SlideShare a Scribd company logo
1 of 86
Ch. 6 – Routing and Routing
Protocols
CCNA 1 version 3.0
Rick Graziani
Cabrillo College
Rick Graziani graziani@cabrillo.edu
Note to instructors
• If you have downloaded this presentation from the Cisco Networking
Academy Community FTP Center, this may not be my latest version of this
PowerPoint.
• For the latest PowerPoints for all my CCNA, CCNP, and Wireless
classes, please go to my web site:
http://www.cabrillo.cc.ca.us/~rgraziani/
o The username is cisco and the password is perlman for all of my
materials.
• If you have any questions on any of my materials or the curriculum,
please feel free to email me at graziani@cabrillo.edu (I really don’t mind
helping.) Also, if you run across any typos or errors in my presentations,
please let me know.
• I will add “(Updated – date)” next to each presentation on my web site
that has been updated since these have been uploaded to the FTP center.
Thanks! Rick
Rick Graziani graziani@cabrillo.edu
Overview
• Explain the significance of static routing
• Configure static and default routes
• Verify and troubleshoot static and default routes
• Identify the classes of routing protocols
• Identify distance vector routing protocols
• Identify link-state routing protocols
• Describe the basic characteristics of common routing protocols
• Identify interior gateway protocols
• Identify exterior gateway protocols
• Enable Routing Information Protocol (RIP) on a router
Rick Graziani graziani@cabrillo.edu
The Routing Table
• Before we begin lets see lets discuss the routing table and
directly connected routes.
• This is information which is not in the curriculum, but will
give you a better understanding of what is taking place.
Rick Graziani graziani@cabrillo.edu
The Routing Table prior to any interface configuration
• The command to view the IP Routing table is: (priviledge or user mode)
Router# show ip route
• Currently, no routes in the routing table.
Directly Connected Networks and the IP Routing Table
RTA#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
U - per-user static route, o - ODR
Gateway of last resort is not set
RTA#
Rick Graziani graziani@cabrillo.edu
• Adding an ip address/mask to an interface tells the router that it is a member, “Directly
Connected” to that network – just like when a host computer is configured with an ip
address/mask.
• Notice the route is shown with the subnet mask and the “exit-interface.”
• Don’t forget the “no shutdown”
• Don’t forget the interface must be in “up” and “up”
Directly Connected Networks and the IP Routing Table
RTA(config)#inter e 0
RTA(config-if)#ip add 192.168.2.1 255.255.255.0
RTA(config-if)#no shutdown
RTA#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 192.168.2.0/24 is directly connected, Ethernet0
RTA#
Rick Graziani graziani@cabrillo.edu
Viewing the Routing Table Process
• Use the “debug ip routing” command to view the Cisco IOS routing table process of
adding a directly connected network to the routing table.
• When finished, be sure to use “undebug all”
• Debug commands are used to view detailed information about Cisco IOS processes –
more later.
Directly Connected Networks and the IP Routing Table
RTA# debug ip routing
RTA(config)#inter e 0
RTA(config-if)#ip add 192.168.2.1 255.255.255.0
RTA(config-if)#no shutdown
00:28:56: RT: add 192.168.2.0/24 via 0.0.0.0, connected metric [0/0]
00:28:56: RT: interface Ethernet0 added to routing table
RTA#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 192.168.2.0/24 is directly connected, Ethernet0
RTA# undebug all
Rick Graziani graziani@cabrillo.edu
Viewing the Routing Table Process
• Directly connected routes will also be removed if the link goes down.
• Directly connected routes will only be in the routing table if, it is not administratively
down, the line is “up” and protocol is “up”
• For serial interfaces, don’t forget the “clock rate” command on the router with the DCE
cable – neither interface will be “up” and “up” until both ends are configured correctly.
Directly Connected Networks and the IP Routing Table
RTA# debug ip routing
RTA(config)#inter e 0
RTA(config-if)#shutdown
00:34:38: RT: interface Ethernet0 removed from routing table
00:34:38: RT: del 192.168.2.0 via 0.0.0.0, connected metric [0/0]
00:34:38: RT: delete network route to 192.168.2.0
RTA#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
RTA# undebug all
Rick Graziani graziani@cabrillo.edu
Directly Connected Networks and the IP Routing Table
RTA#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
RTB#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.1.0/24 is directly connected, Serial1
RTC#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 10.0.0.0/8 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial1
The Routing Tables
• Notice that the routers only know about their own directly connected networks.
• They are not sharing routing information because we have not configured any static routes or
dynamic routing protocols.
Rick Graziani graziani@cabrillo.edu
Configuring an interface which has a subnet mask greater than the classful mask
• We will discuss this in much more detail later using the presentation – “The Routing Table.”
• For now, notice that when the subnet mask is not a classful mask, but a subnetted /16 mask.
• The routing table information shows the route to the subnetted network
• The mask is shown in the above, “parent” classful network.
Directly Connected Networks and the IP Routing Table
RTC(config)#inter e 0
RTC(config-if)#ip add 10.1.0.1 255.255.0.0
RTC#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
10.0.0.0/16 is subnetted, 1 subnets
C 10.1.0.0 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial1
RTC#
Rick Graziani graziani@cabrillo.edu
Routing – Only directly connected hosts (routers)
• Routers can only reach networks known about in its own routing table.
Directly Connected Networks and the IP Routing Table
RTA#show ip route
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
RTA#ping 172.16.0.1
!!!!!
RTA#ping 172.16.0.2
!!!!!
RTA#ping 192.168.1.1
.....
RTA#ping 192.168.1.2
.....
RTA#ping 10.1.0.1
.....
Rick Graziani graziani@cabrillo.edu
Routing– Routing tables must have the necessary network routes
• Question: If RTA can ping RTB’s 172.16.0.2 interface why can’t it ping RTB’s 192.168.1.1
interface? - RTA does not have a route to it in its routing table.
• Question: Would an extended ping from RTA, using the source IP address of 192.168.2.1 be
able to ping 172.16.0.1 on RTB? Why or why not? Where does the echo request or echo reply fail?
Directly Connected Networks and the IP Routing Table
RTA#show ip route
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
RTA#ping 172.16.0.1
Sending 5, 100-byte ICMP Echos to 172.16.0.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 56/57/60 ms
RTA#ping 172.16.0.2
!!!!!
Rick Graziani graziani@cabrillo.edu
Routing– Routing tables must have the necessary network routes
• Question: Would an extended ping from RTA, using the source IP address of 192.168.2.1 be able
to ping 172.16.0.1 on RTB? Why or why not?
• The echo request from RTA reaches RTB because RTA has a route to 172.16.0.0/16 in its routing
table.
• However, the echo reply from RTB back to RTA fails, because RTB does not have a route for
192.168.2.0/24 in its routing table.
Directly Connected Networks and the IP Routing Table
RTA#show ip route
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
RTB#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.1.0/24 is directly connected, Serial1
RTA#ping
Protocol [ip]:
Target IP address: 172.16.0.2
Extended commands [n]: y
Source address or interface: 192.168.2.1
Sending 5, 100-byte ICMP Echos to 172.16.0.2, timeout is 2 seconds:
.....
Rick Graziani graziani@cabrillo.edu
Routing Table Principles Revisited (Zinin, Cisco IP Routing)
• Every router makes its decision alone, based on the information it has in its own routing table.
• The fact that one router has certain information in its routing table does not mean that other
routers have the same information.
• Routing information about a path from one network to another does not provide routing information
about the reverse, or return path.
Directly Connected Networks and the IP Routing Table
RTA#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
RTB#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
C 172.16.0.0/16 is directly connected, Serial0
C 192.168.1.0/24 is directly connected, Serial1
RTC#show ip route
Codes: C - connected,.. <Other codes and gateway information omitted>
10.0.0.0/16 is subnetted, 1 subnets
C 10.1.0.0 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Serial1
Back to the curriculum…
Rick Graziani graziani@cabrillo.edu
Routing Types
Rick Graziani graziani@cabrillo.edu
Static Route Operation
Hoboken#show ip route
Codes: C - connected, S - static,
S 172.16.1.0/24 [1/0] is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
Rick Graziani graziani@cabrillo.edu
ip route command
RTR(config)# ip route prefix mask {address | interface} [distance] [tag tag]
[permanent]
• prefix IP route prefix for the destination.
• mask Prefix mask for the destination.
• address IP address of the “next hop” that can be used to reach that
network.
• interface Network interface to use (exit-interface)
• distance (Optional) An administrative distance.
• tag tag (Optional) Tag value that can be used as a "match" value for
controlling redistribution via route maps. (CCNP Advanced Routing)
• Permanent (Optional) Specifies that the route will not be removed,
even if the interface shuts down. (CCNP Advanced Routing)
Rick Graziani graziani@cabrillo.edu
Static Route Operation
• If the exit interface (gateway) is “down” the static route will
not be put in the routing table.
Rick Graziani graziani@cabrillo.edu
Static Route Operation
• If the router cannot reach the outgoing interface that is being used in the route,
the route will not be installed in the routing table.
• This means if that interface is down, the route will not be placed in the routing
table.
Rick Graziani graziani@cabrillo.edu
Administrative Distance and Metric
• [ administrative distance / routing metric (or cost) ]
• The cost for all static routes is “0”
• The default administrative distance for static routes is “1”
Hoboken#show ip route
Codes: C - connected, S - static,
S 172.16.1.0/24 [1/0] is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
Rick Graziani graziani@cabrillo.edu
Administrative Distance
• Administrative Distance is the “trustworthiness” of the routing information.
• Lower the administrative distance the more trustworthy the information.
• If the router hears about a route to the same network from more than one
source it will use the administrative distance to decide which route to put in the
routing table.
Rick Graziani graziani@cabrillo.edu
Examples from the curriculum
Rick Graziani graziani@cabrillo.edu
Examples from the curriculum
• Two choices.
• We will see the differences in a moment.
Rick Graziani graziani@cabrillo.edu
Examples from the curriculum
• The network 0.0.0.0 and mask 0.0.0.0 are known as a
“default route”
• Can be written 0.0.0.0/0
• Known as a “quad zero” route”
• More later
Rick Graziani graziani@cabrillo.edu
Static Routing
• Some extra information on static routing that is not in the
curriculum
Rick Graziani graziani@cabrillo.edu
Static Routing
Router(config)#ip route destination-prefix destination-prefix-mask {address |
