SlideShare a Scribd company logo
1 of 9
Experimental Study of the Pyrolysis of Eagle Ford Oil Shale
Abstract
Witha greatdeal of researchandinvestmentbeingfocusedonthe developmentof
unconventional fuels,the UnitedStates’domesticoil shale resourceshave beengivensignificant
considerationasaviable source fordomesticfuel.Geochemical andgeophysical assessmentsof oil and
gas potential providecritical informationrelevanttothe extractionandproductionstrategies.
Sequentiallaboratorypyrolysisexperimentswillbe conductedunderdifferentconditionsincluding
hydrous,anhydrousandpyrolysisinthe presence of hydrogengasonbothwhole rockand kerogen
extractedsamplesfromEagle Fordshale deposits. Thisstudywill:(1) analyze immaturesamplesof
these source rocks,(2) characterize theirgeneratedoil andgasproductsduringpyrolysisexperimentsto
evaluate theirpotential assource rocksand(3) improve retortingmethodsof oil shaleforpetroleum
production.The use of gas chromatographyandmass spectrometrywill be usedtoanalyze the
recoveredgaseousandliquidcompositions.A seriesof compoundsingeneratedoils,the bulk
compositionof generatednatural gas,andthe carbon isotopiccompositionof methane innatural gas
provide informationoncompositions astheyevolve withincreasingthermal stresswill provide useful
insightintofuture unconventional resource assessment.
1. Introduction
Mudrocks withlarge amountsof organicmatter are some of the mostcommon source rocks for
hydrocarbons. Oil shale referstothermallyimmature shalerockcontainingkerogen,whichistypically
foundat depthsof <3000 feetwithinsedimentarybasins. Asthese oil shalesare thermallyimmature,
mostof the kerogenwithinthemremainsintactandcapable of producingoil andgas. The UnitedStates
Eq. 1 The added heat and pressure to organic compounds, lipids, fats and carbohydrates
form long chain hydrocarbons (geopolymers)
possessesapproximately1.5trillionbarrelsof “recoverable”oil reservesinnear-surfaceshale deposits,
whichaugmentsthe significantresource potentialindeepershale depositsthatare the currentfocusof
oil and gas exploitation(Mao2010).
The Chemistry of Petroleum Formation
At itsbase,petroleumisafossil fuel,whichmeansitis derivedfromthe remainsof organic
material.Inotherwords,petroleumresultsfromanumberof chemical reactions thatoccur to material
that wasonce alive.Inmostcases,liquidpetroleumwasonce zooplanktonoralgae thatsettledtothe
bottomof a seaor lake and was thenburiedundersediment.The sedimentensuredthatnooxygenwas
able to reachthe decayingorganicmatterandthisset the stage for the formationof oil. Overgeologic
time,thisorganicmatterissubjectedtoincreasedpressure from overlyingsediment andheatasthese
rocks are buriedmore deeply (Fig.3).The solidificationandconversionof thisorganicmatter,itisfirst
changedintoa waxysolidcalledkerogen foundinsedimentaryrocksincludingshaleandcoal.This
processwhere kerogenisformedis calleddiagenesis,whichcanbe seenin (Eq1).
Catagenesis
As temperature andpressure continuestoincrease fromsedimentaccumulation, the
processof catagenesisbegins.Catagenesisisthe thermal degradation (or“cracking”of heaviercarbon
bonds) of kerogentoshortermore straight/branchedhydrocarbonchains (Figure 1a).Since the
behaviorof petroleum formationisdependentonheat, pressure andmolecularstructure,averyspecific
range of temperaturesandheatingratesare requiredtoproduce aqualityproduct.If conditionsare too
hot,the hydrocarbonsformedfromcatagenesiswillfavoran aromaticring chemical structure (Figure
1b), beingcharacteristicof natural gas.If temperaturesdonotexceedthe energythresholdtobreakthe
kerogen(itvariesfromdifferentkerogentypes) the biological precursors will remaintrappedas
kerogen.
Petroleum production by artificial maturation of oil shale
Simulatingcatagenesisthroughlaboratorypyrolysisexperimentsisfrequently usedtoattempt
to replicate the compositionof the yieldsseeninnature,inaslittle as12 hours. “The differencesin
time-scale betweenthe laboratoryexperimentsandnatural geological processesare sogreatthat claims
of irrelevance andmechanismsare difficulttorefute. (SaxbyandRiley,1984). Lewanand others(1979)
reportedthatheatingorganic-richrockssubmergedinliquidwater resultedinthe generationand
expulsionof free flowingoil thataccumulatedonthe watersurface above the submergedrock.
Knowledgegainedthroughthe manipulationof experimental conditionstoproduce useful fuelswas
appliedtothe problemof producingalaboratory-scale analogforpetroleum-formingprocesses.Evans
