SlideShare a Scribd company logo
1 of 27
Download to read offline
Design and Operation of a
Distillation Column for the
Binary Mixture:
Propane and Hydrogen Sulfide
Project Designers:
Jonathan Sherwin
Ross Starks
CHE-305-001
W. Jeffery Horne, P.E.
Bonus Design Project
April 25, 2014
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
2
Table of Contents
Abstract ........................................................................................................................................................3
Diagrams..................................................................................................................................................4-19
T-x-y Diagrams for H2S ...........................................................................................................................4-5
Activity Coefficients ...............................................................................................................................6-7
McCabe-Thiele Diagrams…………………………………………………………………………………………………………….….8-19
Process Flow Diagram for optimal Distillation Column……………………………………………………………………...20
Tables……………………………………………………………………………………………………………………………………….……..21-22
Appendix…………………………………………………………………………………………………………………………………….…..23-27
Calculations……………………………………………………………………………………………………………………………………….23
Data……………………………………………………………………………………………………………………………………..………24-26
References…………………………………………………………………………………………………………………………………………27
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
3
Abstract
We have been tasked with the job of determining the operating conditions and costs associated with the
design and operation of a distillation column, which is to be part of a 24/7/365 industrial operation. The
feed is a binary mixture of propane (C3H8) and hydrogen sulfide (H2S). The feed is a 50% by weight
mixture of propane and hydrogen sulfide. A feed mass flow rate of 2500 kg/hr is used. Both the distillate
and bottoms products are required to be at least 90% pure, which is attainable because the binary
mixture of propane and hydrogen sulfide is not azeotropic.
Equilibrium data was attained for a range of pressures: 0.1 atm, 1.0 atm, 5.0 atm, and 10.0 atm. T-x-y
data, activity coefficients, K-values, and relative volatility for the two compounds were used to construct
Equilibrium curves. This portion of our data and diagrams was calculated and is represented by
Equations 1-9 respectively.
McCabe-Thiele diagrams were constructed for each set of equilibrium data. For each set of pressure
data, feed conditions of a bubble-point liquid, a dew-point vapor, and a 50/50 by mass mixed
vapor/liquid were evaluated. Each feed scenario had an independent q-line and the values are
represented in Table 2. The minimum reflux was determined for each scenario. A ratio of reflux to
minimum reflux within the accepted range was chosen to be 1.3, so that R = 1.3Rmin. From the McCabe-
Thiele diagrams, the number of trays was determined for each scenario. The dew-point vapor feed at
0.1 atm, 5 atm, and 10 atm showed to be the most efficient, in terms of numbers of trays. R values and
the number of trays can both be seen in Table 1 for all conditions. R values were calculated using
Equation 12 and the number of trays was extrapolated from the McCabe-Thiele diagrams.
Total condenser and partial reboiler duties were calculated for all scenarios using Equations 14 and 15
with the results represented by Table 5. To use Equations 14 and 15 we found D and B, VB, and ΔH 𝑎𝑣𝑔
𝑣𝑎𝑝
by
using Equation 10, Equation 13, and the NIST Webbook respectively. Each scenario was evaluated in
terms of dollars per kilogram using equation 15 with results posted in Table 6. As seen in Table 6, the
lowest average cost is $119.98 to produce 90% pure products and this is achieved with the a bubbling
point liquid feed and an operating pressure of 10atm. Therefore, we suggest these operating conditions
to achieve profit maximization with this binary mixture: Bubbling-Point Liquid Feed, Operating Pressure
of 10atm, 10 Stages, and the feed located at Stage 5. A Process Flow Diagram for the Distillation Column
for optimal conditions can be seen in Figure 21.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
4
Figure 1. T-x-y Diagram for H2S at 0.1 atm.
Figure 2. T-x-y Diagram for H2S at 1.0 atm.
-98
-96
-94
-92
-90
-88
-86
-84
-82
0 0.2 0.4 0.6 0.8 1
T(degreesC)
x,y
liquid H2S
vapor H2S
-65
-60
-55
-50
-45
-40
0 0.2 0.4 0.6 0.8 1
T(degreesC)
x,y
liquid H2S
vapor H2S
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
5
Figure 3. T-x-y Diagram for H2S at 5.0 atm.
Figure 4. T-x-y Diagram for H2S at 10.0 atm.
-25
-20
-15
-10
-5
0
5
0 0.2 0.4 0.6 0.8 1
T(degreesC)
x,y
liquid H2S
vapor H2S
-5
0
5
10
15
20
25
30
0 0.2 0.4 0.6 0.8 1
T(degreesC)
x,y
liquid H2S
vapor H2S
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
6
Figure 5. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 0.1 atm.
Figure 6. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 1.0 atm.
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0 0.2 0.4 0.6 0.8 1
ActivityCoefficient
Liquid Mole Fraction
H2S
C3H8
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ActivityCoefficient
Liquid Mole Fraction
H2S
C3H8
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
7
Figure 7. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 5.0 atm.
Figure 8. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 10.0 atm.
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ActivityCoefficient
Liquid Mole Fraction
H2S
C3H8
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0 0.2 0.4 0.6 0.8 1
ActivityCoefficient
Liquid Mole Fraction
C3H8
H2S
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
8
Figure 9. McCabe-Thiele Diagram for a Bubble Point Vapor Feed at 0.1 atm.
The McCabe-Thiele Diagram was created from the equilibrium curve and a 45⁰ line on a
squared chart. The dotted bottoms liquid mole fraction line, xB, was drawn at 0.1. The dotted
feed liquid mole fraction line, zF, was drawn at 0.5. The dotted distillate liquid mole fraction
line, xD, was drawn at 0.9. The q-line was drawn from zF, using equation 11 and Table 2. The
Operating Line for the Minimum Rectifying Section was drawn from the intersection of the q-
line with the equilibrium curve to the intersection of xD with the 45⁰ line. The slope of the
Minimum Rectifying Section was determined and an Rmin value was calculated. An R value was
then calculated from equation 12, and the Operating Line for the Rectifying section was then
adjusted. The Operating Line for the Stripping Section was then draw from the intersection of
the Operating Line for the Rectifying Section and the q-line to the intersection of xB with the
45⁰ line. The stage lines were then stepped off from xD to xB. The number of equilibrium stages
was then counted from the number of stage lines. This method was used in all McCabe-Thiele
Diagrams, referenced in Figures 10-20.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
9
Figure 10. McCabe-Thiele Diagram for a Dew Point Vapor Feed at .1 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
10
Figure 11. McCabe-Thiele Diagram for a 50/50 by mass Vapor/Liquid Feed at .1 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
