SlideShare a Scribd company logo
1 of 1
Download to read offline
EMAILS:
• JUNSHAN WANG: wangjunshan@nus.edu.sg
• AJAY JASRA: staja@nus.edu.sg
• MARIA DE IORIO: m.deiorio@ucl.ac.uk
In the following article we provide an exposition of exact computational methods to
perform parameter inference from partially observed network models. In particular,
we consider the duplication attachment (DA) model which has a likelihood function
that typically cannot be evaluated in any reasonable computational time. We
consider a number of importance sampling (IS) and sequential Monte Carlo (SMC)
methods for approximating the likelihood of the network model for a fixed
parameter value. It is well-known that for IS, the relative variance of the likelihood
estimate typically grows at an exponential rate in the time parameter (here this is
associated to the size of the network): we prove that, under assumptions, the SMC
method will have relative variance which can grow only polynomially. In order to
perform parameter estimation, we develop particle Markov chain Monte Carlo
(PMCMC) algorithms to perform Bayesian inference. Such algorithms use the afore-
mentioned SMC algorithms within the transition dynamics. The approaches are
illustrated numerically.
!
ABSTRACT	
  
OBJECTIVES	
  
NUMERICAL	
  ILLUSTRATION	
  (CONTINUED)	
  
DPF (N=100) DPF (N=1000) DPF (N=10000)
Relative variance CPU time
2.  Parameter estimation
•  Auto-correlation plots
Marginal MCMC PMCMC with SMC PMCMC with DPF
•  Density plots
IID sampling Marginal MCMC PMCMC with SMC PMCMC with DPF
CONCLUSION	
  
ACKNOWLEGEMENTS	
  
1	
  Department	
  of	
  Sta.s.cs	
  &	
  Applied	
  Probability,	
  Na.onal	
  University	
  of	
  Singapore,	
  Singapore,	
  117546,	
  SG.	
  
2	
  Department	
  of	
  Sta.s.cal	
  Science,	
  University	
  College,	
  London,	
  WC1E	
  6BT,	
  UK.	
  
	
  
	
  
JUNSHAN	
  WANG1	
  &	
  AJAY	
  JASRA1	
  &	
  MARIA	
  DE	
  IORIO2	
  	
  
Computa.onal	
  Methods	
  for	
  a	
  Class	
  of	
  
Network	
  Models	
  	
  
COMPUTATIONAL	
  METHODS	
  
NUMERICAL	
  ILLUSTRATIONS	
  
1.  Likelihood approximation comparison.
IS (N=1000) IS (N=10000) ESS of IS (N=100,1000,10000)
SMC (N=1000) SMC (N=10000) ESS of SMC (N=100,1000,10000)
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
0
10
20
30
Parameter p, N=100
ESS
0.05 0.25 0.45 0.65 0.85
0
20
40
60
80
Parameter p, N=1000
ESS
0.05 0.25 0.45 0.65 0.85
0
200
400
600
Parameter p, N=10000
ESS
1 2 3 4 5 6 7 8 9
0
50
100
Time, N=100
ESS&UN
ESS UN
1 2 3 4 5 6 7 8 9
0
500
1000
Time, N=1000
ESS&UN
1 2 3 4 5 6 7 8 9
0
5000
10000
Time, N=10000
ESS&UN
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True Estimate Upper&Lower
0.05 0.25 0.45 0.65 0.85
−1
0
1
2
3
4
5
6
7
x 10
−11
Parameter p
Likelihood
True
SMC
IS
DPF
Upper of SMC
Lower of SMC
Upper of IS
Lower of IS
Upper of DPF
Lower of DPF
size IS STRA DPF
5 0.0003 0.0002 0.0000
6 0.0027 0.0030 0.0000
7 0.0043 0.0064 0.0000
8 0.0158 0.0142 0.0000
9 0.0149 0.0136 0.0010
10 0.0419 0.0128 0.0036
11 0.1512 0.0364 0.0084
12 0.5659 0.1115 0.0079
13 1.4224 0.3022 0.0657
−0.2 0 0.2 0.4 0.6 0.8 1
0
20
40
60
80
100
120
140
160
Parameter p
Frequency
−0.2 0 0.2 0.4 0.6 0.8 1
0
20
40
60
80
100
120
140
160
Parameter p
Frequency
−0.2 0 0.2 0.4 0.6 0.8 1
0
20
40
60
80
100
120
140
160
Parameter p
Frequency
−0.2 0 0.2 0.4 0.6 0.8 1
0
20
40
60
80
100
120
140
160
Parameter p
Frequency
0 2100 4200 6300
−0.05
0
0.05
Lag k
Auto−correlation
0 2100 4200 6300
−0.05
0
0.05
Lag k
Auto−correlation
0 2100 4200 6300
−0.05
0
0.05
Lag k
Auto−correlation
CONTACT	
  
