SlideShare a Scribd company logo
1 of 6
The Study of One of the Important Pathway on
the Acrolein Oxidation
Chemistry and Environmental Science Department, New Jersey Institute of Technology
Jinhong Tan
Advisor: Joseph W. Bozzelli
6/18/2015
Abstract:
In thisreportwe studied areactionpathwayfromradical qjcdccdo to intermediates,transitionstates
and final products.Firstlywe identifiedthe intermediatesandproductsinthe reactionpathway.Then
we use work reactionstocalculate the heatof formationenergyof eachof the speciesinthe pathway
by usingM062x/6-31+G(d,p) and B3LYP/6-31+G(d,p) methodsandbasisset. Lastlywe estimatedthe
transitionstate structure andbuildthe Gaussianinputfile tocalculate the transitionstate energy.
Introduction:
Thispathwaywe studiedisanimportantpathwayon the researchof molecule 2-Propenal oxidation.2-
Propenal oracroleinisthe simplestunsaturatedaldehyde.It’susuallycreatedbyglycerol whenburning
fat or cigarette smoke.Acroleinistoxicandisa strongirritantfor the skin,eyesandnasal passages,it’s
alsothe risk of cancer specie.We studiedone of the importantpathwayof the acroleinoxidation.
We usedbothM062x and B3lYP methodstocalculate eachof the moleculesorradicalsinthe work
reaction,apply 6-31+G(d,p) basissetfor bothmethods. ForeachGaussianinputfile created,we firstly
use Chem95 programsto buildthe molecule structure,thenuse Mopacprogram to calculate (use pm3
precise aigoutcommend) togetthe Gaussianinputfile.Foreachof the Gaussiancalculationof the
species,we calculate all of the rotational energy inthe molecule togetthe most optimizedstructure.
Thenwe use it to calcualte the heatof formationenergy.
The transitionstate structure wasestimatedunderthe guidance of professorBozzelli.We use M062x/6-
31+G(d,p) opt=(calcfc,ts,oeigen)freqscf=qcasthe commend line tocalculate the transitionstate
energy.
Afteridentifythe heatof formationenergyof all the specie (transitionstate use relative energymethod
to identify) inthe pathway,we createdthe energydiagramof thispathway.
Result andDiscussion:
Figure 1 showsthe energydiagramof thispathwaycalculatedbyM062x method. Table 1 showsthe
reference dataof speciesinthe workreactions.Table 2is the workreactionscalculated. The mostof the
heatof formationenergycalculatedbytwomethodsinthe workreactionmatcheswell.Thismaydue to
the careful buildingof the inputfileandrotational energy calculationof eachmolecule togetthe most
optimizedstructure. While thereare some datacalculatedbytwomethodstill have bigdifference.For
example the radical ojycoccdo(Table 2) twocalculatedaverage energyare -74.4kcal/mol and -
