SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 135-141
www.iosrjournals.org
www.iosrjournals.org 135 | Page
Enhancement in Weighted PageRank Algorithm Using VOL
Sonal Tuteja1
1
(Software Engineering, Delhi Technological University,India)
Abstract: There are billions of web pages available on the World Wide Web (WWW). So there are lots of
search results corresponding to a user’s query out of which only some are relevant. The relevancy of a web
page is calculated by search engines using page ranking algorithms. Most of the page ranking algorithm use
web structure mining and web content mining to calculate the relevancy of a web page. In this paper, the
standard Weighted PageRank algorithm is being modified by incorporating Visits of Links(VOL).The proposed
method takes into account the importance of both the number of visits of inlinks and outlinks of the pages and
distributes rank scores based on the popularity of the pages. So, the resultant pages are displayed on the basis
of user browsing behavior.
Keywords: inlinks, outlinks, search engine, web mining, World Wide Web (WWW).
I. Introduction
WWW has ample number of hyperlinked documents and these documents contain heterogeneous
information including text, image, audio, video, and metadata. Since WWW’s evolution, it has expanded by
2000% and its size is doubling in every six to ten months [1]. For a given query, there are lots of documents
returned by a search engine out of which only few of them are relevant for a user. So the ranking algorithms are
indispensable to sort the results so that more relevant documents are displayed at the top.
Various ranking algorithms have been developed such as PageRank, Weighted PageRank, Page
Content Ranking, and HITS etc. These algorithms are based on web structure mining or web content mining or
combination of both. But web structure mining only considers link structure of the web and web content mining
is not able to cope up with multimedia such as images, mp3 and videos [2]. The proposed method incorporates
VOL with Weighed PageRank to calculate the value of page rank. In this way, the algorithm provides better
results by merging web usage mining with web structure mining.
The organization of the paper is as follows: In section 2, a brief idea about research background has
been given. In Section 3, the proposed work has been described with algorithm and example. Section 4
describes the advantages and disadvantages of proposed work. In section 5, the results of proposed method have
been compared with Weighted PageRank and Weighed PageRank using visits of links. Conclusion and future
work have been given in section 6.
II. Research Background
Data mining can be defined as the process of extracting useful information from large amount of data.
The application of data mining techniques to extract relevant information from the web is called as web mining
[3] [4]. It plays a vital role in web search engines for ranking of web pages and can be divided into three
categories: web structure mining (WSM), web content mining (WCM) and web usage mining (WUM) [3].
WSM is used to extract information from the structure of the web, WCM to mine the content of web pages and
WUM to extract information from the server logs.
Brin and Page [5] came up with an idea at Stanford University to use link structure of the web to
calculate rank of web pages. PageRank algorithm is used by Google to prioritize the results produced by
keyword based search. The algorithm works on the principle that if a web page has important links towards it
then the links of this page to other pages are also considered important. Thus it relies on the backlinks to
calculate the rank of web pages. The page rank is calculated by the formula given in equation 1.
𝑃𝑅 𝑒 = 𝑐
𝑃𝑅 𝑣
Nv
𝑣ɛB u
(1)
Where u represents a web page, 𝑃𝑅 𝑒 and 𝑃𝑅 𝑣 represents the page rank of web pages u and v
respectively, B(u) is the set of web pages pointing to u, Nv represents the total numbers of outlinks of web page
v and c is a factor used for normalization.
Original PageRank algorithm was modified by taking into consideration that not all users follow direct
links on WWW. The modified formula for calculating page rank is given in equation 2.
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 136 | Page
𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑
𝑃𝑅 𝑣
Nv
𝑣ɛB u
(2)
Where d is a dampening factor which represent the probability of user using direct links and it can be
set between 0 and 1.
Wenpu Xing and Ali Ghorbani [6] proposed an algorithm called Weighted PageRank algorithm by
extending standard PageRank. It works on the principle that if a page is important, more linkages from other
web pages have to it or are linked to by it. Unlike standard PageRank, it does not evenly distribute the page rank
of a page among its outgoing linked pages. The page rank of a web page is divided among its outgoing linked
pages in proportional to the importance or popularity (its number of inlinks and outlinks).
Win
(v, u), the popularity from the number of inlinks, is calculated based on the number of inlinks of
page u and the number of inlinks of all reference pages of page v as given in equation 3.
Win
v, u =
𝐼 𝑒
𝐼𝑝𝑝ɛR v
(3)
Where 𝐼 𝑒 and 𝐼𝑝 are the number of inlinks of page u and p respectively. R(v) represents the set of web
pages pointed by v.
Wout
(v, u), the popularity from the number of outlinks, is calculated based on the number of outlinks
of page u and the number of outlinks of all reference pages of page v as given in equation. 4.
Wout
v, u =
𝑂𝑒
𝑂𝑝𝑝ɛR v
(4)
Where 𝑂𝑒 and 𝑂𝑝 are the number of outlinks of page u and p respectively and R(v) represents the set of
web pages pointed by v. The page rank using Weighted PageRank algorithm is calculated by the formula as
given in equation 5.
𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝑃𝑅 𝑣 Win
𝑣, 𝑒 Wout
𝑣, 𝑒
𝑣ɛB u
5
Gyanendra Kumar et. al. [7] came up with a new idea to incorporate user’s broswsing behavior in
calculating page rank. Previous algorithms were either based on web structure mining or web content mining but
none of them took web usage mining into consideration. A new page ranking algorithm called Page Ranking
based on Visits of Links (VOL) was proposed for search engines. It modifies the basic page ranking algorithm
by taking into consideration the number of visits of inbound links of web pages. It helps to prioritize the web
pages on the basis of user’s browsing behavior.
In the original PageRank algorithm, the rank of a page p is evenly distributed among its outgoing links
but in this algorithm, rank values are assigned in proportional to the number of visits of links. The more rank
value is assigned to the link which is most visited by user. The Page Ranking based on Visits of Links (VOL)
can be calculated by the formula given in equation 6.
𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝐿 𝑒
𝑃𝑅(𝑣)
𝑇𝐿(𝑣)
𝑣ɛB u
(6)
Where 𝑃𝑅 𝑒 and 𝑃𝑅 𝑣 represent page rank of web pages u and v respectively, d is dampening
factor, B(u) is the set of web pages pointing to u, 𝐿 𝑒 is number of visits of links pointing from v to u, 𝑇𝐿(𝑣) is
the total number of visits of all links from v.
Neelam Tyagi and Simple Sharma [8] incorporated user browsing behavior in Weighted PageRank
algorithm to develop a new algorithm called Weighted PageRank based on number of visits of links (VOL). The
algorithm assigns more rank to the outgoing links having high VOL .It only considers the popularity from the
number of inlinks and ignores the popularity from the number of outlinks which was incorporated in Weighted
PageRank algorithm.
In the original Weighted PageRank algorithm, the page rank of a web page is divided among its
outgoing linked pages in proportional to the importance or popularity (its number of inlinks and outlinks) but in
