SlideShare a Scribd company logo
1 of 1
Download to read offline
LATEX TikZposter
Capacity Expansion with Possible Default
Hessah Al Motairi, Jos´e Pasos, Mihail Zervos
  j.e.pasos@lse.ac.uk
Capacity Expansion with Possible Default
Hessah Al Motairi, Jos´e Pasos, Mihail Zervos
  j.e.pasos@lse.ac.uk
1. Economic motivation
Given an uncertain demand for a product, when and how much to
increase production capacity?
• Reducing capacity is not allowed.
• We face the risk of demand vanishing (default).
time
demand
2. Problem formulation
Given the linear diffusion
dXt = b(Xt) dt + σ(Xt) dWt, X0 = x > 0,
maximise
Jx,y(ξ) = Ex
T0
0
e−Λt
[h(Xt, Yt) dt − K(Yt) ◦ dξt] + e−ΛT0g(YT0
)1{T0<∞} ,
where
Yt = y + ξt, and Λt =
t
0
r(Xt) dt,
over all increasing, c`agl`ad and adapted processes {ξt}t≥0 satisfying the admissibility condition
Ex
T0
0
e−Λt
K(Yt) ◦ dξt < ∞.
3. Intuitive argument
Y
X
capacity
demand
G
W
I
4. Outline of our method
i
Characterise “investment” I and “waiting” W regions in
terms of an HJB equation.
ii
Describe the “free-boundary” G as the solution of an in-
tegral equation.
iii Construct a smooth solution w to the HJB equation.
iv
Prove that w coincides with the value function of the op-
timisation problem.
v Show that the intuitive “wait-and-invest” strategy is opti-
mal.
5. HJB equations
max {Lw(x, y) + h(x, y), wy(x, y) − K(y)} = 0, (x, y) ∈ S,
w(0, y) = g(y), y ∈ [0, ¯y] ∩ R.
6. Free-boundary
For each y ∈ (0, y∞) there exists a unique G(y) > 0 such that
G(y)
0
Ψ(s) [hy(s, y) − r(s)K(y)] ds = K(y) − g (y),
and G : (0, y∞) → (0, ∞) is C1
and strictly increasing.
7. Solution to the HJB
w(x, y) =



B(y)ϕ(x) + Rh(·,y)
(x, y), if (x, y) ∈ W ∩ (R+ × [y∞, ¯y]) ,
A(y)ψ(x) + B(y)ϕ(x) + Rh(·,y)
(x, y), if (x, y) ∈ W ∩ (R+ × [y0, y∞[) ,
w x, G−1
(x) −
G−1
(x)
y K(z) dz, if (x, y) ∈ I,
8. Optimal strategy
ξt = G−1
(X∗
t ) − y 1{X∗
t ≥G(y),t>0}, Yt = y + ξt = y ∨ G−1
(X∗
t ).
9. Basic example
When {Xt}t≥0 is a Brownian motion absorbed at zero, and
h(x, y) = eαx
yβ
, K(y) = K > 0,
r(x) = r > 0, g(y) = g y,
the equation for G in the variable z = eG
is given by
0 =
β
λr + α
z2λr+α
−
rK
λr
y1−β
z2λr
+
2rK
λr
− (K − g) y1−β
−
2βλr
λ2
r − α2
zλr
+
β
λr − α
zα
−
rK
λr
y1−β
, where λr =
√
2r.
r = 2, α = 1.5, β = 0.25,
g = 8, K = 10, 20, 50.
y
5 100
x
27
54
Capacity is low for current
demand: invest.
Capacity is high for current
demand: wait.
Smooth boundary separating
the two regions.
W expands as the invest-
ing cost increases.