interface} [distance] [tag tag] [permanent]
Rick Graziani graziani@cabrillo.edu
Static Routing
Configuring static routes
• Routers do not need to configure static routes for their own directly connected
networks.
• We need to configure static routes for networks this router needs to reach.
• We will need to configure static routes for the other routers as well, as “routing
information about a path from one network to another does not provide routing
information about the reverse, or return path.”
• Convergence – When all the routers in the network (AS) have accurate and
consistent information, so that proper routing and packet forwarding can take
place.
• Convergence will not happen until all the routers have complete and accurate
routing information, meaning we must configure static routes on all the routers
before packets will be correctly delivered.
Rick Graziani graziani@cabrillo.edu
Basic static route example
• Be sure to use the proper subnet mask!
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
Network/subnet route
Intermediate-Address
(usually “next-hop”)
Static Routing
Rick Graziani graziani@cabrillo.edu
Basic static route example (continued)
• [1/0] – [ Administrative Distance / Metric ]
• Administrative Distance – This is the “trustworthiness” of the routing information. The
default administrative distance of static routes is 1.
• The Administrative Distance of a directly connected route is 0.
• Lower the AD the more trustworthy.
• If the router learns about a route to a network from more than one source, it will install
the route with the lower administrative distance in the routing table.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
Static Routing
Rick Graziani graziani@cabrillo.edu
Basic static route example (continued)
• [1/0] – [ Administrative Distance / Metric ]
• Metric – This is the “cost” of getting to this route, I.e. how far away this network is.
• The lower the cost, the closer the network.
• Static routes always show a cost of “0” even if it was configured with the intermediate
address is multiple-hops away.
• Much more later.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
Static Routing
Rick Graziani graziani@cabrillo.edu
Recursive Lookup
• The router knows it can get to 192.168.1.0/24 network by forwarding the packets to the
router at the ip address of 172.16.0.2
• How does the router know how to get to the ip address 172.16.0.2?
• It does a recursive lookup – first (1) by looking up the 192.168.1.0/24 network and
finding it needs to forward the packet to 172.16.0.2 – the router then (2) looks up the
172.16.0.0 network and sees it can forward it out the interface Serial 0.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
1
2
Static Routing
Rick Graziani graziani@cabrillo.edu
Static Routes and the Routing Table Process
• Notice that the static route is entered into the routing table by the routing table process (debug ip
routing) with a metric of 0.
RTA#debug ip routing
IP routing debugging is on
RTA#conf t
Enter configuration commands, one per line. End with CNTL/Z.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
05:53:48: RT: add 192.168.1.0/24 via 172.16.0.2, static metric [1/0]
RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2
05:54:38: RT: add 10.1.0.0/16 via 172.16.0.2, static metric [1/0]
RTA(config)#undebug all
Static Routing
Rick Graziani graziani@cabrillo.edu
Configuring all of the static routes
• Notice that the intermediate-address is always the next-hop ip address.
• This does not always have to be the case, and we will look at other options in the
presentation on Static Routes- Additional Information
• Good idea to do a “copy running-config startup-config” if everything is working right.
• To verify the routes are in there, you can do a:
Router# show running-config
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2
RTB(config)#ip route 192.168.2.0 255.255.255.0 172.16.0.1
RTB(config)#ip route 10.1.0.0 255.255.0.0 192.168.1.2
RTC(config)#ip route 192.168.2.0 255.255.255.0 192.168.1.1
RTC(config)#ip route 172.16.0.0 255.255.0.0 192.168.1.1
Static Routing
Rick Graziani graziani@cabrillo.edu
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
10.0.0.0/16 is subnetted, 1 subnets
S 10.1.0.0 [1/0] via 172.16.0.2
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
RTA#ping 10.1.0.1
!!!!!
RTA#ping 192.168.1.2
!!!!!
RTA#ping 192.168.1.1
!!!!!
Static Routing
Rick Graziani graziani@cabrillo.edu
Recursive Lookup
• The router knows it can get to 192.168.1.0/24 network by forwarding the packets to the
router at the ip address of 172.16.0.2
• How does the router know how to get to the ip address 172.16.0.2?
• It does a recursive lookup – first (1) by looking up the 192.168.1.0/24 network and
finding it needs to forward the packet to 172.16.0.2 – the router then (2) looks up the
172.16.0.0 network and sees it can forward it out the interface Serial 0.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
1
2
Static Routing – Recursive Lookups
Rick Graziani graziani@cabrillo.edu
Recursive Lookup (continued)
• We can take this even further.
• One route can be used to resolve the route of another.
• It doesn’t matter how the routes are resolved, whether they are directly connected,
static or dynamic.
• Note: If an intermediate address cannot be resolved, that route and any routes it
affects are not installed in the routing table.
RTA(config)#ip route 10.1.0.0 255.255.0.0 192.168.1.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
S 10.1.0.0/16 [1/0] via 192.168.1.2
C 192.168.2.0/24 is directly connected, Ethernet0
1
2
3
Static Routing – Recursive Lookups
Rick Graziani graziani@cabrillo.edu
Note regarding recursive route lookups
• Every route that does not reference an exit-interface must finally be resolved via
a route with an interface descriptor reference in the corresponding path descriptor
– a route with an exit-interface.
• Static routes cannot be recursively resolved and will not be in the routing table.
• Consider these three static routes:
Route1: ip route 10.1.0.0 255.255.0.0 20.1.1.1
Route2: ip route 20.1.0.0 255.255.0.0 30.1.1.1
Route3: ip route 30.1.0.0 255.255.0.0 10.1.1.1
• Route1 is resolved by Route2 which is resolved by Route3.
• None of these routes are finally resolved via a route with an exit-interface.
• This leads to endless recursion.
• The routing table process will not permit these static routes to be entered in the
routing table.
• Note: Static default routes (coming soon) can never be resolved via another
default route. (later)
Static Routing – Recursive Lookups
Rick Graziani graziani@cabrillo.edu
Static Routes and the Routing Table Process
• Notice that the static route is entered into the routing table by the routing table
process (debug ip routing) with a metric of 0.
RTA#debug ip routing
IP routing debugging is on
RTA#conf t
Enter configuration commands, one per line. End with CNTL/Z.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
05:53:48: RT: add 192.168.1.0/24 via 172.16.0.2, static metric [1/0]
RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2
05:54:38: RT: add 10.1.0.0/16 via 172.16.0.2, static metric [1/0]
RTA(config)#undebug all
Static Routing – Routing Table Process
Rick Graziani graziani@cabrillo.edu
• Need only to use only an exit interface.
• For point-to-point serial interfaces, the next-hop address in the routing table
is never used by the packet-delivery procedure, so it is not needed. (It could even
reference a bogus IP address.)
• Notice that the static route appears in the routing table as directly connected,
however it is still a static route with an administrative distance of 1.
RTA(config)#ip route 192.168.1.0 255.255.255.0 serial 0
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 is directly connected, Serial0
C 192.168.2.0/24 is directly connected, Ethernet0
Static Routing – Point-to-Point Links
Rick Graziani graziani@cabrillo.edu
Using an intermediate address instead of an exit-interface:
• If an intermediate address is used on a static route via a point-to-point link, it is
only used to find the exit-interface,
• This recursive lookup is unnecessary and takes extra processing.
RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Serial0
S 192.168.1.0/24 [1/0] via 172.16.0.2
C 192.168.2.0/24 is directly connected, Ethernet0
1
2
Static Routing – Point-to-Point Links
Rick Graziani graziani@cabrillo.edu
Using both an intermediate address instead and an exit-interface:
• Notice we changed 172.16.0.0 to an Ethernet link.
• Static routes via broadcast links, it is best to use both an exit interface and
intermediate address.
• This saves the router from having to do a recursive route lookup for the
intermediate address of 172.16.0.2, knowing the exit interface is Ethernet 0.
RTA(config)#ip route 192.168.1.0 255.255.255.0 eth 1 172.16.0.2
RTA#show ip route
Codes: C - connected, S - static,
C 172.16.0.0/16 is directly connected, Ethernet1
S 192.168.1.0/24 [1/0] via 172.16.0.2 Ethernet1
C 192.168.2.0/24 is directly connected, Ethernet0
e1 e0
Static Routing – Ethernet interfaces
Rick Graziani graziani@cabrillo.edu
Static Route Rule of Thumb
Static routes via point-to-point links
• It is best to configure static routes with only the exit interface.
• For point-to-point serial interfaces, the next-hop address in the routing table is
never used by the packet-delivery procedure, so it is not needed. (It could even
reference a bogus IP address.)
Static routes via broadcast networks such as Ethernet
• It is best to configure static routes with both the next-hop address and the exit-
interface.
Using only an intermediate address
• “What about static routes referencing only intermediate network address? In
short, try to avoid using them. The reason is that these static routes are not bound
to any interface, rely on intermediate address resolvability, and thus converge
more slowly. They can also create unexpected routing loops.” Alex Zinin, Cisco IP
Routing
NOTE: Most of our examples in this course do not follow either of these rules-of-
thumb – but you may want to use it on your network.
Rick Graziani graziani@cabrillo.edu
Static routes in the real-world
• Soon we will learn about dynamic routing protocols (RIP, etc.), where routers can
learn automatically about networks, without the manual configuration of static routes.
• Does this mean that static routes are never used in the real-world?
• No! Static routes are used in conjunction with dynamic routing protocols.
• It is common to use a static route where using a dynamic routing protocols would have
disadvantages or where it just not needed.
Common uses for Static Routes
Rick Graziani graziani@cabrillo.edu
Static routes in the real-world (continued)
• In the example above, there is only one route, link, between Cabrillo College’s network
and the ISP.
• When there is only a single route to a network, this is known as a stub network.
• It is very common for the ISP to have a static route pointing to it’s customers’ networks,
in this case Cabrillo College.
Cabrillo
College
ISP
10.1.1.2/24
10.1.1.1/24
172.16.0.0/16
ip route 172.16.0.0 255.255.0.0 10.1.1.2
Common uses for Static Routes
Rick Graziani graziani@cabrillo.edu
Static routes in the real-world (continued)
• What about Cabrillo College and sending packets to the ISP – packets going to the Internet?
• It is also common for customer networks to use a special kind of static route, known as a default
static route.
