by  iterations  of  filters,  which  are  the  most  used  signal   processing  functions  [15].  The  computation  of  the  DWT  through  both  low  and   high   pass   filters   can   be   represented   by   a   Mallat   algorithm   or   Mallat-­‐tree   decomposition  [15].       After  the  signal  is  split  into  different  levels,  the  half  band  filters  generate  signals   that  cover  half  the  frequency  band.  Hence,  the  frequency  resolution  is  doubled.   Following  Nyquist’s  rule,  if  the  highest  frequency  of  the  original  signal  of   𝛼,  with   a  sampling  frequency  of  2 𝛼  radians,  hence,  the  highest  frequency  is   𝛼/2,  thus  it   can   be   sampled   at   a   frequency   of   𝛼  radians,   which   removes   half   the   samples   while  preserving  all  the  important  information  [15].  This  processes  is  repeated   until   the   required   level   is   achieved.   The   length   of   the   signal   is   the   factor   that   determines  the  maximum  number  of  levels.     Wavelet  Packet  Decomposition  (WPD)   The   concept   of   WPD   is   that   it   transforms   a   signal   from   the   time   to   frequency   domain  every  level  at  a  time.  As  previously  mentioned,  from  wavelet  analysis,   two  coefficients  are  obtained,  namely,  the  approximation  and  detail  coefficients.   The  main  difference  between  WT  and  wavelet  packet  transform  (WPT)  is  that  for   WPT   both   coefficients   can   further   stem   into   approximation   and   detail   coefficients  rather  than  just  the  approximation  further  stemming.  This  process  is   iterated  throughout  the  levels,  in  this  report,  this  is  carried  out  over  three  levels   and  can  be  represented  by  Figure  4  numerical  and  Figure  5  qualitatively.  Due  to   both  coefficients  being  iterated,  a  complete  tree  basis  result  is  achieved.  What   the  tree  shows,  is  an  increase  in  the  exchange  between  the  time  and  frequency   resolutions.   The   highest   level   being   time   representative   in   comparison   to   the   bottom,  which  is  frequency  representative  [15].    
  • 14.   14     Figure  4  Three  level  decomposition  wavelet  packet  tree       Figure  5  Level  3  decomposition  using  wavelet  packet  transform,  A  representing  approximation   coefficient  and  D  representing  Detail  coefficient  [15]   Due  to  the  nature  of  WPT  using  an  entropy-­‐based  criterion  to  choose  a  suitable   decomposition   signal,   each   node   has   to   be   quantified   at   each   split.   There   are   several   wavelet   families   that   are   important;   these   are,   in   no   particular   order,   Haar,   Daubechies,   Symlets,   Coiflets,   and   biorthogonal   [15].   In   this   paper   Daubechies  family  with  db5  wavelet  function  was  investigated.  This  is  displayed   in  Figure  6.        
  • 15.   15     Figure  6  db5  wavelet  functions  for  1  to  10  iterations   Decomposition  trees   The  decomposition  tree  in  Figure  4  is  an  effective  visualisation  method  of  the   different   filtering   that   has   been   applied   to   the   raw   EMG   signal   the   results   are   seen  in  Figures  7-­‐11.  Moving  down  the  tree  from  the  top,  (0,0),  the  frequency  is   divided  into  smaller  sections.  There  are  two  types  of  filtering  represented  in  the   tree,   a   low   pass   filtering   operation   that   is   achieved   every   time   the   line   stems   down  and  to  the  left,  and  a  high  pass  filtering  operation  that  is  achieved  every   time  the  line  stems  down  and  to  the  right.  There  are  nodes  that  have  no  more   nodes  stemming  down  from  them,  these  are  called  terminal  nodes,  but  can  also   be  known  as,  leaves  or  sub  bands.  All  other  nodes  are  known  as  non-­‐terminal  or   internal  nodes.  This  simple  mechanism  allows  for  a  simple  understanding  of  the   tree  decomposition  diagram  [15].       For   the   nodes  ( 𝑗, 𝑘),   𝑗  represents   the   depth   within   the   tree   and   𝑘  refers   to   the   position.  Beginning  with  node  (0,0),  the  raw  EMG  signal,  if  it  is  low  pass  filtered,   the  node  (1,0)  is  achieved.  If  node  (0,0)  were  to  be  high  pass  filtered,  the  node   (1,1)  is  obtained.  Gokhale  et  al.  defines  this  by  stating  “these  filtering  operations   are  equivalent  to  finding  the  correlation  of  the  signal  with  the  scaling  function   for   node   (1,0)   and   the   correlation   of   the   signal   with   the   wavelet   function   for   node  (1,1)”  [15].  Dropping  down  a  level  to  (2,1)  and  (2,0)  from  (1,0),  the  samples   at   (1,0)   have   been   re-­‐filtered   according   to   the   previous   principles.   Critical  
