SlideShare a Scribd company logo
1 of 23
Download to read offline
 
Report number: 1-FSFT
	
  
	
  
	
  
Evaluation of phase relations in weld
overlays of 316, 309MoL and SKWAM
Fredrik Stenarson
Fritjof Tibblin
Supervisors: Professor Malin Selleby, Tomislav Buzancic
and PhD Sten Wessman
	
  
	
  
	
  
2013
Dept. of Material Science and Engineering
Royal Institute of Technology
Stockholm, Sweden
 
	
  
	
   2	
  
Abstract	
  
AREVA	
  NP	
  Uddcomb	
  AB	
  wants	
  to	
  replace	
  the	
  material	
  used	
  for	
  a	
  specific	
  valve	
  seat	
  used	
  in	
  boiling	
  water	
  
reactors,	
  BWR.	
  Their	
  solution	
  is	
  a	
  weld	
  overlay	
  of	
  different	
  stainless	
  steels	
  composed	
  of	
  two	
  buffer	
  layers	
  
of	
  the	
  steel	
  309	
  MoL	
  followed	
  by	
  two	
  layers	
  of	
  the	
  filler	
  material	
  SKWAM	
  welded	
  on	
  type	
  316	
  stainless	
  
steel	
  or	
  carbon	
  steel.	
  The	
  report	
  focuses	
  on	
  the	
  long	
  term	
  structural	
  effects	
  in	
  the	
  weld	
  overlay	
  due	
  to	
  
the	
  operating	
  temperature	
  in	
  BWRs,	
  in	
  this	
  case	
  270	
  °C.	
  To	
  investigate	
  the	
  thermodynamic	
  stability	
  in	
  the	
  
weld	
  overlay	
  the	
  computer	
  software	
  Thermo-­‐Calc	
  was	
  used	
  and	
  a	
  metallographic	
  examination	
  was	
  
carried	
  out.	
  The	
  results	
  from	
  these	
  procedures	
  were	
  compared	
  and	
  possible	
  long	
  term	
  effects	
  were	
  
discussed.	
  Most	
  likely	
  spinodal	
  decomposition	
  is	
  the	
  most	
  severe	
  structural	
  change	
  that	
  may	
  appear	
  in	
  
the	
  material.	
  At	
  equilibrium	
  conditions	
  at	
  the	
  operating	
  temperature	
  ferrite	
  is	
  decomposed	
  into	
  Fe-­‐rich	
  
and	
  Cr-­‐rich	
  ferrite	
  but	
  since	
  the	
  kinetics	
  is	
  not	
  included	
  in	
  the	
  calculations	
  it	
  is	
  not	
  possible	
  to	
  determine	
  
the	
  rate	
  of	
  decomposition.	
  
Keywords:	
  SKWAM,	
  316,	
  309MoL,	
  475°C	
  embrittlement,	
  spinodal	
  decomposition,	
  intermetallic	
  phase,	
  
welding	
  filler	
  material,	
  Thermo-­‐Calc,	
  stainless	
  steel,	
  thermodynamic	
  stability.	
  
	
   	
  
 
	
  
	
   3	
  
Table	
  of	
  Contents	
  
Abstract	
  .........................................................................................................................................................	
  2	
  
Introduction	
  ..................................................................................................................................................	
  4	
  
Background	
  ...................................................................................................................................................	
  5	
  
Materials	
  ...................................................................................................................................................	
  5	
  
Austenitic	
  stainless	
  steels	
  .....................................................................................................................	
  5	
  
Ferritic	
  stainless	
  steels	
  ..........................................................................................................................	
  5	
  
Sigma	
  phase	
  ..............................................................................................................................................	
  5	
  
475	
  °C	
  embrittlement	
  ...............................................................................................................................	
  6	
  
Carbides	
  ....................................................................................................................................................	
  8	
  
Computations	
  and	
  experiments	
  ....................................................................................................................	
  8	
  
Thermo-­‐Calc	
  calculations	
  ..........................................................................................................................	
  8	
  
Metallographic	
  examination	
  .....................................................................................................................	
  9	
  
Light	
  optical	
  microscope	
  .......................................................................................................................	
  9	
  
Scanning	
  electron	
  microscope,	
  SEM	
  .....................................................................................................	
  9	
  
Assumptions	
  ............................................................................................................................................	
  10	
  
Results	
  and	
  discussion	
  ................................................................................................................................	
  11	
  
Sigma	
  phase	
  at	
  300	
  °C	
  .............................................................................................................................	
  11	
  
Carbides	
  at	
  300	
  °C	
  ...................................................................................................................................	
  13	
  
Spinodal	
  decomposition	
  at	
  300	
  °C	
  ..........................................................................................................	
  14	
  
Comparing	
  layers	
  in	
  the	
  weld	
  overlay	
  .................................................................................................	
  17	
  
Metallographic	
  examination	
  ...................................................................................................................	
  17	
  
Sources	
  of	
  error	
  ......................................................................................................................................	
  21	
  
Conclusions	
  .................................................................................................................................................	
  22	
  
Acknowledgements	
  .....................................................................................................................................	
  22	
  
References	
  ..................................................................................................................................................	
  23	
  
	
  
	
   	
  
 
	
  
	
   4	
  
Introduction	
  
Cobalt	
  based	
  Stellite	
  alloys,	
  have	
  traditionally	
  been	
  used	
  as	
  hard	
  facing	
  materials	
  for	
  nuclear	
  plant	
  valves	
  
(mainly	
  gate	
  valves)	
  owing	
  to	
  their	
  high	
  corrosion	
  resistance	
  and	
  superior	
  wear	
  resistance	
  under	
  sliding	
  
conditions.	
  However,	
  the	
  need	
  to	
  avoid	
  the	
  use	
  of	
  Stellite	
  alloys	
  has	
  emerged	
  since	
  they	
  are	
  the	
  main	
  
source	
  of	
  cobalt,	
  which	
  is	
  the	
  largest	
  contributor	
  to	
  the	
  occupational	
  radiation	
  exposure.	
  Isotope	
  
cobolt59
,	
  which	
  may	
  be	
  released	
  from	
  cobalt	
  containing	
  surfaces	
  in	
  the	
  form	
  of	
  wear	
  and	
  corrosion	
  
products,	
  is	
  transported	
  to	
  the	
  reactor	
  vessel	
  where	
  it	
  is	
  activated	
  to	
  the	
  radioactive	
  isotope	
  cobalt60
	
  by	
  
neutron	
  capture	
  in	
  the	
  fission	
  process.	
  In	
  the	
  light	
  of	
  these	
  findings	
  and	
  as	
  a	
  most	
  effective	
  way	
  to	
  
reduce	
  cobalt	
  contamination,	
  many	
  cobalt-­‐free	
  hard	
  facing	
  alloys,	
  such	
  as	
  iron-­‐based	
  and	
  nickel-­‐based	
  
alloys,	
  have	
  been	
  developed	
  in	
  order	
  to	
  replace	
  Stellite.	
  After	
  annual	
  routine	
  testing	
  of	
  the	
  BWRs	
  security	
  
system,	
  cracks	
  were	
  detected	
  in	
  manually	
  welded	
  valve	
  seats.	
  An	
  investigation	
  took	
  its	
  start	
  to	
  find	
  a	
  
new	
  material	
  combination	
  with	
  better	
  resistance	
  against	
  crack	
  formation.	
  Repeatedly	
  welding	
  
maintenances	
  were	
  done	
  but	
  every	
  year	
  new	
  cracks	
  were	
  detected.	
  Under	
  normal	
  conditions	
  the	
  valve	
  
seats	
  are	
  exposed	
  to	
  69	
  bar	
  and	
  270	
  °C	
  and	
  in	
  worst-­‐case	
  scenarios	
  80	
  bar	
  and	
  300	
  °C.	
  
The	
  old	
  weld	
  overlay	
  consisted	
  of	
  SKWAM	
  welded	
  directly	
  on	
  carbon	
  steel.	
  In	
  this	
  case	
  the	
  structure	
  
probably	
  gets	
  completely	
  martensitic	
  and	
  therefore	
  brittle.	
  The	
  new	
  material	
  combination	
  that	
  is	
  under	
  
consideration	
  is	
  done	
  with	
  mechanized	
  welding	
  consist	
  of	
  a	
  base	
  material	
  of	
  type	
  316	
  covered	
  with	
  
309MoL	
  and	
  a	
  few	
  layers	
  of	
  the	
  filler	
  material	
  SKWAM.	
  All	
  compositions	
  including	
  Stellite	
  6	
  can	
  be	
  found	
  
in	
  table	
  1.	
  Type	
  316	
  and	
  309MoL	
  are	
  primarily	
  austenitic	
  and	
  SKWAM	
  is	
  predominantly	
  ferritic.	
  They	
  are	
  
all	
  stainless	
  steels	
  and	
  are	
  highly	
  alloyed	
  with	
  chromium	
  and	
  none	
  of	
  them	
  contains	
  cobalt.	
  When	
  joining	
  
these	
  grades	
  there	
  will	
  be	
  a	
  mixing	
  between	
  the	
  materials	
  and	
  new	
  phases	
  may	
  occur	
  that	
  can	
  cause	
  
problems.	
  
Table	
  1:	
  Composition	
  of	
  used	
  materials	
  in	
  wt%	
  
Element	
   Carbon	
  steel	
   316	
   309MoL	
   SKWAM	
   Stellite	
  6	
  
Fe	
   97.65	
   65.495	
   58.83	
   80.48	
   0	
  
C	
   0.25	
   0.08	
   0.02	
   0.02	
   1.2	
  
Si	
   0.5	
   0.75	
   0.45	
   0.7	
   0	
  
Mn	
   1.6	
   2	
   1.5	
   0.7	
   0	
  
Cr	
   0	
   17	
   21.5	
   17	
   30	
  
Ni	
   0	
   12	
   15	
   0	
   0	
  
Mo	
   0	
   2.5	
   2.7	
   1.1	
   0	
  
S	
   0	
   0.03	
   0	
   0	
   0	
  
P	
   0	
   0.045	
   0	
   0	
   0	
  
N	
   0	
   0.1	
   0	
   0	
   0	
  
Co	
   0	
   0	
   0	
   0	
   63.8	
  
W	
   0	
   0	
   0	
   0	
   5	
  
	
  
	
   	
  
 
	
  
	
   5	
  
In	
  this	
  project	
  the	
  thermodynamic	
  stability	
  of	
  the	
  weld	
  overlay	
  was	
  investigated	
  with	
  Thermo-­‐Calc	
  a	
  
software	
  for	
  equilibrium	
  calculations	
  [1],	
  metallographic	
  examination	
  of	
  weld	
  overlay	
  was	
  performed	
  
and	
  possible	
  upcoming	
  phases	
  and	
  problems	
  that	
  may	
  occur	
  in	
  the	
  future	
  after	
  long	
  operation	
  times	
  
were	
  discussed.	
  Evaluation	
  of	
  thermodynamic	
  stability	
  was	
  focused	
  on	
  different	
  compositions	
  depending	
  
on	
  cooling	
  conditions,	
  which	
  phases	
  were	
  to	
  be	
  expected	
  after	
  long	
  periods	
  of	
  time	
  and	
  how	
  chromium	
  
is	
  distributed	
  in	
  the	
  different	
  phases.	
  Metallographic	
  examination	
  was	
  made	
  with	
  focus	
  on	
  determining	
  
the	
  phases	
  in	
  the	
  overlay	
  and	
  comparing	
  with	
  thermodynamic	
  calculations.	
  
