SlideShare a Scribd company logo
Professor Leann Nicholson
Algonquin Centre for Construction Excellence
Algonquin College, Woodroffe Campus
1385 Woodroffe Ave.
Ottawa ON, K2G 1V8
15 April 2015
Professor Nicholson:
Please find attached the report for the level-6 ENL4003-040 project entitled “Wattage
Option” in partial fulfillment of the requirements for the Electrical Engineering
Technology advanced diploma. This report will investigate the feasibility of replacing
incandescent light bulbs with the Wattage Option device as a learning tool in
Algonquin’s Electrical Labs. Chapter one will look into the background of the problem
and the solution the Wattage Option device aims to use to solve said problem. Chapter
two will expand upon the design evolution of the device, and the changes made to it
throughout the year. Chapter three describes the methodology of the project, and the
testing involved determining the proper design of the device. Chapter four explores the
results of the final testing once the device was completed. Chapter five will provide our
conclusions and recommendations on how the Wattage Option device can be expanded
upon in the future.
We hope that, in the future, Algonquin College and other many others can benefit from
the work that was produced as a result of this project. We would like to thank Professors
Leann Nicholson, Cynthia Ough Underwood, and Naser Jaradat for their assistance and
guidance in completing this study, and Russell Pingyin, our industry partner, for his
guidance and assistance, as well. We would also like to thank the Applied Research
and Innovation department for partially funding our project, as well as Algonquin College
for the many Information Technology resources that made it possible.
It has been our pleasure working with the College, and we hope that you will find the
attached report both stimulating and informative. We believe the hard work and
determination we put into this project will prove beneficial to future Algonquin students,
and we hope it meets all expectations. If there are any questions or concerns regarding
the report or the project, please do not hesitate to ask.
Sincerely,
Lisa Campbell, Steven Hogeveen, Sean Keppy, and Jeff Riching
Attachment: the technical report “Wattage Option”
Wattage Option
By: Lisa Campbell, Steve Hogeveen, Sean Keppy, and Jeff Riching
Submitted to: Leann Nicholson,
in partial fulfillments of the requirements for ENL4003
Algonquin College,
Electrical Engineering Technology
Algonquin Centre for Construction Excellence
Summary
Watts Op (Wattage Option) isdesignedandevaluatedonthe basisof innovationandease of use in
orderto replace traditional incandescentlightbulbsbeingused aseducational toolsinelectrical labsat
AlgonquinCollegeinOttawa,Ontario.
Withthe banon salesof incandescentbulbsacrossCanada,andthe extensive use of these bulbsin
electrical labsatAlgonquinCollege,anew piece of technologyisdeveloped inordertoreplace the bulbs
inthe future.
In orderto developthisnewtechnology,acircuitmustbe designandsimulatedtoestablishthe
feasibilityof the device.Testingmustbe done onincandescentbulbsinthe labsinbothseriesand
parallel configurationstohave datato compare again.A prototype mustbe builtandtestedto
determine if the newdesigniscomparable tothe existingbulbs.Inordertoinstall the device,ahousing
mustbe designedandbuilttofitintothe existingcabinetsinthe labs.Final circuitboardassemblymust
be completedandinstalledinthe housing.The finalproductistobe testedinbothseriesandparallel
configurationstodetermine if the resultsare close tothe measurementstakenof the incandescent
bulbs.
The resultsof all the testingindicate thatthe WattsOpis a feasible replacementasitaccurately
representsanincandescentbulbinbothbrightnessandpowerdissipation.Inbothseriesandparallel,
the powerdissipatedvariesbyamaximumof 5W andis exactlythe same asa 40W bulbat 120V. In
orderto expandonthe Watts Op in the future,new resistorsneedtobe selectedthatcanwithstandthe
heatgeneratedbythe device anda selectorswitchshouldbe addedtoallow studentstochange
betweendifferentpowerlevels.
iv
Table of Contents
List of Figures and Tables ....................................................................................................................v
Glossary............................................................................................................................................vi
1. Introduction ...................................................................................................................................1
1.1 Background...............................................................................................................................1
1.2 Issues with the Electrical Labs at Algonquin College.....................................................................2
1.3 Project Scope/Limitations..........................................................................................................3
1.4 Outline of Content.....................................................................................................................3
1.5 Criteria Expansion .....................................................................................................................4
2. Design Evolution.............................................................................................................................5
2.1 Watts Op Version 1 ...................................................................................................................5
2.2 Watts Op Version 2 ...................................................................................................................6
2.3 Watts Op Version 3 ...................................................................................................................7
2.4 Watts Op Final Version ..............................................................................................................9
3. Methodology................................................................................................................................10
3.1 Incandescent Bulb Testing .......................................................................................................10
3.1.1 Single Bulb........................................................................................................................10
3.1.2 Multiple Bulbs...................................................................................................................11
3.2 Prototype Circuit Assembly and Testing....................................................................................12
3.2.1 Assembly..........................................................................................................................12
3.2.2 Testing.................................................................................................................................13
3.3 Housing Design .......................................................................................................................14
4. Results.........................................................................................................................................16
4.1 Final Assembly ........................................................................................................................16
4.1.1 Circuit Board ........................................................................................................................16
4.1.2 Housing Construction............................................................................................................17
4.1.3 Putting It All Together.......................................................................................................18
4.2 Final Testing............................................................................................................................19
5. Conclusion/Recommendations ......................................................................................................22
References.......................................................................................................................................23
v
List of Figures and Tables
Figure 1: Elements of the modernincandescent light bulb [3]. ..............................................................1
Figure 2: Visual demonstration of Series vs.Parallel circuits.Adapted from [4].......................................2
Figure 3: One of the Electrical Lab Stations at Algonquin College...........................................................2
Figure 4: Watts Op Schematic - Version 1.............................................................................................5
Figure 5: Watts Op Schematic – Version 2............................................................................................7
Figure 6: Watts Op Schematic - Version 3.............................................................................................8
Figure 7: Damaged resistor due to excess heat.....................................................................................8
Figure 8: Watts Op Schematic – Final Version.......................................................................................9
Figure 9: Voltage vs. Power Chart......................................................................................................10
Figure 10: 40W bulb measurements - Parallel.....................................................................................11
Figure 11: 40W bulb measurements - Series.......................................................................................12
Figure 12: Display Circuit Prototype...................................................................................................13
Figure 13: Incandescent Bulb vs. Watts Op - Power Consumption........................................................14
Figure 14: Front Panel Design............................................................................................................14
Figure 15: Wiring Diagram.................................................................................................................16
Figure 16: Completed Circuit Board ...................................................................................................17
Figure 17: Housing............................................................................................................................18
Figure 18: Fully Assembled Watts Op.................................................................................................19
Figure 19: Watts Op vs. 40W Bulb – Series .........................................................................................20
Figure 20: Watts Op vs. 40W Bulb – Parallel.......................................................................................21
vi
Glossary
AlternatingCurrent (AC) - The flowof electriccharge that periodicallyreverses direction.
Bridge Rectifier- An arrangementof fouror more diodesina circuitconfigurationthatisusedfor
convertinganalternatingcurrent(AC) inputintoadirectcurrent(DC) output.
Capacitor – An electrical componentusedtostore energy.
Current – A flowof positive electrical charge. The amountof currentisdependentonthe voltage
difference withinthe circuit,andismeasuredinamperes.
Direct Current (DC) - The unidirectionalflow of electriccharge.
Induction– The creationof a voltage difference acrossaconductive material byexposingittoa
changingmagneticfield.
Light Emitting Diode (LED) - isa two-leadsemiconductorlightsource,whichemits lightwhenactivated.
Optical Isolator – A componentwhichallowsthe transmission of lightinonlyone direction.
Parallel – A closedelectrical circuitinwhichthe currentisdividedintoseveral pathsbefore combining
to complete the circuit.Ina parallel circuit,the currentthrougheachloaddiffersandthe
voltage acrosseach loadisequal to the source voltage.
Power - Electricpoweristhe rate at which electricenergyistransferredbyan electriccircuit.Electric
Powerismeasuredinwattage.
Resistor- A componentthatreducescurrentflow,andlowersvoltage levelswithin circuits.
Series– A closed circuitinwhichthe current followsone path.Ina seriescircuit,the currentthrough
each loadisthe same and the total voltage acrossthe circuitis the sumof the voltagesacross
each load.
Transformer – A device forreducingorincreasingthe voltage of analternatingcurrent.
Voltage - Anelectromotiveforce orpotential differenceexpressedinvolts.