this algorithm, number of visits of inbound links of web pages are also taken into consideration. The rank of
web page using this algorithm can be calculated as given in equation 7.
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 137 | Page
π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 = 1 βˆ’ 𝑑 + 𝑑
𝐿 𝑒 π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑣)Win
𝑣, 𝑒
𝑇𝐿(𝑣)
𝑣ɛB u
(7)
Where π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑣 represent page rank of web page u and v respectively, d is the
dampening factor, B(u) is the set of web pages pointing to u, 𝐿 𝑒 is number of visits of links pointing from v to u,
𝑇𝐿(𝑣) is the total number of visits of all links from v, Win
𝑣, 𝑒 represents the popularity from the number of
inlinks of u. Table gives a brief description of above algorithm using some parameters from [9].
Table 1: Comparison of Ranking Algorithms
Algorithm PageRank Weighted PageRank PageRank with VOL
Weighted
PageRank with
VOL
Web mining technique
used
Web structure mining Web structure mining
Web structure mining,
web usage mining
Web structure
mining, web usage
mining
Input Parameters Backlinks Backlinks, Forward links Backlinks and VOL
Backlinks and
VOL
Importance More More More More
Relevancy Less Less More More
III. Proposed work
The original Weighted PageRank algorithm distributes the rank of a web page among its outgoing
linked pages in proportional to their importance or popularity. Win
(v, u), the popularity from the number of
inlinks and Wout
(v, u), the popularity from the number of outlinks does not include usage trends. It does not
give more popularity to the links most visited by the users. The weighted PageRank using VOL makes use of
web structure mining and web usage mining but it neglects the popularity from the number of outlinks i.e.,
Wout
(v, u). In proposed algorithm,WVOL
in
(v, u), the popularity from the number of visits of inlinks
and WVOL
out
(v, u), the popularity from the number of visits of outlinks are used to calculate the value of page rank.
WVOL
in
(v, u) is the weight of link(v, u) which is calculated based on the number of visits of inlinks of page u and
the number of visits of inlinks of all reference pages of page v as given in equation 8.
WVOL
in
v, u =
𝐼 𝑒 𝑉𝑂𝐿
𝐼𝑝 𝑉𝑂𝐿𝑝ɛR v
(8)
Where 𝐼 𝑒(𝑉𝑂𝐿) and 𝐼𝑝(𝑉𝑂𝐿) represents the incoming visits of links of page u and p respectively and R(v)
represents the set of reference pages of page v. WVOL
out
(v, u) is the weight of link(v, u) which is calculated based
on the number of visits of outlinks of page u and the number of visits of outlinks of all reference pages of page v
as given in equation 9.
WVOL
out
v, u =
𝑂𝑒 𝑉𝑂𝐿
𝑂𝑝 𝑉𝑂𝐿𝑝ɛR v
(9)
Where 𝑂𝑒(𝑉𝑂𝐿) and 𝑂𝑝(𝑉𝑂𝐿) represents the outgoing visits of links of page u and respectively and R(v)
represents the set of reference pages of page v. Now these values are used to calculate page rank using equation
10.
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 = 1 βˆ’ 𝑑 + 𝑑 π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 WVOL
in
v, u WVOL
out
v, u
𝑣ɛB u
(10)
Where d is a dampening factor, B(u) is the set of pages that point to u, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑒) and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑣)
are the rank scores of page u and v respectively, WVOL
in
(v, u) represents the popularity from the number of visits
of inlinks and WVOL
out
(v, u) represents the popularity from the number of visits of outlinks.
3.1. Algorithm to calculate 𝐄𝐖𝐏𝐑 π•πŽπ‹
1. Finding a website: The website with rich hyperlinks is to be selected because the algorithm depends on the
hyper structure of website.
2. Generating a web graph: For selected website, web graph a generated in which nodes represent web pages
and edges represent hyperlinks between web pages.
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 138 | Page
3. Calculating number of visits of hyperlinks: Client side script is used to monitor the hits of hyperlinks and
information is sent to the web server and this information is accessed by crawlers.
4. Calculate page rank of each web page: The values of WVOL
in
(v, u), the popularity from the number of visits of
inlinks and WVOL
out
(v, u), the popularity from the number of visits of outlinks are calculated for each node using
formulae given in equation 8 and 9 and these values are substituted in equation 10 to calculate values of page
rank.
5. Repetition of step 4: The step 4 is used recursively until a stable value of page rank is obtained. The Fig. 1
shown below explains the steps required to calculate page rank using proposed algorithm.
Fig 1: Algorithm to calculate 𝐄𝐖𝐏𝐑 π•πŽπ‹
3.2. Example to illustrate the working of proposed algorithm
The working of proposed algorithm has been illustrated via taking a hypothetical web graph having
web pages A, B and C and links representing hyperlinks between pages marked with their number of visits
shown in Fig. 2.
Fig. 2: A web graph
The value of pagerank for web pages A, B and C are calculated using equation 10 as:
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝐴) = 1 βˆ’ 𝑑 + π‘‘π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 WVOL
in
𝐢, 𝐴 WVOL
out
(𝐢, 𝐴)
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 1 βˆ’ 𝑑 + π‘‘π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 WVOL
in
𝐴, 𝐡 WVOL
out
(𝐴, 𝐡)
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 1 βˆ’ 𝑑 + 𝑑(π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 WVOL
in
𝐴, 𝐢 WVOL
out
𝐴, 𝐢 + π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 B WVOL
in
𝐡, 𝐢 WVOL
out
(𝐡, 𝐢)
Each intermediate values WVOL
in
𝑣, 𝑒 and WVOL
out
(𝑣, 𝑒) are calculated using equation 8 and 9.
WVOL
in
𝐢, 𝐴 =
𝐼𝐴(𝑉𝑂𝐿)
𝐼𝐴(𝑉𝑂𝐿)
=
2
2
= 1
WVOL
out
𝐢, 𝐴 =
𝑂𝐴(𝑉𝑂𝐿)
𝑂𝐴(𝑉𝑂𝐿)
=
3
3
= 1
WVOL
in
𝐴, 𝐡 =
𝐼 𝐡(𝑉𝑂𝐿)
𝐼 𝐡(𝑉𝑂𝐿) + 𝐼 𝐢(𝑉𝑂𝐿)
=
1
1 + 2
=
1
3
WVOL
out
𝐴, 𝐡 =
𝑂 𝐡(𝑉𝑂𝐿)
𝑂 𝐡(𝑉𝑂𝐿) + 𝑂𝐢(𝑉𝑂𝐿)
=
2
2 + 2
=
2
4
WVOL
in
𝐴, 𝐢 =
𝐼 𝐢(𝑉𝑂𝐿)
𝐼 𝐢(𝑉𝑂𝐿) + 𝐼 𝐡(𝑉𝑂𝐿)
=
4
4 + 1
=
4
5
WVOL
out
𝐴, 𝐢 =
𝑂𝐢(𝑉𝑂𝐿)
𝑂 𝐢(𝑉𝑂𝐿) + 𝑂 𝐡(𝑉𝑂𝐿)
=
2
2 + 2
=
2
4
Findinga
website
Genarating a
web graph
Calculating
number of
visits of
hyperlinks
calculalete
page rank of
each web
page
Repitition of
previous step
until
stabilized
A
B C
1
2
2 2
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 139 | Page
WVOL
in
𝐡, 𝐢 =
𝐼 𝐢(𝑉𝑂𝐿)
𝐼 𝐢(𝑉𝑂𝐿)
=
4
4
= 1
WVOL
in
𝐡, 𝐢 =
𝑂𝐢(𝑉𝑂𝐿)
𝑂𝐢(𝑉𝑂𝐿)
=
2
2
= 1
The calculated values are put in above equations to calculate the values of page ranks. For d = 0.35,
page rank values for A, B and C can be calculated as:
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.65 + 0.35 1 βˆ—
2
2
βˆ—
3
3
= 1
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.65 + 0.35 1 βˆ—
1
3
βˆ—
2
4
= .70833
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ—
4
5
βˆ—
2
4
+ .70833 βˆ—
4
4
βˆ—
2
2
= 1.03792
These values are calculated iteratively until the values get stabilized and the final values of page ranks
are: A=1.01406, B=0.70915 and C=1.04017. For d = 0.50, page rank values for A, B and C can be calculated as:
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.50 + 0.50 1 βˆ—
2
2
βˆ—
3
3
= 1
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.50 + 0.50 1 βˆ—
1
3
βˆ—
2
4
= 0.58333
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ—
4
5
βˆ—
2
4
+ .58333 βˆ—
4
4
βˆ—
2
2
= 0.99167
These values are calculated iteratively until the values get stabilized and the final values of page ranks
are: A=0.99527, B=0.58294 and C=0.99052. For d = 0.85, page rank values for A, B and C can be calculated as:
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.15 + 0.85 1 βˆ—
2
2
βˆ—
3
3
= 1
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.15 + 0.85 1 βˆ—
1
3
βˆ—
2
4
= 0.29167
πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ—
4
5
βˆ—
2
4
+ .29167 βˆ—
4
4
βˆ—
2
2
= 0.73792