Background	
  
Materials	
  
The	
  materials	
  of	
  interest	
  are	
  309MoL,	
  316	
  and	
  SKWAM	
  which	
  are	
  all	
  stainless	
  steels.	
  SKWAM	
  is	
  a	
  product	
  
name	
  and	
  the	
  others	
  are	
  material	
  groups.	
  309MoL	
  and	
  316	
  are	
  both	
  austenitic	
  steels	
  while	
  SKWAM	
  is	
  
ferritic-­‐martensitic.	
  	
  
Austenitic	
  stainless	
  steels	
  
Austenitic	
  stainless	
  steels	
  are	
  the	
  most	
  produced	
  and	
  largest	
  category	
  of	
  stainless	
  steels.	
  Generally	
  
austenitic	
  steels	
  have	
  good	
  mechanical	
  properties	
  such	
  as	
  high	
  toughness	
  and	
  ductility.	
  The	
  corrosion	
  
resistance	
  is	
  good	
  in	
  most	
  environments	
  but	
  decreases	
  when	
  exposed	
  to	
  elevated	
  temperatures,	
  the	
  
maximum	
  service	
  temperature	
  is	
  approximately	
  760	
  °C.	
  The	
  austenite	
  phase	
  is	
  promoted	
  by	
  addition	
  of	
  
nickel,	
  carbon,	
  nitrogen	
  and	
  manganese	
  where	
  the	
  most	
  important	
  addition	
  is	
  nickel.	
  Austenitic	
  stainless	
  
steels	
  generally	
  contain	
  about	
  8-­‐20	
  wt%	
  nickel	
  but	
  some	
  austenitic	
  stainless	
  steels	
  are	
  free	
  of	
  nickel.	
  In	
  
this	
  case	
  nickel	
  is	
  replaced	
  with	
  manganese	
  and	
  nitrogen.	
  Austenitic	
  stainless	
  steels	
  are	
  used	
  in	
  a	
  series	
  
of	
  applications,	
  most	
  of	
  them	
  at	
  low	
  temperatures,	
  such	
  as	
  structural	
  support,	
  kitchen	
  equipment	
  and	
  
medical	
  products.	
  Austenitic	
  stainless	
  steel	
  is	
  considered	
  to	
  have	
  good	
  weldability	
  [2].	
  
Ferritic	
  stainless	
  steels	
  
Ferritic	
  stainless	
  steels	
  consist	
  mainly	
  of	
  ferrite	
  phase.	
  Ferritic	
  stainless	
  steels	
  generally	
  have	
  better	
  
corrosion	
  resistance	
  compared	
  to	
  austenitic	
  stainless	
  steels	
  but	
  do	
  not	
  have	
  as	
  good	
  mechanical	
  
properties.	
  The	
  corrosion	
  resistance	
  does	
  not	
  depend	
  on	
  the	
  ferritic	
  phase	
  but	
  rather	
  the	
  chromium	
  and	
  
molybdenum	
  content.	
  Ferritic	
  stainless	
  steels	
  are	
  used	
  for	
  applications	
  where	
  corrosion	
  resistance	
  is	
  
more	
  important	
  than	
  good	
  mechanical	
  properties,	
  such	
  as	
  exhaust	
  systems	
  for	
  cars	
  and	
  in	
  chemical	
  
industries.	
  The	
  ferrite	
  phase	
  in	
  stainless	
  steels	
  is	
  favored	
  by	
  high	
  chromium	
  and	
  molybdenum	
  contents	
  
and	
  low	
  nickel	
  content.	
  Compared	
  to	
  austenitic	
  stainless	
  steels	
  they	
  are	
  cheaper	
  due	
  to	
  fewer	
  alloy	
  
elements	
  but	
  they	
  are	
  relatively	
  more	
  expensive	
  since	
  they	
  are	
  hard	
  to	
  manufacture.	
  Ferritic	
  stainless	
  
steels	
  are	
  sensitive	
  to	
  embrittlement,	
  such	
  as	
  475	
  °C	
  embrittlement	
  and	
  are	
  therefore	
  used	
  at	
  relatively	
  
low	
  temperatures,	
  up	
  to	
  400	
  °C	
  but	
  as	
  low	
  as	
  280	
  °C	
  pressure	
  vessel.	
  The	
  weldability	
  of	
  ferritic	
  stainless	
  
steel	
  is	
  not	
  as	
  good	
  as	
  for	
  austenitic	
  because	
  grain	
  growth	
  reduces	
  toughness	
  and	
  ductility	
  [2].	
  
Sigma	
  phase	
  
When	
  stainless	
  steels	
  are	
  exposed	
  to	
  elevated	
  temperatures	
  for	
  an	
  extended	
  period	
  of	
  time	
  intermetallic	
  
phases	
  may	
  precipitate	
  e.g.	
  sigma	
  phase.	
  The	
  sigma	
  phase	
  consists	
  of	
  mainly	
  iron	
  and	
  chromium	
  but	
  its	
  
 
	
  
	
   6	
  
composition	
  is	
  varying	
  depending	
  on	
  the	
  alloying	
  elements.	
  It	
  is	
  precipitated	
  when	
  heat	
  treated	
  at	
  about	
  
570-­‐1000	
  °C [2].	
  The	
  same	
  applies	
  for	
  the	
  interpass	
  temperature	
  during	
  welding	
  and	
  the	
  heat	
  input	
  
should	
  be	
  minimized	
  [8].	
  
Precipitation	
  of	
  sigma	
  phase	
  causes	
  embrittlement	
  of	
  the	
  material	
  since	
  the	
  sigma	
  particles	
  are	
  harder	
  
than	
  the	
  surrounding	
  matrix	
  and	
  therefore	
  reduces	
  the	
  ductility	
  and	
  toughness.	
  Since	
  the	
  sigma	
  phase	
  
contains	
  15-­‐70	
  %	
  chromium	
  it	
  is	
  most	
  likely	
  that	
  precipitation	
  will	
  occur	
  in	
  chromium	
  rich	
  environments	
  
within	
  the	
  material	
  e.g.	
  the	
  ferrite	
  phase	
  [2].	
  Generally	
  the	
  chromium	
  content	
  needs	
  to	
  be	
  above	
  20	
  wt%	
  
for	
  the	
  precipitation	
  to	
  take	
  place	
  and	
  if	
  the	
  chromium	
  content	
  is	
  raised	
  to	
  25-­‐30	
  wt%	
  sigma	
  phase	
  forms	
  
rapidly	
  [3].	
  
The	
  main	
  transformation	
  mechanism	
  for	
  the	
  precipitation	
  of	
  sigma	
  phase	
  is	
  the	
  transformation	
  of	
  ferrite	
  
to	
  sigma	
  phase.	
  Sigma	
  phase	
  will	
  form	
  directly	
  in	
  chromium	
  rich	
  regions	
  of	
  the	
  ferrite	
  grains.	
  It	
  is	
  possible	
  
for	
  sigma	
  phase	
  to	
  form	
  in	
  austenite	
  but	
  it	
  is	
  not	
  as	
  usual	
  since	
  it	
  is	
  harder	
  for	
  chromium	
  to	
  diffuse	
  in	
  FCC	
  
than	
  BCC.	
  Except	
  for	
  chromium	
  other	
  ferrite	
  stabilizing	
  elements	
  such	
  as	
  silica	
  and	
  molybdenum	
  will	
  
accelerate	
  the	
  formation	
  of	
  sigma	
  phase [3].	
  
475	
  °C	
  embrittlement	
  
It	
  is	
  mainly	
  ferritic	
  stainless	
  steels	
  that	
  experience	
  475	
  °C	
  embrittlement	
  if	
  they	
  are	
  exposed	
  to	
  
temperatures	
  in	
  the	
  interval	
  of	
  425-­‐550	
  °C	
  [2].	
  475	
  °C	
  embrittlement	
  only	
  takes	
  place	
  in	
  stainless	
  steels	
  in	
  
the	
  ferritic	
  phase	
  during	
  annealing	
  around	
  475	
  °C	
  [5].	
  Most	
  common	
  is	
  that	
  475	
  °C	
  embrittlement	
  does	
  
not	
  occur	
  when	
  welding	
  because	
  long	
  time	
  exposure	
  to	
  high	
  temperatures	
  is	
  required.	
  It	
  will	
  therefore	
  
be	
  important	
  to	
  know	
  the	
  environment,	
  such	
  as	
  the	
  temperature	
  range	
  the	
  material	
  will	
  be	
  exposed	
  to	
  in	
  
its	
  application	
  [2].	
  A	
  broader	
  framing	
  of	
  the	
  material	
  suggests	
  that	
  475	
  °C	
  embrittlement	
  can	
  occur	
  in	
  
steels	
  that	
  are	
  ferritic,	
  austenitic-­‐ferritic	
  and	
  in	
  filler	
  materials	
  that	
  contain	
  δ-­‐ferrite.	
  475	
  °C	
  
embrittlement	
  is	
  due	
  to	
  spinodal	
  decomposition	
  [5].	
  
Alloying	
  elements	
  affect	
  time	
  and	
  temperature	
  for	
  the	
  maximum	
  embrittlement	
  of	
  the	
  ferritic	
  phase.	
  
Silicon,	
  aluminum,	
  chromium	
  and	
  molybdenum	
  do	
  all	
  accelerate	
  the	
  maximum	
  embrittlement.	
  Carbon	
  
has	
  the	
  opposite	
  effect	
  and	
  reduces	
  the	
  maximum	
  effect	
  of	
  embrittlement	
  when	
  forming	
  chromium-­‐
carbides.	
  Alloys	
  that	
  contain	
  titanium	
  and	
  niobium	
  form	
  stable	
  carbides	
  before	
  chromium-­‐carbides	
  are	
  
formed	
  so	
  the	
  embrittlement	
  effect	
  is	
  enhanced	
  as	
  long	
  as	
  there	
  are	
  such	
  stable	
  carbides	
  formed	
  instead	
  
of	
  chromium-­‐carbides	
  [5].	
  Nitrogen	
  and	
  manganese	
  seems	
  to	
  have	
  no	
  impact	
  on	
  the	
  475	
  °C	
  
embrittlement,	
  while	
  nickel	
  increases	
  the	
  effect	
  [5], [6].	
  
The	
  dominant	
  theory	
  of	
  why	
  475	
  °C	
  embrittlement	
  occurs	
  is	
  the	
  coherent	
  precipitate	
  below	
  550	
  °C	
  
because	
  of	
  the	
  miscibility	
  gap	
  in	
  the	
  iron-­‐chromium	
  phase	
  diagram	
  as	
  can	
  be	
  seen	
  in	
  Fig	
  1.	
  Iron-­‐
chromium	
  alloys	
  with	
  compositions	
  in	
  the	
  range	
  of	
  the	
  miscibility	
  gap	
  and	
  being	
  annealed	
  below	
  550	
  °C	
  
tend	
  to	
  precipitate	
  two	
  phases,	
  α-­‐ferrite	
  and	
  α’-­‐ferrite.	
  α-­‐ferrite	
  is	
  an	
  iron-­‐rich	
  phase	
  with	
  BCC-­‐lattice.	
  α’-­‐
ferrite	
  is	
  a	
  chromium-­‐rich	
  phase	
  with	
  BCC-­‐lattice,	
  which	
  contains	
  about	
  61-­‐83	
  %	
  chromium	
  and	
  is	
  
nonmagnetic	
  [2].	
  The	
  two	
  phases	
  are	
  said	
  to	
  have	
  different	
  morphologies	
  where	
  the	
  newly	
  formed	
  phase	
  
of	
  α’-­‐ferrite	
  is	
  embedded	
  in	
  the	
  chromium	
  depleted	
  α-­‐ferrite.	
  There	
  are	
  two	
  ways	
  for	
  α’-­‐ferrite	
  to	
  form,	
  
either	
  through	
  nucleation	
  and	
  growth	
  or	
  through	
  spinodal	
  decomposition	
  [7].	
  