and Felbeck(1983a, b,c) performedaseriesof experimentsdesignedtoexamine the hypothesisthat
hightemperature reactionscouldbe usedtosimulatepetroleumformation.Theyfoundthatthe closed-
systempyrolysisof anoil shale couldbe usedtoduplicate the observationsof manyinsitustudiesof
petroleummaturation.Throughthe pyrolysisof oil shale,theywereable todefinefivedifferent
temperature zonesthatsimulatedpetroleummaturationreactions(EvansandFelbeck, 1983a).
Figure2. Left:Aromatic,three double
bonded carbonsin a ring structure.Good
indicatorof high thermalmaturityRight:
Common aliphatic carbons indicative of low
thermal maturity.
Fig. 1 Summary of the oil formation process, modified from Tissot and
Welte, 1984
2. ResearchObjectives
The objective of this research is to investigate the composition and quality of generated
petroleum and gas of the Eagle Ford Formation from laboratory simulated hydrous pyrolysis
experiments.The goal will be to apply various time-temperature conditions (12hr-24hr and 280-
330°C ) of thermally immature organic-rich samples containing type-IIkerogen. This will aid in
assessing reaction pathways and controlling factors to determine the generation of petroleum (gas
and oil) as well as the effects of maturation of marine shales.
Eagle FordFormation
The Eagle FordFormation waschosenfor thisstudy.It outcropsalonga northeast-southwest
trend,spanningfromOklahomadowntosouthwesternTexas(Figure1). The unitdipsat aboutone
degree tothe southeast. The thicknessof the Eagle Fordvariesregionallyanditisabout 200ft thickin
the Waco areabut thinsto the southwesttowardAustin(Jiang,1989).
Study area
Outcrop trend
Fig 3 Outcrop trendof the Eagle Fordthroughoutcentral Texas.Modifiedfrom (Dawson,
2000)
The depositionof the Eagle FordFormationoccurredduringthe Late Cenomanianand
Turonianstagesof the Late Cretaceous.Duringthistime,agenerallywarmclimate withrelativelyhigh
atmosphericpCO2 levelsdominated(Veizeretal.,2000; Bice et al.,2006). Global eustaticsealevel
reachedthe Cretaceousmaximumfollowingaprolongedrise insealevel(Haqetal.,1987) and the poles
were ice free.
3. Methodology
SamplePreparationand CharacterizationofWholeRock and Kerogen
Shale samplesfromthe Eagle Fordformationwill be manuallycrushedwitharockhammer,
thenmilled intoafine powderusingashatterbox. The shale sampleswillbe characterizedbyoptical
microscopyof thin-sections,X-raydiffraction,andscanningelectronmicroscopybefore andafterthe
proposedpyrolysisexperiments. The large variationinbiological precursorsandthe modifications
broughtabout viadiagenesisandcatagenesiscreatesacomplex heterogeneousstructure affecting
chemical bondstrength.If the molecularstructure of kerogendeterminesitspetroleumgeneration
products by alteringchemical bonds,itwill require adifferentthermal energytobreakthe gaseous
molecularprecursorsfromthe kerogen. Althoughitisnotpart of the natural petroleumformation
process,solidkerogenextractionbydemineralizationpreventscatalyticreactionsordecompositionof
mineralswithinthe system(Saxby1982).
Approximately 8gof whole-rockpowderwillbe weighedintoa50mL polyethylenecentrifuge
tube.Carbonates will be removedbytreatmentof sedimentwith 1N hydrochloricaciduntil
effervescenceceased.The resultantsupernatantliquid will be decanted.Subsequently,the rocks will be
furtherdemineralizedusingthree successivetreatmentswith25mLdosesof mixedhydrofluoricacid(10
wt.%) andhydrochloricacid(10 wt.%).Each treatment will occurfora minimumof 12 hourswhile
shakingonan orbital shaker. Aftercentrifugationat5,000 rpm, the pelletwill be rinsedwithdeionized
water3 times.The samples willthenbe driedovernightinaheatedsandbathat 50°C.
Organicmatter inthe original shale samplesandextractedkerogensampleswillbe
characterizedfortotal organiccarbon (TOC) and itsδ13
C valuesbyelemental analyzer–isotope ratio
mass spectrometer,differenttypesandfractionsof organicmatterbyRock-Eval (GEOMARKRESEARCH,
LTD) and nuclearmagneticresonance spectrometry(BaylorUniversity).
The Rock Eval methodentailsa programmedheatingof asedimentsample(100mg) inan inert
(heliumgas) atmosphere. Volatile productsfromthe pyrolysisare measuredbyaflame ionization
detector.Briefly,the temperature programisasfollows.The oventemperature isheldat300°C and the
free hydrocarbonsare volatilizedandmeasuredasthe S1 peak(detectedbyFID).The temperature is
thenincreasedfrom300° to 550°C (at 25°C/min).Thisisthe phase of volatilizationof the heavy