1. Approximate the likelihood of the network model.
• Given a reducible graph G! and a fixed parameter value θ, the recursive manner
of the likelihood is:
L! G! =
1
t
ω!(v, G!)!L! δ(G!, v)
!∈!(!!)
with L! G!!
= 1, ω! v, G! = Ρ!(G!|δ(G!, v)) is the transition probability and
R(G!) is the collection of removable vertices of G!.
2. Perform parameter estimation.
• We will follow a Bayesian procedure and place a prior probability distribution !(!)
on the parameter; we will then seek to sample from the associated posterior
distribution !(!) ∝ L! G! !!(!) using MCMC.
1. Likelihood approximation.#
• Importance Sampling (IS)!
Advantage: run-time savings.
Disadvantage: the relative variance is !(ϰ!!!!) for some ϰ > 1.
• Sequential Monte Carlo (SMC)!
Advantage: the relative variance is no worse than !((! − !!)!).
Disadvantage: evolve on a finite state-space.
• Discrete Particle Filter (DPF)!
Advantage: explore the whole state-space.
Disadvantage: only excellent for small to medium size networks.
2. Parameter estimation.#
• Particle Markov Chain Monte Carlo (PMCMC)!
Advantage: applicable when the exact likelihood is unknown.
Disadvantage: scalability restriction due to both memory and computational demands.
!
1. The relative variance of the SMC method will only grow at a polynomial
rate in the number removable nodes. Whilst the relative variance of the
IS estimate of the likelihood typically grows at an exponential rate in the
number of removable nodes.
2. For small to medium sized networks, the DPF and DPF inside MCMC
seemed to perform better versus the SMC based versions. In general,
however, the computational time was much higher and this value was
quite high for each of our algorithms.
3. The two PMCMC algorithms perform similarly to the marginal MCMC. In
addition, they produce solutions consistent with i.i.d. sampling, which
means such methodology can be useful for network models.
!
• The second author was supported by an MOE Singapore grant.
• Special thanks to Prof. Ajay Jasra for his assistance and cooperation in
accomplishing this paper.
• This paper is about to appear on the Journal of Computational Biology and
able to be downloaded at
http://www.stat.nus.edu.sg/~staja/smc_network2.pdf.
!

More Related Content

Similar to poster_Wang Junshan

Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...
Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...
Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...Filip Krikava
 
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017Amazon Web Services Korea
 
Hyperspectral unmixing using novel conversion model.ppt
Hyperspectral unmixing using novel conversion model.pptHyperspectral unmixing using novel conversion model.ppt
Hyperspectral unmixing using novel conversion model.pptgrssieee
 
Phy Abstraction for LTE
Phy Abstraction for LTE Phy Abstraction for LTE
Phy Abstraction for LTE rajrajpatel2007
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Dataaimsnist
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Dennis Dang
 
Cross validation
Cross validationCross validation
Cross validationRidhaAfrawe
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Dataymelka
 
Macromodel of High Speed Interconnect using Vector Fitting Algorithm
Macromodel of High Speed Interconnect using Vector Fitting AlgorithmMacromodel of High Speed Interconnect using Vector Fitting Algorithm
Macromodel of High Speed Interconnect using Vector Fitting Algorithmijsrd.com
 
meng.ppt
meng.pptmeng.ppt
meng.pptaozcan1
 
Data Science Salon: MCL Clustering of Sparse Graphs
Data Science Salon: MCL Clustering of Sparse GraphsData Science Salon: MCL Clustering of Sparse Graphs
Data Science Salon: MCL Clustering of Sparse GraphsFormulatedby
 
Approaches to formal verification of ams design
Approaches to formal verification of ams designApproaches to formal verification of ams design
Approaches to formal verification of ams designAmbuj Mishra
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxJimmyPhoenix2
 
680report final
680report final680report final
680report finalRajesh M
 

Similar to poster_Wang Junshan (20)

Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...
Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...
Integrating Adaptation Mechanisms Using Control Theory Centric Architecture M...
 