• Of course we will examine this later throughout the rest of this course, but for now we specify the
network and mask as “0.0.0.0 0.0.0.0” (pronounced “quad-zero”).
• This tells the router to forward all packets to this next-hop address (or exit interface) that do not
have an explicit route in the routing table.
Cabrillo
College
ISP
10.1.1.2/24
10.1.1.1/24
172.16.0.0/16
ip route 172.16.0.0 255.255.0.0 10.1.1.2
ip route 0.0.0.0 0.0.0.0 10.1.1.1
Default
Common uses for Static Routes
Rick Graziani graziani@cabrillo.edu
• Any packets not matching the routes 172.16.0.0/16 or 10.1.1.0/24 are sent to the router
10.1.1.1 – where it is now their “problem.”
Cabrillo
College
ISP
10.1.1.2/24
10.1.1.1/24
172.16.0.0/16
ip route 172.16.0.0 255.255.0.0 10.1.1.2
ip route 0.0.0.0 0.0.0.0 10.1.1.1
RTB#show ip route
Gateway of last resort is 10.1.1.1 to network 0.0.0.0
C 172.16.0.0/16 is directly connected, Ethernet0
10.0.0.0/24 is subnetted, 1 subnets
C 10.1.1.0 is directly connected, Serial1
S* 0.0.0.0/0 [1/0] via 10.1.1.1
Default
Common uses for Static Routes
Rick Graziani graziani@cabrillo.edu
Summarizing static routes
• There are many times when a
single static route can replace
several static routes.
• In other words, summarizing
several static routes into a single
static route.
172.16.0.0/24
Rick Graziani graziani@cabrillo.edu
Baypointe
• Let’s configure three static routes on Baypointe using either an intermediate-address or exit
interface:
Baypointe(config)# ip route 172.16.1.0 255.255.255.0 192.168.1.2
Baypointe(config)# ip route 172.16.2.0 255.255.255.0 192.168.1.2
Baypointe(config)# ip route 172.16.3.0 255.255.255.0 192.168.1.2
172.16.0.0/24
Summarizing static routes
Rick Graziani graziani@cabrillo.edu
Baypointe
• The three static routes can be summarized into a single route:
Baypointe(config)# ip route 172.16.1.0 255.255.255.0 192.168.1.2
Baypointe(config)# ip route 172.16.2.0 255.255.255.0 192.168.1.2
Baypointe(config)# ip route 172.16.3.0 255.255.255.0 192.168.1.2
• Summarized route:
Baypointe(config)# ip route 172.16.0.0 255.255.0.0 192.168.1.2
• The summarized route will now include all three subnets!
• Be sure to use the proper mask – 255.255.0.0!
• Using a 255.255.255.0 mask will only route for 172.16.0.0/24 subnet and
not 172.16.1.0/24, 172.16.2.0/24 or 172.16.3.0/24.
Summarizing static routes
Rick Graziani graziani@cabrillo.edu
Baypointe
• Summarized route:
Baypointe(config)# ip route 172.16.0.0 255.255.0.0 192.168.1.2
Advantages:
• Fewer routes in the routing table – faster routing table lookup.
• Subnets can be added and deleted on 172.16.0.0 network without having to change
static route on Baypointe router.
172.16.0.0/24
Summarizing static routes
Back to the curriculum…
Rick Graziani graziani@cabrillo.edu
Verify static routes
Copy running-config startup-config
Rick Graziani graziani@cabrillo.edu
Ping and Traceroute to troubleshoot
Dynamic Routing Protocols
Rick Graziani graziani@cabrillo.edu
Routed Protocols vs. Routing Protocols
Rick Graziani graziani@cabrillo.edu
Autonomous Systems
• An autonomous system (AS) is a collection of networks under a common
administration sharing a common routing strategy.
• To the outside world, an AS is viewed as a single entity. The AS may be run by
one or more operators while presenting a consistent view of routing to the external
world.
• The American Registry of Internet Numbers (ARIN), a service provider, or an
administrator assigns an identifying number to each AS.
Rick Graziani graziani@cabrillo.edu
Autonomous Systems
• Misinformation! This is not the same as an AS number used by ISPs!
“Routing protocols, such as Cisco’s IGRP, require assignment of a unique,
autonomous system number.”
Rick Graziani graziani@cabrillo.edu
Routing Protocols
• The goal of a routing protocol is to build and maintain the routing table.
• This table contains the learned networks and associated ports for those
networks.
• Routers use routing protocols to manage information received from other
routers, information learned from the configuration of its own interfaces, along with
manually configured routes.
Rick Graziani graziani@cabrillo.edu
Types of Routing Protocols
• Distance Vector: RIP, IGRP, EIGRP
• Link State: OSPF, IS-IS
• Path Vector: BGP
• Note: IGRP and EIGRP are Cisco Proprietary
Rick Graziani graziani@cabrillo.edu
Distance Vector Routing Protocols
• “Routing by rumor”
• Each router receives a routing table from its directly
connected neighbor routers.
Router B receives information from
Router A.
Router B adds a distance vector
number (such as a number of
hops), which increases the
distance vector.
Then Router B passes this new
routing table to its other neighbor,
Router C.
This same step-by-step process
occurs in all directions between
neighbor routers.
Rick Graziani graziani@cabrillo.edu
Distance Vector Routing Protocols
Rick Graziani graziani@cabrillo.edu
Distance Vector Network Discovery
Rick Graziani graziani@cabrillo.edu
Rick Graziani graziani@cabrillo.edu
Distance Vector Network Discovery
Rick Graziani graziani@cabrillo.edu
Distance Vector Network Discovery
Rick Graziani graziani@cabrillo.edu
Distance Vector Network Discovery
Convergence!
Rick Graziani graziani@cabrillo.edu
Distance Vector Routing Protocols
• Routing table updates occur when the topology changes. As with the
network discovery process, topology change updates proceed step-by-
step from router to router.
• With some routing protocols routing tables updates happen on a
periodic basis.
Rick Graziani graziani@cabrillo.edu
Routing Protocol Metrics (costs_
• RIP – Hop Count
• IGRP and EIGRP – Bandwidth, Delay, Reliability, Load
• Cisco’s OSPF – Bandwidth
• IS-IS – Cost
• BGP – Number of AS or policy
Rick Graziani graziani@cabrillo.edu
Link State Routing Protocol Operations
• Link-state advertisements (LSAs) – A link-state advertisement (LSA)
is a small packet of routing information that is sent between routers.
• Topological database – A topological database is a collection of
information gathered from LSAs.
• SPF algorithm – The shortest path first (SPF) algorithm is a calculation
performed on the database resulting in the SPF tree.
• Routing tables – A list of the known paths and interfaces.
Rick Graziani graziani@cabrillo.edu
Link State Routing Protocol Operations
• We will discuss this in more detail later when it will make
much more sense.
Rick Graziani graziani@cabrillo.edu
Link State Routing Protocol Operations
Rick Graziani graziani@cabrillo.edu
Link State Routing Protocol Operations
Rick Graziani graziani@cabrillo.edu
Path Determination
A router determines the path of a packet from one data link to
another, using two basic functions:
• A path determination function
• A switching function
Rick Graziani graziani@cabrillo.edu
Path Determination
• The switching function is the internal process used by a router to
accept a packet on one interface and forward it to a second interface on
the same router.
• A key responsibility of the switching function of the router is to
encapsulate packets in the appropriate frame type for the next data link.
Rick Graziani graziani@cabrillo.edu
Configuring Dynamic Routing
Rick Graziani graziani@cabrillo.edu
Configuring Dynamic Routing
GAD(config)#router rip
GAD(config-router)#network 172.16.0.0
Rick Graziani graziani@cabrillo.edu
More later!
Network command two things:
• Tells the router which interfaces that will participate in this dynamic
routing protocol, which interfaces it will send and receive routing updates
on.
• Tells other routers the networks in its routing updates that it is directly
connect to.
• The network command is used on only
directly connected networks.
• With RIP and IGRP, only need to use the
classful address (no subnets).
Router(config)#router rip
Router(config-router)#network 172.16.0.0
Router(config-router)#network 160.89.0.0
Rick Graziani graziani@cabrillo.edu
More later!
Router(config)#router rip
Router(config-router)#network 172.16.0.0
Router(config-router)#network 160.89.0.0
Rick Graziani graziani@cabrillo.edu
Routing Protocols
• RIP – A distance vector interior routing protocol
• IGRP – Cisco's distance vector interior routing protocol
• OSPF – A link-state interior routing protocol
• EIGRP – Cisco’s advanced distance vector interior routing protocol
• BGP – A distance vector exterior routing protocol
Rick Graziani graziani@cabrillo.edu
Routing Protocols
Routing Information Protocol (RIP) was originally specified in RFC 1058.
• It is a distance vector routing protocol.
• Hop count is used as the metric for path selection.
• If the hop count is greater than 15, the packet is discarded.
• Routing updates are broadcast every 30 seconds, by default.
Interior Gateway Routing Protocol (IGRP) is a proprietary protocol developed by
Cisco.
• It is a distance vector routing protocol.
• Bandwidth, load, delay and reliability are used to create a composite metric.
• Routing updates are broadcast every 90 seconds, by default.
EIGRP is a Cisco proprietary enhanced distance vector routing protocol.
• It is an enhanced distance vector routing protocol.
• Uses unequal-cost and equal-cost load balancing.
• Uses a combination of distance vector and link-state features.
• Uses Diffused Update Algorithm (DUAL) to calculate the shortest path.
• NO! – [Routing updates are broadcast every 90 seconds or] as triggered by
topology changes.
Rick Graziani graziani@cabrillo.edu
Routing Protocols
Open Shortest Path First (OSPF) is a nonproprietary link-state routing
protocol.
• It is a link-state routing protocol.
• Open standard routing protocol described in RFC 2328.
• Uses the SPF algorithm to calculate the lowest cost to a destination.
• Routing updates are flooded as topology changes occur.
Intermediate System to Intermediate System (IS-IS)
• IS-IS is an Open System Interconnection (OSI) routing protocol
originally specified by International Organization for Standardization (ISO)
10589.
• It is a link-state routing protocol.
Border Gateway Protocol (BGP) is an exterior routing protocol.
• It is a distance vector (or path vector) exterior routing protocol
• Used between ISPs or ISPs and clients.
• Used to route Internet traffic between autonomous systems.
Rick Graziani graziani@cabrillo.edu
IGP vs EGP
• Much of this information is too early to discuss.
• Interior routing protocols are designed for use in a network whose parts
are under the control of a single organization.
• An exterior routing protocol is designed for use between two different
networks that are under the control of two different organizations.
Rick Graziani graziani@cabrillo.edu
Distance Vector Algorithm
• Distance vector algorithms (also known as Bellman-Ford algorithms) call
for each router to send all or some portion of its routing table only to its neighbors.
• Distance vector algorithms perform routing decisions based upon information
provided by neighboring routers.
• Distance vector protocols use fewer system resources but can suffer from slow
convergence and may use metrics that do not scale well to larger systems.
Rick Graziani graziani@cabrillo.edu
Link State Algorithm
• Link-state algorithms (also known as shortest path first algorithms) flood
routing information to all routers in the internetwork that creates a map of
the entire network.
• Misinformation, this is not the reason why. – “Because they
converge more quickly than distance vector protocols, link-state algorithms
are less prone to routing loops.”
Rick Graziani graziani@cabrillo.edu
Summary