  • 16.   16   sampling  is  achieved,  which  is  due  to  the  sampling  of  the  coefficients  at  (1,0).   This  is  known  as  multi-­‐resolution  [15].     Figure  7  Raw  Emg  signal  
  • 17.   17     Figure  8  Level  1  Detail     Figure  9  Level  2  detail  
  • 18.   18     Figure  10  Level  3  detail     Figure  11  Level  3  approximation  
  • 19.   19     From  the  wavelet  decomposition  coefficients,  the  signals  can  be  reconstructed   with   minimal   noise.   The   features   can   then   be   extracted   from   this   de-­‐noised   signal.  This  has  proven  to  provide  better  performance  than  the  raw  signals  [17].   The  following  feature  extraction  techniques  were  applied:     Mean  Absolute  Value  (MAV)   MAV,  also  known  as  Integral  of  Absolute  Value  (IAV),  is  a  commonly  investigated   feature  for  surface  EMG  analysis  [14].  The  MAV  was  chosen  as  one  of  the  time-­‐ domain  feature  extraction  techniques  rather  than  the  root  mean  square  (RMS)   because  research  has  shown  that  both  methods  display  similar  results,  however,   MAV  feature  is  better  in  terms  of  class  separability  [13].  It  is  calculated  using  the   following  equation   𝑀𝐴𝑉 = 1 𝑁 𝑥! !!! !!!   N  =  length  of  the  segment   𝑥!  =   𝑖!!  sample   Willison  amplitude  (WAMP)   WAMP   assesses   the   number   of   times   there   is   a   change   in   the   EMG   signal   amplitude  that  exceeds  an  instated  threshold  value.  WAMP  investigates  muscle   contraction  levels  by  acting  as  an  indicator  of  firing  of  MUAP  [14].  It  is  calculated   using  the  following  equation     𝑊𝐴𝑀 =   𝑊 𝑥! − 𝑥!!! !!! !!!   𝑊 𝑥 = 1 0  𝑖𝑓  𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   The  threshold  value  =  10mV        
  • 20.   20   Zero  crossing  (ZC)   ZC   is   a   simple   but   useful   technique,   it   counts   the   number   of   times   the   signal   crosses  the  zero  amplitude  axis.  It  is  calculated  using  the  following  equation   𝑍𝐶 = 𝑠𝑔𝑛 −𝑥! 𝑥!!! !!! !!!   Where,   𝑠𝑔𝑛 𝑥 = 1 0   𝑖𝑓  𝑥 > 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     Log  detector  (LD)   Similar   to   WAMP,   the   information   gained   through   this   method   is   related   to   construct  force;  this  is  calculated  using  the  following  equation  [14]   𝐿𝐷 = 𝑒 ! ! !"# !! !!! !!!   Comparison  of  each  Feature  extraction  technique   Graphs  2-­‐6  show  scatter  diagrams  of  all  the  different  features  extracted  using  the   previously  mentioned  methods.  The  x-­‐axis  represents  the  different  channels  of   which   data   was   collected;   the   y-­‐axis   is   the   extracted   feature.   The   key   is   as   follows:    
  • 21.   21     Graph  2  ZC  comparison  for  different  movements   Graph   2   above   shows   that   there   is   a   clear   pattern   with   most   of   the   hand   movements   that   make   them   distinct   in   comparison   to   others.   The   only   two   movements  that  seem  to  overlap  other  zero  crossing  values  of  other  movements   are  the  wrist  flexion  and  extension.     500   700   900   1100   1300   1500   1700   0   1   2   3   4   5   6   7   8   9   Zero  crossings   Channel  
  • 22.   22     Graph  3  Mean  comparison  for  the  different  movements   The  mean  has  shown  no  real  significance,  as  no  pattern  was  associated  with  the   features   obtained.   There   are   many   features   that   overlap   between   movements,   they   seem   heavily   clustered   around   the   third   to   the   sixth   electrodes,   which   correspond  to  the  biceps  and  triceps  brachii.  All  the  values  vary  between  2  and  -­‐ 2.5;   this   supports   the   argument   that   no   real   classification   can   be   carried   out   effectively   using   this   feature   extraction   technique.   This   is   further   discussed   in   the  discussion  section  below.   -­‐3   -­‐2.5   -­‐2   -­‐1.5   -­‐1   -­‐0.5   0   0.5   1   1.5   2   2.5   0   1   2   3   4   5   6   7   8   9   Mean   Channel  