ZenerDiode - A form of semiconductordiode inwhichatacritical reverse voltage alarge reverse
currentcan flow.
1
1. Introduction
Watts Op (Wattage Option) isdesignedandevaluatedonthe basisof innovationandease of use in
orderto replace traditional incandescentlightbulbsbeingusedaseducational tools inelectrical labsat
AlgonquinCollegeinOttawa,Ontario.
1.1 Background
The modernincandescentlightbulbhasbeeninexistence since1879 [1]. Thisbulbhas beenthe
standardfor in-home lightingeversince.The functionof the incandescentbulbisverysimple.When
electriccurrentisappliedtoanincandescentbulb,the filamentinside of itheatsupand beginstoglow,
producinglight[2].Asfigure 1 demonstrates,the filament(normallymade of tungstenmetal) sitsinside
of a glasshousing.Atthe bottomof thishousingisa metal base that is usedasa connection forthe light
bulbto the socket,allowingittobe powered.The insideof the glasshousing isgenerallyavacuum,or
filledwithaninertgas.The reasonforthisvacuum or inertgas fillingisbecause whentungstenisheated
and exposedtooxygen,the filamentisverylikelytooxidizeandburnup,makingthe bulbunusable for
any extendedperiodof time [2].
Figure 1: Elements of the modern incandescent
light bulb [3].
2
Incandescentbulbsare analmostpurelyresistive load[4],andare therefore veryimportantinan
educational environment.The factthattheyare resistorsallowsstudentstodosimple mathematical
calculationsusingreal numberswithouthavingtoconsidercapacitance orinductance,whichfall intothe
seriesof imaginarynumbers.Theyare alsoaverygoodtool forvisuallydemonstratingtostudentshow
wiringa circuitina differentconfiguration(i.e.parallel orseries),will affectthe amountof current
flowingthroughthe system.Thisvisualdemonstrationcanbe seenbelow infigure 2.
Figure 2: Visual demonstration of Series vs. Parallel circuits. Adapted from [4]
1.2 Issueswith the Electrical Labsat AlgonquinCollege
Many of the electrical labsatAlgonquin
College inOttawa,Ontariouse the
incandescentbulbforeducationpurposes.
An array of incandescentbulbs usedin
AlgonquinCollege’selectrical labscanbe
seeninFigure 3. Asof January1st
, 2014, the
sale of 75W and100W bulbswasprohibited
and on December31st
,2014, the same
regulations were applied to40W and 60W bulbs
[5].Accordingto the Governmentof Canada,these regulations were enacted toimprove energy
Figure 3: One of the Electrical Lab Stations at Algonquin College.
3
efficiencyandtoreduce “the amountof energyusedandthus (reduce) greenhousegasemissions”[5].
Thisban of saleswill affecthowstudents are able tolearninthe labenvironment.New generationbulbs
provide the properlumensneededtovisualize the experiments,however,theydonotuse the power
required toproperlycalculate results. Itisforthisreasona new incandescentbulbsimulator,the Watts
Op,has been designedtoreplace the use of traditionalincandescentbulbsatAlgonquinCollege. The
device mimics the required wattagesandproducesavisual displaythatwill helpstudentsunderstand
the circuitstheyare testing.
1.3 ProjectScope/Limitations
The Watts Op has been developed asan educational tool foruse inelectrical labsatAlgonquinCollegein
Ottawa,Ontario.The device isusedtohelpdemonstrate the visualchangesof differentcircuit
configurationandof changesinpowerappliedtoacircuit.All data, calculations,andsimulationsare
presentaswell asillustrationsof the final product.The overviewsof how torepairthe device orthe
specificmanufacturersof individual componentsare notincluded.The specificlabinstructionsusedby
the studentsare alsonot included.
1.4 Outlineof Content
The report iscomposedof three chapters.Chapter1 providesabrief introductiontothe subjectof
incandescentbulbsandtheirusesinaneducational environment.In Chapter2 the designevolutionis
discussed.The methodologyisdiscussedinChapter3 whichincludestestingaswell asprototype
assemblyandtesting,andhousingdesign.The final assemblyof the WattsOp isdiscussedinChapter4
alongwiththe testingof the Watts Op. Chapter5 is the concludingchapterwhichincludesthe
recommendations.
4
The informationpresentedinthisreport explainsthe functionalityof amodernincandescentbulb,and
howit issimulatedusingthe WattsOp.Thisinformationisessential forall educatorsandstudents
intendingtouse thisproductina lab atmosphere atAlgonquinCollege.
1.5 CriteriaExpansion
 Innovationisanalyzedbycomparingthe producttootherscurrentlyavailableonthe marketin
termsof designandfunctionality.
 Ease of use is determinedbasedonfunctionality,the students’,abilitytoperformrepairs,andhow
it isinstalledintoexisting systems.
5
2. DesignEvolution
In orderto create a functional prototype,the WattsOphas undergone variousdesignchanges. Many
circuitshave been designedandsimulatedforuse in the electrical labs,butin ordertoproperlysimulate
an incandescentbulb,the circuitmustcontainbothaloadelement anda visual display. The final
requirementisthatthe load shouldbe almostpurely resistive.
2.1 Watts Op Version1
The firstconcept wasto use a transformerinorderto lowerthe voltage toa manageable levelwhere
the riskof harm issignificantlyreduced.AsFigure 4demonstrates,asingle loadresistorwasconnected
inparallel toa step-downtransformer(T1) where the voltage levelwasreducedonthe secondaryside
of the transformer.
Figure 4: Watts Op Schematic - Version 1
Followingthis voltage reduction,arectifierwasplacedonthe secondaryside inordertoconvertthe AC
voltage toa DC supply.Thiswasnecessaryasthe LEDs on the secondaryside operate more efficiently
witha DC powersource.In orderto create a more consistentDCpowersource,a1000μF capacitor (C2)
was placedatthe outputof the rectifierwhichhelpedto‘smooth’ the voltage appliedtothe remainder
of the circuit. Three LEDs were thenplacedonseparate branchesof the circuitto create a visual display
6
usedto determine the amountof powerrunningthroughthe circuitwithout havingtouse testing
devices.The LEDs were inserieswithazenerdiode (D2,D3, and D4) whichrestricted the functionof the
LEDs to certainvoltage levels.Usingdifferentzenerdiodesallowed propercontrol overwhichLEDs
turnedon dependingonthe voltage levelsapplied.Forthisdesign,three zenerdiodes were chosento
represent25%,50%, and 100% of the maximumpossible voltage beingappliedtothe circuit;120V is the
maximumamountof voltage usedby students.The currentrunningthroughthese zenerdiodeswas
restrictedbyplacinga resistor(R1,R2, and R3) in serieswiththem, makingthe circuitsaferforstudent
use.
Thisdesign,althoughfunctional,wasnotpractical Inorderto properlysimulate anincandescentlight
bulb,a purelyresistive loadmustbe used.The transformerusedtostepdownthe voltage createsa
small amountof inductioninthe circuit.Thisinductionchangedthe circuitenoughthatitwasno longer
a purelyresistiveloadmakingitunsuitable forthe labenvironment.
2.2 Watts Op Version2
The second designretainedthe use of the bridge rectifier,the capacitor,andthe zenerdiodes,withthe
additionof a branch that simulated75% of the full-scalevoltage.The transformerwasnotusedinthis
designsimulation. The ACvoltage wasstill sentintoarectifierwhere itwasconvertedtoDCfor the
displayportionof the circuit.The LEDs were still turnedonandoff withthe use of zenerdiodes;
however,optical isolators (U1,U2, U3, and U4), new to the seconddesignsimulation, were installed
betweenthe zenerdiodesandthe LEDs.The optical isolatorisa small device thatcontainsaninfrared
LED anda photo-transistor. The optical isolator,whenpowered,turned onaninternal infraredLED
whichoperated the transistor, allowingcurrenttoflow, whichturned onthe displayLED.Thisprovided
isolationfromthe 120V appliedtothe loadside of the circuitas the LEDs were now onlypoweredby
12V. This wasa much safervoltage forstudentstobe handling.
7
Figure 5: Watts Op Schematic – Version 2
In additiontothe optical isolators,anotherzenerdiode (D2) wasplaceddirectlyafterthe outputof the
rectifier.Thiszenerdiodewas usedtocreate a 12V source,which wasthenusedtopowerthe display
LEDs. In Figure 4, the connectionbetweenthe new zenerdiode andthe outputof the rectifieris
denotedas“DC_out” and the 12V source isdenotedas“12_from_zener.”
The main problemwiththisdesign wasnotthe functionality, butthe costof components. To properly
create a 12V source,the newzenerdiode woulddraw alarge amountof currentfromthe system,
generatingexcessive heat.The heatcouldhave been minimizedbyusinglargercomponents;however,
the increasedcostof these componentsprohibited theiruse inthe circuit.
2.3 Watts Op Version3
The third versionof the circuitincludesveryfew changesfromthe secondversion.The mainchange was
that 4 more LEDs were usedto simulate the lightbulb.Theyare intendedtoshow increasesof powerat
12.5% increments.Thisallowedforamuch more objective viewof the powerrunningthroughthe
circuitthan withjust4 LEDs.
8
The secondmajor change wasto remove the 12V source comingfrom the zenerdiode.Withcost
prohibitingthe use of thiscomponent,anew design wasneeded.Inordertomaintainelectrical isolation
betweenthe powerandvisual componentsof the circuit,anexternal DCpowersupply of 6V wasusedin
place of the zenerdiode (seefigure 6).Thisallowedthe LEDsto maintaintheirluminescence while
providingelectrical isolationfromthe large currentcarryingresistor.
Figure 6: Watts Op Schematic - Version 3
Alongwiththe extraLEDs, 2 chipswere addedinplace of the 4 individual optical isolators. These 2
microchips were justagroupingof 4 optical isolatorsinsideof one component.Thiscreatedasavingof
space and cost to the final design.
A newissue wasencounteredwiththiscircuitdesignthatwas
not foreseenwhendoingcomputersimulationsof the circuit.
The heat createdbydissipating40Wacross the 750Ω resistor
was inexcessof 150°C. AsFigure 7 demonstrates,the excess
heatin the systemcausedseriouscomponentfailure. Figure 7: Damaged resistor due to excess heat
9
2.4 Watts Op Final Version
The final versionof the WattsOp solvesthe heatdissipationproblemsencounteredinversion3.In
orderto accomplishthis,more thanone 750Ω resistorwasneeded.The mainreasonforthe amountof
heatis the amountof powerrunningthroughthe system.The resistordissipatespower,andthatpower
mustbe convertedintoanotherformof energy;inthiscase itis transformedintoheat.Inorderto limit
the amountof heatcreatedby the single 750Ω resistoras well askeepthe value of the total resistance
the same,3 more 750Ω resistorsneedtobe used.Byplacing4 750Ω resistorsina series-parallel
configuration(asseeninfigure 8) the amountof powerrunningthrougheachresistorisdividedinto4
equal parts.Thisallowsthe temperature of eachresistorto remaincloserto40°C whichdoesnotcause
componentfailure.
Figure 8: Watts Op Schematic – Final Version
10
3. Methodology
3.1 IncandescentBulbTesting
In orderto properlydesignanincandescentbulbsimulation, the testingof astandardbulb had to be
completed.The bulbs were testedinthe same waythatthey were usedinthe labs.Testingoccursin
multiple stages.The firststage wasto testa single 40W bulband determinethe amountof power
dissipatedthroughthe bulb.The secondstage wastotestmultiple bulbsinbothseriesandparallel.
These twoconfigurations –seriesandparallel –are the twowaysstudentsuse the bulbsinthe labs.The
resultsfromthe testinghelpedtoevaluate whetherthe WattsOp performance metthe labcriteria.
3.1.1 Single Bulb
The firsttest wasto applyvariousvoltage levelstoasingle 40W bulband record the results.Ascan be
seeninFigure 9, voltage wasappliedinstepsof 10V;startingat 10V and endingat120V. The results
demonstrate thatat full-scale voltage(120V),the powerof a 40W bulbisonly36 Watts. Thisnumberis
veryimportantas itis usedtodetermine whether the WattsOpissimulatinga40W bulbcorrectlyat
120V.
Figure 9: Voltage vs. Power Chart
0
10
20
30
40
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Power(W)
Voltage (V)
40W Bulb - Applied Votage vs. Calculated Power
11
In orderto determine howmuchpowerthe bulbisdissipating,the currentrunningthroughthe system
mustbe measured.Followingthe currentmeasurement,asimple calculationmustbe completedto
ascertainthe wattage of the system. The equationis:
𝑃𝑜𝑤𝑒𝑟( 𝑊𝑎𝑡𝑡𝑠) = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡
The resultsare displayedinwattsbecause the simulationisdesignedtorepresentpowerandnot
current.See AppendixA fora full listof measurementsandcalculationresults.
3.1.2 Multiple Bulbs
The nexttestdetermined howthe bulbsreactwhenplacedinseriesandinparallel.Thisishow the
studentstestthe bulbsinthe lab,so itis importantthatthe resultsfromthe bulbsare similartothe
resultsof the simulator.The first testwasan existingunitwith 2bulbs inparallel. Voltage wasapplied in
increments of 10V and the current wasmeasured andrecorded throughthe whole system. The
recordedcurrentswere thenmultipliedbythe correspondingappliedVoltage togive afinal power