More Related Content

Similar to ccnp routing.pptx

Understanding the Routing Table Structure
Understanding the Routing Table StructureUnderstanding the Routing Table Structure
Understanding the Routing Table StructureMakram Ghazzaoui
 
Intro to router_config
Intro to router_configIntro to router_config
Intro to router_configarjuntrk
 
ccna-discowey-final-100
 ccna-discowey-final-100 ccna-discowey-final-100
ccna-discowey-final-100junkut3
 
CCNA Exploration 2 - Chapter 2
CCNA Exploration 2 - Chapter 2CCNA Exploration 2 - Chapter 2
CCNA Exploration 2 - Chapter 2Irsandi Hasan
 
SRWE_Module_16.pptx
SRWE_Module_16.pptxSRWE_Module_16.pptx
SRWE_Module_16.pptxRobinRohit2
 
SRWE_Module_16.pptx
SRWE_Module_16.pptxSRWE_Module_16.pptx
SRWE_Module_16.pptxRobinRohit2
 
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docx
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docxITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docx
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docxsleeperfindley
 
Cisco discovery drs ent module 10 - v.4 in english.
Cisco discovery   drs ent module 10 - v.4 in english.Cisco discovery   drs ent module 10 - v.4 in english.
Cisco discovery drs ent module 10 - v.4 in english.igede tirtanata
 
Ccna 1 chapter 11 v4.0 answers 2011
Ccna 1 chapter 11 v4.0 answers 2011Ccna 1 chapter 11 v4.0 answers 2011
Ccna 1 chapter 11 v4.0 answers 2011Dân Chơi
 
Exploration routing chapter_2
Exploration routing chapter_2Exploration routing chapter_2
Exploration routing chapter_2Joshua Torres
 
Ccna 3 Chapter 9 V4.0 Answers
Ccna 3 Chapter 9 V4.0 AnswersCcna 3 Chapter 9 V4.0 Answers
Ccna 3 Chapter 9 V4.0 Answersccna4discovery
 
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptx
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptxCCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptx
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptxManishkumarSharma338257
 
Cisco routingtable2 lookup
Cisco routingtable2 lookupCisco routingtable2 lookup
Cisco routingtable2 lookupMakram Ghazzaoui
 

Similar to ccnp routing.pptx (20)

Understanding the Routing Table Structure
Understanding the Routing Table StructureUnderstanding the Routing Table Structure
Understanding the Routing Table Structure
 
ivesgimpaya2
ivesgimpaya2ivesgimpaya2
ivesgimpaya2
 
Intro to router_config
Intro to router_configIntro to router_config
Intro to router_config
 
Ch5
Ch5Ch5
Ch5
 
35d70683c4fd405d89db4a5287aa4b89
35d70683c4fd405d89db4a5287aa4b8935d70683c4fd405d89db4a5287aa4b89
35d70683c4fd405d89db4a5287aa4b89
 
ivesgimpaya3
ivesgimpaya3ivesgimpaya3
ivesgimpaya3
 
ccna-discowey-final-100
 ccna-discowey-final-100 ccna-discowey-final-100
ccna-discowey-final-100
 
CCNA Exploration 2 - Chapter 2
CCNA Exploration 2 - Chapter 2CCNA Exploration 2 - Chapter 2
CCNA Exploration 2 - Chapter 2
 
SRWE_Module_16.pptx
SRWE_Module_16.pptxSRWE_Module_16.pptx
SRWE_Module_16.pptx
 
SRWE_Module_16.pptx
SRWE_Module_16.pptxSRWE_Module_16.pptx
SRWE_Module_16.pptx
 
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docx
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docxITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docx
ITNE2003 -  AssignmentLearning ObjectivesUpon completion of this.docx
 
Cisco discovery drs ent module 10 - v.4 in english.
Cisco discovery   drs ent module 10 - v.4 in english.Cisco discovery   drs ent module 10 - v.4 in english.
Cisco discovery drs ent module 10 - v.4 in english.
 