TUPPC055_Final
TUPPC055_FinalTUPPC055_Final
TUPPC055_Final
 
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
 
Hyperspectral unmixing using novel conversion model.ppt
Hyperspectral unmixing using novel conversion model.pptHyperspectral unmixing using novel conversion model.ppt
Hyperspectral unmixing using novel conversion model.ppt
 
Phy Abstraction for LTE
Phy Abstraction for LTE Phy Abstraction for LTE
Phy Abstraction for LTE
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
 
L0421068072
L0421068072L0421068072
L0421068072
 
Cross validation
Cross validationCross validation
Cross validation
 
08 Statistical Models for Nets I, cross-section
08 Statistical Models for Nets I, cross-section08 Statistical Models for Nets I, cross-section
08 Statistical Models for Nets I, cross-section
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
 
Macromodel of High Speed Interconnect using Vector Fitting Algorithm
Macromodel of High Speed Interconnect using Vector Fitting AlgorithmMacromodel of High Speed Interconnect using Vector Fitting Algorithm
Macromodel of High Speed Interconnect using Vector Fitting Algorithm
 
meng.ppt
meng.pptmeng.ppt
meng.ppt
 
Data Science Salon: MCL Clustering of Sparse Graphs
Data Science Salon: MCL Clustering of Sparse GraphsData Science Salon: MCL Clustering of Sparse Graphs
Data Science Salon: MCL Clustering of Sparse Graphs
 
Approaches to formal verification of ams design
Approaches to formal verification of ams designApproaches to formal verification of ams design
Approaches to formal verification of ams design
 
JOURNALnew
JOURNALnewJOURNALnew
JOURNALnew
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptx
 