68.35kcal/mol byB3LYP and M062x respectively.We have checkedthe outputstructure calculatedby
bothmethods.We foundthatthe outputstructure byB3LYP was similarwiththe inputstructure,while
for M062x Outputstructure it has a bigdifference withthe inputstructure.We cannot figure outthe
reason.
Additionally,some of the workreactions we chosen canbe betterto contribute tothe more accurate
result. the furtherstudymaybe the more accurate work reactionchose andhigherlevel method
calculation.
Figure 1. Energy Diagram of this studied pathway.
Species ΔfH298
kcal/mol
Reference
c ch4 -17.83 1
cc ch3ch3 -20.04 1
ccdo Ch3ch2cho -39.72 4
cccdo ch3ch2ch=o -45.09 2
ccccdo ch3ch2ch2ch=o -49.27 9
cdc ch2=ch2 12.54 1
cjdc ●ch=ch2 71.2 4
cdcc ch2=chch3 4.89 1
cjdcc ●ch=chch3 63.66 3
ycoc Ych2och2 -12.57 14
ycoo Ych2o2 1.2 10
coh ch3oh -48.04 5
ccoh Ch3ch2oh -56.12 6
odcoc o=choch3 -85 7
odcocc O=choch2ch3 -92.83 8
cjcdo ●ch2ch=o 4.4 4
ccjcdo ch3c●hch=o -5.7 4
hocdc ch2=choh -30.59 11
odc ch2=o -27.7 12
odcdc o=c=ch2 -20.89 13
Table 1. Heat of formation energy of reference species used in the work reactions.
Reaction Enthalpies ΔfH298 kcal/mol
Work reaction B3LYP M062X B3LYP M062X
1 ycooccdo+ c = ycoo + cccdo 7.18 7.64 -33.34 -33.77
2 ycooccdo+ cc = ycoo + ccccdo 5.57 5.13 -33.60 -33.16
Average -33.47 -33.47
3 ycoocjcdo+cdc=ycooccdo+cjdc 22.48 19.84 2.71 5.35
4 ycoocjcdo+cdcc=ycooccdo+cjdcc 23.16 20.65 2.14 4.65
Average 2.43 5
5 oycoccdo+c=oycoc+ccdo 3.29 3.55 -82.70 -82.96
6 oycoccdo+cc=oycoc+cccdo 2.21 1.89 -84.87 -84.55
Average -83.79 -83.76
7 ojycoccdo+cdc=oycoccdo+cjdc 49.03 42.9 -74.12 -67.99
8 ojycoccdo+cdcc=oycoccdo+cjdcc 49.70 43.72 -74.68 -68.70
Average -74.4 -68.35
9 odcoccdo+c=ccdo+odcoc 0.08 0.77 -106.97 -107.66
10 odcoccdo+cc=ccdo+odcocc -5.27 -5.2 -107.24 -107.32
Average -107.11 -107.49
11 odcocjcdo+cdc=odcoccdo+cjdc 26.35 24.20 -75.18 -73.03
12 odcocjcdo+cdcc=odcoccdo+cjdcc 27.03 25.02 -75.75 -73.74
Average -75.47 -73.39
13 qcdccdo+cc=qcdc+cccdo 7.64 6.18 -43.00 -41.54
14 qcdccdo+c=qcdc+ccdo 8.72 7.84 -40.83 -39.95
Average -41.92 -40.75
15 qjcdccdo+cdc=qcdccdo+cjdc 24.59 24.01 -6.68 -6.10
16 qjcdccdo+cdcc=qcdccdo+cjdcc 25.26 24.83 -7.24 -6.81
Average -6.96 -6.46
17 ocdccdo+cc=hocdc+cccdo 8.42 6.80 -64.15 -62.53
18 ocdccdo+c=hocdc+ccdo 9.50 8.45 -61.98 -60.93
Average -63.07 -61.73
19 ojcdccdo+cdc=ocdccdo+cjdc 26.29 25.06 -29.36 -28.13
20 ojcdccdo+cdcc=ocdccdo+cjdcc 26.96 25.88 -29.92 -28.84
Average -29.64 -28.49
21 cdccdo + c = cdc + ccdo 7.03 6.47 -16.26 -15.7
22 cdccdo + cc = cdcc + ccdo 1.71 0.96 -16.38 -15.63
Average -16.32 -15.67
23 odcj+cdc=cjdc+odc 21.71 21.36 9.25 9.6