  • 23.   23     Graph  4  MAV  comparison  for  different  movements   This  feature  does  produce  patterns  for  some  movements  although  not  all,  due  to   the  overlapping  and  clustering  of  the  features  between  the  different  movements.   The  MAV  produces  features  that  are  more  viable  than  the  Mean  features;  this  is   an  important  factor  to  consider  if  these  were  to  later  be  used  in  classification.     Movements  such  as  hand  open  and  hand  rest  overlap  in  more  than  one  channel.   0   20   40   60   80   100   120   140   160   180   0   1   2   3   4   5   6   7   8   9   MAV   Channel  
  • 24.   24     Graph  5  WAMP  comparison  for  different  movements   WAMP   provided   useful   results,   however,   there   appears   to   be   some   clustered   results   in   both   the   biceps   and   triceps   brachii,   and   this   could   be   due   to   many   reasons  that  are  discussed  in  the  discussion.     0   5   10   15   20   25   30   0   1   2   3   4   5   6   7   8   9   WAMP   Channel  
  • 25.   25     Graph  6  LD  comparison  for  different  movements   LD  proved  valuable  for  movements  that  required  as  little  force  as  possible,  as  a   clear   pattern   can   be   identified   with   ‘Hand   rest   vertical’   and   the   ‘Hand   rest’   movements.  The  ‘Two  finger  pinch’  provided  the  highest  LD  values  followed  by   the  ‘Hand  lateral  grasp’.    There  is  a  good  separability  excluding  the  two-­‐finger   pinch  movement.   Discussion   In  this  report,  EMG  signals  were  recorded  from  different  muscles  carrying  out   different  movements,  all  of  which  are  described  in  previous  sections.  They  were   subjected   to   db5   Daubechies   wavelet   function   shown   in   Figure   6.   It   is   proven   that  for  most  types  of  natural  signals,  the  important  sections  of  the  signal  are  the   low  frequency  components;  hence  everything  not  seen  in  the  figures  above  can   be   assumed   as   noise   [24].   From   Figures   7-­‐11   it   is   observed   that   the   low   frequency   sections   have   indirect   correspondence   and   have   non-­‐essential   background  noise,  whereas  the  first  and  second  decomposition  levels  are  similar   5.50E+03   1.05E+04   1.55E+04   2.05E+04   2.55E+04   3.05E+04   3.55E+04   0   1   2   3   4   5   6   7   8   9   LD   Channel  
  • 26.   26   to   that   of   the   original   EMG   signal.   This   complies   with   the   trend   that   being   removing  the  unwanted  high  frequencies  (fluctuations)  and  preserving  the  lower   frequency   components,   meaning   the   important   information   is   presented   [25].   The  results  for  the  other  channels  were  not  displayed  due  to  the  limited  space,   however  they  were  found  to  follow  a  similar  trend.     Graphs   2-­‐6   show   the   comparison   of   features   obtained   for   the   four   different   feature  extraction  methods.  Each  of  the  four  previously  mentioned  muscles  was   investigated  for  all  the  different  hand  movements.  They  were  plotted  on  scatter   diagrams  in  order  to  identify  variations  in  the  signal.     Whilst  investigating  these  features,  a  few  points  have  to  be  remembered.  A  high   quality  feature  has  to  have  three  properties   1. Maximum  class  separability   2. Robustness   3. Complexity   The  first  point  refers  to  the  features  having  very  little  overlapping  in  order  to   identify  and  recognise  the  input  signals.  The  second  point  refers  to  the  features   being   able   to   maintain   the   separability   in   noisy   environments.   Finally,   the   features   computational   complexity   should   be   as   low   as   possible   in   order   to   implement  the  same  procedure  using  mediocre  hardware  and  in  real-­‐time  [27].     The  zero  crossing  features  from  Graph  2  show  clear  separation.  This  means  that   the  EMG  feature  vector  produced  by  this  feature  extraction  technique  will  yield   good   classification   results   in   the   classification   stage.   