SlideShare a Scribd company logo
1 of 1
Download to read offline
Regulators and Germline Specific Function of DAF-18/PTEN
Gabriel	
  Chamberlain,	
  Jun	
  Liu,	
  Michael	
  Zane4	
  and	
  Ian	
  D.	
  Chin-­‐Sang	
  
Department	
  of	
  Biology,	
  Queen’s	
  Universty,	
  Kingston,	
  ON	
  Canada	
  
Introduction
Hypothesis / Aims
When	
  condiKons	
  become	
  unfavorable,	
  C.	
  elegans	
  larvae	
  enter	
  into	
  an	
  
alternaKve	
  state	
  of	
  arrested	
  development	
  at	
  the	
  second	
  larval	
  molt	
  known	
  as	
  
dauer.	
  If	
  hatched	
  directly	
  into	
  the	
  absence	
  of	
  food,	
  C.	
  elegans	
  arrest	
  
development	
  early	
  and	
  remain	
  suspended	
  as	
  L1	
  larvae,	
  this	
  is	
  known	
  as	
  L1	
  
arrest.	
  Both	
  forms	
  of	
  arrest	
  require	
  the	
  acKon	
  of	
  the	
  phosphatase	
  DAF-­‐18	
  
(abnormal	
  DAuer	
  FormaKon),	
  the	
  worm	
  ortholog	
  of	
  the	
  human	
  PTEN	
  
(Phosphatase	
  and	
  TENsin)	
  which	
  is	
  a	
  tumour	
  suppressor.	
  The	
  downstream	
  roles	
  
of	
  daf-­‐18	
  in	
  the	
  insulin-­‐signaling	
  pathway	
  are	
  well	
  known	
  however	
  few	
  
upstream	
  regulators	
  have	
  been	
  idenKfied.	
  In	
  addiKon,	
  the	
  Kssue	
  specific	
  
funcKon	
  of	
  DAF-­‐18	
  has	
  been	
  studied	
  with	
  regards	
  to	
  vulval	
  development,	
  dauer	
  
formaKon	
  and	
  neuron	
  development,	
  but	
  unKl	
  recently,	
  not	
  specifically	
  to	
  L1	
  
arrest.	
  Unpublished	
  data	
  from	
  the	
  Chin-­‐Sang	
  lab	
  suggests	
  a	
  germline	
  specific	
  
funcKon	
  of	
  daf-­‐18	
  with	
  regards	
  to	
  L1	
  arrest	
  as	
  well	
  as	
  a	
  new	
  model	
  for	
  daf-­‐18	
  
negaKve	
  regulaKon	
  by	
  the	
  insulin	
  receptor	
  daf-­‐2	
  and	
  the	
  ubiquiKn	
  ligase	
  vhl-­‐1.	
  
	
  Using	
  daf-­‐18	
  mutants	
  (ok480)	
  carrying	
  our	
  genomic	
  daf-­‐18::gfp	
  reporter	
  we	
  
will	
  look	
  for	
  increases	
  in	
  fluorescence	
  aZer	
  feeding	
  them	
  RNAi	
  that	
  targets	
  the	
  
candidate	
  negaKve	
  regulators.	
  
In	
  our	
  translaKonal	
  reporter	
  for	
  DAF-­‐18	
  fluorescence	
  is	
  only	
  visible	
  surrounding	
  
the	
  developing	
  vulva	
  at	
  the	
  Christmas	
  tree	
  stage	
  of	
  L4.	
  Therefore	
  any	
  
fluorescence	
  seen	
  outside	
  this	
  area	
  at	
  this	
  developmental	
  Kme	
  point	
  can	
  be	
  
a]ributed	
  to	
  the	
  effects	
  of	
  RNAi	
  
Rescuing	
  daf-­‐18(ok480)	
  mutants	
  with	
  daf-­‐18	
  wildtype	
  genomic	
  from	
  an	
  extra-­‐
chromosomal	
  array	
  (quEx518)	
  	
  only	
  parKally	
  reverses	
  the	
  defecKve	
  L1	
  arrest	
  
phenotype.	
  	