CCNA Routing Protocols
CCNA Routing Protocols CCNA Routing Protocols
CCNA Routing Protocols
 
02_N2_Chapter 2.pptx
02_N2_Chapter 2.pptx02_N2_Chapter 2.pptx
02_N2_Chapter 2.pptx
 
Ccna 1 chapter 11 v4.0 answers 2011
Ccna 1 chapter 11 v4.0 answers 2011Ccna 1 chapter 11 v4.0 answers 2011
Ccna 1 chapter 11 v4.0 answers 2011
 
Exploration routing chapter_2
Exploration routing chapter_2Exploration routing chapter_2
Exploration routing chapter_2
 
Ccna 3 Chapter 9 V4.0 Answers
Ccna 3 Chapter 9 V4.0 AnswersCcna 3 Chapter 9 V4.0 Answers
Ccna 3 Chapter 9 V4.0 Answers
 
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptx
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptxCCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptx
CCNA_RSE_Chp3_Dynamic Routing NETWORKINGFBU.pptx
 
Cisco routingtable2 lookup
Cisco routingtable2 lookupCisco routingtable2 lookup
Cisco routingtable2 lookup
 
CCNA 1 Chapter 6 v5.0 2014
CCNA 1 Chapter 6 v5.0 2014CCNA 1 Chapter 6 v5.0 2014
CCNA 1 Chapter 6 v5.0 2014
 

More from GiyaShefin

ccna3mod9_VLAN Trunking Protocol (1).pptx
ccna3mod9_VLAN Trunking Protocol (1).pptxccna3mod9_VLAN Trunking Protocol (1).pptx
ccna3mod9_VLAN Trunking Protocol (1).pptxGiyaShefin
 
10_introduction_php.ppt
10_introduction_php.ppt10_introduction_php.ppt
10_introduction_php.pptGiyaShefin
 
Core python.pptx
Core python.pptxCore python.pptx
Core python.pptxGiyaShefin
 
Excel VBA.pptx
Excel VBA.pptxExcel VBA.pptx
Excel VBA.pptxGiyaShefin
 
Python ppt.potx
Python ppt.potxPython ppt.potx
Python ppt.potxGiyaShefin
 

More from GiyaShefin (6)

ccna3mod9_VLAN Trunking Protocol (1).pptx
ccna3mod9_VLAN Trunking Protocol (1).pptxccna3mod9_VLAN Trunking Protocol (1).pptx
ccna3mod9_VLAN Trunking Protocol (1).pptx
 
10_introduction_php.ppt
10_introduction_php.ppt10_introduction_php.ppt
10_introduction_php.ppt
 
07-PHP.pptx
07-PHP.pptx07-PHP.pptx
07-PHP.pptx
 
Core python.pptx
Core python.pptxCore python.pptx
Core python.pptx
 
Excel VBA.pptx
Excel VBA.pptxExcel VBA.pptx
Excel VBA.pptx
 
Python ppt.potx
Python ppt.potxPython ppt.potx
Python ppt.potx
 

Recently uploaded

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 

Recently uploaded (20)

Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 

ccnp routing.pptx

  • 1. Ch. 6 – Routing and Routing Protocols CCNA 1 version 3.0 Rick Graziani Cabrillo College
  • 2. Rick Graziani graziani@cabrillo.edu Note to instructors • If you have downloaded this presentation from the Cisco Networking Academy Community FTP Center, this may not be my latest version of this PowerPoint. • For the latest PowerPoints for all my CCNA, CCNP, and Wireless classes, please go to my web site: http://www.cabrillo.cc.ca.us/~rgraziani/ o The username is cisco and the password is perlman for all of my materials. • If you have any questions on any of my materials or the curriculum, please feel free to email me at graziani@cabrillo.edu (I really don’t mind helping.) Also, if you run across any typos or errors in my presentations, please let me know. • I will add “(Updated – date)” next to each presentation on my web site that has been updated since these have been uploaded to the FTP center. Thanks! Rick
  • 3. Rick Graziani graziani@cabrillo.edu Overview • Explain the significance of static routing • Configure static and default routes • Verify and troubleshoot static and default routes • Identify the classes of routing protocols • Identify distance vector routing protocols • Identify link-state routing protocols • Describe the basic characteristics of common routing protocols • Identify interior gateway protocols • Identify exterior gateway protocols • Enable Routing Information Protocol (RIP) on a router
  • 4. Rick Graziani graziani@cabrillo.edu The Routing Table • Before we begin lets see lets discuss the routing table and directly connected routes. • This is information which is not in the curriculum, but will give you a better understanding of what is taking place.
  • 5. Rick Graziani graziani@cabrillo.edu The Routing Table prior to any interface configuration • The command to view the IP Routing table is: (priviledge or user mode) Router# show ip route • Currently, no routes in the routing table. Directly Connected Networks and the IP Routing Table RTA#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default U - per-user static route, o - ODR Gateway of last resort is not set RTA#
  • 6. Rick Graziani graziani@cabrillo.edu • Adding an ip address/mask to an interface tells the router that it is a member, “Directly Connected” to that network – just like when a host computer is configured with an ip address/mask. • Notice the route is shown with the subnet mask and the “exit-interface.” • Don’t forget the “no shutdown” • Don’t forget the interface must be in “up” and “up” Directly Connected Networks and the IP Routing Table RTA(config)#inter e 0 RTA(config-if)#ip add 192.168.2.1 255.255.255.0 RTA(config-if)#no shutdown RTA#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 192.168.2.0/24 is directly connected, Ethernet0 RTA#
  • 7. Rick Graziani graziani@cabrillo.edu Viewing the Routing Table Process • Use the “debug ip routing” command to view the Cisco IOS routing table process of adding a directly connected network to the routing table. • When finished, be sure to use “undebug all” • Debug commands are used to view detailed information about Cisco IOS processes – more later. Directly Connected Networks and the IP Routing Table RTA# debug ip routing RTA(config)#inter e 0 RTA(config-if)#ip add 192.168.2.1 255.255.255.0 RTA(config-if)#no shutdown 00:28:56: RT: add 192.168.2.0/24 via 0.0.0.0, connected metric [0/0] 00:28:56: RT: interface Ethernet0 added to routing table RTA#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 192.168.2.0/24 is directly connected, Ethernet0 RTA# undebug all
  • 8. Rick Graziani graziani@cabrillo.edu Viewing the Routing Table Process • Directly connected routes will also be removed if the link goes down. • Directly connected routes will only be in the routing table if, it is not administratively down, the line is “up” and protocol is “up” • For serial interfaces, don’t forget the “clock rate” command on the router with the DCE cable – neither interface will be “up” and “up” until both ends are configured correctly. Directly Connected Networks and the IP Routing Table RTA# debug ip routing RTA(config)#inter e 0 RTA(config-if)#shutdown 00:34:38: RT: interface Ethernet0 removed from routing table 00:34:38: RT: del 192.168.2.0 via 0.0.0.0, connected metric [0/0] 00:34:38: RT: delete network route to 192.168.2.0 RTA#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> RTA# undebug all
  • 9. Rick Graziani graziani@cabrillo.edu Directly Connected Networks and the IP Routing Table RTA#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 172.16.0.0/16 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 RTB#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 172.16.0.0/16 is directly connected, Serial0 C 192.168.1.0/24 is directly connected, Serial1 RTC#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 10.0.0.0/8 is directly connected, Ethernet0 C 192.168.1.0/24 is directly connected, Serial1 The Routing Tables • Notice that the routers only know about their own directly connected networks. • They are not sharing routing information because we have not configured any static routes or dynamic routing protocols.
  • 10. Rick Graziani graziani@cabrillo.edu Configuring an interface which has a subnet mask greater than the classful mask • We will discuss this in much more detail later using the presentation – “The Routing Table.” • For now, notice that when the subnet mask is not a classful mask, but a subnetted /16 mask. • The routing table information shows the route to the subnetted network • The mask is shown in the above, “parent” classful network. Directly Connected Networks and the IP Routing Table RTC(config)#inter e 0 RTC(config-if)#ip add 10.1.0.1 255.255.0.0 RTC#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> 10.0.0.0/16 is subnetted, 1 subnets C 10.1.0.0 is directly connected, Ethernet0 C 192.168.1.0/24 is directly connected, Serial1 RTC#
  • 11. Rick Graziani graziani@cabrillo.edu Routing – Only directly connected hosts (routers) • Routers can only reach networks known about in its own routing table. Directly Connected Networks and the IP Routing Table RTA#show ip route C 172.16.0.0/16 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 RTA#ping 172.16.0.1 !!!!! RTA#ping 172.16.0.2 !!!!! RTA#ping 192.168.1.1 ..... RTA#ping 192.168.1.2 ..... RTA#ping 10.1.0.1 .....
  • 12. Rick Graziani graziani@cabrillo.edu Routing– Routing tables must have the necessary network routes • Question: If RTA can ping RTB’s 172.16.0.2 interface why can’t it ping RTB’s 192.168.1.1 interface? - RTA does not have a route to it in its routing table. • Question: Would an extended ping from RTA, using the source IP address of 192.168.2.1 be able to ping 172.16.0.1 on RTB? Why or why not? Where does the echo request or echo reply fail? Directly Connected Networks and the IP Routing Table RTA#show ip route C 172.16.0.0/16 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 RTA#ping 172.16.0.1 Sending 5, 100-byte ICMP Echos to 172.16.0.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 56/57/60 ms RTA#ping 172.16.0.2 !!!!!
  • 13. Rick Graziani graziani@cabrillo.edu Routing– Routing tables must have the necessary network routes • Question: Would an extended ping from RTA, using the source IP address of 192.168.2.1 be able to ping 172.16.0.1 on RTB? Why or why not? • The echo request from RTA reaches RTB because RTA has a route to 172.16.0.0/16 in its routing table. • However, the echo reply from RTB back to RTA fails, because RTB does not have a route for 192.168.2.0/24 in its routing table. Directly Connected Networks and the IP Routing Table RTA#show ip route C 172.16.0.0/16 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 RTB#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 172.16.0.0/16 is directly connected, Serial0 C 192.168.1.0/24 is directly connected, Serial1 RTA#ping Protocol [ip]: Target IP address: 172.16.0.2 Extended commands [n]: y Source address or interface: 192.168.2.1 Sending 5, 100-byte ICMP Echos to 172.16.0.2, timeout is 2 seconds: .....
  • 14. Rick Graziani graziani@cabrillo.edu Routing Table Principles Revisited (Zinin, Cisco IP Routing) • Every router makes its decision alone, based on the information it has in its own routing table. • The fact that one router has certain information in its routing table does not mean that other routers have the same information. • Routing information about a path from one network to another does not provide routing information about the reverse, or return path. Directly Connected Networks and the IP Routing Table RTA#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 172.16.0.0/16 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 RTB#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> C 172.16.0.0/16 is directly connected, Serial0 C 192.168.1.0/24 is directly connected, Serial1 RTC#show ip route Codes: C - connected,.. <Other codes and gateway information omitted> 10.0.0.0/16 is subnetted, 1 subnets C 10.1.0.0 is directly connected, Ethernet0 C 192.168.1.0/24 is directly connected, Serial1
  • 15. Back to the curriculum…
  • 17. Rick Graziani graziani@cabrillo.edu Static Route Operation Hoboken#show ip route Codes: C - connected, S - static, S 172.16.1.0/24 [1/0] is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0
  • 18. Rick Graziani graziani@cabrillo.edu ip route command RTR(config)# ip route prefix mask {address | interface} [distance] [tag tag] [permanent] • prefix IP route prefix for the destination. • mask Prefix mask for the destination. • address IP address of the “next hop” that can be used to reach that network. • interface Network interface to use (exit-interface) • distance (Optional) An administrative distance. • tag tag (Optional) Tag value that can be used as a "match" value for controlling redistribution via route maps. (CCNP Advanced Routing) • Permanent (Optional) Specifies that the route will not be removed, even if the interface shuts down. (CCNP Advanced Routing)
  • 19. Rick Graziani graziani@cabrillo.edu Static Route Operation • If the exit interface (gateway) is “down” the static route will not be put in the routing table.
  • 20. Rick Graziani graziani@cabrillo.edu Static Route Operation • If the router cannot reach the outgoing interface that is being used in the route, the route will not be installed in the routing table. • This means if that interface is down, the route will not be placed in the routing table.
  • 21. Rick Graziani graziani@cabrillo.edu Administrative Distance and Metric • [ administrative distance / routing metric (or cost) ] • The cost for all static routes is “0” • The default administrative distance for static routes is “1” Hoboken#show ip route Codes: C - connected, S - static, S 172.16.1.0/24 [1/0] is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0
  • 22. Rick Graziani graziani@cabrillo.edu Administrative Distance • Administrative Distance is the “trustworthiness” of the routing information. • Lower the administrative distance the more trustworthy the information. • If the router hears about a route to the same network from more than one source it will use the administrative distance to decide which route to put in the routing table.
  • 24. Rick Graziani graziani@cabrillo.edu Examples from the curriculum • Two choices. • We will see the differences in a moment.
  • 25. Rick Graziani graziani@cabrillo.edu Examples from the curriculum • The network 0.0.0.0 and mask 0.0.0.0 are known as a “default route” • Can be written 0.0.0.0/0 • Known as a “quad zero” route” • More later
