SlideShare a Scribd company logo
1 of 20
JUAN CARDENAS - PHYSICS MAJOR
NIGMS RISE SCHOLAR
Juan CardenasCSUDH
Evidence for Λp Elastic
Scattering in the CLAS Detector
Cal State University, Dominguez Hills
Hadronic Structure Laboratory
Mentor: Dr. John Price
OUTLINE
Juan CardenasCSUDH
 Λp Scattering Motivation
 Previous Data
 Data mining g12
 Skimming
 Data Analysis Methods
 Results
 Future Plans
Proton Neutron
Juan CardenasCSUDH
GOAL OF NUCLEAR PHYSICS
Juan CardenasFeb 12th 2015
Juan CardenasFeb 12th 2015
PROTON STUDY
Juan CardenasCSUDH
 γp→γp
 Proton interacts via
EM + Strong force
 K+, π+, Ko, π-
 p, Λ, Ξ
 But.. other particles don’t
live long..
Κ
Λ
Ξ
Σ
π
n
p
Cross section of pX
Juan CardenasCSUDH
PHYSICAL EXPERIMENT
Juan CardenasCSUDH
 Data mining on g12
 1 of 2 with long target
 40cm LH2
 Energy 3.6 – 5.4GeV
 Well suited
 Large acceptance
(Spherical shape)
EVENT BREAKDOWN
Juan CardenasCSUDH
p
γ
πp
Λ
pΛ
Data Skim/Data Selection
o Look for 2 protons
o Apparent Baryon
# violation =
Rescattering
Signal
o 126TB -> 17GB
• Reconstruct
scattered Λ
Juan CardenasCSUDH
Apparent Baryon Number
Violation
126 TB
17GB
LAMBDA RECONSTRUCTION
Juan Cardenas
P
π
Λ
P
X
Λ
CSUDH
X
Λ mass = 1.115 GeV
MISSING MASS AT LAMBDA MASS!
Juan CardenasCSUDH
Implications
1:Brought Lambda
beams to Nuclear
Physics.
2: Twice the world
sample in 750Mev – 2.5
GeV range (p)
3: Data points 
Error bars 
Juan CardenasCSUDH
Special Thanks!
Juan Cardenas
 Dr. John Price
 CLAS collaboration
 Jefferson Lab
 NIGMS-RISE Program
 NIH
 Colleagues at CSUDH
CSUDH
Thank You
Juan CardenasCSUDH
FUTURE
Juan CardenasCSUDH
 Cross Section Requires
 Clean up background for
exact # of events
 Find effective path length
 PAC proposal
• Dedicated experiment for
Λ beam
Works Cited
Juan Cardenas
 Scattering Cross-section Graph
 http://pdg.lbl.gov/2015/hadronic-xsections/rpp2014-
lambdap_sigmap_gp_gd_gg_plots.pdf
Picture of CLAS Detector
 http://slideplayer.com/slide/1371778/
 Picture of Real Detector
 https://www.google.com/search?q=CLAS+detector&espv=2&biw=1280
&bih=705&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjepZXerMbL
AhVL9GMKHaolA4oQ_AUIBygC#imgrc=jx78kxI3wJ-gJM%3A
 PROTON
 https://en.wikipedia.org/wiki/Proton#/media/File:Quark_structure_pr
oton.svg
 Neutron
 https://en.wikipedia.org/wiki/Neutron#/media/File:Quark_structure_
neutron.svg
CSUDH
Works cited Cont.
Juan Cardenas
 (Funnel pic)
https://41perspectives.files.wordpress.com/2013/07
/funnel-diagram-powerpoint2.jpg
CSUDH
Probability of Scattering in G12
Juan Cardenas
 Given our parameters how often should Λp→ Λp
happen?
NLp » 4700events
NLp = NL ×ctL ×rLH2
×
NA
AH
×sLp
NLp =(26,000,000)×(7.9cm)×(.071
g
cm3
)×(
6.02´1023
1.008g
)×(20´10-27
cm2
)
NLp =175,000
NLp =175,000´.50´.054
CSUDH
Acceptance Rate
Juan Cardenas
 CLAS has a 60% acceptance for positively-charged
particles
 50% acceptance for negatively-charged particles
 Accounting for detected particles [K+π - p p]
 (0.6 *0.5 * 0.6 * 0.6) = 0.108 = 10.8%.
 Half of K+ Decay before hitting detector
 0.108 * 0.5 = 0.054 = 5.4 %
CSUDH