  
As	
  the	
  expression	
  of	
  extra-­‐chromosomal	
  arrays	
  is	
  silenced	
  in	
  the	
  germline	
  we	
  
believe	
  daf-­‐18	
  must	
  be	
  required	
  in	
  this	
  Kssue	
  for	
  proper	
  L1	
  arrest.	
  	
  
Germline	
  Specific	
  Knockdown	
  of	
  daf-­‐18	
  
	
  Tissue	
  specific	
  RNAi	
  of	
  daf-­‐18	
  in	
  the	
  germline,	
  but	
  not	
  the	
  soma,	
  results	
  in	
  
defecKve	
  L1	
  arrest.	
  	
  
	
  	
  	
  
Germline	
  Specific	
  Rescue	
  of	
  daf-­‐18	
  
! 	
  Since	
  germline	
  silencing	
  provides	
  a	
  hurdle	
  to	
  daf-­‐18	
  rescue	
  using	
  extra	
  
chromosomal	
  arrays	
  we	
  will	
  be	
  using	
  MosSci	
  to	
  integrate	
  daf-­‐18	
  into	
  the	
  
chromosome	
  under	
  a	
  germline	
  specific	
  promoter.	
  	
  
! 	
  MosSci	
  takes	
  advantage	
  of	
  the	
  C.	
  elegans	
  Mos1	
  transposon	
  to	
  “jump”	
  
transgenes	
  into	
  the	
  chromosome	
  at	
  determined	
  sites	
  
Aim	
  1	
  
If	
  DAF-­‐18	
  is	
  required	
  in	
  the	
  germline	
  to	
  enable	
  proper	
  L1	
  arrest	
  then:	
  	
  
! Germline	
  rescue	
  of	
  daf-­‐18	
  will	
  correct	
  the	
  defecKve	
  L1	
  arrest	
  phenotype	
  in	
  
daf-­‐18	
  mutants	
  	
  
! Germline	
  specific	
  RNAi	
  of	
  daf-­‐18	
  will	
  result	
  in	
  a	
  defecKve	
  L1	
  arrest	
  phenotype	
  
equivalent	
  to	
  a	
  daf-­‐18	
  mutant.	
  	
  	
  
Aim	
  2	
  
If	
  candidate	
  genes	
  are	
  negaKve	
  regulators	
  of	
  DAF-­‐18	
  then	
  DAF-­‐18::GFP	
  
fluorescence	
  will	
  increase	
  with	
  RNAi	
  knockdown	
  of	
  these	
  genes.	
  	
  
RNAi to find DAF-18 Regulators Germline Specific Function of DAF-18
Acknowledgments
	
  Dr.	
  Ian	
  Chin-­‐Sang	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Dr.	
  Jun	
  Liu	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  MSc.C.	
  Michael	
  Zane4	
  	
  	
  	
  	
  	
  	
  	
  	
  MSc.C.	
  Samantha	
  Lo	
  	
  	
  	
  	
  	
  	
  Antonion	
  Papanicolau	
  	
  	
  	
  	
  	
  Jeffery	
  Boudreau	
  	
  	
  	
  	
  	
  	
  	
  
-­‐20	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
0	
   5	
   10	
   15	
   20	
  
Percent	
  Alive	
  (%)	
  
Day	
  
N2	
  
daf-­‐18(ok480)	
  
daf-­‐18(ok480);Ex	
  
(daf-­‐18	
  genomic)	
  
Using	
  MosSCI	
  we	
  achieved	
  
successful	
  germline	
  
expression	
  of	
  GFP	
  under	
  
the	
  promoter	
  Pie-­‐1	
  
Making	
  Sense	
  of	
  the	
  Results	
  
! 	
  Integrated	
  daf-­‐18	
  cDNA	
  under	
  the	
  pie-­‐1	
  promoter	
  was	
  not	
  sufficient	
  to	
  
extend	
  L1	
  survival	
  in	
  daf-­‐18	
  mutants	
  (only	
  one	
  line	
  tested)	
  	