11
Figure 12. McCabe-Thiele Diagram for a Bubble Point Liquid Feed at 1 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
12
Figure 13. McCabe-Thiele Diagram for a Dew Point Vapor Feed at 1 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
13
Figure 14. McCabe-Thiele Diagram for a 50/50 by mass Vapor/Liquid Feed at 1 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
14
Figure 15. McCabe-Thiele Diagram for a Bubble-Point Liquid Feed at 5.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
15
Figure 16. McCabe-Thiele Diagram for a Dew-Point Vapor Feed at 5.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
16
Figure 17. McCabe-Thiele Diagram for a 50/50 by mass vapor/liquid feed at 5.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
17
Figure 18. McCabe-Thiele Diagram for a Bubble-Point Liquid Feed at 10.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
18
Figure 19. McCabe-Thiele Diagram for a Dew-Point Vapor Feed at 10.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
19
Figure 20. McCabe-Thiele Diagram for a 50/50 by mass vapor/liquid feed at 10.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
20
Reflux Drum
Reflux
TotalCondenser
Boilup
Partial Reboiler
999912 kW/h
Bottoms
Distillate
Feed
2500 kg/h
50% wt. H2S
50% wt. C3H8
Pi: 10.0 atm
Feed Conditions: Bubble Point Liquid
1
10
5
6
1250 kg/h
xD = 0.90 H2S
1250 kg/h
xB = 0.10 H2S
999831 kW/h
Figure 21. Process Flow Diagram for optimal Distillation Column for Bubble Point Liquid Feed Condition
at 10.0 atm.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
21
Tables
Pressure
Feed Conditions Rmin R Number of Trays
0.1 atm
Bubble-Point Liquid 0.7699 1.0008 10
Dew-Point Vapor 1.7777 2.3110 8
50/50 by mass vapor/liquid 1.6666 2.1666 10
1.0 atm
Bubble-Point Liquid 0.9613 1.2496 12
Dew-Point Vapor 2.0000 2.6000 10
50/50 by mass vapor/liquid 1.3182 1.7136 11
5.0 atm
Bubble-Point Liquid 0.7778 1.0111 11
Dew-Point Vapor 1.8182 2.3637 8
50/50 by mass vapor/liquid 1.1807 1.5349 10
10.0 atm
Bubble-Point Liquid 0.7778 1.0111 10
Dew-Point Vapor 1.8182 2.3637 8
50/50 by mass vapor/liquid 1.1807 1.5349 10
Table 1. Rmin values, R values, and Number of Trays for respective Feed Conditions and Pressures.
Feed Condition q slope of q-line
Bubble Point Liquid 1 vertical
Dew Point Vapor 0 horizontal
50/50 by mass vapor/liquid 0.5 -1
Table 2. q values and slope of q-line, given by equation 11, for respective Feed Conditions.
P=.1atm BP DP 50-50
m of strip 1.500 1.763 1.662
Vb 2.001 1.311 1.510
P=1atm BP DP 50-50
m of strip 1.445 1.625 1.582
Vb 2.250 1.600 1.717
P=5atm BP DP 50-50
m of strip 1.497 1.737 1.667
Vb 2.011 1.357 1.500
P=10atm BP DP 50-50
m of strip 1.497 1.737 1.667
Vb 2.011 1.357 1.500
Table 3. Representation of equation 13 for respective Pressures.
P (atm) ΔH (kJ/kg)
0.1 466.03
1 486.16
5 434.67
10 397.73
Table 4. Average Heat of Vaporization for the Binary Mixture at the respective Pressure from Nist
Webbook.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
22
BP
(kW/h)
DP
(kW/h)
50/50
(kW/h) BP ($/kg)
DP
($/kg)
50/50
($/kg)
P=.1atm Qc 1165534 1928826 1466037 139.86 231.46 175.92
Qr 1165534 763763 879622 139.86 91.65 105.55
139.86 161.56 140.74 AVG
P=1atm Qc 1367107 2187720 1649077 164.05 262.53 197.89
Qr 1367107 972320 1043293 164.05 116.68 125.20
164.05 189.60 161.54 AVG
P=5atm Qc 1092715 1827585 1377317 131.13 219.31 165.28
Qr 1092803 737435 815013 131.14 88.49 97.80
131.13 153.90 131.54 AVG
P=10atm Qc 999831 1672235 1260241 119.98 200.67 151.23
Qr 999912 674751 745734 119.99 80.97 89.49
119.98 140.82 120.36 AVG
Table 5. Cost analysis representative of equations 14-16.
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
23
Calculations
1. Antoine Equation for C3H8: 𝑙𝑜𝑔10 𝑃𝑎
∗
= 6.80398 −
803.80
𝑇(℃)+246.99
2. Antoine Equation for H2S: 𝑙𝑜𝑔10 𝑃𝑏
∗
= 6.9937 −
768.1315
𝑇(℃)+247.09
3. 𝑃𝑎 = 𝑥 𝑎 𝑃𝑎
∗
4. 𝑃𝑏 = (1 − 𝑥 𝑎)𝑃𝑏
∗
5. 𝑦𝑎 =
𝑃 𝑎
𝑃 𝑎+𝑃 𝑏
6. 𝑃𝑇 = 𝑃𝑎 + 𝑃𝑏 =
76 𝑡𝑜𝑟𝑟 (0.1 𝑎𝑡𝑚), 760 𝑡𝑜𝑟𝑟 (1.0 𝑎𝑡𝑚), 3800 𝑡𝑜𝑟𝑟 (5.0 𝑎𝑡𝑚), 7600 𝑡𝑜𝑟𝑟 (10.0 𝑎𝑡𝑚)
7. K-values: 𝐾𝑖 =
𝑦𝑖
𝑥 𝑖
8. Relative Volatility: 𝛼𝑖𝑗 =
𝐾𝑖
𝐾 𝑗
9. Activity Coefficients: 𝛾𝑖 =
𝐾𝑖 𝑃 𝑇
𝑃𝑖
∗
10. Distillation Column Material Balance: 𝐹𝑧 𝐹 = 𝐷𝑥 𝐷 + 𝐵𝑥 𝐵
11. q-line equation: 𝑦 = (
𝑞
𝑞−1
) 𝑥 − (
𝑧 𝐹
𝑞−1
)
12. Operating Line for Rectifying Section:𝑦 = (
𝑅
𝑅+1
) 𝑥 + (
1
𝑅+1
) 𝑥 𝐷; 𝑤ℎ𝑒𝑟𝑒 𝑅 = 1.3𝑅 𝑚𝑖𝑛
13. Operating Line for Stripping Section:𝑦 = (
𝑉 𝐵+1
𝑉 𝐵
) 𝑥 = (
1
𝑉 𝐵
) 𝑥 𝐵;
𝑤ℎ𝑒𝑟𝑒 𝑉𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑜𝑖𝑙𝑢𝑝 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟.
14. Condenser Duty(kW/h): 𝑄 𝐶 = 𝐷 ∗ (𝑅 + 1) ∗ Δ𝐻 𝑎𝑣𝑔
𝑣𝑎𝑝
15. Reboiler Duty(kW/h): 𝑄 𝑅 = 𝐵 ∗ 𝑉𝐵 ∗ Δ𝐻 𝑎𝑣𝑔
𝑣𝑎𝑝
16.
$
𝑘𝑔
= (
𝑘𝑊
ℎ
) 𝑄 ∗
.09$
(
𝑘𝑊
ℎ
)
∗
1
𝐵𝑜𝑟 𝐷
∗
1
60%
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
24
Raw Data
H2S C3H8 P (atm) torr
A 6.99387 6.80398 0.1 76
B 768.132 803.81 1 760
C 247.09 246.99 5 3800
10 7600
xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21
0 1 -96.861 28.175 76.000 0.000 76.000 76.000 0.000 1.000 0.371 1.000 0.371 2.697 0.238 1.000
0.05 0.95 -96.452 29.134 78.467 1.457 74.544 76.000 0.019 0.981 0.383 1.032 0.371 2.693 0.308 0.997
0.1 0.9 -96.028 30.157 81.094 3.016 72.985 76.000 0.040 0.960 0.397 1.067 0.372 2.689 0.381 0.988
0.15 0.85 -95.588 31.250 83.897 4.688 71.313 76.000 0.062 0.938 0.411 1.104 0.372 2.685 0.455 0.977
0.2 0.8 -95.132 32.421 86.895 6.484 69.516 76.000 0.085 0.915 0.427 1.143 0.373 2.680 0.529 0.963
0.25 0.75 -94.656 33.678 90.107 8.420 67.581 76.000 0.111 0.889 0.443 1.186 0.374 2.676 0.602 0.947
0.3 0.7 -94.161 35.031 93.558 10.509 65.491 76.000 0.138 0.862 0.461 1.231 0.374 2.671 0.672 0.930
0.35 0.65 -93.644 36.490 97.275 12.772 63.228 76.000 0.168 0.832 0.480 1.280 0.375 2.666 0.740 0.913
0.4 0.6 -93.104 38.069 101.287 15.228 60.772 76.000 0.200 0.800 0.501 1.333 0.376 2.661 0.805 0.896
0.45 0.55 -92.539 39.782 105.633 17.902 58.098 76.000 0.236 0.764 0.523 1.390 0.377 2.655 0.866 0.878
0.5 0.5 -91.946 41.647 110.353 20.823 55.177 76.000 0.274 0.726 0.548 1.452 0.377 2.650 0.924 0.861
0.55 0.45 -91.323 43.684 115.498 24.026 51.974 76.000 0.316 0.684 0.575 1.520 0.378 2.644 0.978 0.844
0.6 0.4 -90.668 45.916 121.126 27.550 48.450 76.000 0.362 0.638 0.604 1.594 0.379 2.638 1.029 0.828
0.65 0.35 -89.977 48.374 127.306 31.443 44.557 76.000 0.414 0.586 0.636 1.675 0.380 2.632 1.076 0.812
0.7 0.3 -89.245 51.091 134.121 35.764 40.236 76.000 0.471 0.529 0.672 1.765 0.381 2.625 1.119 0.797
0.75 0.25 -88.470 54.109 141.673 40.582 35.418 76.000 0.534 0.466 0.712 1.864 0.382 2.618 1.160 0.782
0.8 0.2 -87.645 57.479 150.083 45.983 30.017 76.000 0.605 0.395 0.756 1.975 0.383 2.611 1.198 0.767
0.85 0.15 -86.766 61.264 159.502 52.075 23.925 76.000 0.685 0.315 0.806 2.099 0.384 2.604 1.233 0.753
0.9 0.1 -85.824 65.543 170.117 58.988 17.012 76.000 0.776 0.224 0.862 2.238 0.385 2.596 1.265 0.740
0.95 0.05 -84.811 70.413 182.163 66.893 9.108 76.001 0.880 0.120 0.926 2.397 0.387 2.587 1.295 0.728
1 0 -83.719 76.000 195.933 76.000 0.000 76.000 1.000 0.000 1.000 2.578 0.388 2.578 1.300 0.715
xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21
0 1 -60.336 314.465 760.000 0.000 760.000 760.000 0.000 1.000 0.414 1.000 0.414 2.417 0.289 1.000