readinginwatts. The test wasthenrepeated with3,4, 5, and 6 bulbs. Asfigure 10 illustrates,asmore
bulbsare introducedintothe circuit,the total powerdissipatedbythe unitincreases.
Figure 10: 40W bulb measurements - Parallel
0
50
100
150
200
250
0 20 40 60 80 100 120 140
Power(W)
Voltage (V)
40W Bulbs - Parallel
2 Bulbs
3 Bulbs
4 Bulbs
5 Bulbs
6 Bulbs
12
The secondtestwas to connect2 bulbsintoanexistingunitina seriesconfiguration.Voltage was
appliedinincrementsof 10V up to a maximumof 120V. Measurementsof the currentrunningthrough
the systemwere takenandrecorded.The currentmeasurements were thenmultipliedbytheir
correspondingvoltageswhichproduced aresultinwatts.The testingwas thenrepeatedwith3,4,5,
and 6 bulbs. AsFigure 11 demonstrates,asmore bulbs were introducedtothe circuit,the total power
dissipatedbythe unitdecreased, creatinganinverselyproportional relationship.Thisrelationshipis
importantas itwill needtobe replicatedbythe simulator.
Figure 11: 40W bulb measurements - Series
3.2 PrototypeCircuitAssemblyandTesting
3.2.1 Assembly
The prototype isbuiltontwo separate protoboards;one forthe powercircuitandone for the display
circuit.The powercircuitconsistsof four 750Ω resistorsandtwo270Ω resistors.The six resistorsthat
make up the powercircuitare verylarge once theyare connectedandtake upthe entire protoboard.
Thisis notan issue because itforcesthe displaycircuitontoits ownprotoboard,creatinga little more
room forheat dissipation.
0
5
10
15
20
25
30
0 20 40 60 80 100 120 140
Power(W)
Voltage (V)
40W Bulbs - Series
2 Bulbs
3 Bulbs
4 Bulbs
5 Bulbs
6 Bulbs
13
The displaycircuitconsistsof twomicrochipsthatcontainfouroptocouplersinsideeachchip.The high
voltage side of the chipsare connectedtoone resistorandone zenerdiode foreachinputof the chip.
On the lowvoltage side,aresistorandan LED are connectedtothe outputsof the chipand are powered
by a 6V powersupply.Boththe highandlow voltage sidesof the circuitare also tiedtogroundto
complete the circuit.Figure 12illustratesaportionof the displayprototype.The topsectionisthe high
voltage side,andthe bottomsectionisthe low voltage side.
3.2.2 Testing
In orderto properlytestthe prototype,the unitmustbe subjectedtothe same testconditionsasthe
single bulb.Thisisdone byapplying120V to the unitin stepsof 10V and recordingthe amountof
currentflowingthroughthe system.The systemmustalsobe testedtoensure thatasmore voltage is
applied,more LEDsturn onwhichsimulates the brightnessof the bulb.The resultsof the testingcanbe
seenbelowinfigure 13.Asfigure 13 demonstrates,the WattsOpprototype representsthe powerof an
incandescentveryclosely.Itisnearlyexactlythe same powerat10V and at 120V withthe rest of the
voltage levelsbeingnomore than5W of powerapart.The resultsindicate thatthe prototype is
successful asthe majorityof studentuse isat 120V where the powerisexactlythe same.Withthese
results,the final assemblycanbegin.
Figure 12: Display Circuit Prototype
14
Figure 13: Incandescent Bulb vs. Watts Op - Power Consumption
3.3 HousingDesign
The housingof the Watts Op is designedforbothfunctionalityandaesthetics.Firstly,the housingmust
be the correctsize to not onlyfitthe circuitboards,but alsobe the same size as the existingfixturesin
the labsat AlgonquinCollege.The existingfixturesare 5 incheshighby13 incheslongmeaningthatthe
frontpanel of the Watts Op is to be the exactsame size.The housingisto be designedwith clearacrylic
so that all of the partsare visible throughthe sides,withthe exceptionof the frontpanel,whichis
paintedbeige tomatchthe equipmentcurrentlyinthe lab.The frontpanel consistsof anarray of eight
LEDs arranged inan arc, as well asbindingpoststoattachthe variable ACpowerto,anda spotfor a
circuitbreaker.The template forthe frontpanel of the housingcanbe seenbelow infigure 14.
Figure 14: Front Panel Design
0
5
10
15
20
25
30
35
40
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Power(W)
Voltage (V)
Applied Votage vs. Calculated Power
40W Bulb Watts OP
15
The arrays of LEDs are arranged in an arc to minimizethe amountof space takenupby themonthe
frontpanel.The twocirclesdirectlybelow the LEDsare where the bindingpostsare tobe installed,and
the rectangle onthe bottomof the panel iswhere the circuitbreakeristo be placed.
Alongwiththe designof the frontpanel,the remainderof the box neededtobe designedwith
functionalityinmind.Holesare drilledthroughthe sidesof the housingtoaccommodate twofans
placedoneitherside.The fansare essential tokeepingthe entireunitcool whenfullypowered.A clear
acryliclidwas placedontop of the unitto preventanyof the live electrical componentsonthe inside
frombeingtouchedbya technicianwhomaybe removingthe box inthe future.The entire housinghas
beendesignedtobe installedinthe existingcabinetswithoutanyneedtochange otherequipment
currentlybeingusedinthe labs.
16
4. Results
4.1 Final Assembly
The final assemblyoccursintwophases.The firstphase isto construct the circuitboard,and the second
isthe buildthe housing.Withoutthese twoparts,the final buildisnotable tobe completed.
4.1.1 CircuitBoard
In orderto properlyconstructthe circuitboard,a wiringdiagramisdevelopedtosimplifythe process.
The wiringdiagramisdevelopedtoaidthe technologistsbuildingthe unitsandtoensure thateachof
the three unitsbeingbuiltare uniform.Withover200 placesneedingtobe soldered,the wiringdiagram
made the processmuch simplerandcreatedaconcrete planfor the technologiststofollow.Belowisan
illustrationof the wiringdiagram(figure 15).
Figure 15: Wiring Diagram
17
Figure 15 showsall of the wiringconnectionsasred,white,andgreylines.Allof the solderpointsare in
blue andeach componentisoutlinedasitison the circuit board.The yellow linesare powertothe LEDs,
and the greenlinesare powerbackto the optocouplers.
Followingthe completionof the wiringdiagram, the constructioncan
begin.First,the heatsinksare attachedto the 750Ω and 270Ω resistors
withthermal paste bondingthe twopartstogether.These resistorsare
thensolderedtothe boardas theyare the tallestcomponentsandwill
helptosupportthe boardwhenthe othercomponentsare soldered.
The remainderof the componentsare thenplacedonthe board and
solderedtogether.The optocouplersare notinstalleduntil aftertheir
associatedhousingsare installed.Thisisdone topreventdamaging
the chipsduringthe solderingprocessasthe ironsheatup to 750°C. Figure 16 isone of the three units
once it iscompleted.The yellowwiresare goingfromthe resistorstothe LEDs, and the redwires
complete the circuitandreturnpowerto the optocouplers.
4.1.2 HousingConstruction
The housingisbuiltfromone quarterinchthinkclearacrylic.The constructionbeginswithasheetof
acrylicwhichisthencut into5 inch strips.One stripisthencut downto 5 inchby 13 inchwhichwill be
the front panel of the housing.Twootherstripsare cut to 5 by 9 inches.Once all of the piecesof acrylic
are cut, the template forthe frontpanel istapedtothe piece of acrylicandthe holesare drilledto
accommodate the components.Afterthe holesare drilled,the frontpanel isspraypaintedbeige togive
contrast withthe LEDs and to match the equipmentcurrentlyinthe lab.While the paindries,one 3inch
hole isdrilledineachof the side panelstoaccommodate the fans.The housingisassembledona
woodenbase thatwill allowthe unittobe transportedmore easily.Thisbase istobe replacedbysheet
metal once it isto be installedinthe labs.Once assembled,the LEDsare insertedintothe frontpanel;
Figure 16: Completed Circuit Board
18
the circuitbreakersare installedalongwith six bracketsthatwill supportthe circuitboards.The topis
thenplacedonand attachedto the unitusinghinges,allowingittoopenandclose easily.The fansare
theninstalledonthe sidesof the unittoallow forproperair circulation.The final housingcanbe seenin
figure 17.
4.1.3 Putting It All Together
The three circuitboards are installedinside the housingusingasiliconadhesive.Siliconwaschosenasit
isnot a conductive substance and will maintainthe bondevenwithhightemperatures.Inorderto
supportthe back part of the circuitboards,two screwswere installedinthe base of the housingwhich
actedas a brace forthe weightof the circuitboard. Afterthe boardsare installedand connectionsare
made,testingisperformedtoensure continuityof the connections.Figure 18displaysthe completed
Watts Op device.
Figure 17: Housing
19
Figure 18: Fully Assembled Watts Op
4.2 Final Testing
In orderto determine if the WattsOpaccuratelysimulatesanincandescentbulb,testingmustbe done
withmultiple unitshookedupinbothseriesandparallel configurations.The firsttestcompletedisin
parallel configuration.The WattsOpdevice isconnectedwith2unitsinparallel witheachother.Voltage
isappliedtothe unitsinincrementsof 10V upto a maximumof 120V. The current runningthroughthe
unitismeasuredandthenit ismultipliedbythe correspondingvoltagelevel;thisgivesthe power
runningthroughthe unitinWatts. Thisprocessis thenrepeatedwith3units.Figure 19 showsthe
comparisonbetweenthe parallelconfigurationsof the WattsOp comparedto the seriesconfigurationof
a 40W incandescentbulb.
20
Figure 19: Watts Op vs. 40W Bulb – Series
As figure 19 illustrates,the WattsOpperformsverysimilarlytothe 40W bulb.The powerdissipatedby
the Watts Op isslightlylowerthanatraditional bulbinthe 40 to 100V ranges,but thisisnot as
importantas the studentsatAlgonquinCollegemainlyuse these unitsat120V. The powerusedbythe
Watts Op at the highervoltage levelsisnearlyidentical tothe 40W incandescentbulb.
The secondtestis to verifythatthe powerlevelsare appropriate whenthe WattsOpissetup in a series
configuration.Toperformthistest,2unitsare hookedupinserieswitheachotherandvoltage is
appliedin10V increments,uptoa maximumof 120V. The current isrecordedandthenit ismultiplied
by the correspondingvoltagelevel inordertodeterminethe powerrunningthroughthe system.This
processisthenrepeatedwith3units.Figure 20 demonstratesthe comparisonbetweenthe WattsOpin
seriesconfigurationandthe 40W bulbs.
21
Figure 20: Watts Op vs. 40W Bulb – Parallel
The resultsthat can be seeninfigure 20 show that the Watts Op performsverysimilarlytothe 40W
bulbs.The maindifferentisbetweenthe 40to 100V range where the powerislowerinthe WattsOp by
5W at the most.This amountof difference isnegligible asthere canbe thismuch of a difference
betweenbulbsof differentmanufacturers.At120V,the level thatthe majorityof studenttestingis
done,the powerlevelsare nearlyidentical betweenthe WattsOpand the 40W bulb.
22
5. Conclusion/Recommendations
The Wattage Optiondevice isasuitable replacementforthe incandescentbulbinthe electrical labsat
AlgonquinCollege.The device accuratelyrepresentsthe powerdissipatedbya40W bulbin bothseries
and parallel configurations.The WattsOpis the onlydevice of itskindandthere are no otherproducts
available onthe markettodaythatboth accuratelysimulate the dimmingof anincandescentbulbas
well asdissipate the same amountof power.
The Watts Op has beendesignedtobe easilyinstalledin the existingcabinetsbysimplyremovingthe
oldincandescentbulbholdersandinsertingthe WattsOpdevice.Itisalsowiredinthe same way by
students,sothe ease of use isveryhigh.With the manysmall electroniccomponentsinthe device,it
may be a little challengingtotroubleshootanissue,butwithproperunderstandingof electronicsan
experiencedtechnicianwouldbe able todiagnose andrepairanyproblemswithoutanyissue.
In orderto furtherexpandonthe Watts Op inthe future,itisrecommendedthatnew powerresistors
are selected.The newresistorswouldneedtobe smallerandable towithstandthatlarge amountof
heatthat the unitproduces.A selectorswitchisalsorecommendedtobe installedonthe frontpanel of
the unitso that studentscaneasilychange betweenwattage levelsonce the new resistorshave been
foundandinstalled.Withthese simplechangesindesign,the WattsOpcouldbe installedatAlgonquin
College withinthe next5years.
23
References
[1] Departmentof Energy. “The Historyof the LightBulb.”22 Nov2013. [Online].Available:
http://energy.gov/articles/history-light-bulb.[Accessed:30Oct 2014].
[2]MichiganState University.“Howdoesalightbulbwork?”17 Jun1992. [Online].Available:
http://www.pa.msu.edu/sciencet/ask_st/061792.html.[Accessed:31 Oct 2014].
[3] “The ElectricLight Bulb.”2013. [Online].Available:
http://www.cyberphysics.co.uk/topics/electricity/home/light_bulb.htm.[Accessed:30 Oct 2014]
[4] [Online].Available:
http://web.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/64.36.html.[Accessed:31
Oct 2014].
[5] National ResourcesCanada.“FrequentlyAskedQuestions:Canada’sStandardforEfficientLight
Bulbs.”11 Apr2014. [Online].Available: http://www.nrcan.gc.ca/energy/regulations-codes-
standards/7281. [Accessed:31 Oct 2014].