These values are calculated iteratively until the values get stabilized and the final values of page ranks
are: A=0.63531, B=0.24 and C=0.57001. The value of page rank at various values of d has been given in Table.
Table 2: Value of page ranks at different d values
d A B C
0.35 1.01406 0.70915 1.04017
0.50 0.99527 0.58294 0.99052
0.85 0.63531 0.24001 0.57001
IV. Advantages and Disadvantages
The proposed method includes web usage mining to calculate the page ranks of web pages and has
following advantages.
ο‚· The page rank using original WPR remains unaffected whether the page has been accessed by the users or
not. i.e.; the relevancy of a web page is ignored. But the page rank using proposed method πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿
assigns high rank to web pages having more visits of links.
ο‚· The page rank using original WPR depends only on the link structure of the web and remains same whether
the web page has been accessed by the user or not. Although the algorithm π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use of web
structure mining and web usage mining to calculate the value of page rank but it ignores the popularity from
the number of outlinks Wout
(v, u). On the other side, our proposed method πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 140 | Page
of WVOL
in
𝑣, 𝑒 , the popularity from the number of visits of inlinks and WVOL
out
𝐴, 𝐢 , the popularity from the
number of visits of outlinks to calculate page rank.
ο‚· The proposed method uses number of visits of links to calculate the rank of web pages. So the resultant
pages are popular and more relevant to the users need.
The proposed method includes number of visits of links of web pages to calculate page ranks. Suppose
there is a junk page whose initial page rank is high then the users will access it and it will lead to increase in
VOL which will further improve page rank. So the pages which are actually relevant will have less page rank
than junk pages. So some other usage behavior factors must be introduced in addition to VOL. These factors
are:
ο‚· Time spent on web page corresponding to a link: The algorithm must assign more weight to the link if more
time is spent by the users on the web page corresponding to that link. Most of the times, the time spent on
the junk pages is very less as compared to relevant pages. So this factor will help in lowering the rank of
junk pages.
ο‚· Most recent use of link: The link which is used most recently by users should have more priority than the
link which has been not used so far. So most recent use of link can also be used to calculate the page rank.
ο‚· Information about the user: A web page is not equally relevant for all the users. Due to different
requirements of different users, a web page may be more important for one but not for other. Some kind of
users’ information like age, gender, educational background can be used to categorize web pages according
to different users’ need.
V. Result Analysis
This section compares the page rank of web pages using standard Weighted PageRank (WPR),
Weighted PageRank using VOL (π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 ) and the proposed algorithm. We have calculated rank value of each
page based on WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and proposed algorithm i.e. πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for a web graph shown in Fig. 2.
As the value of dampening factor increases, the page rank decreases. The comparison of results is
shown in Table which shows the values of page rank using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 at different d values
of 0.35, 0.50 and 0.85.
Table 3: Comparison of page ranks using different algorithms
The values of page rank using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 have been compared using a bar chart.
The values retrieved by πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 are better than original WPR and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿. The WPR uses only web
structure mining to calculate the value of page rank, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 uses both web structure mining and web usage
mining to calculate value of page rank but it uses popularity only from the number of inlinks not from the
number of outlinks. The proposed algorithm πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 method uses number of visits of inlinks and outlinks to
calculate values of page rank and gives more rank to important pages. Fig. 3 compares the page ranks of A, B
and C using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for d=0.35.
Fig. 3: Comparison of page ranks at d=0.35
0
0.2
0.4
0.6
0.8
1
1.2
A B C
WPR
WPR(VOL)
EWPR(VOL)
d 0.35 0.50 0.85
WPR
A 1.00535 0.97677 0.58335
B 0.70865 0.58140 0.23335
C 1.01532 0.95351 0.51505
WPR(VOL)
A 1.01736 1 0.64037
B 0.68956 0.55556 0.21495
C 1.04960 1 0.57463
EWPR(VOL)
A 1.01406 0.99527 0.63531
B 0.70915 0.58140 0.23335
C 1.04017 0.99052 0.57001
Enhancement in Weighted PageRank Algorithm Using VOL
www.iosrjournals.org 141 | Page
Fig. 4 and Fig. 5 compares the page ranks of A, B and C using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for d=0.50.
Fig. 4: Comparison of page ranks at d=0.50
Fig. 5: Comparison of page ranks at d=0.85
VI. Conclusions and Future Work
Due to enormous amount of information present on the web, the users have to spend lot of time to get
pages relevant to them. So the proposed algorithm πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use of number of visits of links (VOL) to
calculate the values of page rank so that more relevant results are retrieved first. In this way, it may help users to
get the relevant information quickly. Some of the future works for the proposed algorithm are:
ο‚· The values of page rank have been calculated on a small web graph only. A web graph with large number
of websites and hyperlinks should be used to check the accuracy and importance of method.
ο‚· We need some other measures like most recent use of link, information about the user and time spent on
web page corresponding to a link. So the future work includes deriving a formula for page rank using these
parameters also.
References
[1] Sergey Brin and Lawrence Page, β€œThe Anatomy of a Large-Scale Hypertextual Web Search Engine”, Computer Science Department,
Stanford University, Stanford, CA 94305.
[2] Wenpu Xing and Ali Ghorbani, β€œWeighted PageRank Algorithm”, Faculty of Computer Science, University of New
Brunswick,Fredericton, NB, E3B 5A3, Canada.
[3] Gyanendra Kumar, Neelam Duhan, A. K. Sharma, β€œPage Ranking Based on Number of Visits of Links of Web Page”, Department of
Computer Engineering, YMCA University of Science & Technology, Faridabad, India.
[4] Naresh Barsagade, "Web Usage Mining And Pattern Discovery: A Survey Paper", CSE 8331, Dec.8, 2003.
[5] Dell Zhang, Yisheng Dong, β€œA novel Web usage mining approach for search engines”, Computer Networks 39 (2002) 303–310
[6] Neelam Duhan, A. K. Sharma, Komal Kumar Bhatia, β€œPage Ranking Algorithms: A Survey” Advance Computing Conference, 2009.
IACC 2009 IEEE International.
[7] R.Cooley, B.Mobasher and J.Srivastava, "Web Mining: Information and Pattern Discovery on the World Wide Web". In Proceedings
of the 9th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI'97), 1997.
[8] Companion slides for the text by Dr. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Prentice Hall, 2002.
[9] Neelam tyagi, Simple Sharma, β€œWeighted Page Rank Algorithm Based on Number of Visits of Links of Web Page”, International
Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-3, July 2012
0
0.2
0.4
0.6
0.8
1
1.2
A B C
WPR
WPR(VOL)
EWPR(VOL)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
A B C
WPR
WPR(VOL)
EWPR(VOL)