  
! 	
  daf-­‐18	
  cDNA	
  expressed	
  in	
  an	
  extrachromosomal	
  array	
  causes	
  dauer	
  
consKtuKve	
  phenotype	
  confirming	
  our	
  construct	
  forms	
  funcKonal	
  DAF-­‐18	
  
! 	
  Preliminary	
  results	
  show	
  that	
  the	
  defecKve	
  L1	
  arrest	
  phenotype	
  of	
  daf-­‐18	
  
mutants	
  can	
  be	
  maternally	
  rescued	
  from	
  a	
  heterozygous	
  parent	
  supporKng	
  an	
  
important	
  germline	
  role	
  
PI3K	
  independent	
  roles	
  
(ex:	
  axon	
  guidance)	
  	
   Canonical	
  Insulin	
  
Signaling	
  	
  pathway	
  
Our	
  lab	
  demonstrated	
  that	
  DAF-­‐2	
  binds	
  and	
  
phophorylates	
  DAF-­‐18.	
  We	
  suggest	
  that	
  this	
  
phosphorylaKon	
  event	
  results	
  in	
  a	
  conformaKonal	
  
change	
  of	
  DAF-­‐18	
  making	
  it	
  vulnerable	
  to	
  
polyubiquiKnaKon	
  for	
  proteosomal	
  degradaKon.	
  
With	
  that	
  in	
  mind	
  we	
  assayed	
  several	
  proteosomal	
  
genes	
  and	
  ubiquiKn	
  ligase	
  genes	
  using	
  RNAi	
  for	
  
negaKve	
  regulaKon	
  of	
  DAF-­‐18	
  	
  
Preliminary	
  Results	
  
! 	
  From	
  our	
  first	
  RNAi	
  assay	
  of	
  six	
  candidate	
  negaKve	
  regulator	
  genes;	
  pbs-­‐4,	
  
pas-­‐3,	
  rpt-­‐5,	
  pbs-­‐6,	
  rpt-­‐6	
  and	
  cul-­‐2,	
  two	
  candidates,	
  pas-­‐3	
  and	
  pbs-­‐4	
  caused	
  
increases	
  in	
  DAF-­‐18::GFP	
  levels	
  during	
  early	
  embryonic	
  development.	
  Both	
  
candidates	
  are	
  genes	
  encoding	
  for	
  proteosomal	
  subunits	
  
DAF-­‐18::GFP	
  
DAF-­‐18::GFP	
  
DAF-­‐18::GFP	
  
???	
  	
  	
  	
  	
  
Worm	
  Insulin	
  
Insulin	
  Receptor	
  
DAF-­‐18
/PTEN	
  
DAF-­‐18/PTEN	
  	
  
degraded	
  
???	
   Proteosome	
  
DAF-­‐28	
  
Insulin	
  
DAF-­‐2	
  
IR	
  
AGE-­‐1	
  
PI3K	
  
DAF-­‐18	
  
PTEN	
  
PIP2	
   PIP3	
  
Canonical	
  
Insulin	
  signaling	
  
pathway	
  
DAF-­‐18/PTEN	
  
PI3K	
  Independent	
  
roles	
  
Pas-­‐3	
  RNAi	
  
Pbs-­‐4	
  RNAi	
  
	
  	
  	
  	
  	
  Z2	
  	
  Z3	
  
DAF-­‐18::GFP	
  wildtype	
  levels	
  
DAF-­‐18::GFP	
  on	
  RNAi	
  for	
  a	
  negaKve	
  regulator	
  

More Related Content

What's hot

project- Liron Schwartz
project- Liron Schwartzproject- Liron Schwartz
project- Liron SchwartzLiron Schwartz
 
Cloning of candida antarctica lipase a gene in to kluveromyces lactis
Cloning of candida antarctica lipase a gene in to kluveromyces lactisCloning of candida antarctica lipase a gene in to kluveromyces lactis
Cloning of candida antarctica lipase a gene in to kluveromyces lactisRajarajan Panneerselvam
 
Seminario molecular[1] listo
Seminario molecular[1] listoSeminario molecular[1] listo
Seminario molecular[1] listozapata25
 