24 odcj+cdcc=cjdcc+odc 22.38 22.17 8.69 8.90
Average 8.97 9.25
25 qcdccjdo+ cdc = qcdccdo + cjdc 21.03 20.35 -3.12 -2.43
26 qcdccjdo+ cdcc = qcdccdo + cjdcc 21.71 21.16 -3.69 -3.14
Average -3.41 -2.79
27 odcocdcdo+c = odcoc + odcdc -13.28 -14.24 -80.40 -79.44
28 odcocdcdo+cc = odcocc + odcdc -7.94 -8.27 -80.12 -79.79
Average -80.26 -79.62
Work ReactionM062x Reaction Enthalpies ΔfH298 kcal/mol
1 oycoc + c = ycoc + coh 14.68 -57.46
2 oycoc + cc = ycoc + ccho 8.92 -57.57
Average -57.52
Table 2. Work reactions for different molecules and radicals.
References
1. Furuyama,S.;Golden,D.M.; Benson,S.W. J. Chemical Thermodynamic.1969, 4, 363-375.
2. Wiberg,K.B.;Crocker,L.S.,Morgan, K.M.J.Am.Chem.Soc.1991, 113, 3447-3450.
3. Sebbar,N.;Bockhorn,H.; Bozzelli,J.W.J.Phys.Chem.2002, 4, 3691-3703.
4. Goldsmith,C.F.;Magoon, G. R.; Green,H. W. Phys.Chem.2012,116, 903-905.
5. J.M. Zaug,.L. E. Fried,.E. H. Abramson,.Measuredsoundvelocitiesof h2oandch3oh. High
Pressure Research.Vol.23,No.3, September2003, pp, 229-233.
6. Arpad,Furka. Relative energyof organiccompounds II.Halides,nitrogen,andsulfurcompounds.
Struct Chem(2009) 20:605-616.
7. Ovidiu,Ivanciuc. Thermochemistryof OrganicandHeteroorganicSpecies.PartXVI.Applicationof
IR Spectraof UnsaturatedAliphaticMoleculestothe Thermochemistryof VinylicandAllylicFree
Radicals.InternetElectronicJournal of MolecularDesign.June 2005,Volume 4,Number6, Page 367-
380.
8. Douglas,Bond. Computational MethodsinOrganicThermochemistry.2.EnthalpiesandFree
Energiesof FormationforFunctional Derivativesof OrganicHydrocarbons.J.Org.Chem.,Vol.72, No,19,
2007.
9. Gabriel, D,S.; Joseph,W.B. Enthalpiesof Formation,BondDissociationEnergies,andMolecular
Structuresof the n-Aldehydes(Acetaldehyde,Propanal,Butanal,Pentanal,Hexanal,andHeptanal)and
TheirRadicals.J.Phys.Chem.A 2006, 110, 13058-13067.
10. Minh. T. N.;Thanh.L. N.;Vu.T. N. Heatsof Formationof the Criegee formaldehydeoxideand
dioxirane.Chemical PhysicsLetters.Volume448,Issues4-6,14 November2007, Pages183-188.
11. Turecek,F.;Havlas,Z.,Thermochemistryof unstable enols:the O-(Cd)(H) groupequivalent,J.Org.
Chem.,1986, 51, 4066-4067.
12. Chase,M.W.,Jr., NIST-JANAFThemochemicalTables,FourthEdition,J.Phys.Chem.Ref.Data,
Monograph 9, 1998, 1-1951.
13. Ervasti,H. K.; Burgers,P.C.; Ruttink,P.J. A.Energy and Stabilityof ProtonatedKetenes:Inductive
and Resonance Effects.EuropeanJournal of MassSpectrometryVolume Issue6,Pages791-800 (2004).
14. Liu, F.L.; Du,A. M.; Wang, S. J. Theoretical studyontwoC16H12O4 isomersof derivativesof
pagodane.ChineseJournal of Structural Chemistry.2006, 25 (2).