More Related Content

Viewers also liked (9)

Hiltunen ja Tuovinen: Verkkoterkkarit nuorten apuna haastavissa elämäntilante...
Hiltunen ja Tuovinen: Verkkoterkkarit nuorten apuna haastavissa elämäntilante...Hiltunen ja Tuovinen: Verkkoterkkarit nuorten apuna haastavissa elämäntilante...
Hiltunen ja Tuovinen: Verkkoterkkarit nuorten apuna haastavissa elämäntilante...
 
Cклады или логистический центр?
Cклады или логистический центр?Cклады или логистический центр?
Cклады или логистический центр?
 
Sugo_CapstoneFinal
Sugo_CapstoneFinalSugo_CapstoneFinal
Sugo_CapstoneFinal
 
Um portugues bem brasileiro
Um portugues bem brasileiroUm portugues bem brasileiro
Um portugues bem brasileiro
 
Երվանդունիներ
ԵրվանդունիներԵրվանդունիներ
Երվանդունիներ
 
Instructivo para postularse como instructor
Instructivo para postularse como instructorInstructivo para postularse como instructor
Instructivo para postularse como instructor
 
Evaluation
EvaluationEvaluation
Evaluation
 
Railsfactory delivering presentations
Railsfactory delivering presentationsRailsfactory delivering presentations
Railsfactory delivering presentations
 
Прием платежей с использованием платежных карт через Интернет
Прием платежей с использованием платежных карт через Интернет Прием платежей с использованием платежных карт через Интернет
Прием платежей с использованием платежных карт через Интернет
 

Similar to Technical_Report_Sample_2

Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
Baolong Nguyen
 
DFPM on FPGA -Bachelor Thesis Report
DFPM on FPGA -Bachelor Thesis ReportDFPM on FPGA -Bachelor Thesis Report
DFPM on FPGA -Bachelor Thesis Report
Taiye Adeboye
 
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
ijtsrd
 
Automatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino reportAutomatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino report
Self-employed
 

Similar to Technical_Report_Sample_2 (20)

Bachelor- thesis, optimization of wireless power transfer coils using finite ...
Bachelor- thesis, optimization of wireless power transfer coils using finite ...Bachelor- thesis, optimization of wireless power transfer coils using finite ...
Bachelor- thesis, optimization of wireless power transfer coils using finite ...
 