 
	
  
	
   7	
  
	
  
Figure	
  1.	
  Parts	
  of	
  the	
  iron-­‐chromium	
  system [1].	
  	
  
Velocity	
  and	
  rate	
  of	
  embrittlement	
  can	
  be	
  seen	
  as	
  a	
  function	
  of	
  the	
  chromium	
  content.	
  High	
  chromium	
  
content	
  and	
  higher	
  temperatures	
  results	
  in	
  more	
  embrittlement	
  whereas	
  stainless	
  steels	
  with	
  low	
  
chromium	
  content	
  can	
  be	
  almost	
  exempt	
  from	
  475	
  °C	
  embrittlement	
  [2].	
  In	
  this	
  mechanism,	
  activation	
  
energy	
  of	
  aging	
  is	
  similar	
  to	
  the	
  activation	
  energy	
  of	
  Cr	
  diffusion	
  in	
  the	
  ferrite	
  phase.	
  The	
  kinetics	
  for	
  475	
  
°C	
  embrittlement	
  precipitation	
  can	
  be	
  tested	
  by	
  measuring	
  the	
  hardness	
  and	
  impact	
  strength	
  in	
  ferrite	
  
with	
  Charpy-­‐V.	
  The	
  kinetics	
  of	
  the	
  embrittlement	
  can	
  be	
  of	
  significant	
  importance	
  in	
  certain	
  construction	
  
parts	
  in	
  BWRs	
  [6].	
  Studies	
  of	
  both	
  ferritic-­‐	
  and	
  duplex	
  stainless	
  steels	
  have	
  shown	
  that	
  spinodal	
  
decomposition	
  is	
  faster	
  in	
  duplex	
  steels.	
  Radiation	
  has	
  been	
  found	
  to	
  accelerate	
  the	
  spinodal	
  
decomposition	
  and	
  also	
  effect	
  volume	
  fraction	
  and	
  morphology	
  [7].	
  
Cold	
  working	
  affects	
  stainless	
  steels	
  so	
  that	
  precipitation	
  of	
  α’-­‐ferrite	
  increases	
  which	
  accelerates	
  the	
  
embrittlement.	
  475	
  °C	
  embrittlement	
  also	
  makes	
  the	
  steel	
  less	
  resistant	
  to	
  corrosion	
  since	
  the	
  chromium	
  
depleted	
  α-­‐ferrite	
  is	
  particularly	
  susceptible	
  to	
  corrosion.	
  There	
  are	
  some	
  alternatives	
  to	
  reduce	
  the	
  
embrittlement	
  and	
  restore	
  the	
  mechanical	
  and	
  corrosion	
  properties.	
  By	
  heat	
  treatment	
  of	
  the	
  embrittled	
  
material	
  in	
  the	
  temperature	
  interval	
  of	
  550-­‐600	
  °C	
  for	
  a	
  short	
  period	
  of	
  time	
  the	
  original	
  properties	
  of	
  
the	
  stainless	
  steel	
  can	
  be	
  restored	
  and	
  α-­‐ferrite	
  and	
  α’-­‐ferrite	
  can	
  form	
  ferrite	
  again [2].	
  There	
  will	
  be	
  
more	
  475	
  °C	
  embrittlement	
  in	
  materials	
  with	
  high	
  chromium	
  content	
  when	
  it	
  has	
  been	
  exposed	
  to	
  
elevated	
  temperatures	
  for	
  long	
  periods	
  of	
  time.	
  Therefore	
  stainless	
  steels	
  with	
  high	
  chromium	
  content	
  
should	
  not	
  be	
  heat-­‐treated	
  at	
  too	
  high	
  temperature[8].	
  
	
   	
  
 
	
  
	
   8	
  
Carbides	
  
In	
  cases	
  when	
  the	
  amount	
  of	
  carbides	
  in	
  austenitic	
  stainless	
  steels	
  is	
  critical,	
  a	
  solution	
  annealing	
  
treatment	
  can	
  bring	
  carbides	
  back	
  into	
  solution.	
  By	
  quenching,	
  a	
  low	
  amount	
  of	
  carbides	
  can	
  be	
  
obtained.	
  The	
  alloying	
  elements	
  that	
  precipitated	
  as	
  carbides	
  earlier	
  are	
  now	
  in	
  a	
  non-­‐equilibrium	
  state.	
  
Depending	
  on	
  how	
  high	
  temperature	
  the	
  stainless	
  steel	
  will	
  be	
  exposed	
  to	
  in	
  its	
  application	
  the	
  diffusion	
  
coefficient	
  changes	
  and	
  the	
  kinetics	
  for	
  alloying	
  elements	
  determine	
  if	
  stable	
  carbides	
  can	
  form	
  ones	
  
again	
  [5].	
  	
  
For	
  stainless	
  steels	
  carbon	
  has	
  low	
  solubility	
  at	
  low	
  temperatures.	
  Excess	
  of	
  carbon	
  may	
  result	
  in	
  
precipitation	
  of	
  iron-­‐chromium-­‐carbides	
  such	
  as	
  M23C6	
  and	
  M6C.	
  The	
  chromium	
  content	
  in	
  M23C6	
  is	
  often	
  
in	
  the	
  range	
  of	
  42-­‐65	
  wt%.	
  Since	
  the	
  chromium	
  content	
  in	
  M23C6	
  is	
  two	
  to	
  four	
  times	
  as	
  much	
  as	
  the	
  
average	
  matrix	
  content	
  the	
  close	
  surroundings	
  of	
  M23C6	
  will	
  be	
  depleted	
  in	
  chromium.	
  Variation	
  of	
  
chromium	
  content	
  can	
  be	
  evened	
  out	
  by	
  heat	
  treatment.	
  During	
  heat	
  treatment	
  the	
  temperature	
  should	
  
be	
  higher	
  than	
  the	
  temperature	
  range	
  where	
  M23C6	
  is	
  precipitated	
  otherwise	
  the	
  diffusion	
  for	
  chromium	
  
and	
  iron	
  is	
  to	
  slow.	
  Precipitation	
  of	
  M23C6	
  is	
  mostly	
  concentrated	
  to	
  grain	
  boundaries	
  which	
  make	
  
adjacent	
  areas	
  chromium	
  depleted.	
  Chromium	
  contents	
  below	
  11,5	
  wt%	
  increases	
  the	
  risk	
  of	
  corrosion.	
  
Since	
  chromium	
  depletion	
  is	
  concentrated	
  to	
  grain	
  boundaries	
  activation	
  potential	
  of	
  intergranular	
  
corrosion	
  increases	
  and	
  propagation	
  will	
  progress	
  along	
  chromium	
  depleted	
  grain	
  boundaries	
  [5].	
  
Increased	
  carbon	
  content	
  increases	
  the	
  risk	
  of	
  intergranular	
  corrosion.	
  Nickel	
  contributes	
  to	
  increased	
  
precipitation	
  of	
  M23C6	
  because	
  it	
  reduces	
  the	
  solubility	
  of	
  carbon	
  and	
  increases	
  the	
  carbon	
  activity.	
  
Silicon	
  influence	
  carbide	
  precipitation	
  the	
  same	
  way	
  as	
  nickel	
  but	
  with	
  stronger	
  effect.	
  M23C6	
  
precipitation	
  is	
  mildly	
  affected	
  of	
  increased	
  chromium	
  content,	
  the	
  intergranular	
  corrosion	
  resistance	
  
increases	
  since	
  the	
  closest	
  surroundings	
  have	
  enhanced	
  chromium	
  content.	
  Molybdenum	
  reduces	
  
carbon	
  solubility	
  and	
  carbides	
  can	
  be	
  precipitated	
  to	
  a	
  greater	
  extent.	
  Manganese	
  increases	
  carbon	
  
solubility	
  and	
  reduces	
  carbon	
  activity	
  but	
  seems	
  to	
  have	
  no	
  influence	
  on	
  corrosion	
  resistance	
  [5].	
  
Computations	
  and	
  experiments	
  
Thermo-­‐Calc	
  calculations	
  
The	
  composition	
  of	
  each	
  layer	
  in	
  the	
  weld	
  overlay	
  was	
  calculated	
  from	
  a	
  principle	
  of	
  70	
  %-­‐30	
  %	
  mixing	
  
between	
  layers.	
  Each	
  layer	
  composition	
  was	
  input	
  data	
  in	
  Thermo-­‐Calc	
  3.0	
  beta	
  2,	
  thermodynamic	
  
calculations	
  were	
  made	
  and	
  output	
  data	
  such	
  as	
  plots	
  and	
  tables	
  were	
  extracted.	
  Thermo-­‐Calc	
  was	
  set	
  to	
  
use	
  TCFE7 [1]	
  database	
  in	
  all	
  calculations.	
  Calculations	
  were	
  carried	
  out	
  with	
  the	
  main	
  goal	
  to	
  extract	
  
plots	
  of	
  stable	
  phases	
  in	
  each	
  layer	
  considering	
  two	
  different	
  methods,	
  70	
  %-­‐30	
  %	
  principle	
  and	
  70	
  %-­‐30	
  
%	
  principle	
  with	
  subsequent	
  Scheil	
  calculations	
  when	
  3	
  %	
  melt	
  remained.	
  The	
  composition	
  used	
  in	
  the	
  
last	
  method	
  was	
  the	
  composition	
  of	
  the	
  melt	
  when	
  97	
  %	
  had	
  solidified.	
  Reality	
  is	
  expected	
  to	
  be	
  
somewhere	
  between	
  equilibrium	
  of	
  the	
  70	
  %-­‐30	
  %	
  principle	
  and	
  70	
  %-­‐30%	
  with	
  subsequent	
  Scheil	
  
calculations.	
  Focus	
  has	
  also	
  been	
  on	
  determining	
  how	
  much	
  chromium	
  that	
  was	
  expected	
  to	
  be	
  
distributed	
  in	
  each	
  phase	
  since	
  it	
  affects	
  475	
  °C	
  embrittlement.	
  Chromium	
  distribution	
  diagrams	
  for	
  each	
  
phase	
  and	
  all	
  layers	
  were	
  calculated	
  using	
  Thermo-­‐Calc.	
  The	
  driving	
  force	
  for	
  precipitation	
  of	
  other	
  
phases	
  than	
  BCC	
  and	
  FCC	
  were	
  also	
  calculated	
  with	
  Thermo-­‐Calc.	
  By	
  using	
  previous	
  equilibrium	
  
 
	
  
	
   9	
  
calculations	
  stable	
  phases	
  at	
  300	
  °C	
  were	
  detected.	
  All	
  stable	
  phases	
  except	
  BCC	
  and	
  FCC	
  were	
  excluded	
  
in	
  equilibrium	
  calculations	
  but	
  still	
  the	
  driving	
  force	
  was	
  calculated,	
  the	
  rest	
  was	
  suspended	
  from	
  all	
  
calculations.	
  
Metallographic	
  examination	
  
The	
  examined	
  sample	
  was	
  a	
  weld	
  overlay	
  consisting	
  of	
  a	
  base	
  layer	
  of	
  carbon	
  steel	
  covered	
  with	
  two	
  
buffer	
  layers	
  of	
  309	
  MoL	
  and	
  two	
  layers	
  of	
  SKWAM.	
  