hydrocarbons(>C40) andthe crackingof nonvolatile organicmatter(kerogen).The hydrocarbons
releasedfromthisthermal crackingare measuredasthe S2 peak.The temperature atwhichS2 reaches
itsmaximumdependsonthe nature andmaturityof the kerogenandiscalledTmax.The CO2 from
kerogencrackingistrappedinthe 300°-390°C range.The trap is heated,andCO2 isreleasedand
detectedona thermal conductivitydetectorduringthe coolingof the pyrolysisoven(S3peak). Usingthe
isotopiccompositionvaluesvsthe standardRock Eval valueswill give usanideaof how successful the
independentexperimentsworkedaswell asaidingincharacterizationof the oil shale samplescollected.
Isotopiccompositionof methanewill alsogive astrongindicationof thermal maturity,acomponentof
source rock evaluationthatisalwaysa necessity.
PyrolysisExperiments
The experimentswillconsistof iso-thermallyheatingtensof gramsof gravel-sizedimmature
source rock and extractedkerogen inthe presenceof liquid waterinabomb reactorat temperatures
reaching330°C for 12-36hrs. The pressure will be controlledtothe saturationpressure inthe presence
of water(130 bars).Afterthe experimentiscompleted,gaseousandliquidcompositionswill be
recoveredanddeterminedbymassspectrometryandgaschromatography.The remaininggaswill be
ventedandthe reactor will be openedtoquantitativelycollectthe expelledoil.These laboratory
pyrolysisexperimentswill simulate natural occurrencesof catagenesisbyexponentiallyaccelerating
geologicprocessesthroughincreasedtemperatures. Kerogenwill be extractedfromeachsample using
a sequestrationtechniquetoenhance qualitative understandingof the controlsongasgenerationfrom
source rocks and expelledoil containingtype-IIkerogen
AnalysisofPyrolysisproducts
Usinggas chromatographyand massspectrometryitishopeful we willbe able toboth
quantitativelyandqualitativelyhave adeeperunderstandingof the maturationprocessonthe
molecularlevel andtobe able to predictthe quantityandtype of expelledhydrocarbonsbeforethe
artificial maturationexperimentbegins.If successful,thiswill be amajorbenefitinfuture source rock
evaluationsbeingable tosave bothtime andmoney.
Upon analysisof the pyrolysisproductsIexpect thatδ13
Cvaluesof C1 and C2 alkanesincrease
withtime,butwill notbe the case for C3 and C4 after72 hrs. Overall,δ13
Cof C1 – C4 alkaneswill follow
the “thermogenic”trendatthese specificexperimental conditions,basedonpreviousstudiesformthe
Universityof Houston.
The resultsof the laboratorypyrolysisexperimentswillbe correlatedusingthe industry
standardof Rock Eval pyrolysis,whichwill be facilitatedatGeoMark Labs,locatedinHumble,Tx.Rock-
Eval PyrolysisProcedure.
References
Bice,K.L., D. Birgel,P.A. Meyers,K.A.Dahl,K.-U. Hinrichs,andR. D. Norris,2006, A multiple proxyand
model studyof CretaceousupperoceantemperaturesandatmosphericCO2concentrations:
Paleoceanography,21,PA2002,doi:10.1029/2005PA001203.
Dawson,W. C.,2000, Shale microfacies:Eagle FordGroup(Cenomanian-Turonian) north-central Texas
outcropsand subsurface equivalents:GCAGSTransactions,50,607–621.
Haq, B. U., J. Hardenbol,andP.R. Vail,1987, Chronologyof FluctuatingSeaLevelssincethe Triassic:
Science,235, 1156–1167, doi:10.2307/1698241.
Jiang,M. J., 1989, Biostratigraphyandgeochronologyof the Eagle Fordshale,AustinChalk,andlower
TaylorMarl inTexasbasedon calcareousnanofossils:Ph.D.dissertation,TexasA&MUniversity.
Figure 5 previous experiments runat Baylor Universityinthe characterizationof multiple oilshale
samples withvaryingTOC(wt%) values as a functionof potential oilyieldof the Eagle Ford Formation
using Rock Eval pyrolysis techniques.
Lewan,M.D., 1993a. Laboratory simulationof petroleumformation-hydrouspyrolysis.In:Engel,M.,
Macko, S. (Eds.),OrganicGeochemistry –PrinciplesandApplications.PlenumPress,New York,pp.419–
442
Lewan,M.D., 1997. Experimentsonthe role of waterinpetroleumformation.Geochimicaet
CosmochimicaActa61, 3691–3723.
SackettW. M. (1978) Carbonand hydrogenisotope effectsduringthe thermocatalyticproductionof
hydrocarbonslaboratorysimulationexperiments.Geochim, Cosmochim.Acta42,571 580.
SaxbyJ.D. (1982) A reassessmentof the range of kerogenmaturitiesinwhichhydrocarbonsare
generated.J.Pet.Geol.5,117 128.
SaxbyJ.D. andRileyK.W. (1984) Petroleumgenerationbylaboratory-scale pyrolysisoversix years
simulatingconditionsinasubsidingbasin.Nature 308,177 179.
Veizer,J.,Y.Godderis,andL. M. Francois,2000, Evidence fordecouplingof atmosphericCO2andglobal
climate duringthe Phanerozoiceon:Nature,408, 698–701,doi: 10.1038/35047044