More Related Content

Viewers also liked

ゲ−ム部合同ジャム@東ゲ部 Unityチーム
ゲ−ム部合同ジャム@東ゲ部 Unityチームゲ−ム部合同ジャム@東ゲ部 Unityチーム
ゲ−ム部合同ジャム@東ゲ部 UnityチームYuuki Ogino
 
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部ver
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部verVR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部ver
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部verYuuki Ogino
 
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech Tokyo
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech TokyoVR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech Tokyo
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech TokyoYuuki Ogino
 
Accolades slide
Accolades slideAccolades slide
Accolades slideErin Ham
 
Парикмахерский бренд Joico в прессе июнь 2016
Парикмахерский бренд Joico в прессе июнь 2016Парикмахерский бренд Joico в прессе июнь 2016
Парикмахерский бренд Joico в прессе июнь 2016nk010282
 
STI 1900ALFULL2-ID
STI 1900ALFULL2-IDSTI 1900ALFULL2-ID
STI 1900ALFULL2-IDsavomir
 
Presentacion n2 estadistica
Presentacion n2 estadisticaPresentacion n2 estadistica
Presentacion n2 estadisticaGustavolemusg
 

Viewers also liked (14)

ゲ−ム部合同ジャム@東ゲ部 Unityチーム
ゲ−ム部合同ジャム@東ゲ部 Unityチームゲ−ム部合同ジャム@東ゲ部 Unityチーム
ゲ−ム部合同ジャム@東ゲ部 Unityチーム
 
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部ver
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部verVR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部ver
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 東ゲ部ver
 
Plano y recta en el espacio
Plano y recta en el espacioPlano y recta en el espacio
Plano y recta en el espacio
 
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech Tokyo
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech TokyoVR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech Tokyo
VR開発しくじり先生。JVRH2016で初めてVR開発、UE4で挑戦 ver.VR Tech Tokyo
 
Music Video Script
Music Video ScriptMusic Video Script
Music Video Script
 
Denzel Riley
Denzel RileyDenzel Riley
Denzel Riley
 
Day One Start Training Manual
Day One Start Training ManualDay One Start Training Manual
Day One Start Training Manual
 
Accolades slide
Accolades slideAccolades slide
Accolades slide
 
Парикмахерский бренд Joico в прессе июнь 2016
Парикмахерский бренд Joico в прессе июнь 2016Парикмахерский бренд Joico в прессе июнь 2016
Парикмахерский бренд Joico в прессе июнь 2016
 
resumé_2016
resumé_2016resumé_2016
resumé_2016
 
STI 1900ALFULL2-ID
STI 1900ALFULL2-IDSTI 1900ALFULL2-ID
STI 1900ALFULL2-ID
 
Planificación del marketing
Planificación del marketingPlanificación del marketing
Planificación del marketing
 
Presentacion n2 estadistica
Presentacion n2 estadisticaPresentacion n2 estadistica
Presentacion n2 estadistica
 
Gladys a.
Gladys a.Gladys a.
Gladys a.
 

Similar to Statewide SRD presentation (Official)

Y DNA Surname Projects - Some Fresh Ideas
 Y DNA Surname Projects - Some Fresh Ideas Y DNA Surname Projects - Some Fresh Ideas
Y DNA Surname Projects - Some Fresh IdeasFamily Tree DNA
 
Neural Network Fits of Parton Distributions
Neural Network Fits of Parton DistributionsNeural Network Fits of Parton Distributions
Neural Network Fits of Parton DistributionsJuan Rojo
 
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...Larry Smarr
 
Making the cut with CRISPR
Making the cut with CRISPRMaking the cut with CRISPR
Making the cut with CRISPREdward Perello
 
Statistical issues in global fits: Lessons from PDF determinations
Statistical issues in global fits: Lessons from PDF determinationsStatistical issues in global fits: Lessons from PDF determinations
Statistical issues in global fits: Lessons from PDF determinationsJuan Rojo
 
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMD
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMDUncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMD
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMDCan Ozdoruk
 
Big Data Challenges at NASA
Big Data Challenges at NASABig Data Challenges at NASA
Big Data Challenges at NASADataWorks Summit
 
Optimal transport driven CycleGAN for unsupervised learning in inverse problems
Optimal transport driven CycleGAN for unsupervised learning in inverse problemsOptimal transport driven CycleGAN for unsupervised learning in inverse problems
Optimal transport driven CycleGAN for unsupervised learning in inverse problemsByeongsuSim1
 