More Related Content

Viewers also liked

SC1 Workshop 2 Technical overview
SC1 Workshop 2 Technical overviewSC1 Workshop 2 Technical overview
SC1 Workshop 2 Technical overviewBigData_Europe
 
50 Powerful Statistics About Tech Megatrends Affecting Every Business
50 Powerful Statistics About Tech Megatrends Affecting Every Business50 Powerful Statistics About Tech Megatrends Affecting Every Business
50 Powerful Statistics About Tech Megatrends Affecting Every BusinessExtreme Networks
 
How ux can make or break your business
How ux can make or break your businessHow ux can make or break your business
How ux can make or break your businessSocial Beat
 
Retail Disruption Case Study: Brand Growth Success Story
Retail Disruption Case Study: Brand Growth Success StoryRetail Disruption Case Study: Brand Growth Success Story
Retail Disruption Case Study: Brand Growth Success StoryG3 Communications
 
SC1 - Hangout 2: The Open PHACTS pilot
SC1 - Hangout 2: The Open PHACTS pilotSC1 - Hangout 2: The Open PHACTS pilot
SC1 - Hangout 2: The Open PHACTS pilotBigData_Europe
 
SC7 Workshop 2: Big Data Challenges in Cybersecurity
SC7 Workshop 2: Big Data Challenges in CybersecuritySC7 Workshop 2: Big Data Challenges in Cybersecurity
SC7 Workshop 2: Big Data Challenges in CybersecurityBigData_Europe
 

Viewers also liked (8)

SC1 Workshop 2 Technical overview
SC1 Workshop 2 Technical overviewSC1 Workshop 2 Technical overview
SC1 Workshop 2 Technical overview
 
50 Powerful Statistics About Tech Megatrends Affecting Every Business
50 Powerful Statistics About Tech Megatrends Affecting Every Business50 Powerful Statistics About Tech Megatrends Affecting Every Business
50 Powerful Statistics About Tech Megatrends Affecting Every Business
 
How ux can make or break your business
How ux can make or break your businessHow ux can make or break your business
How ux can make or break your business
 
Retail Disruption Case Study: Brand Growth Success Story
Retail Disruption Case Study: Brand Growth Success StoryRetail Disruption Case Study: Brand Growth Success Story
Retail Disruption Case Study: Brand Growth Success Story
 
SC1 - Hangout 2: The Open PHACTS pilot
SC1 - Hangout 2: The Open PHACTS pilotSC1 - Hangout 2: The Open PHACTS pilot
SC1 - Hangout 2: The Open PHACTS pilot
 
Salome sabanadze
Salome sabanadzeSalome sabanadze
Salome sabanadze
 
SC7 Workshop 2: Big Data Challenges in Cybersecurity
SC7 Workshop 2: Big Data Challenges in CybersecuritySC7 Workshop 2: Big Data Challenges in Cybersecurity
SC7 Workshop 2: Big Data Challenges in Cybersecurity
 
Effective presentation
Effective presentationEffective presentation
Effective presentation
 

Similar to Master project report

Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)SAJJAD KHUDHUR ABBAS
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Presentation_IMECE_20121.pptx
Presentation_IMECE_20121.pptxPresentation_IMECE_20121.pptx
Presentation_IMECE_20121.pptxssuser8e1fef
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
HGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxHGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxhansinagengprakoso1
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...IJERA Editor
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.pptritu919015
 
General Physiology (Bio 109) - Cellular respiration with questions at the end
General Physiology (Bio 109) - Cellular respiration with questions at the endGeneral Physiology (Bio 109) - Cellular respiration with questions at the end
General Physiology (Bio 109) - Cellular respiration with questions at the endShaina Mavreen Villaroza
 
Optimization of parameters affecting the performance of passive solar distill...
Optimization of parameters affecting the performance of passive solar distill...Optimization of parameters affecting the performance of passive solar distill...
Optimization of parameters affecting the performance of passive solar distill...IOSR Journals
 
Aieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravAieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravSahil Gaurav
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationTomsk Polytechnic University
 
2 a modelo 1er parcial de fisicoquimica, semestre i-2020
2 a modelo   1er parcial de fisicoquimica, semestre i-20202 a modelo   1er parcial de fisicoquimica, semestre i-2020
2 a modelo 1er parcial de fisicoquimica, semestre i-2020MauricioGaspar3
 
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptxc5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptxkhoinguyenngoccs3008
 
L pac presentation
L pac presentationL pac presentation
L pac presentationSonia Patel
 

Similar to Master project report (20)

Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING (Part 2)
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Presentation_IMECE_20121.pptx
Presentation_IMECE_20121.pptxPresentation_IMECE_20121.pptx
Presentation_IMECE_20121.pptx
 
chapt16_lecture.ppt
chapt16_lecture.pptchapt16_lecture.ppt
chapt16_lecture.ppt
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
HGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptxHGSC Technique Presentation2.pptx
HGSC Technique Presentation2.pptx
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Cytochrome c Oxidase Jan06
Cytochrome c Oxidase Jan06Cytochrome c Oxidase Jan06
Cytochrome c Oxidase Jan06
 
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...N-alkylation methods, Characterization and Evaluation of antibacterial activi...
N-alkylation methods, Characterization and Evaluation of antibacterial activi...
 