This   conforms   with   the   research  done  by  Curtis  and  Oppenheim  that  state  a  “two-­‐dimensional,  periodic,   band-­‐limited   signal   is   uniquely   specified   to   within   a   scale   factor   by   its   zero   crossings   if   the   signal   is   non-­‐factorable   when   expressed   as   a   polynomial”,   however,   not   only   that   but   it   can   also   be   applied   when   the   signal   is   of   finite   length  and  when  crossing  an  arbitrary  threshold,  in  this  case,  factorable  signals   would  still  produce  good  classification  results  [18].  Thus,  this  is  a  good  feature   extraction   technique   that   produces   unique   results   for   every   movement   by   the   different  muscles,  which  makes  it  replicable.      
  • 27.   27   The   Mean   features   produce   some   separable   results,   although   there   are   a   few   overlaps.  The  range  is  small;  hence  they  are  compact  in  one  section.  This  would   make   it   difficult   to   simply   identify   the   different   movements,   as   a   small   fluctuation  in  the  signals  would  lead  to  noticeable  alterations,  which  may  lead  to   further   overlapping.   Classification   using   this   feature   would   not   lead   to   ideal   results,  as  the  results  are  not  significantly  different,  the  clustering  of  results  is   seen  clearly  between  channels  four  to  eight.  The  disregard  of  this  technique  by   many   research   papers   [16-­‐20]   and   more   is   enough   to   justify   why   it   is   a   bad   method.   Rather,   the   MAV   is   used,   which   produces   unique   separable   results   at   low   level   reconstructed   signals,   particularly   for   ‘Hand   lateral   grasp   and   wrist   flexion’.   However,   MAV   obtained   from   the   high-­‐level   reconstructed   signal   present   poor   separability.   Studies   have   shown   this   to   be   the   trend   in   other   studies  [19].       Willison  Amplitude  provides  excellent  features  for  classification,  as  the  majority   of  the  results  are  separable.  This  trend  of  results  is  not  only  witnessed  in  this   study,  but  also  in  other  studies  by  Phinyomark  et  al.,  [9,19,26].  The  final  feature   that  also  proved  to  give  a  pattern  when  produced  on  a  scatter  diagram  is  the  Log   detector.  Visually  it  is  noticed  that  the  results  are  separated,  thus  they  can  be   classified  well  enough  for  the  signal  to  be  replicated.       In  order  to  quantify  the  suitability  of  the  features,  two  different  methods  could   be  applied.  Namely,  using  classification  to  obtain  an  estimate  of  the   misclassification  rate,  or  using  certain  separability  measures.  The  recommended   approach  would  be  the  use  of  Davies-­‐Bouldin  Cluster  Separation  Measure,  which   directly  solves  the  problem  of  class  separability  [27].  This  can  be  done  in  the   future  in  order  to  expand  on  current  work.       Investigating  the  wavelet  functions,  research  carried  out  Phinyomark  et  al  [19],   shows  that  the  optimal  wavelet  function  used  is  db7  rather  than  the  db5  used  in   this  study  and  the  optimal  wavelet  component  is  D2,  which  refers  to  the  second   level  detail  node.  Although  a  higher  wavelet  function  does  yield  better  results,   this  has  to  be  compromised  with  computational  complexity  in  order  to  have  the  
  • 28.   28   highest   quality   feature   [28].   The   two   highest   RES   index   values   from   the   experimented   features   were   zero   crossing   and   Willison   amplitude,   both   that   proved  excellent  in  this  study.       Table  2  The  optimal  wavelet  component  and  function  for  the  surface  EMG  features,  with  RES  indices   [19]       From  the  raw  EMG  signals,  it  can  be  seen  that  there  is  a  lot  of  noise.  This  noise   was  due  to  the  electrical  appliances  found  around  the  electrodes  and  amplifier.   The   lab   used   had   a   number   of   sockets,   computers   and   other   biomechanical   testing  equipment,  which  all  emit  signals.  An  attempt  to  reduce  the  effect  of  noise   was   to   carry   out   in   the   corner   of   the   room   with   least   appliances.   To   further   improve  upon  this  experiment.  Ideally,  to  reduce  this  ambient  noise  a  small  room   with  no  electrical  equipment  should  be  used.        