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis Sima Lev
 
Hw1 Gen320fall07answer
Hw1 Gen320fall07answerHw1 Gen320fall07answer
Hw1 Gen320fall07answerariddlegirl
 
Hw1 Gen320fall07revised
Hw1 Gen320fall07revisedHw1 Gen320fall07revised
Hw1 Gen320fall07revisedariddlegirl
 
TCD Results & Thesis
TCD Results & ThesisTCD Results & Thesis
TCD Results & ThesisJames Britton
 
miRNA Activity in Arabidopsis thaliana
miRNA Activity in Arabidopsis thalianamiRNA Activity in Arabidopsis thaliana
miRNA Activity in Arabidopsis thalianatsandrew
 
Swanson_MSRP_Replication Initiator Regulation
Swanson_MSRP_Replication Initiator RegulationSwanson_MSRP_Replication Initiator Regulation
Swanson_MSRP_Replication Initiator RegulationSebastian Swanson
 
Defense of thesis presentation
Defense of thesis presentationDefense of thesis presentation
Defense of thesis presentationDanil Koovely
 
2013 transcription
2013 transcription2013 transcription
2013 transcriptionkuldip sodhi
 

What's hot (19)

Host gene mutations
Host gene mutationsHost gene mutations
Host gene mutations
 
project- Liron Schwartz
project- Liron Schwartzproject- Liron Schwartz
project- Liron Schwartz
 
Cloning of candida antarctica lipase a gene in to kluveromyces lactis
Cloning of candida antarctica lipase a gene in to kluveromyces lactisCloning of candida antarctica lipase a gene in to kluveromyces lactis
Cloning of candida antarctica lipase a gene in to kluveromyces lactis
 
Genetic code and transcription
Genetic code and transcriptionGenetic code and transcription
Genetic code and transcription
 
Seminario molecular[1] listo
Seminario molecular[1] listoSeminario molecular[1] listo
Seminario molecular[1] listo
 
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis
Sima Lev: VAP-B and its role in Amyotrophic lateral sclerosis
 
Hw1 Gen320fall07answer
Hw1 Gen320fall07answerHw1 Gen320fall07answer
Hw1 Gen320fall07answer
 
Hw2 Rec07quest
Hw2 Rec07questHw2 Rec07quest
Hw2 Rec07quest
 
Hw2
Hw2Hw2
Hw2
 
Hw1 Gen320fall07revised
Hw1 Gen320fall07revisedHw1 Gen320fall07revised
Hw1 Gen320fall07revised
 
TCD Results & Thesis
TCD Results & ThesisTCD Results & Thesis
TCD Results & Thesis
 
miRNA Activity in Arabidopsis thaliana
miRNA Activity in Arabidopsis thalianamiRNA Activity in Arabidopsis thaliana
miRNA Activity in Arabidopsis thaliana
 
Reigh_Final_Thesis
Reigh_Final_ThesisReigh_Final_Thesis
Reigh_Final_Thesis
 
vineeta poster 2
vineeta  poster  2vineeta  poster  2
vineeta poster 2
 
Smad
SmadSmad
Smad
 
Swanson_MSRP_Replication Initiator Regulation
Swanson_MSRP_Replication Initiator RegulationSwanson_MSRP_Replication Initiator Regulation
Swanson_MSRP_Replication Initiator Regulation
 
Transcription NEW
Transcription NEWTranscription NEW
Transcription NEW
 
Defense of thesis presentation
Defense of thesis presentationDefense of thesis presentation
Defense of thesis presentation
 
2013 transcription
2013 transcription2013 transcription
2013 transcription
 

Similar to Gabe%27s poster II

Galactose operon and Histidine operon
Galactose operon  and Histidine operon  Galactose operon  and Histidine operon
Galactose operon and Histidine operon PunithKumars6
 
1 At least 2 questions from this section will be on the .docx
1 At least 2 questions from this section will be on the .docx1 At least 2 questions from this section will be on the .docx
1 At least 2 questions from this section will be on the .docxmercysuttle
 