Light	
  optical	
  microscope	
  
Sample	
  preparation	
  started	
  with	
  cutting	
  a	
  piece	
  of	
  the	
  weld	
  overlay	
  with	
  a	
  saw.	
  Then	
  the	
  piece	
  was	
  
casted	
  in	
  a	
  polymer	
  matrix.	
  The	
  piece	
  was	
  later	
  grinded	
  with	
  two	
  different	
  papers	
  and	
  later	
  polished.	
  Last	
  
step	
  in	
  the	
  preparation	
  was	
  etching	
  with	
  a	
  10	
  %	
  solution	
  of	
  electrolytic	
  chromic	
  acid	
  until	
  phases	
  could	
  
be	
  easily	
  detected.	
  The	
  sample	
  was	
  examined	
  with	
  light	
  optical	
  microscope	
  and	
  pictures	
  were	
  taken	
  to	
  
examine	
  included	
  phases,	
  for	
  further	
  discussions	
  and	
  results.	
  
Scanning	
  electron	
  microscope,	
  SEM	
  
The	
  polished	
  and	
  etched	
  sample	
  was	
  put	
  in	
  a	
  beaker	
  containing	
  ethanol.	
  This	
  was	
  done	
  to	
  clean	
  the	
  
sample.	
  Then	
  the	
  sample	
  was	
  horizontally	
  fixated	
  with	
  conducting	
  clay.	
  The	
  sample	
  was	
  then	
  examined	
  
with	
  a	
  Hitachi	
  S-­‐3700N	
  scanning	
  electron	
  microscope.	
  The	
  composition	
  in	
  each	
  layer	
  was	
  measured	
  using	
  
the	
  software	
  Brunker	
  Quantax	
  800.	
  Also	
  a	
  picture	
  of	
  each	
  layer	
  was	
  taken	
  with	
  the	
  SEM.	
  Carbon	
  and	
  
nitrogen	
  cannot	
  be	
  measured	
  with	
  this	
  instrument	
  since	
  these	
  elements	
  are	
  too	
  light.	
  
	
  
Figure	
  2.	
  Schaeffler-­‐diagram,	
  phases	
  to	
  be	
  expected	
  in	
  each	
  layer	
  of	
  the	
  weld	
  overlay.	
  [9]	
  
 
	
  
	
   10	
  
Assumptions	
  
The	
  weld	
  overlay	
  consists	
  of	
  several	
  layers	
  that	
  will	
  interact	
  during	
  welding.	
  Whenever	
  a	
  new	
  layer	
  is	
  
added	
  the	
  heat	
  will	
  partially	
  melt	
  the	
  base	
  layer	
  and	
  the	
  two	
  will	
  mix.	
  In	
  this	
  report	
  the	
  mixture	
  is	
  
assumed	
  to	
  be	
  70	
  %-­‐30	
  %	
  between	
  the	
  layers.	
  This	
  means	
  that	
  if	
  material	
  A	
  is	
  welded	
  onto	
  material	
  B	
  the	
  
new	
  layer	
  will	
  consist	
  of	
  70	
  %	
  material	
  A	
  and	
  30	
  %	
  material	
  B.	
  This	
  percentage	
  was	
  used	
  after	
  
recommendations	
  from	
  AREVA	
  NP	
  Uddcomb	
  AB.	
  It	
  is	
  also	
  assumed	
  that	
  the	
  mixture	
  is	
  70	
  %-­‐30	
  %	
  all	
  over	
  
the	
  layer.	
  
The	
  operating	
  temperature	
  for	
  the	
  valve	
  seat	
  in	
  a	
  BWR	
  is	
  about	
  270	
  °C	
  and	
  the	
  calculated	
  worst-­‐case	
  
scenario	
  gives	
  a	
  temperature	
  of	
  about	
  300	
  °C.	
  All	
  tables	
  in	
  this	
  report	
  are	
  calculated	
  at	
  	
  
300	
  °C.	
  The	
  most	
  interesting	
  temperature	
  is	
  the	
  operating	
  temperature	
  since	
  this	
  report	
  is	
  focusing	
  on	
  
long	
  term	
  effects	
  but	
  since	
  the	
  difference	
  between	
  operating	
  and	
  worst	
  case	
  temperature	
  is	
  small	
  and	
  
temperatures	
  are	
  low	
  it	
  is	
  assumed	
  that	
  300	
  °C	
  is	
  representative.	
  During	
  operation	
  the	
  valve	
  seat	
  
experiences	
  a	
  pressure	
  of	
  about	
  69	
  bar	
  and	
  in	
  the	
  worst-­‐case	
  scenario	
  the	
  pressure	
  increases	
  to	
  about	
  80	
  
bar.	
  In	
  this	
  report	
  it	
  is	
  assumed	
  that	
  the	
  pressure	
  does	
  not	
  affect	
  the	
  calculations	
  and	
  all	
  calculations	
  are	
  
done	
  using	
  atmospheric	
  pressure.	
  Calculations	
  using	
  Thermo-­‐Calc	
  with	
  a	
  pressure	
  of	
  80	
  bar	
  were	
  carried	
  
out	
  and	
  there	
  was	
  negligible	
  difference	
  as	
  when	
  carried	
  out	
  with	
  atmospheric	
  pressure.	
  
During	
  the	
  Scheil	
  calculations	
  it	
  was	
  assumed	
  that	
  carbon	
  is	
  fast	
  diffusing.	
  From	
  the	
  Scheil	
  calculations	
  
the	
  composition	
  of	
  the	
  liquid	
  phase	
  were	
  acquired,	
  which	
  was	
  used	
  to	
  create	
  plots	
  of	
  stable	
  phases.	
  The	
  
composition	
  that	
  was	
  used	
  in	
  this	
  report	
  is	
  for	
  the	
  liquid	
  phase	
  when	
  97	
  %	
  of	
  the	
  system	
  is	
  solid.	
  In	
  this	
  
case	
  it	
  is	
  assumed	
  that	
  the	
  diffusion	
  rate	
  will	
  be	
  low	
  and	
  the	
  remaining	
  3	
  %	
  will	
  solidify	
  with	
  another	
  
composition	
  than	
  the	
  rest	
  of	
  the	
  system.	
  This	
  composition	
  is	
  assumed	
  to	
  be	
  a	
  worst-­‐case	
  scenario.	
  	
  
It	
  is	
  taken	
  into	
  account	
  that	
  it	
  is	
  not	
  possible	
  to	
  perform	
  calculations	
  on	
  diffusion	
  free	
  phase	
  
transformations	
  using	
  Thermo-­‐Calc.	
  In	
  this	
  particular	
  case	
  irradiation	
  effects	
  on	
  the	
  weld	
  overlay	
  can	
  be	
  
excluded	
  since	
  the	
  valve	
  seat	
  is	
  situated	
  in	
  an	
  area	
  of	
  the	
  plant	
  with	
  low	
  radiation.	
  This	
  assumption	
  was	
  
made	
  after	
  discussions	
  with	
  AREVA	
  NP	
  Uddcomb	
  AB.	
  
	
   	
  
 
	
  
	
   11	
  
Results	
  and	
  discussion	
  
Sigma	
  phase	
  at	
  300	
  °C	
  
After	
  evaluation	
  of	
  Fig	
  3	
  it	
  can	
  be	
  stated	
  that	
  the	
  sigma	
  phase	
  has	
  no	
  thermodynamic	
  stability	
  at	
  	
  
300	
  °C.	
  Therefore	
  sigma	
  phase	
  will	
  not	
  be	
  precipitated	
  even	
  after	
  long	
  periods	
  of	
  time	
  at	
  300	
  °C.	
  If	
  any	
  
sigma	
  phase	
  is	
  present	
  it	
  has	
  been	
  an	
  effect	
  from	
  the	
  welding	
  thermal	
  cycle	
  but	
  sigma	
  phase	
  precipitate	
  
after	
  long	
  time	
  and	
  welding	
  usually	
  concerns	
  rapid	
  cooling.	
  
	
   	
  
Buffer	
  layer	
   First	
  SKWAM	
  layer	
  
	
   	
  
Second	
  SKWAM	
  layer	
   Third	
  SKWAM	
  layer	
  
Figure	
  3.	
  Amount	
  vs.	
  temperature	
  of	
  all	
  stable	
  phases	
  for	
  all	
  layers. [1]	
  
 
	
  
	
   12	
  
The	
  equilibrium	
  calculations	
  using	
  the	
  composition	
  from	
  Scheil	
  calculations	
  of	
  the	
  third	
  SKWAM	
  layer	
  
when	
  3	
  %	
  melt	
  remains	
  show	
  that	
  sigma	
  phase	
  is	
  thermodynamically	
  stable,	
  as	
  can	
  be	
  seen	
  in	
  Fig	
  4.	
  Even	
  
if	
  the	
  sigma	
  phase	
  would	
  precipitate	
  in	
  this	
  layer	
  the	
  volume	
  of	
  sigma	
  phase	
  would	
  be	
  small	
  considering	
  
the	
  whole	
  sample,	
  also	
  the	
  kinetics	
  of	
  the	
  reaction	
  must	
  be	
  taken	
  in	
  to	
  account	
  since	
  the	
  temperature	
  is	
  
low.	
  
	
   	
  
Buffer	
  layer	
   First	
  SKWAM	
  layer	
  
	
   	
  
Second	
  SKWAM	
  layer	
   Third	
  SKWAM	
  layer	
  
Figure	
  4:	
  Amount	
  vs.	
  temperature	
  of	
  all	
  stable	
  phases	
  for	
  liquid	
  composition	
  in	
  all	
  layers	
  during	
  Scheil	
  
calculations	
  when	
  3	
  %	
  of	
  the	
  system	
  is	
  in	
  liquid	
  phase. [1]	
  
 
	
  
	
   13	
  
Carbides	
  at	
  300	
  °C	
  
The	
  carbon	
  content	
  is	
  decreasing	
  from	
  base	
  material	
  to	
  top	
  layer.	
  At	
  equilibrium	
  the	
  amount	
  of	
  carbides	
  
at	
  300	
  °C	
  follows	
  the	
  carbon	
  content	
  tendency.	
  Carbides	
  M23C6	
  and	
  M6C	
  are	
  both	
  thermodynamically	
  
stable	
  but	
  the	
  total	
  amount	
  of	
  them	
  never	
  surpass	
  1	
  mole%.	
  M23C6	
  and	
  M6C	
  do	
  not	
  seem	
  to	
  coexist	
  in	
  the	
  
same	
  layer	
  at	
  equilibrium.	
  In	
  the	
  buffer	
  layer	
  and	
  the	
  first	
  SKWAM	
  layer	
  M23C6	
  is	
  thermodynamically	
  
stable,	
  for	
  the	
  second	
  and	
  the	
  third	
  SKWAM	
  layers	
  M6C	
  is	
  thermodynamically	
  stable.	
  The	
  equilibrium	
  
calculation	
  using	
  the	
  composition	
  from	
  the	
  Scheil	
  calculations	
  when	
  3	
  %	
  of	
  melt	
  remains	
  shows	
  that	
  all	
  
layers	
  contain	
  a	
  higher	
  amount	
  of	
  carbides,	
  both	
  M23C6	
  and	
  M6C	
  can	
  coexist.	
  The	
  increased	
  
concentration	
  of	
  carbides	
  is	
  an	
  effect	
  of	
  about	
  six	
  time’s	
  higher	
  carbon	
  content.	
  Even	
  though	
  the	
  carbide	
  
content	
  is	
  high	
  in	
  the	
  3	
  %	
  melt	
  the	
  carbide	
  concentration	
  in	
  the	
  whole	
  sample	
  is	
  low.	
  The	
  amount	
  of	
  
carbon	
  and	
  carbides	
  decreases	
  from	
  the	
  base	
  layer	
  to	
  the	
  top	
  layer	
  in	
  the	
  same	
  way	
  as	
  in	
  the	
  calculations	
  
at	
  equilibrium.	
  The	
  opposite	
  is	
  true	
  considering	
  the	
  driving	
  force	
  for	
  precipitation	
  of	
  carbides.	
  The	
  driving	
  
force	
  for	
  carbide	
  precipitation	
  increases	
  from	
  the	
  base	
  layer	
  to	
  the	
  top	
  layer	
  as	
  seen	
  in	
  table	
  2.	
  Even	
  
though	
  carbides	
  are	
  thermodynamically	
  stable	
  at	
  300	
  °C	
  AREVA	
  NP	
  Uddcomb	
  AB	
  has	
  not	
  had	
  any	
  
problem	
  with	
  carbides	
  in	
  the	
  weld	
  overlay.	
  This	
  states	
  that	
  no	
  substantial	
  amount	
  is	
  formed	
  during	
  
welding	
  and	
  that	
  the	
  kinetics	
  is	
  slow	
  at	
  the	
  operating	
  temperature.	
  	