0.05 0.95 -59.748 324.409 782.926 16.220 743.780 760.000 0.021 0.979 0.427 1.030 0.414 2.413 0.355 0.998
0.1 0.9 -59.139 334.964 807.226 33.496 726.504 760.000 0.044 0.956 0.441 1.062 0.415 2.410 0.423 0.992
0.15 0.85 -58.509 346.188 833.027 51.928 708.073 760.001 0.068 0.932 0.456 1.096 0.416 2.406 0.492 0.983
0.2 0.8 -57.855 358.143 860.465 71.628 688.372 760.001 0.094 0.906 0.471 1.132 0.416 2.403 0.561 0.972
0.25 0.75 -57.176 370.900 889.701 92.725 667.275 760.000 0.122 0.878 0.488 1.171 0.417 2.399 0.629 0.960
0.3 0.7 -56.470 384.541 920.911 115.362 644.638 760.000 0.152 0.848 0.506 1.212 0.418 2.395 0.695 0.947
0.35 0.65 -55.736 399.158 954.300 139.705 620.295 760.000 0.184 0.816 0.525 1.256 0.418 2.391 0.759 0.933
0.4 0.6 -54.970 414.856 990.096 165.943 594.058 760.000 0.218 0.782 0.546 1.303 0.419 2.387 0.821 0.919
0.45 0.55 -54.172 431.756 1028.563 194.290 565.710 760.000 0.256 0.744 0.568 1.353 0.420 2.382 0.880 0.905
0.5 0.5 -53.337 449.996 1070.005 224.998 535.002 760.000 0.296 0.704 0.592 1.408 0.421 2.378 0.936 0.890
0.55 0.45 -52.463 469.735 1114.768 258.354 501.646 760.000 0.340 0.660 0.618 1.467 0.421 2.373 0.990 0.876
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
25
0.6 0.4 -51.547 491.161 1163.259 294.697 465.304 760.000 0.388 0.612 0.646 1.531 0.422 2.368 1.040 0.862
0.65 0.35 -50.585 514.490 1215.948 334.418 425.582 760.000 0.440 0.560 0.677 1.600 0.423 2.363 1.088 0.848
0.7 0.3 -49.572 539.976 1273.388 377.984 382.017 760.000 0.497 0.503 0.710 1.676 0.424 2.358 1.133 0.835
0.75 0.25 -48.503 567.923 1336.231 425.942 334.058 760.000 0.560 0.440 0.747 1.758 0.425 2.353 1.175 0.821
0.8 0.2 -47.374 598.688 1405.250 478.950 281.050 760.000 0.630 0.370 0.788 1.849 0.426 2.347 1.215 0.808
0.85 0.15 -46.177 632.700 1481.368 537.795 222.205 760.000 0.708 0.292 0.833 1.949 0.427 2.341 1.252 0.796
0.9 0.1 -44.906 670.479 1565.700 603.431 156.570 760.001 0.794 0.206 0.882 2.060 0.428 2.335 1.287 0.784
0.95 0.05 -43.551 712.654 1659.591 677.021 82.980 760.001 0.891 0.109 0.938 2.184 0.429 2.329 1.320 0.772
1 0 -42.102 760.000 1764.697 760.000 0.000 760.000 1.000 0.000 1.000 2.322 0.431 2.322 1.360 0.761
xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21
0 1 -22.101 1697.169 3800.000 0.000 3800.000 3800.000 0.000 1.000 0.447 1.000 0.447 2.239 0.325 1.000
0.05 0.95 -21.296 1747.730 3908.015 87.386 3712.614 3800.001 0.023 0.977 0.460 1.028 0.447 2.236 0.388 0.998
0.1 0.9 -20.464 1801.199 4022.089 180.120 3619.880 3800.000 0.047 0.953 0.474 1.058 0.448 2.233 0.453 0.994
0.15 0.85 -19.602 1857.828 4142.736 278.674 3521.326 3800.000 0.073 0.927 0.489 1.090 0.448 2.230 0.518 0.987
0.2 0.8 -18.710 1917.894 4270.527 383.579 3416.421 3800.000 0.101 0.899 0.505 1.124 0.449 2.227 0.583 0.978
0.25 0.75 -17.785 1981.709 4406.097 495.427 3304.573 3800.000 0.130 0.870 0.522 1.159 0.450 2.223 0.648 0.968
0.3 0.7 -16.824 2049.625 4550.161 614.888 3185.113 3800.000 0.162 0.838 0.539 1.197 0.450 2.220 0.711 0.957
0.35 0.65 -15.826 2122.034 4703.520 742.712 3057.288 3800.000 0.195 0.805 0.558 1.238 0.451 2.217 0.772 0.945
0.4 0.6 -14.788 2199.382 4867.079 879.753 2920.247 3800.000 0.232 0.768 0.579 1.281 0.452 2.213 0.832 0.933
0.45 0.55 -13.706 2282.173 5041.859 1026.978 2773.022 3800.000 0.270 0.730 0.601 1.327 0.453 2.209 0.889 0.921
0.5 0.5 -12.578 2370.979 5229.021 1185.489 2614.511 3800.000 0.312 0.688 0.624 1.376 0.453 2.205 0.945 0.909
0.55 0.45 -11.400 2466.455 5429.889 1356.550 2443.450 3800.000 0.357 0.643 0.649 1.429 0.454 2.201 0.998 0.896
0.6 0.4 -10.168 2569.350 5645.974 1541.610 2258.390 3800.000 0.406 0.594 0.676 1.486 0.455 2.197 1.048 0.884
0.65 0.35 -8.878 2680.529 5879.017 1742.344 2057.656 3800.000 0.459 0.541 0.705 1.547 0.456 2.193 1.096 0.872
0.7 0.3 -7.523 2800.990 6131.024 1960.693 1839.307 3800.000 0.516 0.484 0.737 1.613 0.457 2.189 1.142 0.860
0.75 0.25 -6.100 2931.892 6404.323 2198.919 1601.081 3800.000 0.579 0.421 0.772 1.685 0.458 2.184 1.186 0.848
0.8 0.2 -4.601 3074.593 6701.629 2459.674 1340.326 3800.000 0.647 0.353 0.809 1.764 0.459 2.180 1.227 0.836
0.85 0.15 -3.018 3230.684 7026.124 2746.081 1053.919 3800.000 0.723 0.277 0.850 1.849 0.460 2.175 1.266 0.825
0.9 0.1 -1.345 3402.049 7381.558 3061.844 738.156 3800.000 0.806 0.194 0.895 1.943 0.461 2.170 1.304 0.814
0.95 0.05 0.430 3590.927 7772.385 3411.381 388.619 3800.000 0.898 0.102 0.945 2.045 0.462 2.164 1.339 0.803
1 0 2.316 3800.000 8203.922 3800.000 0.000 3800.000 1.000 0.000 1.000 2.159 0.463 2.159 1.380 0.792
xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21
0 1 -0.345 3507.561 7600.000 0.000 7600.000 7600.000 0.000 1.000 0.462 1.000 0.462 2.167 0.340 1.000
0.05 0.95 0.597 3609.151 7810.044 180.458 7419.542 7599.999 0.024 0.976 0.475 1.028 0.462 2.164 0.402 0.998
0.1 0.9 1.571 3716.406 8031.510 371.641 7228.359 7600.000 0.049 0.951 0.489 1.057 0.463 2.161 0.465 0.994
0.15 0.85 2.578 3829.794 8265.330 574.469 7025.531 7600.000 0.076 0.924 0.504 1.088 0.463 2.158 0.529 0.988
0.2 0.8 3.621 3949.841 8512.540 789.968 6810.032 7600.000 0.104 0.896 0.520 1.120 0.464 2.155 0.592 0.980
0.25 0.75 4.702 4077.128 8774.291 1019.282 6580.718 7600.000 0.134 0.866 0.536 1.155 0.465 2.152 0.655 0.971
0.3 0.7 5.823 4212.307 9051.867 1263.692 6336.307 7599.999 0.166 0.834 0.554 1.191 0.465 2.149 0.717 0.961
0.35 0.65 6.988 4356.109 9346.711 1524.638 6075.362 7600.000 0.201 0.799 0.573 1.230 0.466 2.146 0.778 0.950
0.4 0.6 8.199 4509.352 9660.431 1803.741 5796.259 7600.000 0.237 0.763 0.593 1.271 0.467 2.142 0.837 0.939
0.45 0.55 9.459 4672.964 9994.848 2102.834 5497.166 7600.000 0.277 0.723 0.615 1.315 0.468 2.139 0.893 0.928
0.5 0.5 10.772 4847.989 10352.010 2423.995 5176.005 7600.000 0.319 0.681 0.638 1.362 0.468 2.135 0.948 0.916
0.55 0.45 12.142 5035.617 10734.250 2769.589 4830.411 7600.000 0.364 0.636 0.663 1.412 0.469 2.132 1.001 0.905
0.6 0.4 13.574 5237.200 11144.200 3142.320 4457.680 7600.000 0.413 0.587 0.689 1.466 0.470 2.128 1.052 0.893
0.65 0.35 15.073 5454.289 11584.890 3545.288 4054.712 7600.000 0.466 0.534 0.718 1.524 0.471 2.124 1.100 0.881
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
26
0.7 0.3 16.643 5688.662 12059.790 3982.063 3617.937 7600.000 0.524 0.476 0.749 1.587 0.472 2.120 1.146 0.870
0.75 0.25 18.292 5942.374 12572.880 4456.780 3143.220 7600.000 0.586 0.414 0.782 1.654 0.473 2.116 1.190 0.859
0.8 0.2 20.026 6217.805 13128.780 4974.244 2625.756 7600.000 0.655 0.345 0.818 1.727 0.474 2.111 1.233 0.847
0.85 0.15 21.853 6517.731 13732.860 5540.071 2059.929 7600.000 0.729 0.271 0.858 1.807 0.475 2.107 1.273 0.837
0.9 0.1 23.782 6845.402 14391.390 6160.861 1439.139 7600.001 0.811 0.189 0.901 1.894 0.476 2.102 1.311 0.826
0.95 0.05 25.824 7204.645 15111.750 6844.412 755.588 7600.000 0.901 0.099 0.948 1.988 0.477 2.098 1.347 0.816
1 0 27.989 7600.000 15902.660 7600.000 0.000 7600.000 1.000 0.000 1.000 2.092 0.478 2.092 1.370 0.806
Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide
27
References
Seader, J. D., Ernest J. Henley, and D. Keith Roper. Separation Process Principles. Third ed. N.p.:Courier
Westford, 2011. Print.
NIST Chemistry Webbook. N.p., n.d. Web. 24 Apr. 2014. <http://webbook.nist.gov/chemistry/>.
Thermophysical Properties of Fluid Systemsby E.W. Lemmon, M.O. McLinden, D.G.
Friend