Proc sim escape21
Proc sim escape21Proc sim escape21
Proc sim escape21
 
unit-6-thermodynamics.ppt
unit-6-thermodynamics.pptunit-6-thermodynamics.ppt
unit-6-thermodynamics.ppt
 
K means-1
K means-1K means-1
K means-1
 
General Physiology (Bio 109) - Cellular respiration with questions at the end
General Physiology (Bio 109) - Cellular respiration with questions at the endGeneral Physiology (Bio 109) - Cellular respiration with questions at the end
General Physiology (Bio 109) - Cellular respiration with questions at the end
 
Optimization of parameters affecting the performance of passive solar distill...
Optimization of parameters affecting the performance of passive solar distill...Optimization of parameters affecting the performance of passive solar distill...
Optimization of parameters affecting the performance of passive solar distill...
 
Aieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat GauravAieee 2010 Solved paper by Prabhat Gaurav
Aieee 2010 Solved paper by Prabhat Gaurav
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery application
 
2 a modelo 1er parcial de fisicoquimica, semestre i-2020
2 a modelo   1er parcial de fisicoquimica, semestre i-20202 a modelo   1er parcial de fisicoquimica, semestre i-2020
2 a modelo 1er parcial de fisicoquimica, semestre i-2020
 
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptxc5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
 