  
Table	
  2:	
  Driving	
  force	
  for	
  precipitation	
  of	
  carbides	
  at	
  300	
  °C	
  for	
  each	
  layer.	
  
	
   Buffer	
  layer	
   1st	
  SKWAM	
  layer	
   2nd	
  SKWAM	
  layer	
   3rd	
  SKWAM	
  layer	
  
M23C6	
   0,045	
   0	
   0	
   3,7	
  
M6C	
   0	
   2,09	
   3,14	
   3,14	
  
	
  
	
   	
  
 
	
  
	
   14	
  
Spinodal	
  decomposition	
  at	
  300	
  °C	
  
Spinodal	
  decomposition	
  is	
  thermodynamically	
  stable	
  at	
  300	
  °C.	
  If	
  the	
  weld	
  overlay	
  reaches	
  equilibrium	
  
Fe-­‐rich	
  BCC	
  and	
  Cr-­‐rich	
  BCC	
  will	
  be	
  dominating	
  phases	
  in	
  all	
  layers	
  which	
  can	
  be	
  seen	
  in	
  Fig	
  3.	
  If	
  the	
  
system	
  reaches	
  equilibrium	
  the	
  absolute	
  majority	
  of	
  the	
  total	
  Cr-­‐content	
  will	
  be	
  in	
  the	
  Cr-­‐rich	
  BCC	
  phase	
  
as	
  can	
  be	
  seen	
  in	
  Fig	
  5.	
  	
  
	
  
Figure	
  5.	
  Weight	
  percentage	
  of	
  total	
  chromium	
  content	
  in	
  α’-­‐ferrite	
  for	
  all	
  layers	
  at	
  300	
  °C	
  when	
  
equilibrium	
  is	
  reached.	
  
	
   	
  
67.7%	
  
77.1%	
   78.2%	
   78.2%	
  
0.0%	
  
20.0%	
  
40.0%	
  
60.0%	
  
80.0%	
  
100.0%	
  
Buffer	
  layer	
   First	
  SKWAM	
  layer	
   Second	
  SKWAM	
  layer	
   Third	
  SKWAM	
  layer	
  
Weight-­‐%	
  of	
  total	
  Cr-­‐content	
  in	
  Cr-­‐rich	
  BCC	
  at	
  equilibrium	
  
for	
  each	
  layer	
  
 
	
  
	
   15	
  
Fig	
  6	
  is	
  displaying	
  the	
  Cr-­‐content	
  in	
  all	
  phases	
  for	
  the	
  different	
  layers.	
  The	
  Cr-­‐content	
  in	
  the	
  Cr-­‐rich	
  BCC	
  is	
  
increasing	
  while	
  decreasing	
  in	
  the	
  Fe-­‐rich	
  BCC.	
  This	
  shows	
  that	
  there	
  is	
  a	
  driving	
  force	
  for	
  spinodal	
  
decomposition	
  as	
  the	
  temperature	
  decreases.	
  	
  
	
   	
  
Buffer	
  layer	
   First	
  SKWAM	
  layer	
  
	
   	
  
Second	
  SKWAM	
  layer	
   Third	
  SKWAM	
  layer	
  
Figure	
  6.	
  Amount	
  of	
  Cr	
  in	
  all	
  stable	
  phases	
  at	
  equilibrium	
  for	
  all	
  layers. [1]	
  
Considering	
  only	
  the	
  thermodynamics	
  the	
  separation	
  between	
  iron	
  and	
  chromium	
  into	
  two	
  different	
  BCC	
  
phases	
  will	
  be	
  greater	
  as	
  temperature	
  decreases.	
  Fig	
  7	
  shows	
  that	
  there	
  is	
  a	
  substantial	
  amount	
  of	
  Cr-­‐
rich	
  BCC	
  in	
  all	
  layers.	
  It	
  also	
  shows	
  that	
  the	
  amount	
  of	
  Cr-­‐rich	
  BCC	
  stays	
  basically	
  the	
  same	
  even	
  though	
  
the	
  total	
  Cr-­‐amount	
  in	
  each	
  layer	
  is	
  decreasing	
  towards	
  the	
  third	
  SKWAM	
  layer.	
  The	
  decreased	
  
 
	
  
	
   16	
  
chromium	
  content	
  in	
  the	
  SKWAM	
  layers	
  is	
  probably	
  compensated	
  by	
  an	
  increased	
  amount	
  of	
  ferrite,	
  
which	
  can	
  decompose.	
  In	
  the	
  buffer	
  layer	
  a	
  large	
  part	
  of	
  the	
  system	
  is	
  austenite.	
  
	
  
Figure	
  7:	
  Amount	
  of	
  Cr-­‐rich	
  and	
  Fe-­‐rich	
  BCC	
  in	
  each	
  layer	
  at	
  equilibrium.	
  
Even	
  though	
  the	
  thermodynamics	
  states	
  that	
  the	
  ferrite	
  should	
  be	
  separated	
  into	
  one	
  Cr-­‐rich	
  and	
  one	
  
Fe-­‐rich	
  phase	
  at	
  300	
  °C	
  the	
  calculations	
  do	
  not	
  consider	
  the	
  kinetics	
  for	
  the	
  reactions.	
  For	
  instance	
  it	
  is	
  
not	
  likely	
  to	
  have	
  spinodal	
  decomposition	
  right	
  after	
  welding	
  since	
  high	
  temperatures	
  under	
  longer	
  
periods	
  of	
  time	
  is	
  required.	
  In	
  reality	
  the	
  reaction	
  for	
  spinodal	
  decomposition	
  is	
  slow	
  and	
  requires	
  
chromium	
  diffusion	
  in	
  solid	
  state.	
  The	
  valve	
  seats	
  within	
  the	
  nuclear	
  plant	
  will	
  be	
  exposed	
  to	
  a	
  somewhat	
  
elevated	
  temperature,	
  270	
  °C	
  under	
  normal	
  circumstances,	
  which	
  will	
  enhance	
  spinodal	
  decomposition	
  
but	
  it	
  still	
  is	
  below	
  the	
  most	
  critical	
  temperatures.	
  The	
  most	
  critical	
  temperature	
  according	
  to	
  literature	
  is	
  
approximately	
  475	
  °C,	
  the	
  reaction	
  rate	
  for	
  spinodal	
  decomposition	
  is	
  highest	
  at	
  this	
  temperature.	
  The	
  
operating	
  temperature	
  for	
  the	
  valve	
  seat	
  is	
  lower	
  than	
  475	
  °C	
  but	
  since	
  nuclear	
  plants	
  run	
  day	
  and	
  night	
  
all	
  year	
  around	
  it	
  will	
  be	
  exposed	
  to	
  this	
  elevated	
  temperature	
  for	
  long	
  periods	
  of	
  time.	
  With	
  all	
  certainty	
  
the	
  kinetics	
  is	
  lower	
  at	
  the	
  operating	
  temperature	
  but	
  since	
  all	
  calculations	
  in	
  this	
  project	
  is	
  done	
  
assuming	
  equilibrium	
  it	
  is	
  not	
  possible	
  to	
  determine	
  the	
  decomposition	
  rate	
  at	
  270	
  °C.	
  
The	
  results	
  from	
  the	
  Scheil	
  calculations	
  are	
  not	
  relevant	
  when	
  talking	
  about	
  spinodal	
  decomposition	
  
since	
  the	
  composition	
  used	
  in	
  calculations	
  only	
  represent	
  the	
  3	
  %	
  of	
  liquid	
  phase	
  remaining.	
  The	
  
composition	
  of	
  the	
  remaining	
  97	
  %	
  that	
  is	
  solidified	
  has	
  almost	
  the	
  same	
  composition	
  as	
  at	
  the	
  original	
  
composition	
  and	
  is	
  assumed	
  to	
  behave	
  the	
  same	
  way.	
  	
  
0,151	
   0,155	
   0,154	
   0,152	
  
0,575	
  
0,785	
  
0,833	
   0,837	
  
0	
  
0,1	
  
0,2	
  
0,3	
  
0,4	
  
0,5	
  
0,6	
  
0,7	
  
0,8	
  
0,9	
  
Buffer	
  layer	
   1st	
  SKWAM	
  layer	
   2nd	
  SKWAM	
  layer	
   3rd	
  SKWAM	
  layer	
  
Cr-­‐rich	
  BCC	
   Fe-­‐rich	
  BCC	
  
 
	
  
	
   17	
  
Comparing	
  layers	
  in	
  the	
  weld	
  overlay	
  
According	
  to	
  Fig	
  7	
  the	
  spinodal	
  decomposition	
  is	
  similar	
  in	
  all	
  SKWAM	
  layers,	
  but	
  the	
  buffer	
  layer	
  differs	
  
and	
  has	
  lower	
  amount	
  of	
  Fe-­‐rich	
  BCC.	
  The	
  main	
  reason	
  that	
  the	
  buffer	
  layer	
  does	
  not	
  contain	
  much	
  Fe-­‐
rich	
  BCC	
  is	
  because	
  there	
  is	
  large	
  amount	
  of	
  austenite	
  present,	
  which	
  does	
  not	
  decompose.	
  Since	
  the	
  Cr-­‐
content	
  is	
  higher	
  in	
  the	
  buffer	
  layer	
  it	
  suggests	
  that	
  the	
  amount	
  of	
  Cr-­‐rich	
  BCC	
  should	
  be	
  higher	
  
compared	
  to	
  the	
  SKWAM	
  layers.	
  But	
  it	
  follows	
  the	
  opposite	
  trend,	
  the	
  buffer	
  layer	
  does	
  contain	
  more	
  
chromium	
  but	
  much	
  of	
  it	
  is	
  found	
  in	
  austenite	
  and	
  other	
  Cr-­‐rich	
  phases.	
  Fig	
  5	
  shows	
  that	
  in	
  the	
  buffer	
  
layer	
  less	
  chromium	
  are	
  absorbed	
  in	
  Cr-­‐rich	
  BCC.	
  In	
  the	
  SKWAM	
  layers	
  lower	
  amount	
  of	
  austenite	
  is	
  
found	
  and	
  other	
  Cr-­‐rich	
  phases	
  are	
  also	
  found	
  in	
  smaller	
  amounts,	
  this	
  result	
  in	
  more	
  BCC.	
  	
