報告人 張楦涵 徐仕杰 | PyCon Taiwan 2019
Edge Server
Database


from nptdms import TdmsFile
tdms_file = TdmsFile(path)
obj=tdms_file.object(‘vibration_X’)
data = obj.data
震動 X 震動Y 震動Z
0.5047 -0.938 1.156
… … …
-1.717 -0.286 1.759
日期 時間 毫秒 … X軸座標 Y軸座標 Z軸座標 進給 轉速 主軸負載
2018/5/26 08:13:15 481 … 0.8501 -239.158 -254.203 0 1999.969 4.257332
2018/5/26 08:13:15 496 … 0.8501 -239.158 -254.203 0 1999.969 4.257332
2018/5/26 08:13:15 512 … 0.8501 -239.158 -254.203 0 1999.969 4.257332
•
•
•
10/24/11 05/11/12 11/27/12 06/15/13 01/01/14 07/20/14 02/05/15
0
0.5
1
1.5
2
2.5
3
x 10
4
Time
Energy(mJ)
09/23/13 11/12/13 01/01/14 02/20/14 04/11/14 05/31/14 07/20/14 09/08/14
5600
5800
6000
6200
6400
6600
6800
7000
7200
Time
Energy(mJ)
256,908,800 155,456,000
•
•
•
•
•
•
•
•
•
•
1 x 155,456,000
342,968 x 7,680
342,968 x 7,680
342,968 x 281
•
• The Mann-Kendall Test is used to determine whether a time series has a
monotonic upward or downward trend. It does not require that the data be
normally distributed or linear. It does require that there is no autocorrelation.
•
• Kolmogorov–Smirnov test is a nonparametric test of the equality of
continuous (or discontinuous), one-dimensional probability distributions that
can be used to compare a sample with a reference probability distribution
•
• A type of statistical significance test in which the distribution of the test
statistic under the null hypothesis is obtained by calculating all possible values
of the test statistic under rearrangements of the labels on the observed data
points.
•
• XGBoost is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable. It implements machine learning
algorithms under the Gradient Boosting framework. XGBoost provides a
parallel tree boosting (also known as GBDT, GBM) that solve many data
science problems in a fast and accurate way.
•
•
•
•
•
•
•
‧
CNC Tool Health Assessment  @2019 PyCon
CNC Tool Health Assessment  @2019 PyCon

CNC Tool Health Assessment @2019 PyCon

  • 1.
    報告人 張楦涵 徐仕杰| PyCon Taiwan 2019
  • 16.
  • 20.
  • 25.
    from nptdms importTdmsFile tdms_file = TdmsFile(path) obj=tdms_file.object(‘vibration_X’) data = obj.data 震動 X 震動Y 震動Z 0.5047 -0.938 1.156 … … … -1.717 -0.286 1.759
  • 26.
    日期 時間 毫秒… X軸座標 Y軸座標 Z軸座標 進給 轉速 主軸負載 2018/5/26 08:13:15 481 … 0.8501 -239.158 -254.203 0 1999.969 4.257332 2018/5/26 08:13:15 496 … 0.8501 -239.158 -254.203 0 1999.969 4.257332 2018/5/26 08:13:15 512 … 0.8501 -239.158 -254.203 0 1999.969 4.257332
  • 28.
  • 30.
    10/24/11 05/11/12 11/27/1206/15/13 01/01/14 07/20/14 02/05/15 0 0.5 1 1.5 2 2.5 3 x 10 4 Time Energy(mJ) 09/23/13 11/12/13 01/01/14 02/20/14 04/11/14 05/31/14 07/20/14 09/08/14 5600 5800 6000 6200 6400 6600 6800 7000 7200 Time Energy(mJ) 256,908,800 155,456,000
  • 31.
  • 33.
  • 34.
  • 39.
  • 40.
    • • The Mann-KendallTest is used to determine whether a time series has a monotonic upward or downward trend. It does not require that the data be normally distributed or linear. It does require that there is no autocorrelation. • • Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous (or discontinuous), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution • • A type of statistical significance test in which the distribution of the test statistic under the null hypothesis is obtained by calculating all possible values of the test statistic under rearrangements of the labels on the observed data points.
  • 42.
    • • XGBoost isan optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. • • • • •
  • 44.
  • 45.