More Related Content

What's hot

Use of various chelates as soil extractants
Use of various chelates as soil extractantsUse of various chelates as soil extractants
Use of various chelates as soil extractantsAlexander Decker
 
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netl
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netlSHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netl
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netlSteve Wittrig
 
IRJET- Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...
IRJET-  	  Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...IRJET-  	  Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...
IRJET- Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...IRJET Journal
 
Geopolymer_ACEPS_2016
Geopolymer_ACEPS_2016Geopolymer_ACEPS_2016
Geopolymer_ACEPS_2016hams511
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...Mario Alberto Gomez
 
IRJET- Comparative Study of Various Characteristics of Different Kinds of Ex...
IRJET-	 Comparative Study of Various Characteristics of Different Kinds of Ex...IRJET-	 Comparative Study of Various Characteristics of Different Kinds of Ex...
IRJET- Comparative Study of Various Characteristics of Different Kinds of Ex...IRJET Journal
 
PhD defense presentation
PhD defense presentationPhD defense presentation
PhD defense presentationAnais Jolit
 
Soil degradation through industrial effluents
Soil degradation through industrial effluentsSoil degradation through industrial effluents
Soil degradation through industrial effluentsPravash Chandra Moharana
 
Micro Level Analysis of Stabilized Expansive Soil
Micro Level Analysis of Stabilized Expansive SoilMicro Level Analysis of Stabilized Expansive Soil
Micro Level Analysis of Stabilized Expansive SoilIJERDJOURNAL
 
IRJET - Influence of Additives on Sepiolite
IRJET -  	  Influence of Additives on SepioliteIRJET -  	  Influence of Additives on Sepiolite
IRJET - Influence of Additives on SepioliteIRJET Journal
 
Evaluation of three universal extractants for the determination of p, no3 an...
Evaluation of three universal extractants for the determination of p, no3  an...Evaluation of three universal extractants for the determination of p, no3  an...
Evaluation of three universal extractants for the determination of p, no3 an...Alexander Decker
 
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOIL
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOILBEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOIL
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOILP.K. Mani
 
SETAC Poster DAPD-3
SETAC Poster DAPD-3SETAC Poster DAPD-3
SETAC Poster DAPD-3Roger Dailey
 
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide Residue
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide ResidueIRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide Residue
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide ResidueIRJET Journal
 
Comparison of a plant based natural surfactant with sds for washing of as(v) ...
Comparison of a plant based natural surfactant with sds for washing of as(v) ...Comparison of a plant based natural surfactant with sds for washing of as(v) ...
Comparison of a plant based natural surfactant with sds for washing of as(v) ...Soumyadeep Mukherjee
 
IRJET- Experimental Approach for Stabilizing Sub Grades on Expansive Soil
IRJET- 	  Experimental Approach for Stabilizing Sub Grades on Expansive SoilIRJET- 	  Experimental Approach for Stabilizing Sub Grades on Expansive Soil
IRJET- Experimental Approach for Stabilizing Sub Grades on Expansive SoilIRJET Journal
 

What's hot (18)

Use of various chelates as soil extractants
Use of various chelates as soil extractantsUse of various chelates as soil extractants
Use of various chelates as soil extractants
 
20320140504003
2032014050400320320140504003
20320140504003
 
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netl
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netlSHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netl
SHALES AS SEALS AND UNCONVENTIONAL STORAGE RESERVOIRS robert dilmore doe netl
 
IRJET- Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...
IRJET-  	  Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...IRJET-  	  Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...
IRJET- Study of Geopolymer Concrete using Granite Slurry as Sand Replacem...
 
Geopolymer_ACEPS_2016
Geopolymer_ACEPS_2016Geopolymer_ACEPS_2016
Geopolymer_ACEPS_2016
 
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
CONTROLS OF TOXIC ELEMENTS IN ABIOTIC REDUCTIVE DISSOLUTION OF URANIUM MILL R...
 
IRJET- Comparative Study of Various Characteristics of Different Kinds of Ex...
IRJET-	 Comparative Study of Various Characteristics of Different Kinds of Ex...IRJET-	 Comparative Study of Various Characteristics of Different Kinds of Ex...
IRJET- Comparative Study of Various Characteristics of Different Kinds of Ex...
 
PhD defense presentation
PhD defense presentationPhD defense presentation
PhD defense presentation
 
Soil degradation through industrial effluents
Soil degradation through industrial effluentsSoil degradation through industrial effluents
Soil degradation through industrial effluents
 
shale gas reservoir
 shale gas reservoir shale gas reservoir
shale gas reservoir
 
Micro Level Analysis of Stabilized Expansive Soil
Micro Level Analysis of Stabilized Expansive SoilMicro Level Analysis of Stabilized Expansive Soil
Micro Level Analysis of Stabilized Expansive Soil
 
IRJET - Influence of Additives on Sepiolite
IRJET -  	  Influence of Additives on SepioliteIRJET -  	  Influence of Additives on Sepiolite
IRJET - Influence of Additives on Sepiolite
 
Evaluation of three universal extractants for the determination of p, no3 an...
Evaluation of three universal extractants for the determination of p, no3  an...Evaluation of three universal extractants for the determination of p, no3  an...
Evaluation of three universal extractants for the determination of p, no3 an...
 
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOIL
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOILBEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOIL
BEHAVIOUR OF HEAVY METALS IN SEWAGE-SLUDGE AMENDED SOIL
 
SETAC Poster DAPD-3
SETAC Poster DAPD-3SETAC Poster DAPD-3
SETAC Poster DAPD-3
 
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide Residue
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide ResidueIRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide Residue
IRJET-Soil Stabilisation by Utilising Phosphogypsum and Calcium Carbide Residue
 
Comparison of a plant based natural surfactant with sds for washing of as(v) ...
Comparison of a plant based natural surfactant with sds for washing of as(v) ...Comparison of a plant based natural surfactant with sds for washing of as(v) ...
Comparison of a plant based natural surfactant with sds for washing of as(v) ...
 