More Related Content

What's hot

Flash Distillation in Chemical and Process Engineering (Part 3 of 3)
Flash Distillation in Chemical and Process Engineering (Part 3 of 3)Flash Distillation in Chemical and Process Engineering (Part 3 of 3)
Flash Distillation in Chemical and Process Engineering (Part 3 of 3)Chemical Engineering Guy
 
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Hamed Hoorijani
 
Factors affecting distillation column operation
Factors affecting distillation column operationFactors affecting distillation column operation
Factors affecting distillation column operationKarnav Rana
 
Distillation column design
Distillation column designDistillation column design
Distillation column designFaruk Eyigün
 
Absorption stripping
Absorption strippingAbsorption stripping
Absorption strippingjogeman
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxIhsan Wassan
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columnsalsyourih
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Chemical Engineering Guy
 
urea processes - Copy.pptx
urea processes - Copy.pptxurea processes - Copy.pptx
urea processes - Copy.pptxArmaanKhan92
 
Chemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short TutorialChemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short TutorialVijay Sarathy
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillationSujeet TAMBE
 
multi component distillation 20130408
multi component distillation 20130408multi component distillation 20130408
multi component distillation 20130408Atal Khan
 
Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column  Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column Rita EL Khoury
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Chemical Engineering Guy
 

What's hot (20)

Flash Distillation in Chemical and Process Engineering (Part 3 of 3)
Flash Distillation in Chemical and Process Engineering (Part 3 of 3)Flash Distillation in Chemical and Process Engineering (Part 3 of 3)
Flash Distillation in Chemical and Process Engineering (Part 3 of 3)
 
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
 
Energy balance (leacture 6)
Energy balance (leacture 6)Energy balance (leacture 6)
Energy balance (leacture 6)
 
Factors affecting distillation column operation
Factors affecting distillation column operationFactors affecting distillation column operation
Factors affecting distillation column operation
 
Distillation column design
Distillation column designDistillation column design
Distillation column design
 
Absorption stripping
Absorption strippingAbsorption stripping
Absorption stripping
 
Feed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and refluxFeed conditions in distillation column with respect to feed plate and reflux
Feed conditions in distillation column with respect to feed plate and reflux
 
Batch Distillation
Batch DistillationBatch Distillation
Batch Distillation
 
Design of packed columns
Design of packed columnsDesign of packed columns
Design of packed columns
 
Absorption process
Absorption processAbsorption process
Absorption process
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
 
urea processes - Copy.pptx
urea processes - Copy.pptxurea processes - Copy.pptx
urea processes - Copy.pptx
 
Chemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short TutorialChemical Process Calculations – Short Tutorial
Chemical Process Calculations – Short Tutorial
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
 
Distillation column
Distillation columnDistillation column
Distillation column
 
multi component distillation 20130408
multi component distillation 20130408multi component distillation 20130408
multi component distillation 20130408
 
Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column  Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column
 
gas absorption
gas absorptiongas absorption
gas absorption
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
 

Viewers also liked

Distillation Column
Distillation ColumnDistillation Column
Distillation ColumnKhalid Nawaz
 
Distillation
DistillationDistillation
DistillationAadil22
 
Compress heat exchanger design w notes
Compress heat exchanger design w notesCompress heat exchanger design w notes
Compress heat exchanger design w notesSharon Wenger
 
design_fyp_slide.ppt
design_fyp_slide.pptdesign_fyp_slide.ppt
design_fyp_slide.pptAhmad Firdaus
 
Distillation
DistillationDistillation
DistillationMeet2395
 
Maintenance of distillation column asmita
Maintenance of distillation column asmitaMaintenance of distillation column asmita
Maintenance of distillation column asmitaAsmita Mishra
 
Distillation
DistillationDistillation
Distillationajeet006
 
Introduction To Distillation
Introduction To DistillationIntroduction To Distillation
Introduction To DistillationEdward Dobson
 
Types and design of the towers trays
Types and design of the towers traysTypes and design of the towers trays
Types and design of the towers traysFertiglobe
 

Viewers also liked (13)

Distillation Column
Distillation ColumnDistillation Column
Distillation Column
 
distillation
distillationdistillation
distillation
 
Distillation
DistillationDistillation
Distillation
 
Compress heat exchanger design w notes
Compress heat exchanger design w notesCompress heat exchanger design w notes
Compress heat exchanger design w notes
 
design_fyp_slide.ppt
design_fyp_slide.pptdesign_fyp_slide.ppt
design_fyp_slide.ppt
 
Distillation
DistillationDistillation
Distillation
 
Maintenance of distillation column asmita
Maintenance of distillation column asmitaMaintenance of distillation column asmita
Maintenance of distillation column asmita
 
Distillation
DistillationDistillation
Distillation
 
Introduction To Distillation
Introduction To DistillationIntroduction To Distillation
Introduction To Distillation
 