  
The	
  general	
  trend	
  for	
  all	
  layers	
  is	
  that	
  Fe-­‐rich	
  BCC	
  is	
  reduced	
  and	
  more	
  Cr-­‐rich	
  BCC	
  is	
  precipitated	
  at	
  
lower	
  temperatures	
  as	
  can	
  be	
  seen	
  in	
  Fig	
  3.	
  
Metallographic	
  examination	
  
In	
  Fig	
  2	
  the	
  composition	
  for	
  each	
  layer	
  is	
  pointed	
  out	
  in	
  a	
  Schaeffler-­‐diagram.	
  In	
  the	
  metallographic	
  
examination	
  no	
  precise	
  determination	
  of	
  the	
  amount	
  of	
  each	
  phase	
  was	
  performed	
  so	
  there	
  can	
  only	
  be	
  
a	
  brief	
  discussion	
  of	
  expected	
  and	
  actual	
  precipitated	
  phases.	
  
• All	
  layers:	
  An	
  overview	
  of	
  all	
  layers	
  in	
  the	
  weld	
  overlay	
  can	
  be	
  seen	
  in	
  Fig	
  8.	
  
	
  
Figure	
  8.	
  All	
  layers.	
  Magnification	
  x12.5.	
  
	
   	
  
 
	
  
	
   18	
  
• Buffer	
  layer	
  1:	
  From	
  Schaeffler-­‐diagram,	
  100	
  %	
  austenite	
  was	
  to	
  be	
  expected	
  and	
  Fig	
  9	
  show	
  that	
  
there	
  is	
  probably	
  a	
  few	
  percent	
  of	
  ferrite	
  present	
  in	
  the	
  sample.	
  
	
  
Figure	
  9.	
  First	
  buffer	
  layer,	
  material	
  309MoL.	
  Magnification	
  x200.	
  
	
  
• Buffer	
  layer	
  2:	
  From	
  Schaeffler-­‐diagram,	
  5	
  %	
  ferrite	
  and	
  95	
  %	
  austenite	
  were	
  to	
  be	
  expected	
  and	
  
Fig	
  10	
  shows	
  that	
  austenite	
  and	
  ferrite	
  are	
  present.	
  The	
  two	
  buffer	
  layers	
  has	
  approximately	
  
same	
  ratio	
  between	
  austenite	
  and	
  ferrite.	
  
	
  
Figure	
  10.	
  Second	
  buffer	
  layer,	
  material	
  309MoL.	
  Magnification	
  x200.	
  
	
  
White areas:
Dendrite of austenite
Dark areas:
Ferrite
Dark areas:
Primary
precipitation
of ferrite
White areas:
Dendrites of
austenite
 
	
  
	
   19	
  
• SKWAM	
  layer	
  1:	
  From	
  Schaeffler-­‐diagram,	
  a	
  mixture	
  of	
  austenite,	
  ferrite	
  and	
  martensite	
  with	
  
approximately	
  80	
  %	
  ferrite	
  can	
  be	
  expected.	
  The	
  ratio	
  is	
  hard	
  to	
  determine	
  from	
  Fig	
  11	
  but	
  it	
  is	
  
clear	
  that	
  ferrite,	
  austenite	
  and	
  martensite	
  is	
  present.	
  Ferrite	
  seems	
  to	
  be	
  the	
  dominating	
  phase.	
  
	
  
Figure	
  11.	
  First	
  SKWAM	
  layer.	
  Magnification	
  x500.	
  
	
  
• SKWAM	
  layer	
  2:	
  From	
  Schaeffler-­‐diagram,	
  only	
  ferrite	
  should	
  be	
  present.	
  Fig	
  12	
  shows	
  that	
  there	
  
are	
  three	
  phases	
  present,	
  ferrite,	
  austenite	
  and	
  martensite.	
  Ferrite	
  is	
  the	
  dominating	
  phase.	
  
	
  
Figure	
  12.	
  Second	
  SKWAM	
  layer.	
  Magnification	
  x100.	
  
	
  
White areas:
Ferrite
Grey areas:
Dendrites of
Austenite
Dark areas:
Martensite
White area:
Ferrite
Grey/Dark area:
Martensite and
austenite
 
	
  
	
   20	
  
15,05	
  
19,57	
  
17,77	
   17,23	
  
9,29	
  
17,71	
   17,16	
   16,96	
  
Calculated	
  wt%	
  Cr	
  in	
  each	
  layer	
   SEM	
  valvue	
  of	
  wt%	
  Cr	
  in	
  each	
  layer	
  
	
  	
  	
  Buffer	
  layer	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SKWAM	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SKWAM	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SKWAM	
  3	
  
	
  	
  	
  	
  	
  
Martensite	
  is	
  present	
  in	
  all	
  SKWAM	
  layers	
  as	
  seen	
  in	
  Fig	
  11	
  and	
  12.	
  It	
  is	
  not	
  possible	
  to	
  see	
  martensite	
  in	
  
the	
  Thermo-­‐Calc	
  calculations	
  since	
  it	
  is	
  not	
  thermodynamically	
  stable	
  but	
  if	
  precipitated	
  the	
  
decomposition	
  is	
  slow.	
  Martensite	
  is	
  an	
  effect	
  of	
  welding	
  and	
  rapid	
  cooling	
  from	
  the	
  austenitic	
  region.	
  
During	
  operation	
  in	
  the	
  nuclear	
  plant	
  more	
  martensite	
  will	
  not	
  form	
  in	
  the	
  SKWAM	
  layers	
  since	
  rapid	
  
cooling	
  from	
  high	
  temperatures	
  is	
  required	
  to	
  form	
  martensite.	
  In	
  this	
  case	
  the	
  valve	
  seat	
  will	
  be	
  
exposed	
  to	
  a	
  somewhat	
  elevated	
  temperature	
  for	
  a	
  long	
  time	
  but	
  not	
  high	
  enough.	
  
Fig	
  13	
  shows	
  that	
  the	
  assumption	
  of	
  a	
  70	
  %-­‐30	
  %	
  mixture	
  is	
  quite	
  accurate	
  for	
  the	
  chromium	
  content	
  in	
  
each	
  layer.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  13.	
  Calculated	
  wt%	
  chromium	
  with	
  70	
  %-­‐30	
  %	
  mixture	
  in	
  each	
  layer	
  of	
  the	
  examined	
  sample	
  and	
  
measured	
  wt%	
  chromium	
  from	
  SEM.	
  
	
   	
  
 
	
  
	
   21	
  
The	
  calculated	
  values	
  and	
  the	
  values	
  measured	
  with	
  SEM	
  for	
  all	
  elements	
  are	
  summarized	
  in	
  table	
  3.	
  
Table	
  3:	
  Calculated	
  values	
  from	
  70	
  %-­‐30	
  %	
  mixture	
  and	
  composition	
  of	
  elements	
  using	
  SEM.	
  
	
   Fe	
   Si	
   Mn	
   Cr	
   Ni	
   Mo	
  
Buffer	
  layer	
  1	
  	
  
calculated	
  
70,47	
   0,47	
   1,53	
   15,05	
   10,5	
   1,89	
  
Buffer	
  layer	
  1	
  
from	
  SEM	
  
82,07	
   0,18	
   1,06	
   9,29	
   6,65	
   0,76	
  
Buffer	
  layer	
  2	
  	
  
calculated	
  
62,32	
   0,45	
   1,51	
   19,57	
   13,65	
   2,46	
  
Buffer	
  layer	
  2	
  
from	
  SEM	
  
66,22	
   0,3	
   1,47	
   17,71	
   11,55	
   2,67	
  
SKWAM	
  layer	
  1	
  
calculated	
  
75,03	
   0,63	
   0,94	
   17,77	
   4,1	
   1,51	
  
SKWAM	
  layer	
  1	
  
from	
  SEM	
  
72,66	
   0,33	
   0,84	
   17,16	
   7,4	
   1,55	
  
SKWAM	
  layer	
  2	
  
calculated	
  
78,85	
   0,68	
   0,77	
   17,23	
   1,23	
   1,22	
  
SKWAM	
  layer	
  2	
  
from	
  SEM	
  
78,91	
   0,45	
   0,6	
   16,96	
   2,04	
   0,95	
  
Sources	
  of	
  error	
  
The	
  mixture	
  between	
  layers	
  in	
  the	
  weld	
  overlay	
  was	
  assumed	
  to	
  be	
  exactly	
  70	
  %-­‐30	
  %	
  mixture.	
  It	
  is	
  
unreasonable	
  that	
  the	
  mixture	
  is	
  exactly	
  70	
  %-­‐30	
  %	
  in	
  the	
  whole	
  layer.	
  Reasonable	
  is	
  that	
  the	
  area	
  
closest	
  to	
  the	
  layer	
  beneath	
  is	
  more	
  mixed	
  than	
  at	
  the	
  top	
  of	
  the	
  new	
  layer,	
  as	
  a	
  gradient.	
  
During	
  Scheil	
  calculations	
  it	
  was	
  assumed	
  that	
  the	
  melt	
  segregates	
  until	
  3	
  %	
  of	
  the	
  melt	
  is	
  remaining.	
  
When	
  the	
  3	
  %	
  melt	
  remains	
  calculations	
  were	
  aborted	
  because	
  otherwise	
  temperature	
  of	
  solidification	
  
would	
  be	
  unrealistically	
  low.	
  3	
  %	
  melt	
  were	
  discussed	
  with	
  our	
  supervisors	
  and	
  it	
  was	
  decided	
  that	
  it	
  was	
  
a	
  reasonable	
  amount.	
  This	
  was	
  thought	
  to	
  be	
  a	
  worst	
  case	
  scenario	
  for	
  the	
  weld	
  overlays	
  composition.	
  	
  
When	
  the	
  Scheil	
  calculations	
  were	
  performed	
  carbon	
  was	
  assumed	
  to	
  be	
  a	
  fast	
  diffusing	
  element	
  
because	
  of	
  its	
  small	
  size.	
  Since	
  nitrogen	
  has	
  approximately	
  the	
  same	
  size	
  as	
  carbon	
  it	
  is	
  possible	
  that	
  it	
  
also	
  should	
  have	
  been	
  considered	
  to	
  be	
  fast	
  diffusing.	
  
All	
  calculations	
  in	
  Thermo-­‐Calc	
  were	
  done	
  with	
  the	
  constitution	
  of	
  three	
  SKWAM	
  layers	
  and	
  one	
  buffer	
  
layer.	
  Unfortunately	
  the	
  samples	
  from	
  AREVA	
  NP	
  Uddcomb	
  AB	
  consisted	
  of	
  two	
  SKWAM	
  layers	
  and	
  two	
  
buffer	
  layers.	
  Also	
  the	
  base	
  material	
  was	
  carbon	
  steel	
  instead	
  of	
  stainless	
  steel	
  type	
  316.	
  This	
  makes	
  the	
  
comparison	
  between	
  the	
  calculations	
  and	
  the	
  samples	
  less	
  meaningful.	
  
The	
  samples	
  from	
  AREVA	
  NP	
  Uddcomb	
  AB	
  have	
  not	
  been	
  in	
  operation	
  in	
  a	
  nuclear	
  plant.	
  Comparing	
  
samples	
  with	
  the	
  calculations	
  makes	
  them	
  less	
  accurate	
  since	
  calculations	
  are	
  focusing	
  on	
  long-­‐term	
  
effect	
  due	
  to	
  an	
  elevated	
  temperature.	
  The	
  samples	
  only	
  show	
  the	
  structure	
  right	
  after	
  welding.	
  