Continuity of Supply means Continuity of Production
Continuity of Supply means Continuity of ProductionContinuity of Supply means Continuity of Production
Continuity of Supply means Continuity of Production
 
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
 
Ref-Travis
Ref-TravisRef-Travis
Ref-Travis
 
Thesis
ThesisThesis
Thesis
 
Expert interview with Nexans - the 66kV cabling technology
Expert interview with Nexans - the 66kV cabling technologyExpert interview with Nexans - the 66kV cabling technology
Expert interview with Nexans - the 66kV cabling technology
 
Unipolar pulse width modulation inverter
Unipolar pulse width modulation inverterUnipolar pulse width modulation inverter
Unipolar pulse width modulation inverter
 
Nanosecond Pulsed Electric Fields (nsPEFs) Low Cost Generator Design using Po...
Nanosecond Pulsed Electric Fields (nsPEFs) Low Cost Generator Design using Po...Nanosecond Pulsed Electric Fields (nsPEFs) Low Cost Generator Design using Po...
Nanosecond Pulsed Electric Fields (nsPEFs) Low Cost Generator Design using Po...
 
Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
Calibration of an X-wire with Assessment of a Moderately High Reynolds Number...
 
Ao thesis
Ao thesisAo thesis
Ao thesis
 
RT15 Berkeley | NI / OPAL-RT Power Electronics HIL Teaching Laboratory - Nati...
RT15 Berkeley | NI / OPAL-RT Power Electronics HIL Teaching Laboratory - Nati...RT15 Berkeley | NI / OPAL-RT Power Electronics HIL Teaching Laboratory - Nati...
RT15 Berkeley | NI / OPAL-RT Power Electronics HIL Teaching Laboratory - Nati...
 
Report on the Strength of materials i lab
Report on the Strength of materials i labReport on the Strength of materials i lab
Report on the Strength of materials i lab
 
CSTEP BORRERO R poster
CSTEP BORRERO R posterCSTEP BORRERO R poster
CSTEP BORRERO R poster
 
DFPM on FPGA -Bachelor Thesis Report
DFPM on FPGA -Bachelor Thesis ReportDFPM on FPGA -Bachelor Thesis Report
DFPM on FPGA -Bachelor Thesis Report
 
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
Design and Construction of a 0.75KVA Inverter Power Supply for Nigerian Homes...
 
Automatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino reportAutomatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino report
 
Abstract and table of content of a project
Abstract and table of content of a projectAbstract and table of content of a project
Abstract and table of content of a project
 
The Impact of Applying LabVIEW Simulation Platform in Teaching Power Electron...
The Impact of Applying LabVIEW Simulation Platform in Teaching Power Electron...The Impact of Applying LabVIEW Simulation Platform in Teaching Power Electron...
The Impact of Applying LabVIEW Simulation Platform in Teaching Power Electron...
 
AN IMPROVED OPERATIONAL AMPLIFIER ILAB WITH A MORE REALISTIC LOOKING INTERFACE
AN IMPROVED OPERATIONAL AMPLIFIER ILAB WITH A MORE REALISTIC LOOKING INTERFACEAN IMPROVED OPERATIONAL AMPLIFIER ILAB WITH A MORE REALISTIC LOOKING INTERFACE
AN IMPROVED OPERATIONAL AMPLIFIER ILAB WITH A MORE REALISTIC LOOKING INTERFACE
 
Power quality improvement using UPQC
Power quality improvement using UPQCPower quality improvement using UPQC
Power quality improvement using UPQC
 