xldb-2015
xldb-2015xldb-2015
xldb-2015
 
energycon-2014
energycon-2014energycon-2014
energycon-2014
 
680report final
680report final680report final
680report final
 

poster_Wang Junshan

  • 1. EMAILS: • JUNSHAN WANG: wangjunshan@nus.edu.sg • AJAY JASRA: staja@nus.edu.sg • MARIA DE IORIO: m.deiorio@ucl.ac.uk In the following article we provide an exposition of exact computational methods to perform parameter inference from partially observed network models. In particular, we consider the duplication attachment (DA) model which has a likelihood function that typically cannot be evaluated in any reasonable computational time. We consider a number of importance sampling (IS) and sequential Monte Carlo (SMC) methods for approximating the likelihood of the network model for a fixed parameter value. It is well-known that for IS, the relative variance of the likelihood estimate typically grows at an exponential rate in the time parameter (here this is associated to the size of the network): we prove that, under assumptions, the SMC method will have relative variance which can grow only polynomially. In order to perform parameter estimation, we develop particle Markov chain Monte Carlo (PMCMC) algorithms to perform Bayesian inference. Such algorithms use the afore- mentioned SMC algorithms within the transition dynamics. The approaches are illustrated numerically. ! ABSTRACT   OBJECTIVES   NUMERICAL  ILLUSTRATION  (CONTINUED)   DPF (N=100) DPF (N=1000) DPF (N=10000) Relative variance CPU time 2.  Parameter estimation •  Auto-correlation plots Marginal MCMC PMCMC with SMC PMCMC with DPF •  Density plots IID sampling Marginal MCMC PMCMC with SMC PMCMC with DPF CONCLUSION   ACKNOWLEGEMENTS   1  Department  of  Sta.s.cs  &  Applied  Probability,  Na.onal  University  of  Singapore,  Singapore,  117546,  SG.   2  Department  of  Sta.s.cal  Science,  University  College,  London,  WC1E  6BT,  UK.       JUNSHAN  WANG1  &  AJAY  JASRA1  &  MARIA  DE  IORIO2     Computa.onal  Methods  for  a  Class  of   Network  Models     COMPUTATIONAL  METHODS   NUMERICAL  ILLUSTRATIONS   1.  Likelihood approximation comparison. IS (N=1000) IS (N=10000) ESS of IS (N=100,1000,10000) SMC (N=1000) SMC (N=10000) ESS of SMC (N=100,1000,10000) 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 0 10 20 30 Parameter p, N=100 ESS 0.05 0.25 0.45 0.65 0.85 0 20 40 60 80 Parameter p, N=1000 ESS 0.05 0.25 0.45 0.65 0.85 0 200 400 600 Parameter p, N=10000 ESS 1 2 3 4 5 6 7 8 9 0 50 100 Time, N=100 ESS&UN ESS UN 1 2 3 4 5 6 7 8 9 0 500 1000 Time, N=1000 ESS&UN 1 2 3 4 5 6 7 8 9 0 5000 10000 Time, N=10000 ESS&UN 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 −1 0 1 2 3 4 5 6 7 x 10 −11 Parameter p Likelihood True SMC IS DPF Upper of SMC Lower of SMC Upper of IS Lower of IS Upper of DPF Lower of DPF size IS STRA DPF 5 0.0003 0.0002 0.0000 6 0.0027 0.0030 0.0000 7 0.0043 0.0064 0.0000 8 0.0158 0.0142 0.0000 9 0.0149 0.0136 0.0010 10 0.0419 0.0128 0.0036 11 0.1512 0.0364 0.0084 12 0.5659 0.1115 0.0079 13 1.4224 0.3022 0.0657 −0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency −0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency −0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency −0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency 0 2100 4200 6300 −0.05 0 0.05 Lag k Auto−correlation 0 2100 4200 6300 −0.05 0 0.05 Lag k Auto−correlation 0 2100 4200 6300 −0.05 0 0.05 Lag k Auto−correlation CONTACT   1. Approximate the likelihood of the network model. • Given a reducible graph G! and a fixed parameter value θ, the recursive manner of the likelihood is: L! G! = 1 t ω!(v, G!)!L! δ(G!, v) !∈!(!!) with L! G!! = 1, ω! v, G! = Ρ!(G!|δ(G!, v)) is the transition probability and R(G!) is the collection of removable vertices of G!. 2. Perform parameter estimation. • We will follow a Bayesian procedure and place a prior probability distribution !(!) on the parameter; we will then seek to sample from the associated posterior distribution !(!) ∝ L! G! !!(!) using MCMC. 1. Likelihood approximation.# • Importance Sampling (IS)! Advantage: run-time savings. Disadvantage: the relative variance is !(ϰ!!!!) for some ϰ > 1. • Sequential Monte Carlo (SMC)! Advantage: the relative variance is no worse than !((! − !!)!). Disadvantage: evolve on a finite state-space. • Discrete Particle Filter (DPF)! Advantage: explore the whole state-space. Disadvantage: only excellent for small to medium size networks. 2. Parameter estimation.# • Particle Markov Chain Monte Carlo (PMCMC)! Advantage: applicable when the exact likelihood is unknown. Disadvantage: scalability restriction due to both memory and computational demands. ! 1. The relative variance of the SMC method will only grow at a polynomial rate in the number removable nodes. Whilst the relative variance of the IS estimate of the likelihood typically grows at an exponential rate in the number of removable nodes. 2. For small to medium sized networks, the DPF and DPF inside MCMC seemed to perform better versus the SMC based versions. In general, however, the computational time was much higher and this value was quite high for each of our algorithms. 3. The two PMCMC algorithms perform similarly to the marginal MCMC. In addition, they produce solutions consistent with i.i.d. sampling, which means such methodology can be useful for network models. ! • The second author was supported by an MOE Singapore grant. • Special thanks to Prof. Ajay Jasra for his assistance and cooperation in accomplishing this paper. • This paper is about to appear on the Journal of Computational Biology and able to be downloaded at http://www.stat.nus.edu.sg/~staja/smc_network2.pdf. !