2013 transcription
2013 transcription2013 transcription
2013 transcriptionkuldip sodhi
 
Pathogen confusion as a strategy for controlling diseases caused by Xylella...
Pathogen confusion as a strategy for controlling diseases caused by   Xylella...Pathogen confusion as a strategy for controlling diseases caused by   Xylella...
Pathogen confusion as a strategy for controlling diseases caused by Xylella...huyng
 
48x36_horizontal7_23_14
48x36_horizontal7_23_1448x36_horizontal7_23_14
48x36_horizontal7_23_14Angela DiNardo
 
Kathleen big Poster 2016 final copy
Kathleen big Poster 2016 final copyKathleen big Poster 2016 final copy
Kathleen big Poster 2016 final copyKathleen Barakat
 
RNA synthesis, processing and modification.pptx
RNA synthesis, processing and modification.pptxRNA synthesis, processing and modification.pptx
RNA synthesis, processing and modification.pptxArifulkarim4
 
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...David W. Salzman
 
Lab Differential Expression Differential gene expression provides th.pdf
 Lab Differential Expression Differential gene expression provides th.pdf Lab Differential Expression Differential gene expression provides th.pdf
Lab Differential Expression Differential gene expression provides th.pdfrita892197
 
Lab Differential Expression Differential gene expression provides .pdf
 Lab Differential Expression Differential gene expression provides .pdf Lab Differential Expression Differential gene expression provides .pdf
Lab Differential Expression Differential gene expression provides .pdfbasilpaul63
 
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...huyng
 
expression of genes , operon - lac operon and trp operon
expression of genes , operon - lac operon and trp operonexpression of genes , operon - lac operon and trp operon
expression of genes , operon - lac operon and trp operonYashhGoel
 
GENE REGULATION.pptx
GENE REGULATION.pptxGENE REGULATION.pptx
GENE REGULATION.pptxRoshaniSoni1
 

Similar to Gabe%27s poster II (20)

Galactose operon and Histidine operon
Galactose operon  and Histidine operon  Galactose operon  and Histidine operon
Galactose operon and Histidine operon
 
Collegepart B.Burgering Deel 1
Collegepart B.Burgering Deel 1Collegepart B.Burgering Deel 1
Collegepart B.Burgering Deel 1
 
1 At least 2 questions from this section will be on the .docx
1 At least 2 questions from this section will be on the .docx1 At least 2 questions from this section will be on the .docx
1 At least 2 questions from this section will be on the .docx
 
Debanjan summer
Debanjan summerDebanjan summer
Debanjan summer
 
2013 transcription
2013 transcription2013 transcription
2013 transcription
 
Regulation of Gene expression
Regulation of Gene expression Regulation of Gene expression
Regulation of Gene expression
 
Pathogen confusion as a strategy for controlling diseases caused by Xylella...
Pathogen confusion as a strategy for controlling diseases caused by   Xylella...Pathogen confusion as a strategy for controlling diseases caused by   Xylella...
Pathogen confusion as a strategy for controlling diseases caused by Xylella...
 
48x36_horizontal7_23_14
48x36_horizontal7_23_1448x36_horizontal7_23_14
48x36_horizontal7_23_14
 
Kathleen big Poster 2016 final copy
Kathleen big Poster 2016 final copyKathleen big Poster 2016 final copy
Kathleen big Poster 2016 final copy
 
RNA synthesis, processing and modification.pptx
RNA synthesis, processing and modification.pptxRNA synthesis, processing and modification.pptx
RNA synthesis, processing and modification.pptx
 
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to A...
 