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark Summit
 
Scalable Data Mining and Archiving in the Era of the Square Kilometre Array
Scalable Data Mining and Archiving in the Era of the Square Kilometre ArrayScalable Data Mining and Archiving in the Era of the Square Kilometre Array
Scalable Data Mining and Archiving in the Era of the Square Kilometre ArrayChris Mattmann
 
Parton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron ColliderParton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron Colliderjuanrojochacon
 
HPC, Machine Learning, and Big Data
HPC, Machine Learning, and Big DataHPC, Machine Learning, and Big Data
HPC, Machine Learning, and Big DataWarren Kibbe
 

Similar to Statewide SRD presentation (Official) (16)

Y DNA Surname Projects - Some Fresh Ideas
 Y DNA Surname Projects - Some Fresh Ideas Y DNA Surname Projects - Some Fresh Ideas
Y DNA Surname Projects - Some Fresh Ideas
 
Neural Network Fits of Parton Distributions
Neural Network Fits of Parton DistributionsNeural Network Fits of Parton Distributions
Neural Network Fits of Parton Distributions
 
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...
The Pacific Research Platform: A Regional-Scale Big Data Analytics Cyberinfra...
 
Making the cut with CRISPR
Making the cut with CRISPRMaking the cut with CRISPR
Making the cut with CRISPR
 
Statistical issues in global fits: Lessons from PDF determinations
Statistical issues in global fits: Lessons from PDF determinationsStatistical issues in global fits: Lessons from PDF determinations
Statistical issues in global fits: Lessons from PDF determinations
 
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMD
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMDUncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMD
Uncovering the Elusive HIV Capsid with Kepler GPUs Running NAMD and VMD
 
Big Data Challenges at NASA
Big Data Challenges at NASABig Data Challenges at NASA
Big Data Challenges at NASA
 
Search for Diboson Resonances in CMS
Search for Diboson Resonances in CMSSearch for Diboson Resonances in CMS
Search for Diboson Resonances in CMS
 
Curriculum Vitae
Curriculum VitaeCurriculum Vitae
Curriculum Vitae
 
Optimal transport driven CycleGAN for unsupervised learning in inverse problems
Optimal transport driven CycleGAN for unsupervised learning in inverse problemsOptimal transport driven CycleGAN for unsupervised learning in inverse problems
Optimal transport driven CycleGAN for unsupervised learning in inverse problems
 
23AFMC_Beamer.pdf
23AFMC_Beamer.pdf23AFMC_Beamer.pdf
23AFMC_Beamer.pdf
 
NNPDF3.1
NNPDF3.1NNPDF3.1
NNPDF3.1
 
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
 
Scalable Data Mining and Archiving in the Era of the Square Kilometre Array
Scalable Data Mining and Archiving in the Era of the Square Kilometre ArrayScalable Data Mining and Archiving in the Era of the Square Kilometre Array
Scalable Data Mining and Archiving in the Era of the Square Kilometre Array
 
Parton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron ColliderParton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron Collider
 
HPC, Machine Learning, and Big Data
HPC, Machine Learning, and Big DataHPC, Machine Learning, and Big Data
HPC, Machine Learning, and Big Data
 

Statewide SRD presentation (Official)