Technical_Report_Sample_2

  • 1. Professor Leann Nicholson Algonquin Centre for Construction Excellence Algonquin College, Woodroffe Campus 1385 Woodroffe Ave. Ottawa ON, K2G 1V8 15 April 2015 Professor Nicholson: Please find attached the report for the level-6 ENL4003-040 project entitled “Wattage Option” in partial fulfillment of the requirements for the Electrical Engineering Technology advanced diploma. This report will investigate the feasibility of replacing incandescent light bulbs with the Wattage Option device as a learning tool in Algonquin’s Electrical Labs. Chapter one will look into the background of the problem and the solution the Wattage Option device aims to use to solve said problem. Chapter two will expand upon the design evolution of the device, and the changes made to it throughout the year. Chapter three describes the methodology of the project, and the testing involved determining the proper design of the device. Chapter four explores the results of the final testing once the device was completed. Chapter five will provide our conclusions and recommendations on how the Wattage Option device can be expanded upon in the future. We hope that, in the future, Algonquin College and other many others can benefit from the work that was produced as a result of this project. We would like to thank Professors Leann Nicholson, Cynthia Ough Underwood, and Naser Jaradat for their assistance and guidance in completing this study, and Russell Pingyin, our industry partner, for his guidance and assistance, as well. We would also like to thank the Applied Research and Innovation department for partially funding our project, as well as Algonquin College for the many Information Technology resources that made it possible. It has been our pleasure working with the College, and we hope that you will find the attached report both stimulating and informative. We believe the hard work and determination we put into this project will prove beneficial to future Algonquin students, and we hope it meets all expectations. If there are any questions or concerns regarding the report or the project, please do not hesitate to ask. Sincerely, Lisa Campbell, Steven Hogeveen, Sean Keppy, and Jeff Riching Attachment: the technical report “Wattage Option”
  • 2. Wattage Option By: Lisa Campbell, Steve Hogeveen, Sean Keppy, and Jeff Riching Submitted to: Leann Nicholson, in partial fulfillments of the requirements for ENL4003 Algonquin College, Electrical Engineering Technology Algonquin Centre for Construction Excellence
  • 3. Summary Watts Op (Wattage Option) isdesignedandevaluatedonthe basisof innovationandease of use in orderto replace traditional incandescentlightbulbsbeingused aseducational toolsinelectrical labsat AlgonquinCollegeinOttawa,Ontario. Withthe banon salesof incandescentbulbsacrossCanada,andthe extensive use of these bulbsin electrical labsatAlgonquinCollege,anew piece of technologyisdeveloped inordertoreplace the bulbs inthe future. In orderto developthisnewtechnology,acircuitmustbe designandsimulatedtoestablishthe feasibilityof the device.Testingmustbe done onincandescentbulbsinthe labsinbothseriesand parallel configurationstohave datato compare again.A prototype mustbe builtandtestedto determine if the newdesigniscomparable tothe existingbulbs.Inordertoinstall the device,ahousing mustbe designedandbuilttofitintothe existingcabinetsinthe labs.Final circuitboardassemblymust be completedandinstalledinthe housing.The finalproductistobe testedinbothseriesandparallel configurationstodetermine if the resultsare close tothe measurementstakenof the incandescent bulbs. The resultsof all the testingindicate thatthe WattsOpis a feasible replacementasitaccurately representsanincandescentbulbinbothbrightnessandpowerdissipation.Inbothseriesandparallel, the powerdissipatedvariesbyamaximumof 5W andis exactlythe same asa 40W bulbat 120V. In orderto expandonthe Watts Op in the future,new resistorsneedtobe selectedthatcanwithstandthe heatgeneratedbythe device anda selectorswitchshouldbe addedtoallow studentstochange betweendifferentpowerlevels.
  • 4. iv Table of Contents List of Figures and Tables ....................................................................................................................v Glossary............................................................................................................................................vi 1. Introduction ...................................................................................................................................1 1.1 Background...............................................................................................................................1 1.2 Issues with the Electrical Labs at Algonquin College.....................................................................2 1.3 Project Scope/Limitations..........................................................................................................3 1.4 Outline of Content.....................................................................................................................3 1.5 Criteria Expansion .....................................................................................................................4 2. Design Evolution.............................................................................................................................5 2.1 Watts Op Version 1 ...................................................................................................................5 2.2 Watts Op Version 2 ...................................................................................................................6 2.3 Watts Op Version 3 ...................................................................................................................7 2.4 Watts Op Final Version ..............................................................................................................9 3. Methodology................................................................................................................................10 3.1 Incandescent Bulb Testing .......................................................................................................10 3.1.1 Single Bulb........................................................................................................................10 3.1.2 Multiple Bulbs...................................................................................................................11 3.2 Prototype Circuit Assembly and Testing....................................................................................12 3.2.1 Assembly..........................................................................................................................12 3.2.2 Testing.................................................................................................................................13 3.3 Housing Design .......................................................................................................................14 4. Results.........................................................................................................................................16 4.1 Final Assembly ........................................................................................................................16 4.1.1 Circuit Board ........................................................................................................................16 4.1.2 Housing Construction............................................................................................................17 4.1.3 Putting It All Together.......................................................................................................18 4.2 Final Testing............................................................................................................................19 5. Conclusion/Recommendations ......................................................................................................22 References.......................................................................................................................................23
  • 5. v List of Figures and Tables Figure 1: Elements of the modernincandescent light bulb [3]. ..............................................................1 Figure 2: Visual demonstration of Series vs.Parallel circuits.Adapted from [4].......................................2 Figure 3: One of the Electrical Lab Stations at Algonquin College...........................................................2 Figure 4: Watts Op Schematic - Version 1.............................................................................................5 Figure 5: Watts Op Schematic – Version 2............................................................................................7 Figure 6: Watts Op Schematic - Version 3.............................................................................................8 Figure 7: Damaged resistor due to excess heat.....................................................................................8 Figure 8: Watts Op Schematic – Final Version.......................................................................................9 Figure 9: Voltage vs. Power Chart......................................................................................................10 Figure 10: 40W bulb measurements - Parallel.....................................................................................11 Figure 11: 40W bulb measurements - Series.......................................................................................12 Figure 12: Display Circuit Prototype...................................................................................................13 Figure 13: Incandescent Bulb vs. Watts Op - Power Consumption........................................................14 Figure 14: Front Panel Design............................................................................................................14 Figure 15: Wiring Diagram.................................................................................................................16 Figure 16: Completed Circuit Board ...................................................................................................17 Figure 17: Housing............................................................................................................................18 Figure 18: Fully Assembled Watts Op.................................................................................................19 Figure 19: Watts Op vs. 40W Bulb – Series .........................................................................................20 Figure 20: Watts Op vs. 40W Bulb – Parallel.......................................................................................21
  • 6. vi Glossary AlternatingCurrent (AC) - The flowof electriccharge that periodicallyreverses direction. Bridge Rectifier- An arrangementof fouror more diodesina circuitconfigurationthatisusedfor convertinganalternatingcurrent(AC) inputintoadirectcurrent(DC) output. Capacitor – An electrical componentusedtostore energy. Current – A flowof positive electrical charge. The amountof currentisdependentonthe voltage difference withinthe circuit,andismeasuredinamperes. Direct Current (DC) - The unidirectionalflow of electriccharge. Induction– The creationof a voltage difference acrossaconductive material byexposingittoa changingmagneticfield. Light Emitting Diode (LED) - isa two-leadsemiconductorlightsource,whichemits lightwhenactivated. Optical Isolator – A componentwhichallowsthe transmission of lightinonlyone direction. Parallel – A closedelectrical circuitinwhichthe currentisdividedintoseveral pathsbefore combining to complete the circuit.Ina parallel circuit,the currentthrougheachloaddiffersandthe voltage acrosseach loadisequal to the source voltage. Power - Electricpoweristhe rate at which electricenergyistransferredbyan electriccircuit.Electric Powerismeasuredinwattage. Resistor- A componentthatreducescurrentflow,andlowersvoltage levelswithin circuits. Series– A closed circuitinwhichthe current followsone path.Ina seriescircuit,the currentthrough each loadisthe same and the total voltage acrossthe circuitis the sumof the voltagesacross each load. Transformer – A device forreducingorincreasingthe voltage of analternatingcurrent. Voltage - Anelectromotiveforce orpotential differenceexpressedinvolts. ZenerDiode - A form of semiconductordiode inwhichatacritical reverse voltage alarge reverse currentcan flow.