Types and design of the towers trays
Types and design of the towers traysTypes and design of the towers trays
Types and design of the towers trays
 
Distillation
DistillationDistillation
Distillation
 
Distillation
DistillationDistillation
Distillation
 
distillation
distillationdistillation
distillation
 

Similar to Design and Operation of a Distillation Column for the Binary Mixture

416018-1R0 Oil-Water Sampling Mixer (002)
416018-1R0 Oil-Water Sampling Mixer (002)416018-1R0 Oil-Water Sampling Mixer (002)
416018-1R0 Oil-Water Sampling Mixer (002)Diego Paiva
 
McCabe Thiele graphical design method .ppt
McCabe Thiele graphical design method .pptMcCabe Thiele graphical design method .ppt
McCabe Thiele graphical design method .pptHussamElddinKhasawne
 
Dc lab 5
Dc lab 5Dc lab 5
Dc lab 5ykhan60
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum processnazir1988
 
Publication - An Iteratively Refined Distillation Line Method
Publication - An Iteratively Refined Distillation Line MethodPublication - An Iteratively Refined Distillation Line Method
Publication - An Iteratively Refined Distillation Line MethodChristopher Hassan
 
Design finalreport2
Design finalreport2Design finalreport2
Design finalreport2jic050
 
An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...Shusei Tanaka
 
145199757 distillation-handbook
145199757 distillation-handbook145199757 distillation-handbook
145199757 distillation-handbookvijaykale1981
 
Design and simulation of a multiple effect evaporator using vapor bleeding
Design and simulation of a multiple effect evaporator using vapor bleedingDesign and simulation of a multiple effect evaporator using vapor bleeding
Design and simulation of a multiple effect evaporator using vapor bleedingAhmed AL-Dallal
 
This report outlines the procedure followed during the distilla.docx
This report outlines the procedure followed during the distilla.docxThis report outlines the procedure followed during the distilla.docx
This report outlines the procedure followed during the distilla.docxherthalearmont
 
Microsoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDFMicrosoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDFhesam ahmadian
 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basicsSalman1011
 
McCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMcCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMeet Patel
 

Similar to Design and Operation of a Distillation Column for the Binary Mixture (20)

416018-1R0 Oil-Water Sampling Mixer (002)
416018-1R0 Oil-Water Sampling Mixer (002)416018-1R0 Oil-Water Sampling Mixer (002)
416018-1R0 Oil-Water Sampling Mixer (002)
 
McCabe Thiele graphical design method .ppt
McCabe Thiele graphical design method .pptMcCabe Thiele graphical design method .ppt
McCabe Thiele graphical design method .ppt
 
Dc lab 5
Dc lab 5Dc lab 5
Dc lab 5
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process
 
Publication - An Iteratively Refined Distillation Line Method
Publication - An Iteratively Refined Distillation Line MethodPublication - An Iteratively Refined Distillation Line Method
Publication - An Iteratively Refined Distillation Line Method
 
Design finalreport2
Design finalreport2Design finalreport2
Design finalreport2
 
An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...An effective reservoir management by streamline based simulation, history mat...
An effective reservoir management by streamline based simulation, history mat...
 
145199757 distillation-handbook
145199757 distillation-handbook145199757 distillation-handbook
145199757 distillation-handbook
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 
Design and simulation of a multiple effect evaporator using vapor bleeding
Design and simulation of a multiple effect evaporator using vapor bleedingDesign and simulation of a multiple effect evaporator using vapor bleeding
Design and simulation of a multiple effect evaporator using vapor bleeding
 
This report outlines the procedure followed during the distilla.docx
This report outlines the procedure followed during the distilla.docxThis report outlines the procedure followed during the distilla.docx
This report outlines the procedure followed during the distilla.docx
 
Microsoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDFMicrosoft PowerPoint - Ch90279.PDF
Microsoft PowerPoint - Ch90279.PDF
 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basics
 
McCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMcCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHOD
 
320 c info
320 c info320 c info
320 c info
 
320 c info
320 c info320 c info
320 c info
 
Degrees of freedom
Degrees of freedomDegrees of freedom
Degrees of freedom
 
A Basic Primer on Liquid-Liquid Extraction
A Basic Primer on Liquid-Liquid ExtractionA Basic Primer on Liquid-Liquid Extraction
A Basic Primer on Liquid-Liquid Extraction
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
2.2 McCabe-Thiele method
 