L pac presentation
L pac presentationL pac presentation
L pac presentation
 

Master project report

  • 1. The Study of One of the Important Pathway on the Acrolein Oxidation Chemistry and Environmental Science Department, New Jersey Institute of Technology Jinhong Tan Advisor: Joseph W. Bozzelli 6/18/2015
  • 2. Abstract: In thisreportwe studied areactionpathwayfromradical qjcdccdo to intermediates,transitionstates and final products.Firstlywe identifiedthe intermediatesandproductsinthe reactionpathway.Then we use work reactionstocalculate the heatof formationenergyof eachof the speciesinthe pathway by usingM062x/6-31+G(d,p) and B3LYP/6-31+G(d,p) methodsandbasisset. Lastlywe estimatedthe transitionstate structure andbuildthe Gaussianinputfile tocalculate the transitionstate energy. Introduction: Thispathwaywe studiedisanimportantpathwayon the researchof molecule 2-Propenal oxidation.2- Propenal oracroleinisthe simplestunsaturatedaldehyde.It’susuallycreatedbyglycerol whenburning fat or cigarette smoke.Acroleinistoxicandisa strongirritantfor the skin,eyesandnasal passages,it’s alsothe risk of cancer specie.We studiedone of the importantpathwayof the acroleinoxidation. We usedbothM062x and B3lYP methodstocalculate eachof the moleculesorradicalsinthe work reaction,apply 6-31+G(d,p) basissetfor bothmethods. ForeachGaussianinputfile created,we firstly use Chem95 programsto buildthe molecule structure,thenuse Mopacprogram to calculate (use pm3 precise aigoutcommend) togetthe Gaussianinputfile.Foreachof the Gaussiancalculationof the species,we calculate all of the rotational energy inthe molecule togetthe most optimizedstructure. Thenwe use it to calcualte the heatof formationenergy. The transitionstate structure wasestimatedunderthe guidance of professorBozzelli.We use M062x/6- 31+G(d,p) opt=(calcfc,ts,oeigen)freqscf=qcasthe commend line tocalculate the transitionstate energy. Afteridentifythe heatof formationenergyof all the specie (transitionstate use relative energymethod to identify) inthe pathway,we createdthe energydiagramof thispathway.
  • 3. Result andDiscussion: Figure 1 showsthe energydiagramof thispathwaycalculatedbyM062x method. Table 1 showsthe reference dataof speciesinthe workreactions.Table 2is the workreactionscalculated. The mostof the heatof formationenergycalculatedbytwomethodsinthe workreactionmatcheswell.Thismaydue to the careful buildingof the inputfileandrotational energy calculationof eachmolecule togetthe most optimizedstructure. While thereare some datacalculatedbytwomethodstill have bigdifference.For example the radical ojycoccdo(Table 2) twocalculatedaverage energyare -74.4kcal/mol and - 68.35kcal/mol byB3LYP and M062x respectively.We have checkedthe outputstructure calculatedby bothmethods.We foundthatthe outputstructure byB3LYP was similarwiththe inputstructure,while for M062x Outputstructure it has a bigdifference withthe inputstructure.We cannot figure outthe reason. Additionally,some of the workreactions we chosen canbe betterto contribute tothe more accurate result. the furtherstudymaybe the more accurate work reactionchose andhigherlevel method calculation. Figure 1. Energy Diagram of this studied pathway.
  • 4. Species ΔfH298 kcal/mol Reference c ch4 -17.83 1 cc ch3ch3 -20.04 1 ccdo Ch3ch2cho -39.72 4 cccdo ch3ch2ch=o -45.09 2 ccccdo ch3ch2ch2ch=o -49.27 9 cdc ch2=ch2 12.54 1 cjdc ●ch=ch2 71.2 4 cdcc ch2=chch3 4.89 1 cjdcc ●ch=chch3 63.66 3 ycoc Ych2och2 -12.57 14 ycoo Ych2o2 1.2 10 coh ch3oh -48.04 5 ccoh Ch3ch2oh -56.12 6 odcoc o=choch3 -85 7 odcocc O=choch2ch3 -92.83 8 cjcdo ●ch2ch=o 4.4 4 ccjcdo ch3c●hch=o -5.7 4 hocdc ch2=choh -30.59 11 odc ch2=o -27.7 12 odcdc o=c=ch2 -20.89 13 Table 1. Heat of formation energy of reference species used in the work reactions. Reaction Enthalpies ΔfH298 kcal/mol Work reaction B3LYP M062X B3LYP M062X 1 ycooccdo+ c = ycoo + cccdo 7.18 7.64 -33.34 -33.77 2 ycooccdo+ cc = ycoo + ccccdo 5.57 5.13 -33.60 -33.16 Average -33.47 -33.47 3 ycoocjcdo+cdc=ycooccdo+cjdc 22.48 19.84 2.71 5.35 4 ycoocjcdo+cdcc=ycooccdo+cjdcc 23.16 20.65 2.14 4.65 Average 2.43 5 5 oycoccdo+c=oycoc+ccdo 3.29 3.55 -82.70 -82.96 6 oycoccdo+cc=oycoc+cccdo 2.21 1.89 -84.87 -84.55 Average -83.79 -83.76 7 ojycoccdo+cdc=oycoccdo+cjdc 49.03 42.9 -74.12 -67.99