IRJET- Experimental Approach for Stabilizing Sub Grades on Expansive Soil
IRJET- 	  Experimental Approach for Stabilizing Sub Grades on Expansive SoilIRJET- 	  Experimental Approach for Stabilizing Sub Grades on Expansive Soil
IRJET- Experimental Approach for Stabilizing Sub Grades on Expansive Soil
 

Viewers also liked

Hester Zagt Beurs-stand
Hester Zagt Beurs-standHester Zagt Beurs-stand
Hester Zagt Beurs-standPeter Weustink
 
Что выбрать: группу или паблик?
Что выбрать: группу или паблик?Что выбрать: группу или паблик?
Что выбрать: группу или паблик?ZarinaM
 
06.실행환경 실습교재(easy company,해답)
06.실행환경 실습교재(easy company,해답)06.실행환경 실습교재(easy company,해답)
06.실행환경 실습교재(easy company,해답)Hankyo
 
Búsqueda bibliográfica en bases de datos.
Búsqueda bibliográfica en bases de datos. Búsqueda bibliográfica en bases de datos.
Búsqueda bibliográfica en bases de datos. amalia73
 

Viewers also liked (10)

Hester Zagt Beurs-stand
Hester Zagt Beurs-standHester Zagt Beurs-stand
Hester Zagt Beurs-stand
 
FinalReport
FinalReportFinalReport
FinalReport
 
Что выбрать: группу или паблик?
Что выбрать: группу или паблик?Что выбрать: группу или паблик?
Что выбрать: группу или паблик?
 
Monthly reports
Monthly reports Monthly reports
Monthly reports
 
scanner_ui_redesign
scanner_ui_redesignscanner_ui_redesign
scanner_ui_redesign
 
06.실행환경 실습교재(easy company,해답)
06.실행환경 실습교재(easy company,해답)06.실행환경 실습교재(easy company,해답)
06.실행환경 실습교재(easy company,해답)
 
Calidad en el servicio
Calidad en el servicioCalidad en el servicio
Calidad en el servicio
 
Búsqueda bibliográfica en bases de datos.
Búsqueda bibliográfica en bases de datos. Búsqueda bibliográfica en bases de datos.
Búsqueda bibliográfica en bases de datos.
 
Avannish Kumar Mishra-bio
Avannish Kumar Mishra-bioAvannish Kumar Mishra-bio
Avannish Kumar Mishra-bio
 
Ch03
Ch03Ch03
Ch03
 

Similar to Experimental Study of the Pyrolysis of Eagle Ford Oil Shale act3_JH %281%29

SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGH
SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGHSULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGH
SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGHSaba Saif
 
Application of micromechanics on alkali activated materials
Application of micromechanics on alkali activated materialsApplication of micromechanics on alkali activated materials
Application of micromechanics on alkali activated materialsTran Nam
 
Synthesis of zeolite zsm3 from faujasite
Synthesis of zeolite zsm3 from faujasiteSynthesis of zeolite zsm3 from faujasite
Synthesis of zeolite zsm3 from faujasiteAlexander Decker
 
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...IJERA Editor
 
Slide Proposal Presentation.pdf
Slide Proposal Presentation.pdfSlide Proposal Presentation.pdf
Slide Proposal Presentation.pdfJALIMIEABDULJALIL
 
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...Sérgio Sacani
 
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...IOSR Journals
 
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...ijceronline
 
Geopolymer Concrete – A Look Over
Geopolymer Concrete – A Look OverGeopolymer Concrete – A Look Over
Geopolymer Concrete – A Look OverIRJET Journal
 
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...Journal For Research
 
Organic geochemistry role in petroleum exploration
Organic geochemistry role in petroleum explorationOrganic geochemistry role in petroleum exploration
Organic geochemistry role in petroleum explorationTongji UNIVERSITY
 
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Pengcheng Li
 

Similar to Experimental Study of the Pyrolysis of Eagle Ford Oil Shale act3_JH %281%29 (20)

URSA charlie %5bAutosaved%5d 2 (3)
URSA charlie %5bAutosaved%5d 2 (3)URSA charlie %5bAutosaved%5d 2 (3)
URSA charlie %5bAutosaved%5d 2 (3)
 
Cf4301466469
Cf4301466469Cf4301466469
Cf4301466469
 
SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGH
SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGHSULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGH
SULFIDE REMOBILISATION FROM SULFIDE ORE AT HIGH
 
Na2421422147
Na2421422147Na2421422147
Na2421422147
 
2014_CP
2014_CP2014_CP
2014_CP
 
Application of micromechanics on alkali activated materials
Application of micromechanics on alkali activated materialsApplication of micromechanics on alkali activated materials
Application of micromechanics on alkali activated materials
 
Synthesis of zeolite zsm3 from faujasite
Synthesis of zeolite zsm3 from faujasiteSynthesis of zeolite zsm3 from faujasite
Synthesis of zeolite zsm3 from faujasite
 
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...
Optimizing Reactor Parameters to Achieve Higher Process Yield in Ex-Situ Oil ...
 
Utica shale gas-yulini
Utica shale gas-yuliniUtica shale gas-yulini
Utica shale gas-yulini
 
Slide Proposal Presentation.pdf
Slide Proposal Presentation.pdfSlide Proposal Presentation.pdf
Slide Proposal Presentation.pdf
 
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...
Synthesis of prebiotic organics from ­CO2 by catalysis with meteoritic and vo...
 