Histidine operon
Histidine operonHistidine operon
Histidine operon
 
Lab Differential Expression Differential gene expression provides th.pdf
 Lab Differential Expression Differential gene expression provides th.pdf Lab Differential Expression Differential gene expression provides th.pdf
Lab Differential Expression Differential gene expression provides th.pdf
 
Lab Differential Expression Differential gene expression provides .pdf
 Lab Differential Expression Differential gene expression provides .pdf Lab Differential Expression Differential gene expression provides .pdf
Lab Differential Expression Differential gene expression provides .pdf
 
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
RNA interference Activity in Glassy-winged Sharpshooter Cells and Whole Insec...
 
expression of genes , operon - lac operon and trp operon
expression of genes , operon - lac operon and trp operonexpression of genes , operon - lac operon and trp operon
expression of genes , operon - lac operon and trp operon
 
GENE REGULATION.pptx
GENE REGULATION.pptxGENE REGULATION.pptx
GENE REGULATION.pptx
 
Hippo signal pathway
Hippo signal pathwayHippo signal pathway
Hippo signal pathway
 
P 53 Tumour Biology
P 53 Tumour BiologyP 53 Tumour Biology
P 53 Tumour Biology
 
Simske Poster 2016-2
Simske Poster 2016-2Simske Poster 2016-2
Simske Poster 2016-2
 