  • 1. JUAN CARDENAS - PHYSICS MAJOR NIGMS RISE SCHOLAR Juan CardenasCSUDH Evidence for Λp Elastic Scattering in the CLAS Detector Cal State University, Dominguez Hills Hadronic Structure Laboratory Mentor: Dr. John Price
  • 2. OUTLINE Juan CardenasCSUDH  Λp Scattering Motivation  Previous Data  Data mining g12  Skimming  Data Analysis Methods  Results  Future Plans
  • 6. PROTON STUDY Juan CardenasCSUDH  γp→γp  Proton interacts via EM + Strong force  K+, π+, Ko, π-  p, Λ, Ξ  But.. other particles don’t live long.. Κ Λ Ξ Σ π n p
  • 7. Cross section of pX Juan CardenasCSUDH
  • 8. PHYSICAL EXPERIMENT Juan CardenasCSUDH  Data mining on g12  1 of 2 with long target  40cm LH2  Energy 3.6 – 5.4GeV  Well suited  Large acceptance (Spherical shape)
  • 10. Data Skim/Data Selection o Look for 2 protons o Apparent Baryon # violation = Rescattering Signal o 126TB -> 17GB • Reconstruct scattered Λ Juan CardenasCSUDH Apparent Baryon Number Violation 126 TB 17GB
  • 12. MISSING MASS AT LAMBDA MASS! Juan CardenasCSUDH
  • 13. Implications 1:Brought Lambda beams to Nuclear Physics. 2: Twice the world sample in 750Mev – 2.5 GeV range (p) 3: Data points  Error bars  Juan CardenasCSUDH
  • 14. Special Thanks! Juan Cardenas  Dr. John Price  CLAS collaboration  Jefferson Lab  NIGMS-RISE Program  NIH  Colleagues at CSUDH CSUDH
  • 16. FUTURE Juan CardenasCSUDH  Cross Section Requires  Clean up background for exact # of events  Find effective path length  PAC proposal • Dedicated experiment for Λ beam
  • 17. Works Cited Juan Cardenas  Scattering Cross-section Graph  http://pdg.lbl.gov/2015/hadronic-xsections/rpp2014- lambdap_sigmap_gp_gd_gg_plots.pdf Picture of CLAS Detector  http://slideplayer.com/slide/1371778/  Picture of Real Detector  https://www.google.com/search?q=CLAS+detector&espv=2&biw=1280 &bih=705&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjepZXerMbL AhVL9GMKHaolA4oQ_AUIBygC#imgrc=jx78kxI3wJ-gJM%3A  PROTON  https://en.wikipedia.org/wiki/Proton#/media/File:Quark_structure_pr oton.svg  Neutron  https://en.wikipedia.org/wiki/Neutron#/media/File:Quark_structure_ neutron.svg CSUDH
  • 18. Works cited Cont. Juan Cardenas  (Funnel pic) https://41perspectives.files.wordpress.com/2013/07 /funnel-diagram-powerpoint2.jpg CSUDH
  • 19. Probability of Scattering in G12 Juan Cardenas  Given our parameters how often should Λp→ Λp happen? NLp » 4700events NLp = NL ×ctL ×rLH2 × NA AH ×sLp NLp =(26,000,000)×(7.9cm)×(.071 g cm3 )×( 6.02´1023 1.008g )×(20´10-27 cm2 ) NLp =175,000 NLp =175,000´.50´.054 CSUDH
  • 20. Acceptance Rate Juan Cardenas  CLAS has a 60% acceptance for positively-charged particles  50% acceptance for negatively-charged particles  Accounting for detected particles [K+π - p p]  (0.6 *0.5 * 0.6 * 0.6) = 0.108 = 10.8%.  Half of K+ Decay before hitting detector  0.108 * 0.5 = 0.054 = 5.4 % CSUDH

Editor's Notes

  1. Lambda reconstruction is the method that we used to try and determine the scattering process. What we did was take the four momentums of the pi minus and one of the protons, take this one for example, and added them do see if their paths intersected and observed the mass of the particle they decayed from. (Click) The plot we obtained showed a very tall peak at 1.115GeV/C^2 telling us that the particle was indeed (Click) a lambda.   We are now ready to determine if scattering took place. (Click) We, again trace back the paths of the particles, this time the proton and the lambda, to see if their paths intersected. From here we created a mass plot of the particle that created them. If this particle turns out to be a lambda then this means that elastic scattering has been taken place. This plot is what we had been looking for.   After creating the mass plot, (Click) what do you know, after 2 years of mistakes and hard work, we got it, evidence for lambda elastic scattering in the CLAS detector.
  2. Given that CLAS is not designed to detect these types of events, we did not expect this good of a result. The number of detected particles here is estimated to be about 2000. This is about twice the world data sample! In other words, twice as much as anyone has ever detected, combined.
  3. What these findings have done is bring hadron beams to the world of nuclear physics; all previous measurements of the cross section using hadron beams have been done by particle physicists. We are the first to show evidence of one in the context of a nuclear physics experiment. Also with the amount of events we have observed we can potentially 1) increase the amount of data points on this plot and 2) reduce the size of the error bars for the points that exist within this window here, this is the momentum range of the incoming or (beam lambda).
  4. So where do we go from here. What we plan to do next is find some values that are crucial to calculating the cross section. These are finding the exact number of beam lambdas And finding their effective path length, (This is basically how far the lambdas travel before colliding with another proton)   Also as of now, we are in the process of writing a research proposal for the construction of an experiment dedicated to detecting these scattering events.