More Related Content

Viewers also liked

ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...Thomas Gottron
Β 
Use Email Marketing wisely; Stand out from Junk Mail
Use Email Marketing wisely; Stand out from Junk MailUse Email Marketing wisely; Stand out from Junk Mail
Use Email Marketing wisely; Stand out from Junk Mailbelieve52
Β 
Secured E-Learning Content on USB/HDD Device
Secured E-Learning Content on USB/HDD DeviceSecured E-Learning Content on USB/HDD Device
Secured E-Learning Content on USB/HDD DeviceIOSR Journals
Β 
An Improvement in Power Management in green Computing using Neural Networks
An Improvement in Power Management in green Computing using Neural NetworksAn Improvement in Power Management in green Computing using Neural Networks
An Improvement in Power Management in green Computing using Neural NetworksIOSR Journals
Β 
Improving Web Image Search Re-ranking
Improving Web Image Search Re-rankingImproving Web Image Search Re-ranking
Improving Web Image Search Re-rankingIOSR Journals
Β 
7 Tips for Selling Expensive Collectibles On eBay
7 Tips for Selling Expensive Collectibles On eBay7 Tips for Selling Expensive Collectibles On eBay
7 Tips for Selling Expensive Collectibles On eBaybelieve52
Β 
A Secure Software Implementation of Nonlinear Advanced Encryption Standard
A Secure Software Implementation of Nonlinear Advanced Encryption StandardA Secure Software Implementation of Nonlinear Advanced Encryption Standard
A Secure Software Implementation of Nonlinear Advanced Encryption StandardIOSR Journals
Β 
Web Mining Research Issues and Future Directions – A Survey
Web Mining Research Issues and Future Directions – A SurveyWeb Mining Research Issues and Future Directions – A Survey
Web Mining Research Issues and Future Directions – A SurveyIOSR Journals
Β 
Linux-Based Data Acquisition and Processing On Palmtop Computer
Linux-Based Data Acquisition and Processing On Palmtop ComputerLinux-Based Data Acquisition and Processing On Palmtop Computer
Linux-Based Data Acquisition and Processing On Palmtop ComputerIOSR Journals
Β 
Color to Gray and back’ using normalization of color components with Cosine, ...
Color to Gray and back’ using normalization of color components with Cosine, ...Color to Gray and back’ using normalization of color components with Cosine, ...
Color to Gray and back’ using normalization of color components with Cosine, ...IOSR Journals
Β 
A Novel High Order Tree for Securing Key Management for Multicast Services
A Novel High Order Tree for Securing Key Management for Multicast ServicesA Novel High Order Tree for Securing Key Management for Multicast Services
A Novel High Order Tree for Securing Key Management for Multicast ServicesIOSR Journals
Β 
Data Allocation Strategies for Leakage Detection
Data Allocation Strategies for Leakage DetectionData Allocation Strategies for Leakage Detection
Data Allocation Strategies for Leakage DetectionIOSR Journals
Β 
A Modular Approach To Intrusion Detection in Homogenous Wireless Network
A Modular Approach To Intrusion Detection in Homogenous Wireless NetworkA Modular Approach To Intrusion Detection in Homogenous Wireless Network
A Modular Approach To Intrusion Detection in Homogenous Wireless NetworkIOSR Journals
Β 
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...IOSR Journals
Β 

Viewers also liked (20)

ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
ESWC 2013: A Systematic Investigation of Explicit and Implicit Schema Informa...
Β 
Use Email Marketing wisely; Stand out from Junk Mail
Use Email Marketing wisely; Stand out from Junk MailUse Email Marketing wisely; Stand out from Junk Mail
Use Email Marketing wisely; Stand out from Junk Mail
Β 
Secured E-Learning Content on USB/HDD Device
Secured E-Learning Content on USB/HDD DeviceSecured E-Learning Content on USB/HDD Device
Secured E-Learning Content on USB/HDD Device
Β 
H0154448
H0154448H0154448
H0154448
Β 
An Improvement in Power Management in green Computing using Neural Networks
An Improvement in Power Management in green Computing using Neural NetworksAn Improvement in Power Management in green Computing using Neural Networks
An Improvement in Power Management in green Computing using Neural Networks
Β 
Improving Web Image Search Re-ranking
Improving Web Image Search Re-rankingImproving Web Image Search Re-ranking
Improving Web Image Search Re-ranking
Β 
7 Tips for Selling Expensive Collectibles On eBay
7 Tips for Selling Expensive Collectibles On eBay7 Tips for Selling Expensive Collectibles On eBay
7 Tips for Selling Expensive Collectibles On eBay
Β 
A01110107
A01110107A01110107
A01110107
Β 
A Secure Software Implementation of Nonlinear Advanced Encryption Standard
A Secure Software Implementation of Nonlinear Advanced Encryption StandardA Secure Software Implementation of Nonlinear Advanced Encryption Standard
A Secure Software Implementation of Nonlinear Advanced Encryption Standard
Β 
Web Mining Research Issues and Future Directions – A Survey
Web Mining Research Issues and Future Directions – A SurveyWeb Mining Research Issues and Future Directions – A Survey
Web Mining Research Issues and Future Directions – A Survey
Β 
B0150711
B0150711B0150711
B0150711
Β 
Linux-Based Data Acquisition and Processing On Palmtop Computer
Linux-Based Data Acquisition and Processing On Palmtop ComputerLinux-Based Data Acquisition and Processing On Palmtop Computer
Linux-Based Data Acquisition and Processing On Palmtop Computer
Β 
Color to Gray and back’ using normalization of color components with Cosine, ...
Color to Gray and back’ using normalization of color components with Cosine, ...Color to Gray and back’ using normalization of color components with Cosine, ...
Color to Gray and back’ using normalization of color components with Cosine, ...
Β 
A Novel High Order Tree for Securing Key Management for Multicast Services
A Novel High Order Tree for Securing Key Management for Multicast ServicesA Novel High Order Tree for Securing Key Management for Multicast Services
A Novel High Order Tree for Securing Key Management for Multicast Services
Β 
M01117578
M01117578M01117578
M01117578
Β 
D0961927
D0961927D0961927
D0961927
Β 
Data Allocation Strategies for Leakage Detection
Data Allocation Strategies for Leakage DetectionData Allocation Strategies for Leakage Detection
Data Allocation Strategies for Leakage Detection
Β 
A Modular Approach To Intrusion Detection in Homogenous Wireless Network
A Modular Approach To Intrusion Detection in Homogenous Wireless NetworkA Modular Approach To Intrusion Detection in Homogenous Wireless Network
A Modular Approach To Intrusion Detection in Homogenous Wireless Network
Β 
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...
Design and Implementation of Single Leg Reduce Switch Count Dual Output Inver...
Β 
A0310106
A0310106A0310106
A0310106
Β 