Geopolymer.pptx
Geopolymer.pptxGeopolymer.pptx
Geopolymer.pptx
 
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...
Modeling Of Carbon Deposit From Methane Gas On Zeolite Y Catalyst Activity In...
 
E0421931
E0421931E0421931
E0421931
 
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...
Effect Of Curing Temperature And Curing Hours On The Properties Of Geo-Polyme...
 
Geopolymer Concrete – A Look Over
Geopolymer Concrete – A Look OverGeopolymer Concrete – A Look Over
Geopolymer Concrete – A Look Over
 
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...
CHARACTERIZATION & DURABILITY PROPERTIES OF ULTRAFINE FLY ASH BASED GEOPOLYME...
 
D0432026
D0432026D0432026
D0432026
 
Organic geochemistry role in petroleum exploration
Organic geochemistry role in petroleum explorationOrganic geochemistry role in petroleum exploration
Organic geochemistry role in petroleum exploration
 
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
Enhanced fluidized bed methanation over a Ni Al2O3 catalyst for production of...
 

Experimental Study of the Pyrolysis of Eagle Ford Oil Shale act3_JH %281%29

  • 1. Experimental Study of the Pyrolysis of Eagle Ford Oil Shale Abstract Witha greatdeal of researchandinvestmentbeingfocusedonthe developmentof unconventional fuels,the UnitedStates’domesticoil shale resourceshave beengivensignificant considerationasaviable source fordomesticfuel.Geochemical andgeophysical assessmentsof oil and gas potential providecritical informationrelevanttothe extractionandproductionstrategies. Sequentiallaboratorypyrolysisexperimentswillbe conductedunderdifferentconditionsincluding hydrous,anhydrousandpyrolysisinthe presence of hydrogengasonbothwhole rockand kerogen extractedsamplesfromEagle Fordshale deposits. Thisstudywill:(1) analyze immaturesamplesof these source rocks,(2) characterize theirgeneratedoil andgasproductsduringpyrolysisexperimentsto evaluate theirpotential assource rocksand(3) improve retortingmethodsof oil shaleforpetroleum production.The use of gas chromatographyandmass spectrometrywill be usedtoanalyze the recoveredgaseousandliquidcompositions.A seriesof compoundsingeneratedoils,the bulk compositionof generatednatural gas,andthe carbon isotopiccompositionof methane innatural gas provide informationoncompositions astheyevolve withincreasingthermal stresswill provide useful insightintofuture unconventional resource assessment. 1. Introduction Mudrocks withlarge amountsof organicmatter are some of the mostcommon source rocks for hydrocarbons. Oil shale referstothermallyimmature shalerockcontainingkerogen,whichistypically foundat depthsof <3000 feetwithinsedimentarybasins. Asthese oil shalesare thermallyimmature, mostof the kerogenwithinthemremainsintactandcapable of producingoil andgas. The UnitedStates
  • 2. Eq. 1 The added heat and pressure to organic compounds, lipids, fats and carbohydrates form long chain hydrocarbons (geopolymers) possessesapproximately1.5trillionbarrelsof “recoverable”oil reservesinnear-surfaceshale deposits, whichaugmentsthe significantresource potentialindeepershale depositsthatare the currentfocusof oil and gas exploitation(Mao2010). The Chemistry of Petroleum Formation At itsbase,petroleumisafossil fuel,whichmeansitis derivedfromthe remainsof organic material.Inotherwords,petroleumresultsfromanumberof chemical reactions thatoccur to material that wasonce alive.Inmostcases,liquidpetroleumwasonce zooplanktonoralgae thatsettledtothe bottomof a seaor lake and was thenburiedundersediment.The sedimentensuredthatnooxygenwas able to reachthe decayingorganicmatterandthisset the stage for the formationof oil. Overgeologic time,thisorganicmatterissubjectedtoincreasedpressure from overlyingsediment andheatasthese rocks are buriedmore deeply (Fig.3).The solidificationandconversionof thisorganicmatter,itisfirst changedintoa waxysolidcalledkerogen foundinsedimentaryrocksincludingshaleandcoal.This processwhere kerogenisformedis calleddiagenesis,whichcanbe seenin (Eq1). Catagenesis As temperature andpressure continuestoincrease fromsedimentaccumulation, the processof catagenesisbegins.Catagenesisisthe thermal degradation (or“cracking”of heaviercarbon bonds) of kerogentoshortermore straight/branchedhydrocarbonchains (Figure 1a).Since the behaviorof petroleum formationisdependentonheat, pressure andmolecularstructure,averyspecific range of temperaturesandheatingratesare requiredtoproduce aqualityproduct.If conditionsare too