  • 26. Rick Graziani graziani@cabrillo.edu Static Routing • Some extra information on static routing that is not in the curriculum
  • 27. Rick Graziani graziani@cabrillo.edu Static Routing Router(config)#ip route destination-prefix destination-prefix-mask {address | interface} [distance] [tag tag] [permanent]
  • 28. Rick Graziani graziani@cabrillo.edu Static Routing Configuring static routes • Routers do not need to configure static routes for their own directly connected networks. • We need to configure static routes for networks this router needs to reach. • We will need to configure static routes for the other routers as well, as “routing information about a path from one network to another does not provide routing information about the reverse, or return path.” • Convergence – When all the routers in the network (AS) have accurate and consistent information, so that proper routing and packet forwarding can take place. • Convergence will not happen until all the routers have complete and accurate routing information, meaning we must configure static routes on all the routers before packets will be correctly delivered.
  • 29. Rick Graziani graziani@cabrillo.edu Basic static route example • Be sure to use the proper subnet mask! RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 Network/subnet route Intermediate-Address (usually “next-hop”) Static Routing
  • 30. Rick Graziani graziani@cabrillo.edu Basic static route example (continued) • [1/0] – [ Administrative Distance / Metric ] • Administrative Distance – This is the “trustworthiness” of the routing information. The default administrative distance of static routes is 1. • The Administrative Distance of a directly connected route is 0. • Lower the AD the more trustworthy. • If the router learns about a route to a network from more than one source, it will install the route with the lower administrative distance in the routing table. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 Static Routing
  • 31. Rick Graziani graziani@cabrillo.edu Basic static route example (continued) • [1/0] – [ Administrative Distance / Metric ] • Metric – This is the “cost” of getting to this route, I.e. how far away this network is. • The lower the cost, the closer the network. • Static routes always show a cost of “0” even if it was configured with the intermediate address is multiple-hops away. • Much more later. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 Static Routing
  • 32. Rick Graziani graziani@cabrillo.edu Recursive Lookup • The router knows it can get to 192.168.1.0/24 network by forwarding the packets to the router at the ip address of 172.16.0.2 • How does the router know how to get to the ip address 172.16.0.2? • It does a recursive lookup – first (1) by looking up the 192.168.1.0/24 network and finding it needs to forward the packet to 172.16.0.2 – the router then (2) looks up the 172.16.0.0 network and sees it can forward it out the interface Serial 0. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 1 2 Static Routing
  • 33. Rick Graziani graziani@cabrillo.edu Static Routes and the Routing Table Process • Notice that the static route is entered into the routing table by the routing table process (debug ip routing) with a metric of 0. RTA#debug ip routing IP routing debugging is on RTA#conf t Enter configuration commands, one per line. End with CNTL/Z. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 05:53:48: RT: add 192.168.1.0/24 via 172.16.0.2, static metric [1/0] RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2 05:54:38: RT: add 10.1.0.0/16 via 172.16.0.2, static metric [1/0] RTA(config)#undebug all Static Routing
  • 34. Rick Graziani graziani@cabrillo.edu Configuring all of the static routes • Notice that the intermediate-address is always the next-hop ip address. • This does not always have to be the case, and we will look at other options in the presentation on Static Routes- Additional Information • Good idea to do a “copy running-config startup-config” if everything is working right. • To verify the routes are in there, you can do a: Router# show running-config RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2 RTB(config)#ip route 192.168.2.0 255.255.255.0 172.16.0.1 RTB(config)#ip route 10.1.0.0 255.255.0.0 192.168.1.2 RTC(config)#ip route 192.168.2.0 255.255.255.0 192.168.1.1 RTC(config)#ip route 172.16.0.0 255.255.0.0 192.168.1.1 Static Routing
  • 35. Rick Graziani graziani@cabrillo.edu RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 10.0.0.0/16 is subnetted, 1 subnets S 10.1.0.0 [1/0] via 172.16.0.2 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 RTA#ping 10.1.0.1 !!!!! RTA#ping 192.168.1.2 !!!!! RTA#ping 192.168.1.1 !!!!! Static Routing
  • 36. Rick Graziani graziani@cabrillo.edu Recursive Lookup • The router knows it can get to 192.168.1.0/24 network by forwarding the packets to the router at the ip address of 172.16.0.2 • How does the router know how to get to the ip address 172.16.0.2? • It does a recursive lookup – first (1) by looking up the 192.168.1.0/24 network and finding it needs to forward the packet to 172.16.0.2 – the router then (2) looks up the 172.16.0.0 network and sees it can forward it out the interface Serial 0. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 1 2 Static Routing – Recursive Lookups
  • 37. Rick Graziani graziani@cabrillo.edu Recursive Lookup (continued) • We can take this even further. • One route can be used to resolve the route of another. • It doesn’t matter how the routes are resolved, whether they are directly connected, static or dynamic. • Note: If an intermediate address cannot be resolved, that route and any routes it affects are not installed in the routing table. RTA(config)#ip route 10.1.0.0 255.255.0.0 192.168.1.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 S 10.1.0.0/16 [1/0] via 192.168.1.2 C 192.168.2.0/24 is directly connected, Ethernet0 1 2 3 Static Routing – Recursive Lookups
  • 38. Rick Graziani graziani@cabrillo.edu Note regarding recursive route lookups • Every route that does not reference an exit-interface must finally be resolved via a route with an interface descriptor reference in the corresponding path descriptor – a route with an exit-interface. • Static routes cannot be recursively resolved and will not be in the routing table. • Consider these three static routes: Route1: ip route 10.1.0.0 255.255.0.0 20.1.1.1 Route2: ip route 20.1.0.0 255.255.0.0 30.1.1.1 Route3: ip route 30.1.0.0 255.255.0.0 10.1.1.1 • Route1 is resolved by Route2 which is resolved by Route3. • None of these routes are finally resolved via a route with an exit-interface. • This leads to endless recursion. • The routing table process will not permit these static routes to be entered in the routing table. • Note: Static default routes (coming soon) can never be resolved via another default route. (later) Static Routing – Recursive Lookups
  • 39. Rick Graziani graziani@cabrillo.edu Static Routes and the Routing Table Process • Notice that the static route is entered into the routing table by the routing table process (debug ip routing) with a metric of 0. RTA#debug ip routing IP routing debugging is on RTA#conf t Enter configuration commands, one per line. End with CNTL/Z. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 05:53:48: RT: add 192.168.1.0/24 via 172.16.0.2, static metric [1/0] RTA(config)#ip route 10.1.0.0 255.255.0.0 172.16.0.2 05:54:38: RT: add 10.1.0.0/16 via 172.16.0.2, static metric [1/0] RTA(config)#undebug all Static Routing – Routing Table Process
  • 40. Rick Graziani graziani@cabrillo.edu • Need only to use only an exit interface. • For point-to-point serial interfaces, the next-hop address in the routing table is never used by the packet-delivery procedure, so it is not needed. (It could even reference a bogus IP address.) • Notice that the static route appears in the routing table as directly connected, however it is still a static route with an administrative distance of 1. RTA(config)#ip route 192.168.1.0 255.255.255.0 serial 0 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 is directly connected, Serial0 C 192.168.2.0/24 is directly connected, Ethernet0 Static Routing – Point-to-Point Links
  • 41. Rick Graziani graziani@cabrillo.edu Using an intermediate address instead of an exit-interface: • If an intermediate address is used on a static route via a point-to-point link, it is only used to find the exit-interface, • This recursive lookup is unnecessary and takes extra processing. RTA(config)#ip route 192.168.1.0 255.255.255.0 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Serial0 S 192.168.1.0/24 [1/0] via 172.16.0.2 C 192.168.2.0/24 is directly connected, Ethernet0 1 2 Static Routing – Point-to-Point Links
  • 42. Rick Graziani graziani@cabrillo.edu Using both an intermediate address instead and an exit-interface: • Notice we changed 172.16.0.0 to an Ethernet link. • Static routes via broadcast links, it is best to use both an exit interface and intermediate address. • This saves the router from having to do a recursive route lookup for the intermediate address of 172.16.0.2, knowing the exit interface is Ethernet 0. RTA(config)#ip route 192.168.1.0 255.255.255.0 eth 1 172.16.0.2 RTA#show ip route Codes: C - connected, S - static, C 172.16.0.0/16 is directly connected, Ethernet1 S 192.168.1.0/24 [1/0] via 172.16.0.2 Ethernet1 C 192.168.2.0/24 is directly connected, Ethernet0 e1 e0 Static Routing – Ethernet interfaces
  • 43. Rick Graziani graziani@cabrillo.edu Static Route Rule of Thumb Static routes via point-to-point links • It is best to configure static routes with only the exit interface. • For point-to-point serial interfaces, the next-hop address in the routing table is never used by the packet-delivery procedure, so it is not needed. (It could even reference a bogus IP address.) Static routes via broadcast networks such as Ethernet • It is best to configure static routes with both the next-hop address and the exit- interface. Using only an intermediate address • “What about static routes referencing only intermediate network address? In short, try to avoid using them. The reason is that these static routes are not bound to any interface, rely on intermediate address resolvability, and thus converge more slowly. They can also create unexpected routing loops.” Alex Zinin, Cisco IP Routing NOTE: Most of our examples in this course do not follow either of these rules-of- thumb – but you may want to use it on your network.
  • 44. Rick Graziani graziani@cabrillo.edu Static routes in the real-world • Soon we will learn about dynamic routing protocols (RIP, etc.), where routers can learn automatically about networks, without the manual configuration of static routes. • Does this mean that static routes are never used in the real-world? • No! Static routes are used in conjunction with dynamic routing protocols. • It is common to use a static route where using a dynamic routing protocols would have disadvantages or where it just not needed. Common uses for Static Routes
  • 45. Rick Graziani graziani@cabrillo.edu Static routes in the real-world (continued) • In the example above, there is only one route, link, between Cabrillo College’s network and the ISP. • When there is only a single route to a network, this is known as a stub network. • It is very common for the ISP to have a static route pointing to it’s customers’ networks, in this case Cabrillo College. Cabrillo College ISP 10.1.1.2/24 10.1.1.1/24 172.16.0.0/16 ip route 172.16.0.0 255.255.0.0 10.1.1.2 Common uses for Static Routes