  • 5. 8 ojycoccdo+cdcc=oycoccdo+cjdcc 49.70 43.72 -74.68 -68.70 Average -74.4 -68.35 9 odcoccdo+c=ccdo+odcoc 0.08 0.77 -106.97 -107.66 10 odcoccdo+cc=ccdo+odcocc -5.27 -5.2 -107.24 -107.32 Average -107.11 -107.49 11 odcocjcdo+cdc=odcoccdo+cjdc 26.35 24.20 -75.18 -73.03 12 odcocjcdo+cdcc=odcoccdo+cjdcc 27.03 25.02 -75.75 -73.74 Average -75.47 -73.39 13 qcdccdo+cc=qcdc+cccdo 7.64 6.18 -43.00 -41.54 14 qcdccdo+c=qcdc+ccdo 8.72 7.84 -40.83 -39.95 Average -41.92 -40.75 15 qjcdccdo+cdc=qcdccdo+cjdc 24.59 24.01 -6.68 -6.10 16 qjcdccdo+cdcc=qcdccdo+cjdcc 25.26 24.83 -7.24 -6.81 Average -6.96 -6.46 17 ocdccdo+cc=hocdc+cccdo 8.42 6.80 -64.15 -62.53 18 ocdccdo+c=hocdc+ccdo 9.50 8.45 -61.98 -60.93 Average -63.07 -61.73 19 ojcdccdo+cdc=ocdccdo+cjdc 26.29 25.06 -29.36 -28.13 20 ojcdccdo+cdcc=ocdccdo+cjdcc 26.96 25.88 -29.92 -28.84 Average -29.64 -28.49 21 cdccdo + c = cdc + ccdo 7.03 6.47 -16.26 -15.7 22 cdccdo + cc = cdcc + ccdo 1.71 0.96 -16.38 -15.63 Average -16.32 -15.67 23 odcj+cdc=cjdc+odc 21.71 21.36 9.25 9.6 24 odcj+cdcc=cjdcc+odc 22.38 22.17 8.69 8.90 Average 8.97 9.25 25 qcdccjdo+ cdc = qcdccdo + cjdc 21.03 20.35 -3.12 -2.43 26 qcdccjdo+ cdcc = qcdccdo + cjdcc 21.71 21.16 -3.69 -3.14 Average -3.41 -2.79 27 odcocdcdo+c = odcoc + odcdc -13.28 -14.24 -80.40 -79.44 28 odcocdcdo+cc = odcocc + odcdc -7.94 -8.27 -80.12 -79.79 Average -80.26 -79.62 Work ReactionM062x Reaction Enthalpies ΔfH298 kcal/mol 1 oycoc + c = ycoc + coh 14.68 -57.46 2 oycoc + cc = ycoc + ccho 8.92 -57.57 Average -57.52 Table 2. Work reactions for different molecules and radicals.
  • 6. References 1. Furuyama,S.;Golden,D.M.; Benson,S.W. J. Chemical Thermodynamic.1969, 4, 363-375. 2. Wiberg,K.B.;Crocker,L.S.,Morgan, K.M.J.Am.Chem.Soc.1991, 113, 3447-3450. 3. Sebbar,N.;Bockhorn,H.; Bozzelli,J.W.J.Phys.Chem.2002, 4, 3691-3703. 4. Goldsmith,C.F.;Magoon, G. R.; Green,H. W. Phys.Chem.2012,116, 903-905. 5. J.M. Zaug,.L. E. Fried,.E. H. Abramson,.Measuredsoundvelocitiesof h2oandch3oh. High Pressure Research.Vol.23,No.3, September2003, pp, 229-233. 6. Arpad,Furka. Relative energyof organiccompounds II.Halides,nitrogen,andsulfurcompounds. Struct Chem(2009) 20:605-616. 7. Ovidiu,Ivanciuc. Thermochemistryof OrganicandHeteroorganicSpecies.PartXVI.Applicationof IR Spectraof UnsaturatedAliphaticMoleculestothe Thermochemistryof VinylicandAllylicFree Radicals.InternetElectronicJournal of MolecularDesign.June 2005,Volume 4,Number6, Page 367- 380. 8. Douglas,Bond. Computational MethodsinOrganicThermochemistry.2.EnthalpiesandFree Energiesof FormationforFunctional Derivativesof OrganicHydrocarbons.J.Org.Chem.,Vol.72, No,19, 2007. 9. Gabriel, D,S.; Joseph,W.B. Enthalpiesof Formation,BondDissociationEnergies,andMolecular Structuresof the n-Aldehydes(Acetaldehyde,Propanal,Butanal,Pentanal,Hexanal,andHeptanal)and TheirRadicals.J.Phys.Chem.A 2006, 110, 13058-13067. 10. Minh. T. N.;Thanh.L. N.;Vu.T. N. Heatsof Formationof the Criegee formaldehydeoxideand dioxirane.Chemical PhysicsLetters.Volume448,Issues4-6,14 November2007, Pages183-188. 11. Turecek,F.;Havlas,Z.,Thermochemistryof unstable enols:the O-(Cd)(H) groupequivalent,J.Org. Chem.,1986, 51, 4066-4067. 12. Chase,M.W.,Jr., NIST-JANAFThemochemicalTables,FourthEdition,J.Phys.Chem.Ref.Data, Monograph 9, 1998, 1-1951. 13. Ervasti,H. K.; Burgers,P.C.; Ruttink,P.J. A.Energy and Stabilityof ProtonatedKetenes:Inductive and Resonance Effects.EuropeanJournal of MassSpectrometryVolume Issue6,Pages791-800 (2004). 14. Liu, F.L.; Du,A. M.; Wang, S. J. Theoretical studyontwoC16H12O4 isomersof derivativesof pagodane.ChineseJournal of Structural Chemistry.2006, 25 (2).