Gabe%27s poster II

  • 1. Regulators and Germline Specific Function of DAF-18/PTEN Gabriel  Chamberlain,  Jun  Liu,  Michael  Zane4  and  Ian  D.  Chin-­‐Sang   Department  of  Biology,  Queen’s  Universty,  Kingston,  ON  Canada   Introduction Hypothesis / Aims When  condiKons  become  unfavorable,  C.  elegans  larvae  enter  into  an   alternaKve  state  of  arrested  development  at  the  second  larval  molt  known  as   dauer.  If  hatched  directly  into  the  absence  of  food,  C.  elegans  arrest   development  early  and  remain  suspended  as  L1  larvae,  this  is  known  as  L1   arrest.  Both  forms  of  arrest  require  the  acKon  of  the  phosphatase  DAF-­‐18   (abnormal  DAuer  FormaKon),  the  worm  ortholog  of  the  human  PTEN   (Phosphatase  and  TENsin)  which  is  a  tumour  suppressor.  The  downstream  roles   of  daf-­‐18  in  the  insulin-­‐signaling  pathway  are  well  known  however  few   upstream  regulators  have  been  idenKfied.  In  addiKon,  the  Kssue  specific   funcKon  of  DAF-­‐18  has  been  studied  with  regards  to  vulval  development,  dauer   formaKon  and  neuron  development,  but  unKl  recently,  not  specifically  to  L1   arrest.  Unpublished  data  from  the  Chin-­‐Sang  lab  suggests  a  germline  specific   funcKon  of  daf-­‐18  with  regards  to  L1  arrest  as  well  as  a  new  model  for  daf-­‐18   negaKve  regulaKon  by  the  insulin  receptor  daf-­‐2  and  the  ubiquiKn  ligase  vhl-­‐1.    Using  daf-­‐18  mutants  (ok480)  carrying  our  genomic  daf-­‐18::gfp  reporter  we   will  look  for  increases  in  fluorescence  aZer  feeding  them  RNAi  that  targets  the   candidate  negaKve  regulators.   In  our  translaKonal  reporter  for  DAF-­‐18  fluorescence  is  only  visible  surrounding   the  developing  vulva  at  the  Christmas  tree  stage  of  L4.  Therefore  any   fluorescence  seen  outside  this  area  at  this  developmental  Kme  point  can  be   a]ributed  to  the  effects  of  RNAi   Rescuing  daf-­‐18(ok480)  mutants  with  daf-­‐18  wildtype  genomic  from  an  extra-­‐ chromosomal  array  (quEx518)    only  parKally  reverses  the  defecKve  L1  arrest   phenotype.     As  the  expression  of  extra-­‐chromosomal  arrays  is  silenced  in  the  germline  we   believe  daf-­‐18  must  be  required  in  this  Kssue  for  proper  L1  arrest.     Germline  Specific  Knockdown  of  daf-­‐18    Tissue  specific  RNAi  of  daf-­‐18  in  the  germline,  but  not  the  soma,  results  in   defecKve  L1  arrest.           Germline  Specific  Rescue  of  daf-­‐18   !   Since  germline  silencing  provides  a  hurdle  to  daf-­‐18  rescue  using  extra   chromosomal  arrays  we  will  be  using  MosSci  to  integrate  daf-­‐18  into  the   chromosome  under  a  germline  specific  promoter.     !   MosSci  takes  advantage  of  the  C.  elegans  Mos1  transposon  to  “jump”   transgenes  into  the  chromosome  at  determined  sites   Aim  1   If  DAF-­‐18  is  required  in  the  germline  to  enable  proper  L1  arrest  then:     ! Germline  rescue  of  daf-­‐18  will  correct  the  defecKve  L1  arrest  phenotype  in   daf-­‐18  mutants     ! Germline  specific  RNAi  of  daf-­‐18  will  result  in  a  defecKve  L1  arrest  phenotype   equivalent  to  a  daf-­‐18  mutant.       Aim  2   If  candidate  genes  are  negaKve  regulators  of  DAF-­‐18  then  DAF-­‐18::GFP   fluorescence  will  increase  with  RNAi  knockdown  of  these  genes.     RNAi to find DAF-18 Regulators Germline Specific Function of DAF-18 Acknowledgments  Dr.  Ian  Chin-­‐Sang                              Dr.  Jun  Liu                          MSc.C.  Michael  Zane4                  MSc.C.  Samantha  Lo              Antonion  Papanicolau            Jeffery  Boudreau                 -­‐20   0   20   40   60   80   100   120   0   5   10   15   20   Percent  Alive  (%)   Day   N2   daf-­‐18(ok480)   daf-­‐18(ok480);Ex   (daf-­‐18  genomic)   Using  MosSCI  we  achieved   successful  germline   expression  of  GFP  under   the  promoter  Pie-­‐1   Making  Sense  of  the  Results   !   Integrated  daf-­‐18  cDNA  under  the  pie-­‐1  promoter  was  not  sufficient  to   extend  L1  survival  in  daf-­‐18  mutants  (only  one  line  tested)     !   daf-­‐18  cDNA  expressed  in  an  extrachromosomal  array  causes  dauer   consKtuKve  phenotype  confirming  our  construct  forms  funcKonal  DAF-­‐18   !   Preliminary  results  show  that  the  defecKve  L1  arrest  phenotype  of  daf-­‐18   mutants  can  be  maternally  rescued  from  a  heterozygous  parent  supporKng  an   important  germline  role   PI3K  independent  roles   (ex:  axon  guidance)     Canonical  Insulin   Signaling    pathway   Our  lab  demonstrated  that  DAF-­‐2  binds  and   phophorylates  DAF-­‐18.  We  suggest  that  this   phosphorylaKon  event  results  in  a  conformaKonal   change  of  DAF-­‐18  making  it  vulnerable  to   polyubiquiKnaKon  for  proteosomal  degradaKon.   With  that  in  mind  we  assayed  several  proteosomal   genes  and  ubiquiKn  ligase  genes  using  RNAi  for   negaKve  regulaKon  of  DAF-­‐18     Preliminary  Results   !   From  our  first  RNAi  assay  of  six  candidate  negaKve  regulator  genes;  pbs-­‐4,   pas-­‐3,  rpt-­‐5,  pbs-­‐6,  rpt-­‐6  and  cul-­‐2,  two  candidates,  pas-­‐3  and  pbs-­‐4  caused   increases  in  DAF-­‐18::GFP  levels  during  early  embryonic  development.  Both   candidates  are  genes  encoding  for  proteosomal  subunits   DAF-­‐18::GFP   DAF-­‐18::GFP   DAF-­‐18::GFP   ???           Worm  Insulin   Insulin  Receptor   DAF-­‐18 /PTEN   DAF-­‐18/PTEN     degraded   ???   Proteosome   DAF-­‐28   Insulin   DAF-­‐2   IR   AGE-­‐1   PI3K   DAF-­‐18   PTEN   PIP2   PIP3   Canonical   Insulin  signaling   pathway   DAF-­‐18/PTEN   PI3K  Independent   roles   Pas-­‐3  RNAi   Pbs-­‐4  RNAi            Z2    Z3   DAF-­‐18::GFP  wildtype  levels   DAF-­‐18::GFP  on  RNAi  for  a  negaKve  regulator