More Related Content

What's hot

Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile Locale
Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile LocaleEtude Des Proprietes Physicochimiques Et Caracterisation Dune Argile Locale
Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile LocaleRaouf Alsaytara
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualStéphane Canu
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Stochastic Differential Equations: Application to Pension Funds under Adverse...
Stochastic Differential Equations: Application to Pension Funds under Adverse...Stochastic Differential Equations: Application to Pension Funds under Adverse...
Stochastic Differential Equations: Application to Pension Funds under Adverse...Marius García Meza
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Factorise quadratic equations
Factorise quadratic equationsFactorise quadratic equations
Factorise quadratic equationsAngela Phillips
 
Factorise quadratic equations 2
Factorise quadratic equations 2Factorise quadratic equations 2
Factorise quadratic equations 2Angela Phillips
 
Quadratic equations 5
Quadratic equations 5Quadratic equations 5
Quadratic equations 52IIM
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingEnthought, Inc.
 
Tugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadratTugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadrattrisnasariasih
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsoruis
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.SEENET-MTP
 

What's hot (18)

Lecture5 kernel svm
Lecture5 kernel svmLecture5 kernel svm
Lecture5 kernel svm
 
Image denoising
Image denoisingImage denoising
Image denoising
 
Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile Locale
Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile LocaleEtude Des Proprietes Physicochimiques Et Caracterisation Dune Argile Locale
Etude Des Proprietes Physicochimiques Et Caracterisation Dune Argile Locale
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dual
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Stochastic Differential Equations: Application to Pension Funds under Adverse...
Stochastic Differential Equations: Application to Pension Funds under Adverse...Stochastic Differential Equations: Application to Pension Funds under Adverse...
Stochastic Differential Equations: Application to Pension Funds under Adverse...
 
Divisor de 7
Divisor de 7Divisor de 7
Divisor de 7
 
Integral table
Integral tableIntegral table
Integral table
 
Factorise quadratic equations
Factorise quadratic equationsFactorise quadratic equations
Factorise quadratic equations
 
Factorise quadratic equations 2
Factorise quadratic equations 2Factorise quadratic equations 2
Factorise quadratic equations 2
 
Boolean algebra laws
Boolean algebra lawsBoolean algebra laws
Boolean algebra laws
 
Quadratic equations 5
Quadratic equations 5Quadratic equations 5
Quadratic equations 5
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
Tugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadratTugas matematika menemukan konsep persamaan kuadrat
Tugas matematika menemukan konsep persamaan kuadrat
 
Integral table
Integral tableIntegral table
Integral table
 
Lec38
Lec38Lec38
Lec38
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 

Similar to Poster

SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSTahia ZERIZER
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notesAhmed Tayeh
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesAlexander Decker
 
Hedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear FrictionsHedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear Frictionsguasoni
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
Mixed ISS systems
Mixed ISS systemsMixed ISS systems
Mixed ISS systemsMKosmykov
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
脳の計算論 第3章「リズム活動と位相応答」
脳の計算論 第3章「リズム活動と位相応答」脳の計算論 第3章「リズム活動と位相応答」
脳の計算論 第3章「リズム活動と位相応答」Kohei Ichikawa
 
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...asahiushio1
 
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition MethodStationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition MethodADVENTURE Project
 
Gradient Descent
Gradient DescentGradient Descent
Gradient DescentBruce Lee
 
Nonlinear Price Impact and Portfolio Choice
Nonlinear Price Impact and Portfolio ChoiceNonlinear Price Impact and Portfolio Choice
Nonlinear Price Impact and Portfolio Choiceguasoni
 
Hybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networksHybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networksMKosmykov
 

Similar to Poster (20)

Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Statistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient DescentStatistical Inference Using Stochastic Gradient Descent
Statistical Inference Using Stochastic Gradient Descent
 
Levy processes in the energy markets
Levy processes in the energy marketsLevy processes in the energy markets
Levy processes in the energy markets
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
 
mathFin01
mathFin01mathFin01
mathFin01
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
 
Hedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear FrictionsHedging, Arbitrage, and Optimality with Superlinear Frictions
Hedging, Arbitrage, and Optimality with Superlinear Frictions
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Mixed ISS systems
Mixed ISS systemsMixed ISS systems
Mixed ISS systems
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
脳の計算論 第3章「リズム活動と位相応答」
脳の計算論 第3章「リズム活動と位相応答」脳の計算論 第3章「リズム活動と位相応答」
脳の計算論 第3章「リズム活動と位相応答」
 