 
	
  
	
   22	
  
Conclusions	
  
The	
  method	
  was	
  to	
  perform	
  equilibrium	
  calculations	
  using	
  Thermo-­‐Calc	
  to	
  gain	
  information	
  on	
  which	
  
phases	
  that	
  are	
  present	
  in	
  the	
  different	
  layers	
  of	
  this	
  particular	
  weld	
  overlay.	
  A	
  metallographic	
  
examination	
  was	
  carried	
  out	
  to	
  compare	
  the	
  calculations	
  with	
  the	
  samples.	
  One	
  shortcoming	
  in	
  this	
  
project	
  was	
  that	
  the	
  sample	
  that	
  was	
  examined	
  has	
  not	
  been	
  in	
  operation	
  and	
  because	
  of	
  that	
  no	
  long-­‐
term	
  effects	
  could	
  be	
  observed.	
  One	
  way	
  to	
  improve	
  the	
  method	
  would	
  be	
  to	
  use	
  a	
  sample	
  that	
  had	
  
been	
  in	
  operation.	
  During	
  the	
  metallographic	
  examination	
  martensite	
  was	
  observed	
  in	
  the	
  SKWAM	
  
layers.	
  This	
  was	
  assumed	
  to	
  be	
  an	
  effect	
  from	
  welding	
  and	
  is	
  not	
  possible	
  to	
  predict	
  using	
  Thermo-­‐Calc.	
  
Since	
  martensite	
  will	
  influence	
  the	
  mechanical	
  properties	
  of	
  the	
  valve	
  seat	
  an	
  improvement	
  would	
  be	
  to	
  
find	
  a	
  way	
  to	
  predict	
  the	
  amount	
  of	
  martensite	
  formed.	
  
Among	
  the	
  thermodynamic	
  effects	
  that	
  occur	
  after	
  long	
  time	
  exposure	
  to	
  the	
  operating	
  temperature	
  
spinodal	
  decomposition	
  seems	
  to	
  be	
  the	
  most	
  severe.	
  At	
  equilibrium	
  the	
  spinodal	
  decomposition	
  is	
  
extensive	
  but	
  in	
  the	
  calculations	
  performed	
  in	
  Thermo-­‐Calc	
  the	
  kinetics	
  was	
  not	
  considered.	
  This	
  is	
  a	
  
shortcoming	
  with	
  the	
  method	
  and	
  to	
  get	
  more	
  accurate	
  results	
  kinetic	
  calculations	
  should	
  be	
  performed.	
  
For	
  example	
  if	
  the	
  kinetics	
  for	
  the	
  spinodal	
  decomposition	
  at	
  the	
  operating	
  temperature	
  is	
  slow	
  this	
  
might	
  not	
  be	
  a	
  problem	
  but	
  it	
  can	
  have	
  large	
  impact	
  on	
  the	
  mechanical	
  properties	
  if	
  the	
  kinetics	
  is	
  fast.	
  
The	
  chromium	
  composition	
  is	
  crucial	
  for	
  the	
  spinodal	
  decomposition	
  since	
  it	
  is	
  depending	
  on	
  chromium	
  
diffusion.	
  By	
  using	
  SEM	
  the	
  calculated	
  wt%	
  of	
  chromium	
  in	
  each	
  layer	
  could	
  be	
  controlled.	
  Fig	
  13	
  shows	
  
that	
  the	
  approximation	
  is	
  good	
  when	
  the	
  composition	
  between	
  layers	
  is	
  similar	
  but	
  between	
  the	
  carbon	
  
steel	
  and	
  the	
  highly	
  alloyed	
  buffer	
  layer	
  the	
  difference	
  is	
  large.	
  
The	
  method	
  also	
  offers	
  some	
  advantages.	
  Phases	
  that	
  do	
  not	
  exist	
  in	
  the	
  weld	
  overlay	
  after	
  welding	
  can	
  
be	
  disregarded	
  if	
  they	
  are	
  not	
  thermodynamically	
  stable	
  at	
  the	
  operation	
  temperature.	
  For	
  example	
  the	
  
sigma	
  phase	
  will	
  not	
  be	
  a	
  problem	
  in	
  this	
  case	
  since	
  it	
  is	
  not	
  stable	
  at	
  the	
  operating	
  temperature	
  
according	
  to	
  Fig	
  3	
  and	
  was	
  not	
  detected	
  in	
  the	
  samples.	
  Using	
  this	
  method	
  it	
  is	
  possible	
  to	
  exclude	
  
several	
  phases	
  but	
  not	
  to	
  get	
  an	
  exact	
  result.	
  The	
  most	
  important	
  improvement	
  in	
  this	
  case	
  would	
  be	
  to	
  
learn	
  more	
  about	
  the	
  kinetics	
  for	
  spinodal	
  decomposition	
  at	
  the	
  operating	
  temperature.	
  
Acknowledgements	
  
Thanks	
  for	
  all	
  help	
  and	
  support	
  from	
  supervisors’	
  professor	
  Malin	
  Selleby	
  and	
  PhD	
  Sten	
  Wessman	
  at	
  
Dept.	
  of	
  Material	
  Science	
  and	
  Engineering	
  at	
  KTH.	
  Thanks	
  to	
  Wenli	
  Long	
  for	
  your	
  help	
  with	
  SEM.	
  For	
  
helping	
  us	
  with	
  the	
  preparation	
  of	
  the	
  samples	
  thanks	
  to	
  Ian	
  Patterson	
  and	
  Jonas	
  Guldbrandsson	
  for	
  
demonstrating	
  welding	
  procedure	
  at	
  AREVA	
  NP	
  Uddcomb	
  AB.	
  Most	
  of	
  all	
  thanks	
  to	
  Tomislav	
  Buzancic	
  for	
  
assigning	
  us	
  this	
  project,	
  support	
  and	
  the	
  field	
  trip	
  to	
  AREVA	
  NP	
  Uddcomb	
  office	
  in	
  Karlskrona.	
  
 
	
  
	
   23	
  
References	
  
[1]	
  Thomas	
  Helander,	
  Lars	
  Höglund,	
  Pingfang	
  Shi,	
  Bo	
  Sundman	
  J-­‐O	
  Andersson,	
  "THERMO-­‐CALC	
  &	
  DICTRA,	
  
Computational	
  Tools	
  For	
  Materials	
  Science,"	
  Calphad,	
  vol.	
  26,	
  pp.	
  273-­‐312,	
  2002.	
  
[2]	
  John	
  C.	
  Lippold	
  and	
  Damian	
  J	
  Kotecki,	
  Welding	
  metallurgy	
  and	
  weldability	
  of	
  stainless	
  steels.	
  
Hoboken,	
  NJ,	
  USA:	
  John	
  Wiley,	
  2005.	
  
[3]	
  Chih-­‐Chun	
  Hsieh	
  and	
  Weite	
  Wu,	
  "Overview	
  of	
  Intermetallic	
  sigma	
  phase	
  precipitation	
  in	
  stainless	
  
steels,"	
  ISRN	
  Metallurgy,	
  vol.	
  2012,	
  january	
  2012.	
  
[4]	
  T.H.	
  Chen	
  and	
  J.R.	
  Yang,	
  "Effects	
  of	
  solution	
  treatment	
  and	
  continuous	
  cooling	
  on	
  sigma-­‐phase	
  
precipitation	
  in	
  a	
  2205	
  duplex	
  stainless	
  steel,"	
  Materials	
  science	
  and	
  engineering,	
  vol.	
  311,	
  2000.	
  
[5]	
  Erich	
  Folkhard,	
  Welding	
  metallurgy	
  of	
  stainless	
  steels.	
  Wien,	
  Austria:	
  Spinger-­‐Verlag,	
  1988.	
  
[6]	
  J.K.	
  Sahu,	
  U.	
  Krupp,	
  R.N.	
  Ghosh,	
  and	
  H.J.	
  Christ,	
  "Effect	
  of	
  475	
  °C	
  embrittlement	
  on	
  the	
  mechanical	
  
properties	
  of	
  duplex	
  stainless	
  steels,"	
  Materials	
  science	
  and	
  engineering,	
  vol.	
  508,	
  pp.	
  1-­‐14,	
  january	
  
2009.	
  
[8]	
  Kobe	
  Steel,	
  LTD,	
  Arc	
  welding	
  of	
  specific	
  steels	
  and	
  cast	
  irons,	
  4th	
  ed.	
  Tokyo,	
  Japan:	
  Kobe	
  steel,	
  LTD,	
  
2011.	
  
[7]	
  K.H.	
  Lo,	
  C.H.	
  Shek,	
  and	
  J.K.L.	
  Lai,	
  "Recent	
  development	
  in	
  stainless	
  steels,"	
  Physics	
  and	
  Materials	
  
Science,	
  City	
  University	
  of	
  Hong	
  Kong,	
  april	
  26,	
  2009.	
  
[9]	
  Schaeffler,	
  Welding	
  journal,	
  1947.	
  
	
  

More Related Content

What's hot

EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...msejjournal
 
Cost reduction in melting-A SQC & 6Sigma Approach
Cost reduction in melting-A SQC & 6Sigma ApproachCost reduction in melting-A SQC & 6Sigma Approach
Cost reduction in melting-A SQC & 6Sigma ApproachArun Sadvi
 
The effects of heat input and interpass temperature on the microstructure of ...
The effects of heat input and interpass temperature on the microstructure of ...The effects of heat input and interpass temperature on the microstructure of ...
The effects of heat input and interpass temperature on the microstructure of ...Mark Keeler
 
Dispersion strengthening of metals
Dispersion strengthening of metalsDispersion strengthening of metals
Dispersion strengthening of metalsDarshan Shah
 
Advanced metaullrgy final welding
Advanced metaullrgy final weldingAdvanced metaullrgy final welding
Advanced metaullrgy final weldingAhmed Awad
 
flame hardening on low carbon steel
flame hardening on low carbon steelflame hardening on low carbon steel
flame hardening on low carbon steelMani Deep
 
Phase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsPhase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsExplosion Cladding
 
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...RAMASUBBU VELAYUTHAM
 
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...Dave Palmer, P.E.
 
Project 2- Overaging of Al 7075
Project 2-  Overaging of Al 7075Project 2-  Overaging of Al 7075
Project 2- Overaging of Al 7075Siddhesh Sawant
 
Induction Hardening of Gears and Sprockets
Induction Hardening of Gears and SprocketsInduction Hardening of Gears and Sprockets
Induction Hardening of Gears and SprocketsFluxtrol Inc.
 
Avoiding defects in stainles steel welding
Avoiding defects in stainles steel weldingAvoiding defects in stainles steel welding
Avoiding defects in stainles steel weldingShahid Karim
 
Heat treatment
Heat treatment Heat treatment
Heat treatment knowledge
 
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEEL
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEELSTUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEEL
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEELAkhil Raj U R
 
Duplex welding
Duplex weldingDuplex welding
Duplex weldingJames Gray
 

What's hot (20)

EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
 
Cost reduction in melting-A SQC & 6Sigma Approach
Cost reduction in melting-A SQC & 6Sigma ApproachCost reduction in melting-A SQC & 6Sigma Approach
Cost reduction in melting-A SQC & 6Sigma Approach
 
The effects of heat input and interpass temperature on the microstructure of ...
The effects of heat input and interpass temperature on the microstructure of ...The effects of heat input and interpass temperature on the microstructure of ...
The effects of heat input and interpass temperature on the microstructure of ...
 