Distillation.pdf
Distillation.pdfDistillation.pdf
Distillation.pdf
 

Design and Operation of a Distillation Column for the Binary Mixture

  • 1. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide Project Designers: Jonathan Sherwin Ross Starks CHE-305-001 W. Jeffery Horne, P.E. Bonus Design Project April 25, 2014
  • 2. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 2 Table of Contents Abstract ........................................................................................................................................................3 Diagrams..................................................................................................................................................4-19 T-x-y Diagrams for H2S ...........................................................................................................................4-5 Activity Coefficients ...............................................................................................................................6-7 McCabe-Thiele Diagrams…………………………………………………………………………………………………………….….8-19 Process Flow Diagram for optimal Distillation Column……………………………………………………………………...20 Tables……………………………………………………………………………………………………………………………………….……..21-22 Appendix…………………………………………………………………………………………………………………………………….…..23-27 Calculations……………………………………………………………………………………………………………………………………….23 Data……………………………………………………………………………………………………………………………………..………24-26 References…………………………………………………………………………………………………………………………………………27
  • 3. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 3 Abstract We have been tasked with the job of determining the operating conditions and costs associated with the design and operation of a distillation column, which is to be part of a 24/7/365 industrial operation. The feed is a binary mixture of propane (C3H8) and hydrogen sulfide (H2S). The feed is a 50% by weight mixture of propane and hydrogen sulfide. A feed mass flow rate of 2500 kg/hr is used. Both the distillate and bottoms products are required to be at least 90% pure, which is attainable because the binary mixture of propane and hydrogen sulfide is not azeotropic. Equilibrium data was attained for a range of pressures: 0.1 atm, 1.0 atm, 5.0 atm, and 10.0 atm. T-x-y data, activity coefficients, K-values, and relative volatility for the two compounds were used to construct Equilibrium curves. This portion of our data and diagrams was calculated and is represented by Equations 1-9 respectively. McCabe-Thiele diagrams were constructed for each set of equilibrium data. For each set of pressure data, feed conditions of a bubble-point liquid, a dew-point vapor, and a 50/50 by mass mixed vapor/liquid were evaluated. Each feed scenario had an independent q-line and the values are represented in Table 2. The minimum reflux was determined for each scenario. A ratio of reflux to minimum reflux within the accepted range was chosen to be 1.3, so that R = 1.3Rmin. From the McCabe- Thiele diagrams, the number of trays was determined for each scenario. The dew-point vapor feed at 0.1 atm, 5 atm, and 10 atm showed to be the most efficient, in terms of numbers of trays. R values and the number of trays can both be seen in Table 1 for all conditions. R values were calculated using Equation 12 and the number of trays was extrapolated from the McCabe-Thiele diagrams. Total condenser and partial reboiler duties were calculated for all scenarios using Equations 14 and 15 with the results represented by Table 5. To use Equations 14 and 15 we found D and B, VB, and ΔH 𝑎𝑣𝑔 𝑣𝑎𝑝 by using Equation 10, Equation 13, and the NIST Webbook respectively. Each scenario was evaluated in terms of dollars per kilogram using equation 15 with results posted in Table 6. As seen in Table 6, the lowest average cost is $119.98 to produce 90% pure products and this is achieved with the a bubbling point liquid feed and an operating pressure of 10atm. Therefore, we suggest these operating conditions to achieve profit maximization with this binary mixture: Bubbling-Point Liquid Feed, Operating Pressure of 10atm, 10 Stages, and the feed located at Stage 5. A Process Flow Diagram for the Distillation Column for optimal conditions can be seen in Figure 21.
  • 4. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 4 Figure 1. T-x-y Diagram for H2S at 0.1 atm. Figure 2. T-x-y Diagram for H2S at 1.0 atm. -98 -96 -94 -92 -90 -88 -86 -84 -82 0 0.2 0.4 0.6 0.8 1 T(degreesC) x,y liquid H2S vapor H2S -65 -60 -55 -50 -45 -40 0 0.2 0.4 0.6 0.8 1 T(degreesC) x,y liquid H2S vapor H2S
  • 5. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 5 Figure 3. T-x-y Diagram for H2S at 5.0 atm. Figure 4. T-x-y Diagram for H2S at 10.0 atm. -25 -20 -15 -10 -5 0 5 0 0.2 0.4 0.6 0.8 1 T(degreesC) x,y liquid H2S vapor H2S -5 0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 T(degreesC) x,y liquid H2S vapor H2S
  • 6. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 6 Figure 5. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 0.1 atm. Figure 6. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 1.0 atm. 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 0 0.2 0.4 0.6 0.8 1 ActivityCoefficient Liquid Mole Fraction H2S C3H8 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ActivityCoefficient Liquid Mole Fraction H2S C3H8
  • 7. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 7 Figure 7. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 5.0 atm. Figure 8. Activity Coefficients of H2S & C3H8 vs. liquid mole fractions at 10.0 atm. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ActivityCoefficient Liquid Mole Fraction H2S C3H8 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 0 0.2 0.4 0.6 0.8 1 ActivityCoefficient Liquid Mole Fraction C3H8 H2S
  • 8. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 8 Figure 9. McCabe-Thiele Diagram for a Bubble Point Vapor Feed at 0.1 atm. The McCabe-Thiele Diagram was created from the equilibrium curve and a 45⁰ line on a squared chart. The dotted bottoms liquid mole fraction line, xB, was drawn at 0.1. The dotted feed liquid mole fraction line, zF, was drawn at 0.5. The dotted distillate liquid mole fraction line, xD, was drawn at 0.9. The q-line was drawn from zF, using equation 11 and Table 2. The Operating Line for the Minimum Rectifying Section was drawn from the intersection of the q- line with the equilibrium curve to the intersection of xD with the 45⁰ line. The slope of the Minimum Rectifying Section was determined and an Rmin value was calculated. An R value was then calculated from equation 12, and the Operating Line for the Rectifying section was then adjusted. The Operating Line for the Stripping Section was then draw from the intersection of the Operating Line for the Rectifying Section and the q-line to the intersection of xB with the 45⁰ line. The stage lines were then stepped off from xD to xB. The number of equilibrium stages was then counted from the number of stage lines. This method was used in all McCabe-Thiele Diagrams, referenced in Figures 10-20.
  • 9. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 9 Figure 10. McCabe-Thiele Diagram for a Dew Point Vapor Feed at .1 atm.
  • 10. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 10 Figure 11. McCabe-Thiele Diagram for a 50/50 by mass Vapor/Liquid Feed at .1 atm.