  • 46. Rick Graziani graziani@cabrillo.edu Static routes in the real-world (continued) • What about Cabrillo College and sending packets to the ISP – packets going to the Internet? • It is also common for customer networks to use a special kind of static route, known as a default static route. • Of course we will examine this later throughout the rest of this course, but for now we specify the network and mask as “0.0.0.0 0.0.0.0” (pronounced “quad-zero”). • This tells the router to forward all packets to this next-hop address (or exit interface) that do not have an explicit route in the routing table. Cabrillo College ISP 10.1.1.2/24 10.1.1.1/24 172.16.0.0/16 ip route 172.16.0.0 255.255.0.0 10.1.1.2 ip route 0.0.0.0 0.0.0.0 10.1.1.1 Default Common uses for Static Routes
  • 47. Rick Graziani graziani@cabrillo.edu • Any packets not matching the routes 172.16.0.0/16 or 10.1.1.0/24 are sent to the router 10.1.1.1 – where it is now their “problem.” Cabrillo College ISP 10.1.1.2/24 10.1.1.1/24 172.16.0.0/16 ip route 172.16.0.0 255.255.0.0 10.1.1.2 ip route 0.0.0.0 0.0.0.0 10.1.1.1 RTB#show ip route Gateway of last resort is 10.1.1.1 to network 0.0.0.0 C 172.16.0.0/16 is directly connected, Ethernet0 10.0.0.0/24 is subnetted, 1 subnets C 10.1.1.0 is directly connected, Serial1 S* 0.0.0.0/0 [1/0] via 10.1.1.1 Default Common uses for Static Routes
  • 48. Rick Graziani graziani@cabrillo.edu Summarizing static routes • There are many times when a single static route can replace several static routes. • In other words, summarizing several static routes into a single static route. 172.16.0.0/24
  • 49. Rick Graziani graziani@cabrillo.edu Baypointe • Let’s configure three static routes on Baypointe using either an intermediate-address or exit interface: Baypointe(config)# ip route 172.16.1.0 255.255.255.0 192.168.1.2 Baypointe(config)# ip route 172.16.2.0 255.255.255.0 192.168.1.2 Baypointe(config)# ip route 172.16.3.0 255.255.255.0 192.168.1.2 172.16.0.0/24 Summarizing static routes
  • 50. Rick Graziani graziani@cabrillo.edu Baypointe • The three static routes can be summarized into a single route: Baypointe(config)# ip route 172.16.1.0 255.255.255.0 192.168.1.2 Baypointe(config)# ip route 172.16.2.0 255.255.255.0 192.168.1.2 Baypointe(config)# ip route 172.16.3.0 255.255.255.0 192.168.1.2 • Summarized route: Baypointe(config)# ip route 172.16.0.0 255.255.0.0 192.168.1.2 • The summarized route will now include all three subnets! • Be sure to use the proper mask – 255.255.0.0! • Using a 255.255.255.0 mask will only route for 172.16.0.0/24 subnet and not 172.16.1.0/24, 172.16.2.0/24 or 172.16.3.0/24. Summarizing static routes
  • 51. Rick Graziani graziani@cabrillo.edu Baypointe • Summarized route: Baypointe(config)# ip route 172.16.0.0 255.255.0.0 192.168.1.2 Advantages: • Fewer routes in the routing table – faster routing table lookup. • Subnets can be added and deleted on 172.16.0.0 network without having to change static route on Baypointe router. 172.16.0.0/24 Summarizing static routes
  • 52. Back to the curriculum…
  • 53. Rick Graziani graziani@cabrillo.edu Verify static routes Copy running-config startup-config
  • 54. Rick Graziani graziani@cabrillo.edu Ping and Traceroute to troubleshoot
  • 56. Rick Graziani graziani@cabrillo.edu Routed Protocols vs. Routing Protocols
  • 57. Rick Graziani graziani@cabrillo.edu Autonomous Systems • An autonomous system (AS) is a collection of networks under a common administration sharing a common routing strategy. • To the outside world, an AS is viewed as a single entity. The AS may be run by one or more operators while presenting a consistent view of routing to the external world. • The American Registry of Internet Numbers (ARIN), a service provider, or an administrator assigns an identifying number to each AS.
  • 58. Rick Graziani graziani@cabrillo.edu Autonomous Systems • Misinformation! This is not the same as an AS number used by ISPs! “Routing protocols, such as Cisco’s IGRP, require assignment of a unique, autonomous system number.”
  • 59. Rick Graziani graziani@cabrillo.edu Routing Protocols • The goal of a routing protocol is to build and maintain the routing table. • This table contains the learned networks and associated ports for those networks. • Routers use routing protocols to manage information received from other routers, information learned from the configuration of its own interfaces, along with manually configured routes.
  • 60. Rick Graziani graziani@cabrillo.edu Types of Routing Protocols • Distance Vector: RIP, IGRP, EIGRP • Link State: OSPF, IS-IS • Path Vector: BGP • Note: IGRP and EIGRP are Cisco Proprietary
  • 61. Rick Graziani graziani@cabrillo.edu Distance Vector Routing Protocols • “Routing by rumor” • Each router receives a routing table from its directly connected neighbor routers. Router B receives information from Router A. Router B adds a distance vector number (such as a number of hops), which increases the distance vector. Then Router B passes this new routing table to its other neighbor, Router C. This same step-by-step process occurs in all directions between neighbor routers.
  • 67. Rick Graziani graziani@cabrillo.edu Distance Vector Network Discovery Convergence!
  • 68. Rick Graziani graziani@cabrillo.edu Distance Vector Routing Protocols • Routing table updates occur when the topology changes. As with the network discovery process, topology change updates proceed step-by- step from router to router. • With some routing protocols routing tables updates happen on a periodic basis.
  • 69. Rick Graziani graziani@cabrillo.edu Routing Protocol Metrics (costs_ • RIP – Hop Count • IGRP and EIGRP – Bandwidth, Delay, Reliability, Load • Cisco’s OSPF – Bandwidth • IS-IS – Cost • BGP – Number of AS or policy
  • 70. Rick Graziani graziani@cabrillo.edu Link State Routing Protocol Operations • Link-state advertisements (LSAs) – A link-state advertisement (LSA) is a small packet of routing information that is sent between routers. • Topological database – A topological database is a collection of information gathered from LSAs. • SPF algorithm – The shortest path first (SPF) algorithm is a calculation performed on the database resulting in the SPF tree. • Routing tables – A list of the known paths and interfaces.
  • 71. Rick Graziani graziani@cabrillo.edu Link State Routing Protocol Operations • We will discuss this in more detail later when it will make much more sense.
  • 72. Rick Graziani graziani@cabrillo.edu Link State Routing Protocol Operations
  • 73. Rick Graziani graziani@cabrillo.edu Link State Routing Protocol Operations
  • 74. Rick Graziani graziani@cabrillo.edu Path Determination A router determines the path of a packet from one data link to another, using two basic functions: • A path determination function • A switching function
  • 75. Rick Graziani graziani@cabrillo.edu Path Determination • The switching function is the internal process used by a router to accept a packet on one interface and forward it to a second interface on the same router. • A key responsibility of the switching function of the router is to encapsulate packets in the appropriate frame type for the next data link.
  • 77. Rick Graziani graziani@cabrillo.edu Configuring Dynamic Routing GAD(config)#router rip GAD(config-router)#network 172.16.0.0
  • 78. Rick Graziani graziani@cabrillo.edu More later! Network command two things: • Tells the router which interfaces that will participate in this dynamic routing protocol, which interfaces it will send and receive routing updates on. • Tells other routers the networks in its routing updates that it is directly connect to. • The network command is used on only directly connected networks. • With RIP and IGRP, only need to use the classful address (no subnets). Router(config)#router rip Router(config-router)#network 172.16.0.0 Router(config-router)#network 160.89.0.0
  • 79. Rick Graziani graziani@cabrillo.edu More later! Router(config)#router rip Router(config-router)#network 172.16.0.0 Router(config-router)#network 160.89.0.0
  • 80. Rick Graziani graziani@cabrillo.edu Routing Protocols • RIP – A distance vector interior routing protocol • IGRP – Cisco's distance vector interior routing protocol • OSPF – A link-state interior routing protocol • EIGRP – Cisco’s advanced distance vector interior routing protocol • BGP – A distance vector exterior routing protocol
  • 81. Rick Graziani graziani@cabrillo.edu Routing Protocols Routing Information Protocol (RIP) was originally specified in RFC 1058. • It is a distance vector routing protocol. • Hop count is used as the metric for path selection. • If the hop count is greater than 15, the packet is discarded. • Routing updates are broadcast every 30 seconds, by default. Interior Gateway Routing Protocol (IGRP) is a proprietary protocol developed by Cisco. • It is a distance vector routing protocol. • Bandwidth, load, delay and reliability are used to create a composite metric. • Routing updates are broadcast every 90 seconds, by default. EIGRP is a Cisco proprietary enhanced distance vector routing protocol. • It is an enhanced distance vector routing protocol. • Uses unequal-cost and equal-cost load balancing. • Uses a combination of distance vector and link-state features. • Uses Diffused Update Algorithm (DUAL) to calculate the shortest path. • NO! – [Routing updates are broadcast every 90 seconds or] as triggered by topology changes.
  • 82. Rick Graziani graziani@cabrillo.edu Routing Protocols Open Shortest Path First (OSPF) is a nonproprietary link-state routing protocol. • It is a link-state routing protocol. • Open standard routing protocol described in RFC 2328. • Uses the SPF algorithm to calculate the lowest cost to a destination. • Routing updates are flooded as topology changes occur. Intermediate System to Intermediate System (IS-IS) • IS-IS is an Open System Interconnection (OSI) routing protocol originally specified by International Organization for Standardization (ISO) 10589. • It is a link-state routing protocol. Border Gateway Protocol (BGP) is an exterior routing protocol. • It is a distance vector (or path vector) exterior routing protocol • Used between ISPs or ISPs and clients. • Used to route Internet traffic between autonomous systems.
  • 83. Rick Graziani graziani@cabrillo.edu IGP vs EGP • Much of this information is too early to discuss. • Interior routing protocols are designed for use in a network whose parts are under the control of a single organization. • An exterior routing protocol is designed for use between two different networks that are under the control of two different organizations.
  • 84. Rick Graziani graziani@cabrillo.edu Distance Vector Algorithm • Distance vector algorithms (also known as Bellman-Ford algorithms) call for each router to send all or some portion of its routing table only to its neighbors. • Distance vector algorithms perform routing decisions based upon information provided by neighboring routers. • Distance vector protocols use fewer system resources but can suffer from slow convergence and may use metrics that do not scale well to larger systems.
  • 85. Rick Graziani graziani@cabrillo.edu Link State Algorithm • Link-state algorithms (also known as shortest path first algorithms) flood routing information to all routers in the internetwork that creates a map of the entire network. • Misinformation, this is not the reason why. – “Because they converge more quickly than distance vector protocols, link-state algorithms are less prone to routing loops.”