  • 7. 1 1. Introduction Watts Op (Wattage Option) isdesignedandevaluatedonthe basisof innovationandease of use in orderto replace traditional incandescentlightbulbsbeingusedaseducational tools inelectrical labsat AlgonquinCollegeinOttawa,Ontario. 1.1 Background The modernincandescentlightbulbhasbeeninexistence since1879 [1]. Thisbulbhas beenthe standardfor in-home lightingeversince.The functionof the incandescentbulbisverysimple.When electriccurrentisappliedtoanincandescentbulb,the filamentinside of itheatsupand beginstoglow, producinglight[2].Asfigure 1 demonstrates,the filament(normallymade of tungstenmetal) sitsinside of a glasshousing.Atthe bottomof thishousingisa metal base that is usedasa connection forthe light bulbto the socket,allowingittobe powered.The insideof the glasshousing isgenerallyavacuum,or filledwithaninertgas.The reasonforthisvacuum or inertgas fillingisbecause whentungstenisheated and exposedtooxygen,the filamentisverylikelytooxidizeandburnup,makingthe bulbunusable for any extendedperiodof time [2]. Figure 1: Elements of the modern incandescent light bulb [3].
  • 8. 2 Incandescentbulbsare analmostpurelyresistive load[4],andare therefore veryimportantinan educational environment.The factthattheyare resistorsallowsstudentstodosimple mathematical calculationsusingreal numberswithouthavingtoconsidercapacitance orinductance,whichfall intothe seriesof imaginarynumbers.Theyare alsoaverygoodtool forvisuallydemonstratingtostudentshow wiringa circuitina differentconfiguration(i.e.parallel orseries),will affectthe amountof current flowingthroughthe system.Thisvisualdemonstrationcanbe seenbelow infigure 2. Figure 2: Visual demonstration of Series vs. Parallel circuits. Adapted from [4] 1.2 Issueswith the Electrical Labsat AlgonquinCollege Many of the electrical labsatAlgonquin College inOttawa,Ontariouse the incandescentbulbforeducationpurposes. An array of incandescentbulbs usedin AlgonquinCollege’selectrical labscanbe seeninFigure 3. Asof January1st , 2014, the sale of 75W and100W bulbswasprohibited and on December31st ,2014, the same regulations were applied to40W and 60W bulbs [5].Accordingto the Governmentof Canada,these regulations were enacted toimprove energy Figure 3: One of the Electrical Lab Stations at Algonquin College.
  • 9. 3 efficiencyandtoreduce “the amountof energyusedandthus (reduce) greenhousegasemissions”[5]. Thisban of saleswill affecthowstudents are able tolearninthe labenvironment.New generationbulbs provide the properlumensneededtovisualize the experiments,however,theydonotuse the power required toproperlycalculate results. Itisforthisreasona new incandescentbulbsimulator,the Watts Op,has been designedtoreplace the use of traditionalincandescentbulbsatAlgonquinCollege. The device mimics the required wattagesandproducesavisual displaythatwill helpstudentsunderstand the circuitstheyare testing. 1.3 ProjectScope/Limitations The Watts Op has been developed asan educational tool foruse inelectrical labsatAlgonquinCollegein Ottawa,Ontario.The device isusedtohelpdemonstrate the visualchangesof differentcircuit configurationandof changesinpowerappliedtoacircuit.All data, calculations,andsimulationsare presentaswell asillustrationsof the final product.The overviewsof how torepairthe device orthe specificmanufacturersof individual componentsare notincluded.The specificlabinstructionsusedby the studentsare alsonot included. 1.4 Outlineof Content The report iscomposedof three chapters.Chapter1 providesabrief introductiontothe subjectof incandescentbulbsandtheirusesinaneducational environment.In Chapter2 the designevolutionis discussed.The methodologyisdiscussedinChapter3 whichincludestestingaswell asprototype assemblyandtesting,andhousingdesign.The final assemblyof the WattsOp isdiscussedinChapter4 alongwiththe testingof the Watts Op. Chapter5 is the concludingchapterwhichincludesthe recommendations.
  • 10. 4 The informationpresentedinthisreport explainsthe functionalityof amodernincandescentbulb,and howit issimulatedusingthe WattsOp.Thisinformationisessential forall educatorsandstudents intendingtouse thisproductina lab atmosphere atAlgonquinCollege. 1.5 CriteriaExpansion  Innovationisanalyzedbycomparingthe producttootherscurrentlyavailableonthe marketin termsof designandfunctionality.  Ease of use is determinedbasedonfunctionality,the students’,abilitytoperformrepairs,andhow it isinstalledintoexisting systems.
  • 11. 5 2. DesignEvolution In orderto create a functional prototype,the WattsOphas undergone variousdesignchanges. Many circuitshave been designedandsimulatedforuse in the electrical labs,butin ordertoproperlysimulate an incandescentbulb,the circuitmustcontainbothaloadelement anda visual display. The final requirementisthatthe load shouldbe almostpurely resistive. 2.1 Watts Op Version1 The firstconcept wasto use a transformerinorderto lowerthe voltage toa manageable levelwhere the riskof harm issignificantlyreduced.AsFigure 4demonstrates,asingle loadresistorwasconnected inparallel toa step-downtransformer(T1) where the voltage levelwasreducedonthe secondaryside of the transformer. Figure 4: Watts Op Schematic - Version 1 Followingthis voltage reduction,arectifierwasplacedonthe secondaryside inordertoconvertthe AC voltage toa DC supply.Thiswasnecessaryasthe LEDs on the secondaryside operate more efficiently witha DC powersource.In orderto create a more consistentDCpowersource,a1000μF capacitor (C2) was placedatthe outputof the rectifierwhichhelpedto‘smooth’ the voltage appliedtothe remainder of the circuit. Three LEDs were thenplacedonseparate branchesof the circuitto create a visual display
  • 12. 6 usedto determine the amountof powerrunningthroughthe circuitwithout havingtouse testing devices.The LEDs were inserieswithazenerdiode (D2,D3, and D4) whichrestricted the functionof the LEDs to certainvoltage levels.Usingdifferentzenerdiodesallowed propercontrol overwhichLEDs turnedon dependingonthe voltage levelsapplied.Forthisdesign,three zenerdiodes were chosento represent25%,50%, and 100% of the maximumpossible voltage beingappliedtothe circuit;120V is the maximumamountof voltage usedby students.The currentrunningthroughthese zenerdiodeswas restrictedbyplacinga resistor(R1,R2, and R3) in serieswiththem, makingthe circuitsaferforstudent use. Thisdesign,althoughfunctional,wasnotpractical Inorderto properlysimulate anincandescentlight bulb,a purelyresistive loadmustbe used.The transformerusedtostepdownthe voltage createsa small amountof inductioninthe circuit.Thisinductionchangedthe circuitenoughthatitwasno longer a purelyresistiveloadmakingitunsuitable forthe labenvironment. 2.2 Watts Op Version2 The second designretainedthe use of the bridge rectifier,the capacitor,andthe zenerdiodes,withthe additionof a branch that simulated75% of the full-scalevoltage.The transformerwasnotusedinthis designsimulation. The ACvoltage wasstill sentintoarectifierwhere itwasconvertedtoDCfor the displayportionof the circuit.The LEDs were still turnedonandoff withthe use of zenerdiodes; however,optical isolators (U1,U2, U3, and U4), new to the seconddesignsimulation, were installed betweenthe zenerdiodesandthe LEDs.The optical isolatorisa small device thatcontainsaninfrared LED anda photo-transistor. The optical isolator,whenpowered,turned onaninternal infraredLED whichoperated the transistor, allowingcurrenttoflow, whichturned onthe displayLED.Thisprovided isolationfromthe 120V appliedtothe loadside of the circuitas the LEDs were now onlypoweredby 12V. This wasa much safervoltage forstudentstobe handling.
  • 13. 7 Figure 5: Watts Op Schematic – Version 2 In additiontothe optical isolators,anotherzenerdiode (D2) wasplaceddirectlyafterthe outputof the rectifier.Thiszenerdiodewas usedtocreate a 12V source,which wasthenusedtopowerthe display LEDs. In Figure 4, the connectionbetweenthe new zenerdiode andthe outputof the rectifieris denotedas“DC_out” and the 12V source isdenotedas“12_from_zener.” The main problemwiththisdesign wasnotthe functionality, butthe costof components. To properly create a 12V source,the newzenerdiode woulddraw alarge amountof currentfromthe system, generatingexcessive heat.The heatcouldhave been minimizedbyusinglargercomponents;however, the increasedcostof these componentsprohibited theiruse inthe circuit. 2.3 Watts Op Version3 The third versionof the circuitincludesveryfew changesfromthe secondversion.The mainchange was that 4 more LEDs were usedto simulate the lightbulb.Theyare intendedtoshow increasesof powerat 12.5% increments.Thisallowedforamuch more objective viewof the powerrunningthroughthe circuitthan withjust4 LEDs.
  • 14. 8 The secondmajor change wasto remove the 12V source comingfrom the zenerdiode.Withcost prohibitingthe use of thiscomponent,anew design wasneeded.Inordertomaintainelectrical isolation betweenthe powerandvisual componentsof the circuit,anexternal DCpowersupply of 6V wasusedin place of the zenerdiode (seefigure 6).Thisallowedthe LEDsto maintaintheirluminescence while providingelectrical isolationfromthe large currentcarryingresistor. Figure 6: Watts Op Schematic - Version 3 Alongwiththe extraLEDs, 2 chipswere addedinplace of the 4 individual optical isolators. These 2 microchips were justagroupingof 4 optical isolatorsinsideof one component.Thiscreatedasavingof space and cost to the final design. A newissue wasencounteredwiththiscircuitdesignthatwas not foreseenwhendoingcomputersimulationsof the circuit. The heat createdbydissipating40Wacross the 750Ω resistor was inexcessof 150°C. AsFigure 7 demonstrates,the excess heatin the systemcausedseriouscomponentfailure. Figure 7: Damaged resistor due to excess heat
  • 15. 9 2.4 Watts Op Final Version The final versionof the WattsOp solvesthe heatdissipationproblemsencounteredinversion3.In orderto accomplishthis,more thanone 750Ω resistorwasneeded.The mainreasonforthe amountof heatis the amountof powerrunningthroughthe system.The resistordissipatespower,andthatpower mustbe convertedintoanotherformof energy;inthiscase itis transformedintoheat.Inorderto limit the amountof heatcreatedby the single 750Ω resistoras well askeepthe value of the total resistance the same,3 more 750Ω resistorsneedtobe used.Byplacing4 750Ω resistorsina series-parallel configuration(asseeninfigure 8) the amountof powerrunningthrougheachresistorisdividedinto4 equal parts.Thisallowsthe temperature of eachresistorto remaincloserto40°C whichdoesnotcause componentfailure. Figure 8: Watts Op Schematic – Final Version
  • 16. 10 3. Methodology 3.1 IncandescentBulbTesting In orderto properlydesignanincandescentbulbsimulation, the testingof astandardbulb had to be completed.The bulbs were testedinthe same waythatthey were usedinthe labs.Testingoccursin multiple stages.The firststage wasto testa single 40W bulband determinethe amountof power dissipatedthroughthe bulb.The secondstage wastotestmultiple bulbsinbothseriesandparallel. These twoconfigurations –seriesandparallel –are the twowaysstudentsuse the bulbsinthe labs.The resultsfromthe testinghelpedtoevaluate whetherthe WattsOp performance metthe labcriteria. 3.1.1 Single Bulb The firsttest wasto applyvariousvoltage levelstoasingle 40W bulband record the results.Ascan be seeninFigure 9, voltage wasappliedinstepsof 10V;startingat 10V and endingat120V. The results demonstrate thatat full-scale voltage(120V),the powerof a 40W bulbisonly36 Watts. Thisnumberis veryimportantas itis usedtodetermine whether the WattsOpissimulatinga40W bulbcorrectlyat 120V. Figure 9: Voltage vs. Power Chart 0 10 20 30 40 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Power(W) Voltage (V) 40W Bulb - Applied Votage vs. Calculated Power
  • 17. 11 In orderto determine howmuchpowerthe bulbisdissipating,the currentrunningthroughthe system mustbe measured.Followingthe currentmeasurement,asimple calculationmustbe completedto ascertainthe wattage of the system. The equationis: 𝑃𝑜𝑤𝑒𝑟( 𝑊𝑎𝑡𝑡𝑠) = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 The resultsare displayedinwattsbecause the simulationisdesignedtorepresentpowerandnot current.See AppendixA fora full listof measurementsandcalculationresults. 3.1.2 Multiple Bulbs The nexttestdetermined howthe bulbsreactwhenplacedinseriesandinparallel.Thisishow the studentstestthe bulbsinthe lab,so itis importantthatthe resultsfromthe bulbsare similartothe resultsof the simulator.The first testwasan existingunitwith 2bulbs inparallel. Voltage wasapplied in increments of 10V and the current wasmeasured andrecorded throughthe whole system. The recordedcurrentswere thenmultipliedbythe correspondingappliedVoltage togive afinal power readinginwatts. The test wasthenrepeated with3,4, 5, and 6 bulbs. Asfigure 10 illustrates,asmore bulbsare introducedintothe circuit,the total powerdissipatedbythe unitincreases. Figure 10: 40W bulb measurements - Parallel 0 50 100 150 200 250 0 20 40 60 80 100 120 140 Power(W) Voltage (V) 40W Bulbs - Parallel 2 Bulbs 3 Bulbs 4 Bulbs 5 Bulbs 6 Bulbs