  • 11. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 11 Figure 12. McCabe-Thiele Diagram for a Bubble Point Liquid Feed at 1 atm.
  • 12. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 12 Figure 13. McCabe-Thiele Diagram for a Dew Point Vapor Feed at 1 atm.
  • 13. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 13 Figure 14. McCabe-Thiele Diagram for a 50/50 by mass Vapor/Liquid Feed at 1 atm.
  • 14. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 14 Figure 15. McCabe-Thiele Diagram for a Bubble-Point Liquid Feed at 5.0 atm.
  • 15. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 15 Figure 16. McCabe-Thiele Diagram for a Dew-Point Vapor Feed at 5.0 atm.
  • 16. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 16 Figure 17. McCabe-Thiele Diagram for a 50/50 by mass vapor/liquid feed at 5.0 atm.
  • 17. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 17 Figure 18. McCabe-Thiele Diagram for a Bubble-Point Liquid Feed at 10.0 atm.
  • 18. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 18 Figure 19. McCabe-Thiele Diagram for a Dew-Point Vapor Feed at 10.0 atm.
  • 19. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 19 Figure 20. McCabe-Thiele Diagram for a 50/50 by mass vapor/liquid feed at 10.0 atm.
  • 20. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 20 Reflux Drum Reflux TotalCondenser Boilup Partial Reboiler 999912 kW/h Bottoms Distillate Feed 2500 kg/h 50% wt. H2S 50% wt. C3H8 Pi: 10.0 atm Feed Conditions: Bubble Point Liquid 1 10 5 6 1250 kg/h xD = 0.90 H2S 1250 kg/h xB = 0.10 H2S 999831 kW/h Figure 21. Process Flow Diagram for optimal Distillation Column for Bubble Point Liquid Feed Condition at 10.0 atm.
  • 21. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 21 Tables Pressure Feed Conditions Rmin R Number of Trays 0.1 atm Bubble-Point Liquid 0.7699 1.0008 10 Dew-Point Vapor 1.7777 2.3110 8 50/50 by mass vapor/liquid 1.6666 2.1666 10 1.0 atm Bubble-Point Liquid 0.9613 1.2496 12 Dew-Point Vapor 2.0000 2.6000 10 50/50 by mass vapor/liquid 1.3182 1.7136 11 5.0 atm Bubble-Point Liquid 0.7778 1.0111 11 Dew-Point Vapor 1.8182 2.3637 8 50/50 by mass vapor/liquid 1.1807 1.5349 10 10.0 atm Bubble-Point Liquid 0.7778 1.0111 10 Dew-Point Vapor 1.8182 2.3637 8 50/50 by mass vapor/liquid 1.1807 1.5349 10 Table 1. Rmin values, R values, and Number of Trays for respective Feed Conditions and Pressures. Feed Condition q slope of q-line Bubble Point Liquid 1 vertical Dew Point Vapor 0 horizontal 50/50 by mass vapor/liquid 0.5 -1 Table 2. q values and slope of q-line, given by equation 11, for respective Feed Conditions. P=.1atm BP DP 50-50 m of strip 1.500 1.763 1.662 Vb 2.001 1.311 1.510 P=1atm BP DP 50-50 m of strip 1.445 1.625 1.582 Vb 2.250 1.600 1.717 P=5atm BP DP 50-50 m of strip 1.497 1.737 1.667 Vb 2.011 1.357 1.500 P=10atm BP DP 50-50 m of strip 1.497 1.737 1.667 Vb 2.011 1.357 1.500 Table 3. Representation of equation 13 for respective Pressures. P (atm) ΔH (kJ/kg) 0.1 466.03 1 486.16 5 434.67 10 397.73 Table 4. Average Heat of Vaporization for the Binary Mixture at the respective Pressure from Nist Webbook.
  • 22. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 22 BP (kW/h) DP (kW/h) 50/50 (kW/h) BP ($/kg) DP ($/kg) 50/50 ($/kg) P=.1atm Qc 1165534 1928826 1466037 139.86 231.46 175.92 Qr 1165534 763763 879622 139.86 91.65 105.55 139.86 161.56 140.74 AVG P=1atm Qc 1367107 2187720 1649077 164.05 262.53 197.89 Qr 1367107 972320 1043293 164.05 116.68 125.20 164.05 189.60 161.54 AVG P=5atm Qc 1092715 1827585 1377317 131.13 219.31 165.28 Qr 1092803 737435 815013 131.14 88.49 97.80 131.13 153.90 131.54 AVG P=10atm Qc 999831 1672235 1260241 119.98 200.67 151.23 Qr 999912 674751 745734 119.99 80.97 89.49 119.98 140.82 120.36 AVG Table 5. Cost analysis representative of equations 14-16.
  • 23. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 23 Calculations 1. Antoine Equation for C3H8: 𝑙𝑜𝑔10 𝑃𝑎 ∗ = 6.80398 − 803.80 𝑇(℃)+246.99 2. Antoine Equation for H2S: 𝑙𝑜𝑔10 𝑃𝑏 ∗ = 6.9937 − 768.1315 𝑇(℃)+247.09 3. 𝑃𝑎 = 𝑥 𝑎 𝑃𝑎 ∗ 4. 𝑃𝑏 = (1 − 𝑥 𝑎)𝑃𝑏 ∗ 5. 𝑦𝑎 = 𝑃 𝑎 𝑃 𝑎+𝑃 𝑏 6. 𝑃𝑇 = 𝑃𝑎 + 𝑃𝑏 = 76 𝑡𝑜𝑟𝑟 (0.1 𝑎𝑡𝑚), 760 𝑡𝑜𝑟𝑟 (1.0 𝑎𝑡𝑚), 3800 𝑡𝑜𝑟𝑟 (5.0 𝑎𝑡𝑚), 7600 𝑡𝑜𝑟𝑟 (10.0 𝑎𝑡𝑚) 7. K-values: 𝐾𝑖 = 𝑦𝑖 𝑥 𝑖 8. Relative Volatility: 𝛼𝑖𝑗 = 𝐾𝑖 𝐾 𝑗 9. Activity Coefficients: 𝛾𝑖 = 𝐾𝑖 𝑃 𝑇 𝑃𝑖 ∗ 10. Distillation Column Material Balance: 𝐹𝑧 𝐹 = 𝐷𝑥 𝐷 + 𝐵𝑥 𝐵 11. q-line equation: 𝑦 = ( 𝑞 𝑞−1 ) 𝑥 − ( 𝑧 𝐹 𝑞−1 ) 12. Operating Line for Rectifying Section:𝑦 = ( 𝑅 𝑅+1 ) 𝑥 + ( 1 𝑅+1 ) 𝑥 𝐷; 𝑤ℎ𝑒𝑟𝑒 𝑅 = 1.3𝑅 𝑚𝑖𝑛 13. Operating Line for Stripping Section:𝑦 = ( 𝑉 𝐵+1 𝑉 𝐵 ) 𝑥 = ( 1 𝑉 𝐵 ) 𝑥 𝐵; 𝑤ℎ𝑒𝑟𝑒 𝑉𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑜𝑖𝑙𝑢𝑝 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟. 14. Condenser Duty(kW/h): 𝑄 𝐶 = 𝐷 ∗ (𝑅 + 1) ∗ Δ𝐻 𝑎𝑣𝑔 𝑣𝑎𝑝 15. Reboiler Duty(kW/h): 𝑄 𝑅 = 𝐵 ∗ 𝑉𝐵 ∗ Δ𝐻 𝑎𝑣𝑔 𝑣𝑎𝑝 16. $ 𝑘𝑔 = ( 𝑘𝑊 ℎ ) 𝑄 ∗ .09$ ( 𝑘𝑊 ℎ ) ∗ 1 𝐵𝑜𝑟 𝐷 ∗ 1 60%
  • 24. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 24 Raw Data H2S C3H8 P (atm) torr A 6.99387 6.80398 0.1 76 B 768.132 803.81 1 760 C 247.09 246.99 5 3800 10 7600 xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21 0 1 -96.861 28.175 76.000 0.000 76.000 76.000 0.000 1.000 0.371 1.000 0.371 2.697 0.238 1.000 0.05 0.95 -96.452 29.134 78.467 1.457 74.544 76.000 0.019 0.981 0.383 1.032 0.371 2.693 0.308 0.997 0.1 0.9 -96.028 30.157 81.094 3.016 72.985 76.000 0.040 0.960 0.397 1.067 0.372 2.689 0.381 0.988 0.15 0.85 -95.588 31.250 83.897 4.688 71.313 76.000 0.062 0.938 0.411 1.104 0.372 2.685 0.455 0.977 0.2 0.8 -95.132 32.421 86.895 6.484 69.516 76.000 0.085 0.915 0.427 1.143 0.373 2.680 0.529 0.963 0.25 0.75 -94.656 33.678 90.107 8.420 67.581 76.000 0.111 0.889 0.443 1.186 0.374 2.676 0.602 0.947 0.3 0.7 -94.161 35.031 93.558 10.509 65.491 76.000 0.138 0.862 0.461 1.231 0.374 2.671 0.672 0.930 0.35 0.65 -93.644 36.490 97.275 12.772 63.228 76.000 0.168 0.832 0.480 1.280 0.375 2.666 0.740 0.913 0.4 0.6 -93.104 38.069 101.287 15.228 60.772 76.000 0.200 0.800 0.501 1.333 0.376 2.661 0.805 0.896 0.45 0.55 -92.539 39.782 105.633 17.902 58.098 76.000 0.236 0.764 0.523 1.390 0.377 2.655 0.866 0.878 0.5 0.5 -91.946 41.647 110.353 20.823 55.177 76.000 0.274 0.726 0.548 1.452 0.377 2.650 0.924 0.861 0.55 0.45 -91.323 43.684 115.498 24.026 51.974 76.000 0.316 0.684 0.575 1.520 0.378 2.644 0.978 0.844 0.6 0.4 -90.668 45.916 121.126 27.550 48.450 76.000 0.362 0.638 0.604 1.594 0.379 2.638 1.029 0.828 0.65 0.35 -89.977 48.374 127.306 31.443 44.557 76.000 0.414 0.586 0.636 1.675 0.380 2.632 1.076 0.812 0.7 0.3 -89.245 51.091 134.121 35.764 40.236 76.000 0.471 0.529 0.672 1.765 0.381 2.625 1.119 0.797 0.75 0.25 -88.470 54.109 141.673 40.582 35.418 76.000 0.534 0.466 0.712 1.864 0.382 2.618 1.160 0.782 0.8 0.2 -87.645 57.479 150.083 45.983 30.017 76.000 0.605 0.395 0.756 1.975 0.383 2.611 1.198 0.767 0.85 0.15 -86.766 61.264 159.502 52.075 23.925 76.000 0.685 0.315 0.806 2.099 0.384 2.604 1.233 0.753 0.9 0.1 -85.824 65.543 170.117 58.988 17.012 76.000 0.776 0.224 0.862 2.238 0.385 2.596 1.265 0.740 0.95 0.05 -84.811 70.413 182.163 66.893 9.108 76.001 0.880 0.120 0.926 2.397 0.387 2.587 1.295 0.728 1 0 -83.719 76.000 195.933 76.000 0.000 76.000 1.000 0.000 1.000 2.578 0.388 2.578 1.300 0.715 xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21 0 1 -60.336 314.465 760.000 0.000 760.000 760.000 0.000 1.000 0.414 1.000 0.414 2.417 0.289 1.000 0.05 0.95 -59.748 324.409 782.926 16.220 743.780 760.000 0.021 0.979 0.427 1.030 0.414 2.413 0.355 0.998 0.1 0.9 -59.139 334.964 807.226 33.496 726.504 760.000 0.044 0.956 0.441 1.062 0.415 2.410 0.423 0.992 0.15 0.85 -58.509 346.188 833.027 51.928 708.073 760.001 0.068 0.932 0.456 1.096 0.416 2.406 0.492 0.983 0.2 0.8 -57.855 358.143 860.465 71.628 688.372 760.001 0.094 0.906 0.471 1.132 0.416 2.403 0.561 0.972 0.25 0.75 -57.176 370.900 889.701 92.725 667.275 760.000 0.122 0.878 0.488 1.171 0.417 2.399 0.629 0.960 0.3 0.7 -56.470 384.541 920.911 115.362 644.638 760.000 0.152 0.848 0.506 1.212 0.418 2.395 0.695 0.947 0.35 0.65 -55.736 399.158 954.300 139.705 620.295 760.000 0.184 0.816 0.525 1.256 0.418 2.391 0.759 0.933 0.4 0.6 -54.970 414.856 990.096 165.943 594.058 760.000 0.218 0.782 0.546 1.303 0.419 2.387 0.821 0.919 0.45 0.55 -54.172 431.756 1028.563 194.290 565.710 760.000 0.256 0.744 0.568 1.353 0.420 2.382 0.880 0.905 0.5 0.5 -53.337 449.996 1070.005 224.998 535.002 760.000 0.296 0.704 0.592 1.408 0.421 2.378 0.936 0.890 0.55 0.45 -52.463 469.735 1114.768 258.354 501.646 760.000 0.340 0.660 0.618 1.467 0.421 2.373 0.990 0.876
  • 25. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 25 0.6 0.4 -51.547 491.161 1163.259 294.697 465.304 760.000 0.388 0.612 0.646 1.531 0.422 2.368 1.040 0.862 0.65 0.35 -50.585 514.490 1215.948 334.418 425.582 760.000 0.440 0.560 0.677 1.600 0.423 2.363 1.088 0.848 0.7 0.3 -49.572 539.976 1273.388 377.984 382.017 760.000 0.497 0.503 0.710 1.676 0.424 2.358 1.133 0.835 0.75 0.25 -48.503 567.923 1336.231 425.942 334.058 760.000 0.560 0.440 0.747 1.758 0.425 2.353 1.175 0.821 0.8 0.2 -47.374 598.688 1405.250 478.950 281.050 760.000 0.630 0.370 0.788 1.849 0.426 2.347 1.215 0.808 0.85 0.15 -46.177 632.700 1481.368 537.795 222.205 760.000 0.708 0.292 0.833 1.949 0.427 2.341 1.252 0.796 0.9 0.1 -44.906 670.479 1565.700 603.431 156.570 760.001 0.794 0.206 0.882 2.060 0.428 2.335 1.287 0.784 0.95 0.05 -43.551 712.654 1659.591 677.021 82.980 760.001 0.891 0.109 0.938 2.184 0.429 2.329 1.320 0.772 1 0 -42.102 760.000 1764.697 760.000 0.000 760.000 1.000 0.000 1.000 2.322 0.431 2.322 1.360 0.761 xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21 0 1 -22.101 1697.169 3800.000 0.000 3800.000 3800.000 0.000 1.000 0.447 1.000 0.447 2.239 0.325 1.000 0.05 0.95 -21.296 1747.730 3908.015 87.386 3712.614 3800.001 0.023 0.977 0.460 1.028 0.447 2.236 0.388 0.998 0.1 0.9 -20.464 1801.199 4022.089 180.120 3619.880 3800.000 0.047 0.953 0.474 1.058 0.448 2.233 0.453 0.994 0.15 0.85 -19.602 1857.828 4142.736 278.674 3521.326 3800.000 0.073 0.927 0.489 1.090 0.448 2.230 0.518 0.987 0.2 0.8 -18.710 1917.894 4270.527 383.579 3416.421 3800.000 0.101 0.899 0.505 1.124 0.449 2.227 0.583 0.978 0.25 0.75 -17.785 1981.709 4406.097 495.427 3304.573 3800.000 0.130 0.870 0.522 1.159 0.450 2.223 0.648 0.968 0.3 0.7 -16.824 2049.625 4550.161 614.888 3185.113 3800.000 0.162 0.838 0.539 1.197 0.450 2.220 0.711 0.957 0.35 0.65 -15.826 2122.034 4703.520 742.712 3057.288 3800.000 0.195 0.805 0.558 1.238 0.451 2.217 0.772 0.945 0.4 0.6 -14.788 2199.382 4867.079 879.753 2920.247 3800.000 0.232 0.768 0.579 1.281 0.452 2.213 0.832 0.933 0.45 0.55 -13.706 2282.173 5041.859 1026.978 2773.022 3800.000 0.270 0.730 0.601 1.327 0.453 2.209 0.889 0.921 0.5 0.5 -12.578 2370.979 5229.021 1185.489 2614.511 3800.000 0.312 0.688 0.624 1.376 0.453 2.205 0.945 0.909 0.55 0.45 -11.400 2466.455 5429.889 1356.550 2443.450 3800.000 0.357 0.643 0.649 1.429 0.454 2.201 0.998 0.896 0.6 0.4 -10.168 2569.350 5645.974 1541.610 2258.390 3800.000 0.406 0.594 0.676 1.486 0.455 2.197 1.048 0.884 0.65 0.35 -8.878 2680.529 5879.017 1742.344 2057.656 3800.000 0.459 0.541 0.705 1.547 0.456 2.193 1.096 0.872 0.7 0.3 -7.523 2800.990 6131.024 1960.693 1839.307 3800.000 0.516 0.484 0.737 1.613 0.457 2.189 1.142 0.860 0.75 0.25 -6.100 2931.892 6404.323 2198.919 1601.081 3800.000 0.579 0.421 0.772 1.685 0.458 2.184 1.186 0.848 0.8 0.2 -4.601 3074.593 6701.629 2459.674 1340.326 3800.000 0.647 0.353 0.809 1.764 0.459 2.180 1.227 0.836 0.85 0.15 -3.018 3230.684 7026.124 2746.081 1053.919 3800.000 0.723 0.277 0.850 1.849 0.460 2.175 1.266 0.825 0.9 0.1 -1.345 3402.049 7381.558 3061.844 738.156 3800.000 0.806 0.194 0.895 1.943 0.461 2.170 1.304 0.814 0.95 0.05 0.430 3590.927 7772.385 3411.381 388.619 3800.000 0.898 0.102 0.945 2.045 0.462 2.164 1.339 0.803 1 0 2.316 3800.000 8203.922 3800.000 0.000 3800.000 1.000 0.000 1.000 2.159 0.463 2.159 1.380 0.792 xp xh T (C) Pvapp (Torr) Pvaph (Torr) Pp (Torr) Ph (Torr) P (Torr) yp yh Kp Kh A12 A21 gam12 gam21 0 1 -0.345 3507.561 7600.000 0.000 7600.000 7600.000 0.000 1.000 0.462 1.000 0.462 2.167 0.340 1.000 0.05 0.95 0.597 3609.151 7810.044 180.458 7419.542 7599.999 0.024 0.976 0.475 1.028 0.462 2.164 0.402 0.998 0.1 0.9 1.571 3716.406 8031.510 371.641 7228.359 7600.000 0.049 0.951 0.489 1.057 0.463 2.161 0.465 0.994 0.15 0.85 2.578 3829.794 8265.330 574.469 7025.531 7600.000 0.076 0.924 0.504 1.088 0.463 2.158 0.529 0.988 0.2 0.8 3.621 3949.841 8512.540 789.968 6810.032 7600.000 0.104 0.896 0.520 1.120 0.464 2.155 0.592 0.980 0.25 0.75 4.702 4077.128 8774.291 1019.282 6580.718 7600.000 0.134 0.866 0.536 1.155 0.465 2.152 0.655 0.971 0.3 0.7 5.823 4212.307 9051.867 1263.692 6336.307 7599.999 0.166 0.834 0.554 1.191 0.465 2.149 0.717 0.961 0.35 0.65 6.988 4356.109 9346.711 1524.638 6075.362 7600.000 0.201 0.799 0.573 1.230 0.466 2.146 0.778 0.950 0.4 0.6 8.199 4509.352 9660.431 1803.741 5796.259 7600.000 0.237 0.763 0.593 1.271 0.467 2.142 0.837 0.939 0.45 0.55 9.459 4672.964 9994.848 2102.834 5497.166 7600.000 0.277 0.723 0.615 1.315 0.468 2.139 0.893 0.928 0.5 0.5 10.772 4847.989 10352.010 2423.995 5176.005 7600.000 0.319 0.681 0.638 1.362 0.468 2.135 0.948 0.916 0.55 0.45 12.142 5035.617 10734.250 2769.589 4830.411 7600.000 0.364 0.636 0.663 1.412 0.469 2.132 1.001 0.905 0.6 0.4 13.574 5237.200 11144.200 3142.320 4457.680 7600.000 0.413 0.587 0.689 1.466 0.470 2.128 1.052 0.893 0.65 0.35 15.073 5454.289 11584.890 3545.288 4054.712 7600.000 0.466 0.534 0.718 1.524 0.471 2.124 1.100 0.881
  • 26. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 26 0.7 0.3 16.643 5688.662 12059.790 3982.063 3617.937 7600.000 0.524 0.476 0.749 1.587 0.472 2.120 1.146 0.870 0.75 0.25 18.292 5942.374 12572.880 4456.780 3143.220 7600.000 0.586 0.414 0.782 1.654 0.473 2.116 1.190 0.859 0.8 0.2 20.026 6217.805 13128.780 4974.244 2625.756 7600.000 0.655 0.345 0.818 1.727 0.474 2.111 1.233 0.847 0.85 0.15 21.853 6517.731 13732.860 5540.071 2059.929 7600.000 0.729 0.271 0.858 1.807 0.475 2.107 1.273 0.837 0.9 0.1 23.782 6845.402 14391.390 6160.861 1439.139 7600.001 0.811 0.189 0.901 1.894 0.476 2.102 1.311 0.826 0.95 0.05 25.824 7204.645 15111.750 6844.412 755.588 7600.000 0.901 0.099 0.948 1.988 0.477 2.098 1.347 0.816 1 0 27.989 7600.000 15902.660 7600.000 0.000 7600.000 1.000 0.000 1.000 2.092 0.478 2.092 1.370 0.806
  • 27. Design and Operation of a Distillation Column for the Binary Mixture: Propane and Hydrogen Sulfide 27 References Seader, J. D., Ernest J. Henley, and D. Keith Roper. Separation Process Principles. Third ed. N.p.:Courier Westford, 2011. Print. NIST Chemistry Webbook. N.p., n.d. Web. 24 Apr. 2014. <http://webbook.nist.gov/chemistry/>. Thermophysical Properties of Fluid Systemsby E.W. Lemmon, M.O. McLinden, D.G. Friend