  • 3. hot,the hydrocarbonsformedfromcatagenesiswillfavoran aromaticring chemical structure (Figure 1b), beingcharacteristicof natural gas.If temperaturesdonotexceedthe energythresholdtobreakthe kerogen(itvariesfromdifferentkerogentypes) the biological precursors will remaintrappedas kerogen. Petroleum production by artificial maturation of oil shale Simulatingcatagenesisthroughlaboratorypyrolysisexperimentsisfrequently usedtoattempt to replicate the compositionof the yieldsseeninnature,inaslittle as12 hours. “The differencesin time-scale betweenthe laboratoryexperimentsandnatural geological processesare sogreatthat claims of irrelevance andmechanismsare difficulttorefute. (SaxbyandRiley,1984). Lewanand others(1979) reportedthatheatingorganic-richrockssubmergedinliquidwater resultedinthe generationand expulsionof free flowingoil thataccumulatedonthe watersurface above the submergedrock. Knowledgegainedthroughthe manipulationof experimental conditionstoproduce useful fuelswas appliedtothe problemof producingalaboratory-scale analogforpetroleum-formingprocesses.Evans and Felbeck(1983a, b,c) performedaseriesof experimentsdesignedtoexamine the hypothesisthat hightemperature reactionscouldbe usedtosimulatepetroleumformation.Theyfoundthatthe closed- systempyrolysisof anoil shale couldbe usedtoduplicate the observationsof manyinsitustudiesof petroleummaturation.Throughthe pyrolysisof oil shale,theywereable todefinefivedifferent temperature zonesthatsimulatedpetroleummaturationreactions(EvansandFelbeck, 1983a). Figure2. Left:Aromatic,three double bonded carbonsin a ring structure.Good indicatorof high thermalmaturityRight: Common aliphatic carbons indicative of low thermal maturity. Fig. 1 Summary of the oil formation process, modified from Tissot and Welte, 1984
  • 4. 2. ResearchObjectives The objective of this research is to investigate the composition and quality of generated petroleum and gas of the Eagle Ford Formation from laboratory simulated hydrous pyrolysis experiments.The goal will be to apply various time-temperature conditions (12hr-24hr and 280- 330°C ) of thermally immature organic-rich samples containing type-IIkerogen. This will aid in assessing reaction pathways and controlling factors to determine the generation of petroleum (gas and oil) as well as the effects of maturation of marine shales. Eagle FordFormation The Eagle FordFormation waschosenfor thisstudy.It outcropsalonga northeast-southwest trend,spanningfromOklahomadowntosouthwesternTexas(Figure1). The unitdipsat aboutone degree tothe southeast. The thicknessof the Eagle Fordvariesregionallyanditisabout 200ft thickin the Waco areabut thinsto the southwesttowardAustin(Jiang,1989). Study area Outcrop trend
  • 5. Fig 3 Outcrop trendof the Eagle Fordthroughoutcentral Texas.Modifiedfrom (Dawson, 2000) The depositionof the Eagle FordFormationoccurredduringthe Late Cenomanianand Turonianstagesof the Late Cretaceous.Duringthistime,agenerallywarmclimate withrelativelyhigh atmosphericpCO2 levelsdominated(Veizeretal.,2000; Bice et al.,2006). Global eustaticsealevel reachedthe Cretaceousmaximumfollowingaprolongedrise insealevel(Haqetal.,1987) and the poles were ice free. 3. Methodology SamplePreparationand CharacterizationofWholeRock and Kerogen Shale samplesfromthe Eagle Fordformationwill be manuallycrushedwitharockhammer, thenmilled intoafine powderusingashatterbox. The shale sampleswillbe characterizedbyoptical microscopyof thin-sections,X-raydiffraction,andscanningelectronmicroscopybefore andafterthe proposedpyrolysisexperiments. The large variationinbiological precursorsandthe modifications broughtabout viadiagenesisandcatagenesiscreatesacomplex heterogeneousstructure affecting chemical bondstrength.If the molecularstructure of kerogendeterminesitspetroleumgeneration products by alteringchemical bonds,itwill require adifferentthermal energytobreakthe gaseous molecularprecursorsfromthe kerogen. Althoughitisnotpart of the natural petroleumformation process,solidkerogenextractionbydemineralizationpreventscatalyticreactionsordecompositionof mineralswithinthe system(Saxby1982). Approximately 8gof whole-rockpowderwillbe weighedintoa50mL polyethylenecentrifuge tube.Carbonates will be removedbytreatmentof sedimentwith 1N hydrochloricaciduntil
  • 6. effervescenceceased.The resultantsupernatantliquid will be decanted.Subsequently,the rocks will be furtherdemineralizedusingthree successivetreatmentswith25mLdosesof mixedhydrofluoricacid(10 wt.%) andhydrochloricacid(10 wt.