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
 
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition MethodStationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method
Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method
 
Ada boosting2
Ada boosting2Ada boosting2
Ada boosting2
 
Gradient Descent
Gradient DescentGradient Descent
Gradient Descent
 
Nonlinear Price Impact and Portfolio Choice
Nonlinear Price Impact and Portfolio ChoiceNonlinear Price Impact and Portfolio Choice
Nonlinear Price Impact and Portfolio Choice
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Hybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networksHybrid dynamics in large-scale logistics networks
Hybrid dynamics in large-scale logistics networks
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
 

Poster

  • 1. LATEX TikZposter Capacity Expansion with Possible Default Hessah Al Motairi, Jos´e Pasos, Mihail Zervos   j.e.pasos@lse.ac.uk Capacity Expansion with Possible Default Hessah Al Motairi, Jos´e Pasos, Mihail Zervos   j.e.pasos@lse.ac.uk 1. Economic motivation Given an uncertain demand for a product, when and how much to increase production capacity? • Reducing capacity is not allowed. • We face the risk of demand vanishing (default). time demand 2. Problem formulation Given the linear diffusion dXt = b(Xt) dt + σ(Xt) dWt, X0 = x > 0, maximise Jx,y(ξ) = Ex T0 0 e−Λt [h(Xt, Yt) dt − K(Yt) ◦ dξt] + e−ΛT0g(YT0 )1{T0<∞} , where Yt = y + ξt, and Λt = t 0 r(Xt) dt, over all increasing, c`agl`ad and adapted processes {ξt}t≥0 satisfying the admissibility condition Ex T0 0 e−Λt K(Yt) ◦ dξt < ∞. 3. Intuitive argument Y X capacity demand G W I 4. Outline of our method i Characterise “investment” I and “waiting” W regions in terms of an HJB equation. ii Describe the “free-boundary” G as the solution of an in- tegral equation. iii Construct a smooth solution w to the HJB equation. iv Prove that w coincides with the value function of the op- timisation problem. v Show that the intuitive “wait-and-invest” strategy is opti- mal. 5. HJB equations max {Lw(x, y) + h(x, y), wy(x, y) − K(y)} = 0, (x, y) ∈ S, w(0, y) = g(y), y ∈ [0, ¯y] ∩ R. 6. Free-boundary For each y ∈ (0, y∞) there exists a unique G(y) > 0 such that G(y) 0 Ψ(s) [hy(s, y) − r(s)K(y)] ds = K(y) − g (y), and G : (0, y∞) → (0, ∞) is C1 and strictly increasing. 7. Solution to the HJB w(x, y) =    B(y)ϕ(x) + Rh(·,y) (x, y), if (x, y) ∈ W ∩ (R+ × [y∞, ¯y]) , A(y)ψ(x) + B(y)ϕ(x) + Rh(·,y) (x, y), if (x, y) ∈ W ∩ (R+ × [y0, y∞[) , w x, G−1 (x) − G−1 (x) y K(z) dz, if (x, y) ∈ I, 8. Optimal strategy ξt = G−1 (X∗ t ) − y 1{X∗ t ≥G(y),t>0}, Yt = y + ξt = y ∨ G−1 (X∗ t ). 9. Basic example When {Xt}t≥0 is a Brownian motion absorbed at zero, and h(x, y) = eαx yβ , K(y) = K > 0, r(x) = r > 0, g(y) = g y, the equation for G in the variable z = eG is given by 0 = β λr + α z2λr+α − rK λr y1−β z2λr + 2rK λr − (K − g) y1−β − 2βλr λ2 r − α2 zλr + β λr − α zα − rK λr y1−β , where λr = √ 2r. r = 2, α = 1.5, β = 0.25, g = 8, K = 10, 20, 50. y 5 100 x 27 54 Capacity is low for current demand: invest. Capacity is high for current demand: wait. Smooth boundary separating the two regions. W expands as the invest- ing cost increases.