Similar to Enhancement in Weighted PageRank Algorithm Using VOL

Evaluation of Web Search Engines Based on Ranking of Results and Features
Evaluation of Web Search Engines Based on Ranking of Results and FeaturesEvaluation of Web Search Engines Based on Ranking of Results and Features
Evaluation of Web Search Engines Based on Ranking of Results and FeaturesWaqas Tariq
Β 
IRJET- Page Ranking Algorithms – A Comparison
IRJET- Page Ranking Algorithms – A ComparisonIRJET- Page Ranking Algorithms – A Comparison
IRJET- Page Ranking Algorithms – A ComparisonIRJET Journal
Β 
PageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportPageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportIOSR Journals
Β 
PageRank Algorithm
PageRank AlgorithmPageRank Algorithm
PageRank AlgorithmIOSRjournaljce
Β 
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSIDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSZac Darcy
Β 
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSIDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSIJwest
Β 
Identifying Important Features of Users to Improve Page Ranking Algorithms
Identifying Important Features of Users to Improve Page Ranking Algorithms Identifying Important Features of Users to Improve Page Ranking Algorithms
Identifying Important Features of Users to Improve Page Ranking Algorithms dannyijwest
Β 
Done rerea dlink-farm-spam(3)
Done rerea dlink-farm-spam(3)Done rerea dlink-farm-spam(3)
Done rerea dlink-farm-spam(3)James Arnold
Β 
Done rerea dlink-farm-spam
Done rerea dlink-farm-spamDone rerea dlink-farm-spam
Done rerea dlink-farm-spamJames Arnold
Β 
Done rerea dlink-farm-spam(2)
Done rerea dlink-farm-spam(2)Done rerea dlink-farm-spam(2)
Done rerea dlink-farm-spam(2)James Arnold
Β 
Comparative study of different ranking algorithms adopted by search engine
Comparative study of  different ranking algorithms adopted by search engineComparative study of  different ranking algorithms adopted by search engine
Comparative study of different ranking algorithms adopted by search engineEchelon Institute of Technology
Β 
Web mining
Web miningWeb mining
Web miningRashmi Bhat
Β 
TrustRank.PDF
TrustRank.PDFTrustRank.PDF
TrustRank.PDFssuser7a8460
Β 
Incremental Page Rank Computation on Evolving Graphs : NOTES
Incremental Page Rank Computation on Evolving Graphs : NOTESIncremental Page Rank Computation on Evolving Graphs : NOTES
Incremental Page Rank Computation on Evolving Graphs : NOTESSubhajit Sahu
Β 
Ranking algorithms
Ranking algorithmsRanking algorithms
Ranking algorithmsAnkit Raj
Β 
Ranking Web Pages
Ranking Web PagesRanking Web Pages
Ranking Web Pageselliando dias
Β 

Similar to Enhancement in Weighted PageRank Algorithm Using VOL (20)

Evaluation of Web Search Engines Based on Ranking of Results and Features
Evaluation of Web Search Engines Based on Ranking of Results and FeaturesEvaluation of Web Search Engines Based on Ranking of Results and Features
Evaluation of Web Search Engines Based on Ranking of Results and Features
Β 
I04015559
I04015559I04015559
I04015559
Β 
IRJET- Page Ranking Algorithms – A Comparison
IRJET- Page Ranking Algorithms – A ComparisonIRJET- Page Ranking Algorithms – A Comparison
IRJET- Page Ranking Algorithms – A Comparison
Β 
PageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey reportPageRank algorithm and its variations: A Survey report
PageRank algorithm and its variations: A Survey report
Β 
PageRank Algorithm
PageRank AlgorithmPageRank Algorithm
PageRank Algorithm
Β 
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSIDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
Β 
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMSIDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
IDENTIFYING IMPORTANT FEATURES OF USERS TO IMPROVE PAGE RANKING ALGORITHMS
Β 
Identifying Important Features of Users to Improve Page Ranking Algorithms
Identifying Important Features of Users to Improve Page Ranking Algorithms Identifying Important Features of Users to Improve Page Ranking Algorithms
Identifying Important Features of Users to Improve Page Ranking Algorithms
Β 
CSE509 Lecture 3
CSE509 Lecture 3CSE509 Lecture 3
CSE509 Lecture 3
Β 
Done rerea dlink-farm-spam(3)
Done rerea dlink-farm-spam(3)Done rerea dlink-farm-spam(3)
Done rerea dlink-farm-spam(3)
Β 
Done rerea dlink-farm-spam
Done rerea dlink-farm-spamDone rerea dlink-farm-spam
Done rerea dlink-farm-spam
Β 
Done rerea dlink-farm-spam(2)
Done rerea dlink-farm-spam(2)Done rerea dlink-farm-spam(2)
Done rerea dlink-farm-spam(2)
Β 
Comparative study of different ranking algorithms adopted by search engine
Comparative study of  different ranking algorithms adopted by search engineComparative study of  different ranking algorithms adopted by search engine
Comparative study of different ranking algorithms adopted by search engine
Β 
Web mining
Web miningWeb mining
Web mining
Β 
Pagerank
PagerankPagerank
Pagerank
Β 
Macran
MacranMacran
Macran
Β 
TrustRank.PDF
TrustRank.PDFTrustRank.PDF
TrustRank.PDF
Β 
Incremental Page Rank Computation on Evolving Graphs : NOTES
Incremental Page Rank Computation on Evolving Graphs : NOTESIncremental Page Rank Computation on Evolving Graphs : NOTES
Incremental Page Rank Computation on Evolving Graphs : NOTES
Β 
Ranking algorithms
Ranking algorithmsRanking algorithms
Ranking algorithms
Β 
Ranking Web Pages
Ranking Web PagesRanking Web Pages
Ranking Web Pages
Β 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
Β 
M0111397100
M0111397100M0111397100
M0111397100
Β 
L011138596
L011138596L011138596
L011138596
Β 
K011138084
K011138084K011138084
K011138084
Β 
J011137479
J011137479J011137479
J011137479
Β 
I011136673
I011136673I011136673
I011136673
Β 
G011134454
G011134454G011134454
G011134454
Β 
H011135565
H011135565H011135565
H011135565
Β 
F011134043
F011134043F011134043
F011134043
Β 
E011133639
E011133639E011133639
E011133639
Β 
D011132635
D011132635D011132635
D011132635
Β 
C011131925
C011131925C011131925
C011131925
Β 
B011130918
B011130918B011130918
B011130918
Β 
A011130108
A011130108A011130108
A011130108
Β 
I011125160
I011125160I011125160
I011125160
Β 
H011124050
H011124050H011124050
H011124050
Β 
G011123539
G011123539G011123539
G011123539
Β 
F011123134
F011123134F011123134
F011123134
Β 
E011122530
E011122530E011122530
E011122530
Β 
D011121524
D011121524D011121524
D011121524
Β 

Recently uploaded

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 

Recently uploaded (20)