%).Each treatment will occurfora minimumof 12 hourswhile shakingonan orbital shaker. Aftercentrifugationat5,000 rpm, the pelletwill be rinsedwithdeionized water3 times.The samples willthenbe driedovernightinaheatedsandbathat 50°C. Organicmatter inthe original shale samplesandextractedkerogensampleswillbe characterizedfortotal organiccarbon (TOC) and itsδ13 C valuesbyelemental analyzer–isotope ratio mass spectrometer,differenttypesandfractionsof organicmatterbyRock-Eval (GEOMARKRESEARCH, LTD) and nuclearmagneticresonance spectrometry(BaylorUniversity). The Rock Eval methodentailsa programmedheatingof asedimentsample(100mg) inan inert (heliumgas) atmosphere. Volatile productsfromthe pyrolysisare measuredbyaflame ionization detector.Briefly,the temperature programisasfollows.The oventemperature isheldat300°C and the free hydrocarbonsare volatilizedandmeasuredasthe S1 peak(detectedbyFID).The temperature is thenincreasedfrom300° to 550°C (at 25°C/min).Thisisthe phase of volatilizationof the heavy hydrocarbons(>C40) andthe crackingof nonvolatile organicmatter(kerogen).The hydrocarbons releasedfromthisthermal crackingare measuredasthe S2 peak.The temperature atwhichS2 reaches itsmaximumdependsonthe nature andmaturityof the kerogenandiscalledTmax.The CO2 from kerogencrackingistrappedinthe 300°-390°C range.The trap is heated,andCO2 isreleasedand detectedona thermal conductivitydetectorduringthe coolingof the pyrolysisoven(S3peak). Usingthe isotopiccompositionvaluesvsthe standardRock Eval valueswill give usanideaof how successful the independentexperimentsworkedaswell asaidingincharacterizationof the oil shale samplescollected. Isotopiccompositionof methanewill alsogive astrongindicationof thermal maturity,acomponentof source rock evaluationthatisalwaysa necessity.
  • 7. PyrolysisExperiments The experimentswillconsistof iso-thermallyheatingtensof gramsof gravel-sizedimmature source rock and extractedkerogen inthe presenceof liquid waterinabomb reactorat temperatures reaching330°C for 12-36hrs. The pressure will be controlledtothe saturationpressure inthe presence of water(130 bars).Afterthe experimentiscompleted,gaseousandliquidcompositionswill be recoveredanddeterminedbymassspectrometryandgaschromatography.The remaininggaswill be ventedandthe reactor will be openedtoquantitativelycollectthe expelledoil.These laboratory pyrolysisexperimentswill simulate natural occurrencesof catagenesisbyexponentiallyaccelerating geologicprocessesthroughincreasedtemperatures. Kerogenwill be extractedfromeachsample using a sequestrationtechniquetoenhance qualitative understandingof the controlsongasgenerationfrom source rocks and expelledoil containingtype-IIkerogen AnalysisofPyrolysisproducts Usinggas chromatographyand massspectrometryitishopeful we willbe able toboth quantitativelyandqualitativelyhave adeeperunderstandingof the maturationprocessonthe molecularlevel andtobe able to predictthe quantityandtype of expelledhydrocarbonsbeforethe artificial maturationexperimentbegins.If successful,thiswill be amajorbenefitinfuture source rock evaluationsbeingable tosave bothtime andmoney. Upon analysisof the pyrolysisproductsIexpect thatδ13 Cvaluesof C1 and C2 alkanesincrease withtime,butwill notbe the case for C3 and C4 after72 hrs. Overall,δ13 Cof C1 – C4 alkaneswill follow the “thermogenic”trendatthese specificexperimental conditions,basedonpreviousstudiesformthe Universityof Houston.
  • 8. The resultsof the laboratorypyrolysisexperimentswillbe correlatedusingthe industry standardof Rock Eval pyrolysis,whichwill be facilitatedatGeoMark Labs,locatedinHumble,Tx.Rock- Eval PyrolysisProcedure. References Bice,K.L., D. Birgel,P.A. Meyers,K.A.Dahl,K.-U. Hinrichs,andR. D. Norris,2006, A multiple proxyand model studyof CretaceousupperoceantemperaturesandatmosphericCO2concentrations: Paleoceanography,21,PA2002,doi:10.1029/2005PA001203. Dawson,W. C.,2000, Shale microfacies:Eagle FordGroup(Cenomanian-Turonian) north-central Texas outcropsand subsurface equivalents:GCAGSTransactions,50,607–621. Haq, B. U., J. Hardenbol,andP.R. Vail,1987, Chronologyof FluctuatingSeaLevelssincethe Triassic: Science,235, 1156–1167, doi:10.2307/1698241. Jiang,M. J., 1989, Biostratigraphyandgeochronologyof the Eagle Fordshale,AustinChalk,andlower TaylorMarl inTexasbasedon calcareousnanofossils:Ph.D.dissertation,TexasA&MUniversity. Figure 5 previous experiments runat Baylor Universityinthe characterizationof multiple oilshale samples withvaryingTOC(wt%) values as a functionof potential oilyieldof the Eagle Ford Formation using Rock Eval pyrolysis techniques.
  • 9. Lewan,M.D., 1993a. Laboratory simulationof petroleumformation-hydrouspyrolysis.In:Engel,M., Macko, S. (Eds.),OrganicGeochemistry –PrinciplesandApplications.PlenumPress,New York,pp.419– 442 Lewan,M.D., 1997. Experimentsonthe role of waterinpetroleumformation.Geochimicaet CosmochimicaActa61, 3691–3723. SackettW. M. (1978) Carbonand hydrogenisotope effectsduringthe thermocatalyticproductionof hydrocarbonslaboratorysimulationexperiments.Geochim, Cosmochim.Acta42,571 580. SaxbyJ.D. (1982) A reassessmentof the range of kerogenmaturitiesinwhichhydrocarbonsare generated.J.Pet.Geol.5,117 128. SaxbyJ.D. andRileyK.W. (1984) Petroleumgenerationbylaboratory-scale pyrolysisoversix years simulatingconditionsinasubsidingbasin.Nature 308,177 179. Veizer,J.,Y.Godderis,andL. M. Francois,2000, Evidence fordecouplingof atmosphericCO2andglobal climate duringthe Phanerozoiceon:Nature,408, 698–701,doi: 10.1038/35047044