  • 29.   29   Finally,   due   to   unaccounted   problems,   the   lab   time   was   delayed;   hence   the   classification   of   the   signals   using   the   features   obtained   was   not   carried   out.   However,  a  plan  was  made  to  use  a  combination  of  both  support  vector  machine   and   artificial   neural   network   to   complete   this   task.   This   would   of   yielded   the   final  set  of  presentable  results.  This  could  be  done  in  the  future  to  finalise  the   project.    To  further  improve  upon  this  study,  using  a  larger  number  of  subjects  to   obtain  signals  would  give  a  better  overview,  and  quantifying  the  separability  of   the  features  to  find  its  statistical  significance.     Conclusion   In   this   study,   a   healthy   male   subject   was   used   to   carry   out   the   following   movements,  Hand  relaxed  horizontally  at  a  90  degree  angle  to  the  elbow,  Hand   relaxed   vertically   down   forming   a   180   degree   angle   to   the   elbow,   Hand   open   (with  all  fingers  separated  from  each  other),  Hand  grasp,  Hand  lateral  grasp  –   with   and   without   motion,   Two-­‐finger   pinch   (separate   two   fingers   in   one   EMG   signal),   Wrist   flexion,   Wrist   extension.   The   raw   EMG   data   was   then   deconstructed,   noise   was   removed   using   discrete   wavelet   transform,   and   the   signals   were   reconstructed.   Thereafter,   the   feature   extraction   processes   took   place  using  time-­‐domain  features.  These  include,  MAV,  WAMP,  LD  and  ZC.  The   mean  was  also  measured  although  this  was  found  to  produce  insignificant  data.   The  best  feature  was  found  to  be  zero  crossing  followed  by  Willison  amplitude   and  Log  detector.  For  future  work,  quantifying  the  separability  would  be  the  next   step  using  Davies-­‐Bouldin  cluster  separation  measure  and  finally  classifying  the   results  using  a  combination  of  SVM  and  ANN.     Acknowledgments   This   project   has   required   a   lot   of   time   and   effort;   it   would   have   been   a   very   difficult  journey  without  the  support  of  my  supervisor,  friends  and  family  and  to   all  who  contributed.  I  am  highly  thankful  to  Dr  Ranjan  Vepa  for  his  supervision   and  guidance  throughout  the  project,  while  providing  insightful  information  to   help  me  excel  in  the  field,  his  continuous  support  helped  me  complete  the  project   with  a  high  level  of  understanding.    I  would  also  like  to  take  this  opportunity  to  
  • 30.   30   thank  Dr  Richard  Twycross-­‐Lewis  for  his  help  in  using  the  equipment  required   for   the   experiments   carried   out   in   the   EMG   lab   at   Queen   Mary   University   of   London.     References     1. Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K. and Chang, T. (2013). Surface Electromyography Signal Processing and Classification Techniques. Sensors, 13(9), pp.12431-°©‐12466. 2. Cimss.ssec.wisc.edu,  (2015).  What  is  Matlab.  [online]  Available  at:   http://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.h tm  [Accessed  30  Mar.  2015]. 