  • 18. 12 The secondtestwas to connect2 bulbsintoanexistingunitina seriesconfiguration.Voltage was appliedinincrementsof 10V up to a maximumof 120V. Measurementsof the currentrunningthrough the systemwere takenandrecorded.The currentmeasurements were thenmultipliedbytheir correspondingvoltageswhichproduced aresultinwatts.The testingwas thenrepeatedwith3,4,5, and 6 bulbs. AsFigure 11 demonstrates,asmore bulbs were introducedtothe circuit,the total power dissipatedbythe unitdecreased, creatinganinverselyproportional relationship.Thisrelationshipis importantas itwill needtobe replicatedbythe simulator. Figure 11: 40W bulb measurements - Series 3.2 PrototypeCircuitAssemblyandTesting 3.2.1 Assembly The prototype isbuiltontwo separate protoboards;one forthe powercircuitandone for the display circuit.The powercircuitconsistsof four 750Ω resistorsandtwo270Ω resistors.The six resistorsthat make up the powercircuitare verylarge once theyare connectedandtake upthe entire protoboard. Thisis notan issue because itforcesthe displaycircuitontoits ownprotoboard,creatinga little more room forheat dissipation. 0 5 10 15 20 25 30 0 20 40 60 80 100 120 140 Power(W) Voltage (V) 40W Bulbs - Series 2 Bulbs 3 Bulbs 4 Bulbs 5 Bulbs 6 Bulbs
  • 19. 13 The displaycircuitconsistsof twomicrochipsthatcontainfouroptocouplersinsideeachchip.The high voltage side of the chipsare connectedtoone resistorandone zenerdiode foreachinputof the chip. On the lowvoltage side,aresistorandan LED are connectedtothe outputsof the chipand are powered by a 6V powersupply.Boththe highandlow voltage sidesof the circuitare also tiedtogroundto complete the circuit.Figure 12illustratesaportionof the displayprototype.The topsectionisthe high voltage side,andthe bottomsectionisthe low voltage side. 3.2.2 Testing In orderto properlytestthe prototype,the unitmustbe subjectedtothe same testconditionsasthe single bulb.Thisisdone byapplying120V to the unitin stepsof 10V and recordingthe amountof currentflowingthroughthe system.The systemmustalsobe testedtoensure thatasmore voltage is applied,more LEDsturn onwhichsimulates the brightnessof the bulb.The resultsof the testingcanbe seenbelowinfigure 13.Asfigure 13 demonstrates,the WattsOpprototype representsthe powerof an incandescentveryclosely.Itisnearlyexactlythe same powerat10V and at 120V withthe rest of the voltage levelsbeingnomore than5W of powerapart.The resultsindicate thatthe prototype is successful asthe majorityof studentuse isat 120V where the powerisexactlythe same.Withthese results,the final assemblycanbegin. Figure 12: Display Circuit Prototype
  • 20. 14 Figure 13: Incandescent Bulb vs. Watts Op - Power Consumption 3.3 HousingDesign The housingof the Watts Op is designedforbothfunctionalityandaesthetics.Firstly,the housingmust be the correctsize to not onlyfitthe circuitboards,but alsobe the same size as the existingfixturesin the labsat AlgonquinCollege.The existingfixturesare 5 incheshighby13 incheslongmeaningthatthe frontpanel of the Watts Op is to be the exactsame size.The housingisto be designedwith clearacrylic so that all of the partsare visible throughthe sides,withthe exceptionof the frontpanel,whichis paintedbeige tomatchthe equipmentcurrentlyinthe lab.The frontpanel consistsof anarray of eight LEDs arranged inan arc, as well asbindingpoststoattachthe variable ACpowerto,anda spotfor a circuitbreaker.The template forthe frontpanel of the housingcanbe seenbelow infigure 14. Figure 14: Front Panel Design 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Power(W) Voltage (V) Applied Votage vs. Calculated Power 40W Bulb Watts OP
  • 21. 15 The arrays of LEDs are arranged in an arc to minimizethe amountof space takenupby themonthe frontpanel.The twocirclesdirectlybelow the LEDsare where the bindingpostsare tobe installed,and the rectangle onthe bottomof the panel iswhere the circuitbreakeristo be placed. Alongwiththe designof the frontpanel,the remainderof the box neededtobe designedwith functionalityinmind.Holesare drilledthroughthe sidesof the housingtoaccommodate twofans placedoneitherside.The fansare essential tokeepingthe entireunitcool whenfullypowered.A clear acryliclidwas placedontop of the unitto preventanyof the live electrical componentsonthe inside frombeingtouchedbya technicianwhomaybe removingthe box inthe future.The entire housinghas beendesignedtobe installedinthe existingcabinetswithoutanyneedtochange otherequipment currentlybeingusedinthe labs.
  • 22. 16 4. Results 4.1 Final Assembly The final assemblyoccursintwophases.The firstphase isto construct the circuitboard,and the second isthe buildthe housing.Withoutthese twoparts,the final buildisnotable tobe completed. 4.1.1 CircuitBoard In orderto properlyconstructthe circuitboard,a wiringdiagramisdevelopedtosimplifythe process. The wiringdiagramisdevelopedtoaidthe technologistsbuildingthe unitsandtoensure thateachof the three unitsbeingbuiltare uniform.Withover200 placesneedingtobe soldered,the wiringdiagram made the processmuch simplerandcreatedaconcrete planfor the technologiststofollow.Belowisan illustrationof the wiringdiagram(figure 15). Figure 15: Wiring Diagram
  • 23. 17 Figure 15 showsall of the wiringconnectionsasred,white,andgreylines.Allof the solderpointsare in blue andeach componentisoutlinedasitison the circuit board.The yellow linesare powertothe LEDs, and the greenlinesare powerbackto the optocouplers. Followingthe completionof the wiringdiagram, the constructioncan begin.First,the heatsinksare attachedto the 750Ω and 270Ω resistors withthermal paste bondingthe twopartstogether.These resistorsare thensolderedtothe boardas theyare the tallestcomponentsandwill helptosupportthe boardwhenthe othercomponentsare soldered. The remainderof the componentsare thenplacedonthe board and solderedtogether.The optocouplersare notinstalleduntil aftertheir associatedhousingsare installed.Thisisdone topreventdamaging the chipsduringthe solderingprocessasthe ironsheatup to 750°C. Figure 16 isone of the three units once it iscompleted.The yellowwiresare goingfromthe resistorstothe LEDs, and the redwires complete the circuitandreturnpowerto the optocouplers. 4.1.2 HousingConstruction The housingisbuiltfromone quarterinchthinkclearacrylic.The constructionbeginswithasheetof acrylicwhichisthencut into5 inch strips.One stripisthencut downto 5 inchby 13 inchwhichwill be the front panel of the housing.Twootherstripsare cut to 5 by 9 inches.Once all of the piecesof acrylic are cut, the template forthe frontpanel istapedtothe piece of acrylicandthe holesare drilledto accommodate the components.Afterthe holesare drilled,the frontpanel isspraypaintedbeige togive contrast withthe LEDs and to match the equipmentcurrentlyinthe lab.While the paindries,one 3inch hole isdrilledineachof the side panelstoaccommodate the fans.The housingisassembledona woodenbase thatwill allowthe unittobe transportedmore easily.Thisbase istobe replacedbysheet metal once it isto be installedinthe labs.Once assembled,the LEDsare insertedintothe frontpanel; Figure 16: Completed Circuit Board
  • 24. 18 the circuitbreakersare installedalongwith six bracketsthatwill supportthe circuitboards.The topis thenplacedonand attachedto the unitusinghinges,allowingittoopenandclose easily.The fansare theninstalledonthe sidesof the unittoallow forproperair circulation.The final housingcanbe seenin figure 17. 4.1.3 Putting It All Together The three circuitboards are installedinside the housingusingasiliconadhesive.Siliconwaschosenasit isnot a conductive substance and will maintainthe bondevenwithhightemperatures.Inorderto supportthe back part of the circuitboards,two screwswere installedinthe base of the housingwhich actedas a brace forthe weightof the circuitboard. Afterthe boardsare installedand connectionsare made,testingisperformedtoensure continuityof the connections.Figure 18displaysthe completed Watts Op device. Figure 17: Housing
  • 25. 19 Figure 18: Fully Assembled Watts Op 4.2 Final Testing In orderto determine if the WattsOpaccuratelysimulatesanincandescentbulb,testingmustbe done withmultiple unitshookedupinbothseriesandparallel configurations.The firsttestcompletedisin parallel configuration.The WattsOpdevice isconnectedwith2unitsinparallel witheachother.Voltage isappliedtothe unitsinincrementsof 10V upto a maximumof 120V. The current runningthroughthe unitismeasuredandthenit ismultipliedbythe correspondingvoltagelevel;thisgivesthe power runningthroughthe unitinWatts. Thisprocessis thenrepeatedwith3units.Figure 19 showsthe comparisonbetweenthe parallelconfigurationsof the WattsOp comparedto the seriesconfigurationof a 40W incandescentbulb.
  • 26. 20 Figure 19: Watts Op vs. 40W Bulb – Series As figure 19 illustrates,the WattsOpperformsverysimilarlytothe 40W bulb.The powerdissipatedby the Watts Op isslightlylowerthanatraditional bulbinthe 40 to 100V ranges,but thisisnot as importantas the studentsatAlgonquinCollegemainlyuse these unitsat120V. The powerusedbythe Watts Op at the highervoltage levelsisnearlyidentical tothe 40W incandescentbulb. The secondtestis to verifythatthe powerlevelsare appropriate whenthe WattsOpissetup in a series configuration.Toperformthistest,2unitsare hookedupinserieswitheachotherandvoltage is appliedin10V increments,uptoa maximumof 120V. The current isrecordedandthenit ismultiplied by the correspondingvoltagelevel inordertodeterminethe powerrunningthroughthe system.This processisthenrepeatedwith3units.Figure 20 demonstratesthe comparisonbetweenthe WattsOpin seriesconfigurationandthe 40W bulbs.
  • 27. 21 Figure 20: Watts Op vs. 40W Bulb – Parallel The resultsthat can be seeninfigure 20 show that the Watts Op performsverysimilarlytothe 40W bulbs.The maindifferentisbetweenthe 40to 100V range where the powerislowerinthe WattsOp by 5W at the most.This amountof difference isnegligible asthere canbe thismuch of a difference betweenbulbsof differentmanufacturers.At120V,the level thatthe majorityof studenttestingis done,the powerlevelsare nearlyidentical betweenthe WattsOpand the 40W bulb.
  • 28. 22 5. Conclusion/Recommendations The Wattage Optiondevice isasuitable replacementforthe incandescentbulbinthe electrical labsat AlgonquinCollege.The device accuratelyrepresentsthe powerdissipatedbya40W bulbin bothseries and parallel configurations.The WattsOpis the onlydevice of itskindandthere are no otherproducts available onthe markettodaythatboth accuratelysimulate the dimmingof anincandescentbulbas well asdissipate the same amountof power. The Watts Op has beendesignedtobe easilyinstalledin the existingcabinetsbysimplyremovingthe oldincandescentbulbholdersandinsertingthe WattsOpdevice.Itisalsowiredinthe same way by students,sothe ease of use isveryhigh.With the manysmall electroniccomponentsinthe device,it may be a little challengingtotroubleshootanissue,butwithproperunderstandingof electronicsan experiencedtechnicianwouldbe able todiagnose andrepairanyproblemswithoutanyissue. In orderto furtherexpandonthe Watts Op inthe future,itisrecommendedthatnew powerresistors are selected.The newresistorswouldneedtobe smallerandable towithstandthatlarge amountof heatthat the unitproduces.A selectorswitchisalsorecommendedtobe installedonthe frontpanel of the unitso that studentscaneasilychange betweenwattage levelsonce the new resistorshave been foundandinstalled.Withthese simplechangesindesign,the WattsOpcouldbe installedatAlgonquin College withinthe next5years.
  • 29. 23 References [1] Departmentof Energy. “The Historyof the LightBulb.”22 Nov2013. [Online].Available: http://energy.gov/articles/history-light-bulb.[Accessed:30Oct 2014]. [2]MichiganState University.“Howdoesalightbulbwork?”17 Jun1992. [Online].Available: http://www.pa.msu.edu/sciencet/ask_st/061792.html.[Accessed:31 Oct 2014]. [3] “The ElectricLight Bulb.”2013. [Online].Available: http://www.cyberphysics.co.uk/topics/electricity/home/light_bulb.htm.[Accessed:30 Oct 2014] [4] [Online].Available: http://web.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/64.36.html.[Accessed:31 Oct 2014]. [5] National ResourcesCanada.“FrequentlyAskedQuestions:Canada’sStandardforEfficientLight Bulbs.”11 Apr2014. [Online].Available: http://www.nrcan.gc.ca/energy/regulations-codes- standards/7281. [Accessed:31 Oct 2014].