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 

Enhancement in Weighted PageRank Algorithm Using VOL

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct. 2013), PP 135-141 www.iosrjournals.org www.iosrjournals.org 135 | Page Enhancement in Weighted PageRank Algorithm Using VOL Sonal Tuteja1 1 (Software Engineering, Delhi Technological University,India) Abstract: There are billions of web pages available on the World Wide Web (WWW). So there are lots of search results corresponding to a user’s query out of which only some are relevant. The relevancy of a web page is calculated by search engines using page ranking algorithms. Most of the page ranking algorithm use web structure mining and web content mining to calculate the relevancy of a web page. In this paper, the standard Weighted PageRank algorithm is being modified by incorporating Visits of Links(VOL).The proposed method takes into account the importance of both the number of visits of inlinks and outlinks of the pages and distributes rank scores based on the popularity of the pages. So, the resultant pages are displayed on the basis of user browsing behavior. Keywords: inlinks, outlinks, search engine, web mining, World Wide Web (WWW). I. Introduction WWW has ample number of hyperlinked documents and these documents contain heterogeneous information including text, image, audio, video, and metadata. Since WWW’s evolution, it has expanded by 2000% and its size is doubling in every six to ten months [1]. For a given query, there are lots of documents returned by a search engine out of which only few of them are relevant for a user. So the ranking algorithms are indispensable to sort the results so that more relevant documents are displayed at the top. Various ranking algorithms have been developed such as PageRank, Weighted PageRank, Page Content Ranking, and HITS etc. These algorithms are based on web structure mining or web content mining or combination of both. But web structure mining only considers link structure of the web and web content mining is not able to cope up with multimedia such as images, mp3 and videos [2]. The proposed method incorporates VOL with Weighed PageRank to calculate the value of page rank. In this way, the algorithm provides better results by merging web usage mining with web structure mining. The organization of the paper is as follows: In section 2, a brief idea about research background has been given. In Section 3, the proposed work has been described with algorithm and example. Section 4 describes the advantages and disadvantages of proposed work. In section 5, the results of proposed method have been compared with Weighted PageRank and Weighed PageRank using visits of links. Conclusion and future work have been given in section 6. II. Research Background Data mining can be defined as the process of extracting useful information from large amount of data. The application of data mining techniques to extract relevant information from the web is called as web mining [3] [4]. It plays a vital role in web search engines for ranking of web pages and can be divided into three categories: web structure mining (WSM), web content mining (WCM) and web usage mining (WUM) [3]. WSM is used to extract information from the structure of the web, WCM to mine the content of web pages and WUM to extract information from the server logs. Brin and Page [5] came up with an idea at Stanford University to use link structure of the web to calculate rank of web pages. PageRank algorithm is used by Google to prioritize the results produced by keyword based search. The algorithm works on the principle that if a web page has important links towards it then the links of this page to other pages are also considered important. Thus it relies on the backlinks to calculate the rank of web pages. The page rank is calculated by the formula given in equation 1. 𝑃𝑅 𝑒 = 𝑐 𝑃𝑅 𝑣 Nv 𝑣ɛB u (1) Where u represents a web page, 𝑃𝑅 𝑒 and 𝑃𝑅 𝑣 represents the page rank of web pages u and v respectively, B(u) is the set of web pages pointing to u, Nv represents the total numbers of outlinks of web page v and c is a factor used for normalization. Original PageRank algorithm was modified by taking into consideration that not all users follow direct links on WWW. The modified formula for calculating page rank is given in equation 2.
  • 2. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 136 | Page 𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝑃𝑅 𝑣 Nv 𝑣ɛB u (2) Where d is a dampening factor which represent the probability of user using direct links and it can be set between 0 and 1. Wenpu Xing and Ali Ghorbani [6] proposed an algorithm called Weighted PageRank algorithm by extending standard PageRank. It works on the principle that if a page is important, more linkages from other web pages have to it or are linked to by it. Unlike standard PageRank, it does not evenly distribute the page rank of a page among its outgoing linked pages. The page rank of a web page is divided among its outgoing linked pages in proportional to the importance or popularity (its number of inlinks and outlinks). Win (v, u), the popularity from the number of inlinks, is calculated based on the number of inlinks of page u and the number of inlinks of all reference pages of page v as given in equation 3. Win v, u = 𝐼 𝑒 𝐼𝑝𝑝ɛR v (3) Where 𝐼 𝑒 and 𝐼𝑝 are the number of inlinks of page u and p respectively. R(v) represents the set of web pages pointed by v. Wout (v, u), the popularity from the number of outlinks, is calculated based on the number of outlinks of page u and the number of outlinks of all reference pages of page v as given in equation. 4. Wout v, u = 𝑂𝑒 𝑂𝑝𝑝ɛR v (4) Where 𝑂𝑒 and 𝑂𝑝 are the number of outlinks of page u and p respectively and R(v) represents the set of web pages pointed by v. The page rank using Weighted PageRank algorithm is calculated by the formula as given in equation 5. 𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝑃𝑅 𝑣 Win 𝑣, 𝑒 Wout 𝑣, 𝑒 𝑣ɛB u 5 Gyanendra Kumar et. al. [7] came up with a new idea to incorporate user’s broswsing behavior in calculating page rank. Previous algorithms were either based on web structure mining or web content mining but none of them took web usage mining into consideration. A new page ranking algorithm called Page Ranking based on Visits of Links (VOL) was proposed for search engines. It modifies the basic page ranking algorithm by taking into consideration the number of visits of inbound links of web pages. It helps to prioritize the web pages on the basis of user’s browsing behavior. In the original PageRank algorithm, the rank of a page p is evenly distributed among its outgoing links but in this algorithm, rank values are assigned in proportional to the number of visits of links. The more rank value is assigned to the link which is most visited by user. The Page Ranking based on Visits of Links (VOL) can be calculated by the formula given in equation 6. 𝑃𝑅 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝐿 𝑒 𝑃𝑅(𝑣) 𝑇𝐿(𝑣) 𝑣ɛB u (6) Where 𝑃𝑅 𝑒 and 𝑃𝑅 𝑣 represent page rank of web pages u and v respectively, d is dampening factor, B(u) is the set of web pages pointing to u, 𝐿 𝑒 is number of visits of links pointing from v to u, 𝑇𝐿(𝑣) is the total number of visits of all links from v. Neelam Tyagi and Simple Sharma [8] incorporated user browsing behavior in Weighted PageRank algorithm to develop a new algorithm called Weighted PageRank based on number of visits of links (VOL). The algorithm assigns more rank to the outgoing links having high VOL .It only considers the popularity from the number of inlinks and ignores the popularity from the number of outlinks which was incorporated in Weighted PageRank algorithm. In the original Weighted PageRank algorithm, the page rank of a web page is divided among its outgoing linked pages in proportional to the importance or popularity (its number of inlinks and outlinks) but in this algorithm, number of visits of inbound links of web pages are also taken into consideration. The rank of web page using this algorithm can be calculated as given in equation 7.