3. Ziegler-­‐Graham,  K.,  MacKenzie,  E.,  Ephraim,  P.,  Travison,  T.  and   Brookmeyer,  R.  (2008).  Estimating  the  Prevalence  of  Limb  Loss  in  the   United  States:  2005  to  2050.  Archives  of  Physical  Medicine  and   Rehabilitation,  89(3),  pp.422-­‐429. 4. Dr. Scott Day. 2014. Important Factors In Surface EMG Measurement. [ONLINE] Available at: http://andrewsterian.com/214/EMG_measurement_and_recording.pdf. [Accessed 02 December 14]. 5. Auria,  L.  and  Moro,  R.  (2008).  Support  Vector  Machines  (SVM)  as  a   Technique  for  Solvency  Analysis.  SSRN  Journal. 6. Beyerer,  J.,  Puente  León,  F.  and  Längle,  T.  (2015).  OCM  2015  -­‐  Optical   Characterization  of  Materials  -­‐  conference  proceedings.  Karlsruhe:  KIT   Scientific  Publishing,  p.78. 7. Olson,  D.  and  Delen,  D.  (2008).  Advanced  data  mining  techniques.  Berlin:   Springer,  pp.122  -­‐  123.   8. Basheer,  I.  and  Hajmeer,  M.  (2000).  Artificial  neural  networks:   fundamentals,  computing,  design,  and  application.  Journal  of   Microbiological  Methods,  43(1),  pp.3-­‐31.   9. Phinyomark,  A.,  Limsakul,  C.  and  Phukpattaranont,  P.  (2011).  Application   of  Wavelet  Analysis  in  EMG  Feature  Extraction  for  Pattern  Classification.   Measurement  Science  Review,  11(2).   10. Shamim,  M.,  Enam,  S.,  Qidwai,  U.  and  Godil,  S.  (2011).  Fuzzy  logic:  A   "simple"  solution  for  complexities  in  neurosciences?.  Surg  Neurol  Int,   2(1),  p.24. 11. Chowdhury,  R.,  Reaz,  M.,  Ali,  M.,  Bakar,  A.,  Chellappan,  K.  and  Chang,  T.   (2013).  Surface  Electromyography  Signal  Processing  and  Classification   Techniques.  Sensors,  13(9),  pp.12431-­‐12466. 12. Ahsan,  R.,  Ibrahimy,  M.  and  Khalifa,  O.  (2010).  Advances  in   Electromyogram  Signal  Classification  to  Improve  the  Quality  of  Life  for   the  Disabled  and  Aged  People.  Journal  of  Computer  Science,  6(7),  pp.706-­‐ 715. 13. Phinyomark,  A.,  Hirunviriya,  S.,  Limsakul,  C.  and  Phukpattaranont,  P.   (2010).  Evaluation  of  EMG  feature  extraction  for  hand  movement   recognition  based  on  euclidean  distance  and  standard  deviation.  7th   International  Conference  on  Electrical  Engineering/Electronics,  
  • 31.   31   Computer,  Telecommunica-­‐tions  and  Information  Technolo,  1(1),  pp.856   -­‐  460. 14. Zardoshti-­‐Kermani,  M.,  Wheeler,  B.,  Badie,  K.  and  Hashemi,  R.  (1995).   EMG  feature  evaluation  for  movement  control  of  upper  extremity   prostheses.  IEEE  Trans.  Rehab.  Eng.,  3(4),  pp.324-­‐333. 15. Gokhale,  M.  and  Khanduja,  D.  (2010).  Time  Domain  Signal  Analysis  Using   Wavelet  Packet  Decomposition  Approach.  International  Journal  of   Communications,  Network  and  System  Sciences,  03(03),  pp.321-­‐329. 16. Hibare,  R.  and  Vibhute,  A.  (2014).  Feature  Extraction  Techniques  in   Speech  Processing:  A  Survey.  International  Journal  of  Computer   Applications,  0975(8887),  pp.1  -­‐  8.   17. A.  Phinyomark.  S.  Hirunviriya.  C.  Limsakul.  P.  Phukpattaranont  In   Evaluation  of  EMG  feature  extraction  for  hand  movement  recognition   based  on  Euclidean  distance  and  standard  deviation,  Electrical   Engineering/Electronics  Computer  Telecommunications  and  Information   Technology  (ECTI-­‐CON),  2010  International  Conference  on,  IEEE:  2010;   pp.  856-­‐860.     