  • 3. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 137 | Page π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 = 1 βˆ’ 𝑑 + 𝑑 𝐿 𝑒 π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑣)Win 𝑣, 𝑒 𝑇𝐿(𝑣) 𝑣ɛB u (7) Where π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑣 represent page rank of web page u and v respectively, d is the dampening factor, B(u) is the set of web pages pointing to u, 𝐿 𝑒 is number of visits of links pointing from v to u, 𝑇𝐿(𝑣) is the total number of visits of all links from v, Win 𝑣, 𝑒 represents the popularity from the number of inlinks of u. Table gives a brief description of above algorithm using some parameters from [9]. Table 1: Comparison of Ranking Algorithms Algorithm PageRank Weighted PageRank PageRank with VOL Weighted PageRank with VOL Web mining technique used Web structure mining Web structure mining Web structure mining, web usage mining Web structure mining, web usage mining Input Parameters Backlinks Backlinks, Forward links Backlinks and VOL Backlinks and VOL Importance More More More More Relevancy Less Less More More III. Proposed work The original Weighted PageRank algorithm distributes the rank of a web page among its outgoing linked pages in proportional to their importance or popularity. Win (v, u), the popularity from the number of inlinks and Wout (v, u), the popularity from the number of outlinks does not include usage trends. It does not give more popularity to the links most visited by the users. The weighted PageRank using VOL makes use of web structure mining and web usage mining but it neglects the popularity from the number of outlinks i.e., Wout (v, u). In proposed algorithm,WVOL in (v, u), the popularity from the number of visits of inlinks and WVOL out (v, u), the popularity from the number of visits of outlinks are used to calculate the value of page rank. WVOL in (v, u) is the weight of link(v, u) which is calculated based on the number of visits of inlinks of page u and the number of visits of inlinks of all reference pages of page v as given in equation 8. WVOL in v, u = 𝐼 𝑒 𝑉𝑂𝐿 𝐼𝑝 𝑉𝑂𝐿𝑝ɛR v (8) Where 𝐼 𝑒(𝑉𝑂𝐿) and 𝐼𝑝(𝑉𝑂𝐿) represents the incoming visits of links of page u and p respectively and R(v) represents the set of reference pages of page v. WVOL out (v, u) is the weight of link(v, u) which is calculated based on the number of visits of outlinks of page u and the number of visits of outlinks of all reference pages of page v as given in equation 9. WVOL out v, u = 𝑂𝑒 𝑉𝑂𝐿 𝑂𝑝 𝑉𝑂𝐿𝑝ɛR v (9) Where 𝑂𝑒(𝑉𝑂𝐿) and 𝑂𝑝(𝑉𝑂𝐿) represents the outgoing visits of links of page u and respectively and R(v) represents the set of reference pages of page v. Now these values are used to calculate page rank using equation 10. πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝑒 = 1 βˆ’ 𝑑 + 𝑑 π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 WVOL in v, u WVOL out v, u 𝑣ɛB u (10) Where d is a dampening factor, B(u) is the set of pages that point to u, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑒) and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝑣) are the rank scores of page u and v respectively, WVOL in (v, u) represents the popularity from the number of visits of inlinks and WVOL out (v, u) represents the popularity from the number of visits of outlinks. 3.1. Algorithm to calculate 𝐄𝐖𝐏𝐑 π•πŽπ‹ 1. Finding a website: The website with rich hyperlinks is to be selected because the algorithm depends on the hyper structure of website. 2. Generating a web graph: For selected website, web graph a generated in which nodes represent web pages and edges represent hyperlinks between web pages.
  • 4. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 138 | Page 3. Calculating number of visits of hyperlinks: Client side script is used to monitor the hits of hyperlinks and information is sent to the web server and this information is accessed by crawlers. 4. Calculate page rank of each web page: The values of WVOL in (v, u), the popularity from the number of visits of inlinks and WVOL out (v, u), the popularity from the number of visits of outlinks are calculated for each node using formulae given in equation 8 and 9 and these values are substituted in equation 10 to calculate values of page rank. 5. Repetition of step 4: The step 4 is used recursively until a stable value of page rank is obtained. The Fig. 1 shown below explains the steps required to calculate page rank using proposed algorithm. Fig 1: Algorithm to calculate 𝐄𝐖𝐏𝐑 π•πŽπ‹ 3.2. Example to illustrate the working of proposed algorithm The working of proposed algorithm has been illustrated via taking a hypothetical web graph having web pages A, B and C and links representing hyperlinks between pages marked with their number of visits shown in Fig. 2. Fig. 2: A web graph The value of pagerank for web pages A, B and C are calculated using equation 10 as: πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 (𝐴) = 1 βˆ’ 𝑑 + π‘‘π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 WVOL in 𝐢, 𝐴 WVOL out (𝐢, 𝐴) πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 1 βˆ’ 𝑑 + π‘‘π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 WVOL in 𝐴, 𝐡 WVOL out (𝐴, 𝐡) πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 1 βˆ’ 𝑑 + 𝑑(π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 WVOL in 𝐴, 𝐢 WVOL out 𝐴, 𝐢 + π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 B WVOL in 𝐡, 𝐢 WVOL out (𝐡, 𝐢) Each intermediate values WVOL in 𝑣, 𝑒 and WVOL out (𝑣, 𝑒) are calculated using equation 8 and 9. WVOL in 𝐢, 𝐴 = 𝐼𝐴(𝑉𝑂𝐿) 𝐼𝐴(𝑉𝑂𝐿) = 2 2 = 1 WVOL out 𝐢, 𝐴 = 𝑂𝐴(𝑉𝑂𝐿) 𝑂𝐴(𝑉𝑂𝐿) = 3 3 = 1 WVOL in 𝐴, 𝐡 = 𝐼 𝐡(𝑉𝑂𝐿) 𝐼 𝐡(𝑉𝑂𝐿) + 𝐼 𝐢(𝑉𝑂𝐿) = 1 1 + 2 = 1 3 WVOL out 𝐴, 𝐡 = 𝑂 𝐡(𝑉𝑂𝐿) 𝑂 𝐡(𝑉𝑂𝐿) + 𝑂𝐢(𝑉𝑂𝐿) = 2 2 + 2 = 2 4 WVOL in 𝐴, 𝐢 = 𝐼 𝐢(𝑉𝑂𝐿) 𝐼 𝐢(𝑉𝑂𝐿) + 𝐼 𝐡(𝑉𝑂𝐿) = 4 4 + 1 = 4 5 WVOL out 𝐴, 𝐢 = 𝑂𝐢(𝑉𝑂𝐿) 𝑂 𝐢(𝑉𝑂𝐿) + 𝑂 𝐡(𝑉𝑂𝐿) = 2 2 + 2 = 2 4 Findinga website Genarating a web graph Calculating number of visits of hyperlinks calculalete page rank of each web page Repitition of previous step until stabilized A B C 1 2 2 2
  • 5. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 139 | Page WVOL in 𝐡, 𝐢 = 𝐼 𝐢(𝑉𝑂𝐿) 𝐼 𝐢(𝑉𝑂𝐿) = 4 4 = 1 WVOL in 𝐡, 𝐢 = 𝑂𝐢(𝑉𝑂𝐿) 𝑂𝐢(𝑉𝑂𝐿) = 2 2 = 1 The calculated values are put in above equations to calculate the values of page ranks. For d = 0.35, page rank values for A, B and C can be calculated as: πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.65 + 0.35 1 βˆ— 2 2 βˆ— 3 3 = 1 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.65 + 0.35 1 βˆ— 1 3 βˆ— 2 4 = .70833 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ— 4 5 βˆ— 2 4 + .70833 βˆ— 4 4 βˆ— 2 2 = 1.03792 These values are calculated iteratively until the values get stabilized and the final values of page ranks are: A=1.01406, B=0.70915 and C=1.04017. For d = 0.50, page rank values for A, B and C can be calculated as: πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.50 + 0.50 1 βˆ— 2 2 βˆ— 3 3 = 1 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.50 + 0.50 1 βˆ— 1 3 βˆ— 2 4 = 0.58333 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ— 4 5 βˆ— 2 4 + .58333 βˆ— 4 4 βˆ— 2 2 = 0.99167 These values are calculated iteratively until the values get stabilized and the final values of page ranks are: A=0.99527, B=0.58294 and C=0.99052. For d = 0.85, page rank values for A, B and C can be calculated as: πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐴 = 0.15 + 0.85 1 βˆ— 2 2 βˆ— 3 3 = 1 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐡 = 0.15 + 0.85 1 βˆ— 1 3 βˆ— 2 4 = 0.29167 πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 𝐢 = 0.50 + 0.50 1 βˆ— 4 5 βˆ— 2 4 + .29167 βˆ— 4 4 βˆ— 2 2 = 0.73792 These values are calculated iteratively until the values get stabilized and the final values of page ranks are: A=0.63531, B=0.24 and C=0.57001. The value of page rank at various values of d has been given in Table. Table 2: Value of page ranks at different d values d A B C 0.35 1.01406 0.70915 1.04017 0.50 0.99527 0.58294 0.99052 0.85 0.63531 0.24001 0.57001 IV. Advantages and Disadvantages The proposed method includes web usage mining to calculate the page ranks of web pages and has following advantages. ο‚· The page rank using original WPR remains unaffected whether the page has been accessed by the users or not. i.e.; the relevancy of a web page is ignored. But the page rank using proposed method πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 assigns high rank to web pages having more visits of links. ο‚· The page rank using original WPR depends only on the link structure of the web and remains same whether the web page has been accessed by the user or not. Although the algorithm π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use of web structure mining and web usage mining to calculate the value of page rank but it ignores the popularity from the number of outlinks Wout (v, u). On the other side, our proposed method πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use
  • 6. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 140 | Page of WVOL in 𝑣, 𝑒 , the popularity from the number of visits of inlinks and WVOL out 𝐴, 𝐢 , the popularity from the number of visits of outlinks to calculate page rank. ο‚· The proposed method uses number of visits of links to calculate the rank of web pages. So the resultant pages are popular and more relevant to the users need. The proposed method includes number of visits of links of web pages to calculate page ranks. Suppose there is a junk page whose initial page rank is high then the users will access it and it will lead to increase in VOL which will further improve page rank. So the pages which are actually relevant will have less page rank than junk pages. So some other usage behavior factors must be introduced in addition to VOL. These factors are: ο‚· Time spent on web page corresponding to a link: The algorithm must assign more weight to the link if more time is spent by the users on the web page corresponding to that link. Most of the times, the time spent on the junk pages is very less as compared to relevant pages. So this factor will help in lowering the rank of junk pages. ο‚· Most recent use of link: The link which is used most recently by users should have more priority than the link which has been not used so far. So most recent use of link can also be used to calculate the page rank. ο‚· Information about the user: A web page is not equally relevant for all the users. Due to different requirements of different users, a web page may be more important for one but not for other. Some kind of users’ information like age, gender, educational background can be used to categorize web pages according to different users’ need. V. Result Analysis This section compares the page rank of web pages using standard Weighted PageRank (WPR), Weighted PageRank using VOL (π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 ) and the proposed algorithm. We have calculated rank value of each page based on WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and proposed algorithm i.e. πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for a web graph shown in Fig. 2. As the value of dampening factor increases, the page rank decreases. The comparison of results is shown in Table which shows the values of page rank using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 at different d values of 0.35, 0.50 and 0.85. Table 3: Comparison of page ranks using different algorithms The values of page rank using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 have been compared using a bar chart. The values retrieved by πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 are better than original WPR and π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿. The WPR uses only web structure mining to calculate the value of page rank, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 uses both web structure mining and web usage mining to calculate value of page rank but it uses popularity only from the number of inlinks not from the number of outlinks. The proposed algorithm πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 method uses number of visits of inlinks and outlinks to calculate values of page rank and gives more rank to important pages. Fig. 3 compares the page ranks of A, B and C using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for d=0.35. Fig. 3: Comparison of page ranks at d=0.35 0 0.2 0.4 0.6 0.8 1 1.2 A B C WPR WPR(VOL) EWPR(VOL) d 0.35 0.50 0.85 WPR A 1.00535 0.97677 0.58335 B 0.70865 0.58140 0.23335 C 1.01532 0.95351 0.51505 WPR(VOL) A 1.01736 1 0.64037 B 0.68956 0.55556 0.21495 C 1.04960 1 0.57463 EWPR(VOL) A 1.01406 0.99527 0.63531 B 0.70915 0.58140 0.23335 C 1.04017 0.99052 0.57001
  • 7. Enhancement in Weighted PageRank Algorithm Using VOL www.iosrjournals.org 141 | Page Fig. 4 and Fig. 5 compares the page ranks of A, B and C using WPR, π‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 and πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 for d=0.50. Fig. 4: Comparison of page ranks at d=0.50 Fig. 5: Comparison of page ranks at d=0.85 VI. Conclusions and Future Work Due to enormous amount of information present on the web, the users have to spend lot of time to get pages relevant to them. So the proposed algorithm πΈπ‘Šπ‘ƒπ‘… 𝑉𝑂𝐿 makes use of number of visits of links (VOL) to calculate the values of page rank so that more relevant results are retrieved first. In this way, it may help users to get the relevant information quickly. Some of the future works for the proposed algorithm are: ο‚· The values of page rank have been calculated on a small web graph only. A web graph with large number of websites and hyperlinks should be used to check the accuracy and importance of method. ο‚· We need some other measures like most recent use of link, information about the user and time spent on web page corresponding to a link. So the future work includes deriving a formula for page rank using these parameters also. References [1] Sergey Brin and Lawrence Page, β€œThe Anatomy of a Large-Scale Hypertextual Web Search Engine”, Computer Science Department, Stanford University, Stanford, CA 94305. [2] Wenpu Xing and Ali Ghorbani, β€œWeighted PageRank Algorithm”, Faculty of Computer Science, University of New Brunswick,Fredericton, NB, E3B 5A3, Canada. [3] Gyanendra Kumar, Neelam Duhan, A. K. Sharma, β€œPage Ranking Based on Number of Visits of Links of Web Page”, Department of Computer Engineering, YMCA University of Science & Technology, Faridabad, India. [4] Naresh Barsagade, "Web Usage Mining And Pattern Discovery: A Survey Paper", CSE 8331, Dec.8, 2003. [5] Dell Zhang, Yisheng Dong, β€œA novel Web usage mining approach for search engines”, Computer Networks 39 (2002) 303–310 [6] Neelam Duhan, A. K. Sharma, Komal Kumar Bhatia, β€œPage Ranking Algorithms: A Survey” Advance Computing Conference, 2009. IACC 2009 IEEE International. [7] R.Cooley, B.Mobasher and J.Srivastava, "Web Mining: Information and Pattern Discovery on the World Wide Web". In Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'97), 1997. [8] Companion slides for the text by Dr. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Prentice Hall, 2002. [9] Neelam tyagi, Simple Sharma, β€œWeighted Page Rank Algorithm Based on Number of Visits of Links of Web Page”, International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-3, July 2012 0 0.2 0.4 0.6 0.8 1 1.2 A B C WPR WPR(VOL) EWPR(VOL) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 A B C WPR WPR(VOL) EWPR(VOL)