18. Curtis,  S.  and  Oppenheim,  A.  (1987).  Reconstruction  of  multidimensional   signals  from  zero  crossings.  J.  Opt.  Soc.  Am.  A,  4(1),  p.221.   19. Phinyomark,  A.,  Nuidod,  A.,  Phukpattaranont,  P.  and  Limsakul,  C.  (2012).   Feature  Extraction  and  Reduction  of  Wavelet  Transform  Coefficients  for   EMG  Pattern  Classification.  Electronics  and  Electrical  Engineering,  122(6).   20. Hamedi,  M.,  Salleh,  S.,  Noor,  A.,  Swee,  T.  and  Aflzam,  I.  (2012).  Comparison   of  Different  Time-­‐domain  Feature  Extraction  Methods  on  Facial  Gestures’   EMGs.  Progress  in  Electromagnetics  Research  Symposium  Proceedings,   pp.1897  -­‐  1900.   21. Boisset,  S.  and  Goubel,  F.  (1972).  Integrated  electromyography  activity   and  muscle  work.  Journal  of  applied  Physiol,  35,  pp.695  -­‐  702.   22. Canal,  M.  (2008).  Comparison  of  Wavelet  and  Short  Time  Fourier   Transform  Methods  in  the  Analysis  of  EMG  Signals.  J  Med  Syst,  34(1),   pp.91-­‐94.   23. Asghari  Oskoei,  M.  and  Hu,  H.  (2007).  Myoelectric  control  systems—A   survey.  Biomedical  Signal  Processing  and  Control,  2(4),  pp.275-­‐294.   24. Misiti,  M.,  Misiti,  Y.,  Oppenheim,  G.  and  Poggi,  J.  (2015).  Wavelet  Toolbox   For  Use  with  MATLAB.  The  MathWorks.  Retrieved  April  7th  2015  from   http://in.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf     25. Sharma,  S.  and  Kumar,  G.  (2012).  Wavelet  analysis  based  feature   extraction  for  pattern  classification  from  Single  channel  acquired  EMG   signal.  Elixer  Control  Engineering,  50,  pp.10320  -­‐  10324.   26. Phinyomark,  A.,  Limsakul,  C.  and  Phukpattaranont,  P.  (2008).  EMG  feature   extraction  for  tolerance  of  white  Gaussian  noise.  International  workshop   and  symposium  on  science  and  technology,  pp.178  -­‐  183.   27. Zardoshti-­‐Kermani,  M.,  Wheeler,  B.,  Badie,  K.  and  Hashemi,  R.  (1995).   EMG  feature  evaluation  for  movement  control  of  upper  extremity   prostheses.  IEEE  Trans.  Rehab.  Eng.,  3(4),  pp.324-­‐333.   28. Goel,  P.,  Rai,  S.,  Chandra,  M.  and  Gupta,  V.  (2013).  Analysis  of  LMS   Algorithm  in  Wavelet  Domain.  Atlantis  press,  pp.734  -­‐  738.  
  • 32.   32   29. DNews,  (2012).  5  Major  advances  in  Robotic  Prosthetics:  DNews.  [onlne]   Available  at:  http://news.discovery.com/tech/robotics/five-°©-­‐‑major-­‐‑ advances-­‐‑robotic-prosthetics.htm [Accessed 1 April. 2014].   30. G. Li, A. E. Schultz and T. A. Kuiken,“Quantifying Pattern Recognition— Based Myoeletric Control of Multi-Functional Transradial Prosthesis,” IEEE Transactions Neural System Rehabilitation Engineering, Vol.18, No.2, 2010, pp.185-­‐‑192. doi:10.1109/TNSRE.2009.2039619    
  • 33.   33   Appendix     Graph  7  Hand  Lateral  Grasp     Graph  8  Hand  Lateral  Grasp  with  Motion  
  • 34.   34     Graph  9  Hand  open     Graph  10  Hand  Rest  Horizontal  (90  degrees)  
  • 35.   35     Graph  11  Hand  Rest  Vertical  (180  degrees)     Graph  12  Two  Finger  Pinch  
  • 36.   36     Graph  13  Wrist  Extension   Graph  14  Wrist  Flexion