Dispersion strengthening of metals
Dispersion strengthening of metalsDispersion strengthening of metals
Dispersion strengthening of metals
 
Annealing (sobi)
Annealing (sobi)Annealing (sobi)
Annealing (sobi)
 
Heat treatments
Heat treatmentsHeat treatments
Heat treatments
 
Advanced metaullrgy final welding
Advanced metaullrgy final weldingAdvanced metaullrgy final welding
Advanced metaullrgy final welding
 
flame hardening on low carbon steel
flame hardening on low carbon steelflame hardening on low carbon steel
flame hardening on low carbon steel
 
Phase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of MetalsPhase Diagram & Heat Treatment Of Metals
Phase Diagram & Heat Treatment Of Metals
 
L 08
L 08L 08
L 08
 
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...
Experience in In-Situ Repair Welding of Steam Turbine Shrouds and Blades by S...
 
NATALINO
NATALINONATALINO
NATALINO
 
Project2Report.docx
Project2Report.docxProject2Report.docx
Project2Report.docx
 
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatig...
 
Project 2- Overaging of Al 7075
Project 2-  Overaging of Al 7075Project 2-  Overaging of Al 7075
Project 2- Overaging of Al 7075
 
Induction Hardening of Gears and Sprockets
Induction Hardening of Gears and SprocketsInduction Hardening of Gears and Sprockets
Induction Hardening of Gears and Sprockets
 
Avoiding defects in stainles steel welding
Avoiding defects in stainles steel weldingAvoiding defects in stainles steel welding
Avoiding defects in stainles steel welding
 
Heat treatment
Heat treatment Heat treatment
Heat treatment
 
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEEL
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEELSTUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEEL
STUDY OF MICRO STRUCTURE OF HEAT TREATED EN8 STEEL
 
Duplex welding
Duplex weldingDuplex welding
Duplex welding
 

Similar to FULLTEXT01

1 s2.0-s2214785319313859-main
1 s2.0-s2214785319313859-main1 s2.0-s2214785319313859-main
1 s2.0-s2214785319313859-mainPRAWEEN KUMAR
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysIJERA Editor
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysIJERA Editor
 
Repair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRepair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRAMASUBBU VELAYUTHAM
 
Repair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRepair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRAMASUBBU VELAYUTHAM
 
Copper-nickel Welding
Copper-nickel WeldingCopper-nickel Welding
Copper-nickel WeldingNelson Loi
 
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...Effect of dilution on microstructure and hardness of a nickel-base hardfacing...
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...RAMASUBBU VELAYUTHAM
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionIRJET Journal
 
Evaluation of and Fracture Behavior of Alloy 90 Sheets
Evaluation of and Fracture Behavior of Alloy 90 SheetsEvaluation of and Fracture Behavior of Alloy 90 Sheets
Evaluation of and Fracture Behavior of Alloy 90 SheetsIOSR Journals
 
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...RAMASUBBU VELAYUTHAM
 
A study on the application of modern corrosion resistant alloys in the upstre...
A study on the application of modern corrosion resistant alloys in the upstre...A study on the application of modern corrosion resistant alloys in the upstre...
A study on the application of modern corrosion resistant alloys in the upstre...Kukuh Wanengkirtyo
 
IRJET- Effect of Soft Annealing on Copper, Brass and Gunmetal
IRJET- Effect of Soft Annealing on Copper, Brass and GunmetalIRJET- Effect of Soft Annealing on Copper, Brass and Gunmetal
IRJET- Effect of Soft Annealing on Copper, Brass and GunmetalIRJET Journal
 
a survey on gas metal arc welding (gmaw) review
a survey on gas metal arc welding (gmaw) reviewa survey on gas metal arc welding (gmaw) review
a survey on gas metal arc welding (gmaw) reviewNEERAJKUMAR1898
 

Similar to FULLTEXT01 (20)

Ijetr021265
Ijetr021265Ijetr021265
Ijetr021265
 
1 s2.0-s2214785319313859-main
1 s2.0-s2214785319313859-main1 s2.0-s2214785319313859-main
1 s2.0-s2214785319313859-main
 
Oz3426202627
Oz3426202627Oz3426202627
Oz3426202627
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloys
 
Study on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloysStudy on hardening mechanisms in aluminium alloys
Study on hardening mechanisms in aluminium alloys
 
Repair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRepair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and blades
 
Repair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and bladesRepair welding of steam turbine shrouds and blades
Repair welding of steam turbine shrouds and blades
 
Copper-nickel Welding
Copper-nickel WeldingCopper-nickel Welding
Copper-nickel Welding
 
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...Effect of dilution on microstructure and hardness of a nickel-base hardfacing...
Effect of dilution on microstructure and hardness of a nickel-base hardfacing...
 
Improving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co AdditionImproving the properties of Ni-Based Alloys by Co Addition
Improving the properties of Ni-Based Alloys by Co Addition
 
Evaluation of and Fracture Behavior of Alloy 90 Sheets
Evaluation of and Fracture Behavior of Alloy 90 SheetsEvaluation of and Fracture Behavior of Alloy 90 Sheets
Evaluation of and Fracture Behavior of Alloy 90 Sheets
 
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...
A Differential Scanning Calorimetry (DSC) study of welding consumables for mo...
 
Austenitics
AusteniticsAustenitics
Austenitics
 
A study on the application of modern corrosion resistant alloys in the upstre...
A study on the application of modern corrosion resistant alloys in the upstre...A study on the application of modern corrosion resistant alloys in the upstre...
A study on the application of modern corrosion resistant alloys in the upstre...
 
Metallurgical and mechanical behavior of brazed thin alloys sheets assemblies
Metallurgical and mechanical behavior of brazed thin alloys sheets assembliesMetallurgical and mechanical behavior of brazed thin alloys sheets assemblies
Metallurgical and mechanical behavior of brazed thin alloys sheets assemblies
 
Ijmet 06 07_008
Ijmet 06 07_008Ijmet 06 07_008
Ijmet 06 07_008
 
Ijmet 06 07_008
Ijmet 06 07_008Ijmet 06 07_008
Ijmet 06 07_008
 
IRJET- Effect of Soft Annealing on Copper, Brass and Gunmetal
IRJET- Effect of Soft Annealing on Copper, Brass and GunmetalIRJET- Effect of Soft Annealing on Copper, Brass and Gunmetal
IRJET- Effect of Soft Annealing on Copper, Brass and Gunmetal
 
Aceros avanzados .pptx
Aceros avanzados .pptxAceros avanzados .pptx
Aceros avanzados .pptx
 
a survey on gas metal arc welding (gmaw) review
a survey on gas metal arc welding (gmaw) reviewa survey on gas metal arc welding (gmaw) review
a survey on gas metal arc welding (gmaw) review
 

FULLTEXT01

  • 1.   Report number: 1-FSFT       Evaluation of phase relations in weld overlays of 316, 309MoL and SKWAM Fredrik Stenarson Fritjof Tibblin Supervisors: Professor Malin Selleby, Tomislav Buzancic and PhD Sten Wessman       2013 Dept. of Material Science and Engineering Royal Institute of Technology Stockholm, Sweden
  • 2.       2   Abstract   AREVA  NP  Uddcomb  AB  wants  to  replace  the  material  used  for  a  specific  valve  seat  used  in  boiling  water   reactors,  BWR.  Their  solution  is  a  weld  overlay  of  different  stainless  steels  composed  of  two  buffer  layers   of  the  steel  309  MoL  followed  by  two  layers  of  the  filler  material  SKWAM  welded  on  type  316  stainless   steel  or  carbon  steel.  The  report  focuses  on  the  long  term  structural  effects  in  the  weld  overlay  due  to   the  operating  temperature  in  BWRs,  in  this  case  270  °C.  To  investigate  the  thermodynamic  stability  in  the   weld  overlay  the  computer  software  Thermo-­‐Calc  was  used  and  a  metallographic  examination  was   carried  out.  The  results  from  these  procedures  were  compared  and  possible  long  term  effects  were   discussed.  Most  likely  spinodal  decomposition  is  the  most  severe  structural  change  that  may  appear  in   the  material.  At  equilibrium  conditions  at  the  operating  temperature  ferrite  is  decomposed  into  Fe-­‐rich   and  Cr-­‐rich  ferrite  but  since  the  kinetics  is  not  included  in  the  calculations  it  is  not  possible  to  determine   the  rate  of  decomposition.   Keywords:  SKWAM,  316,  309MoL,  475°C  embrittlement,  spinodal  decomposition,  intermetallic  phase,   welding  filler  material,  Thermo-­‐Calc,  stainless  steel,  thermodynamic  stability.      
  • 3.       3   Table  of  Contents   Abstract  .........................................................................................................................................................  2   Introduction  ..................................................................................................................................................  4   Background  ...................................................................................................................................................  5   Materials  ...................................................................................................................................................  5   Austenitic  stainless  steels  .....................................................................................................................  5   Ferritic  stainless  steels  ..........................................................................................................................  5   Sigma  phase  ..............................................................................................................................................  5   475  °C  embrittlement  ...............................................................................................................................  6   Carbides  ....................................................................................................................................................  8   Computations  and  experiments  ....................................................................................................................  8   Thermo-­‐Calc  calculations  ..........................................................................................................................  8   Metallographic  examination  .....................................................................................................................  9   Light  optical  microscope  .......................................................................................................................  9   Scanning  electron  microscope,  SEM  .....................................................................................................  9   Assumptions  ............................................................................................................................................  10   Results  and  discussion  ................................................................................................................................  11   Sigma  phase  at  300  °C  .............................................................................................................................  11   Carbides  at  300  °C  ...................................................................................................................................  13   Spinodal  decomposition  at  300  °C  ..........................................................................................................  14   Comparing  layers  in  the  weld  overlay  .................................................................................................  17   Metallographic  examination  ...................................................................................................................  17   Sources  of  error  ......................................................................................................................................  21   Conclusions  .................................................................................................................................................  22   Acknowledgements  .....................................................................................................................................  22   References  ..................................................................................................................................................  23        
  • 4.       4   Introduction   Cobalt  based  Stellite  alloys,  have  traditionally  been  used  as  hard  facing  materials  for  nuclear  plant  valves   (mainly  gate  valves)  owing  to  their  high  corrosion  resistance  and  superior  wear  resistance  under  sliding   conditions.  However,  the  need  to  avoid  the  use  of  Stellite  alloys  has  emerged  since  they  are  the  main   source  of  cobalt,  which  is  the  largest  contributor  to  the  occupational  radiation  exposure.  Isotope   cobolt59 ,  which  may  be  released  from  cobalt  containing  surfaces  in  the  form  of  wear  and  corrosion   products,  is  transported  to  the  reactor  vessel  where  it  is  activated  to  the  radioactive  isotope  cobalt60  by   neutron  capture  in  the  fission  process.  In  the  light  of  these  findings  and  as  a  most  effective  way  to   reduce  cobalt  contamination,  many  cobalt-­‐free  hard  facing  alloys,  such  as  iron-­‐based  and  nickel-­‐based   alloys,  have  been  developed  in  order  to  replace  Stellite.  After  annual  routine  testing  of  the  BWRs  security   system,  cracks  were  detected  in  manually  welded  valve  seats.  An  investigation  took  its  start  to  find  a   new  material  combination  with  better  resistance  against  crack  formation.  Repeatedly  welding   maintenances  were  done  but  every  year  new  cracks  were  detected.  Under  normal  conditions  the  valve   seats  are  exposed  to  69  bar  and  270  °C  and  in  worst-­‐case  scenarios  80  bar  and  300  °C.   The  old  weld  overlay  consisted  of  SKWAM  welded  directly  on  carbon  steel.  In  this  case  the  structure   probably  gets  completely  martensitic  and  therefore  brittle.  The  new  material  combination  that  is  under   consideration  is  done  with  mechanized  welding  consist  of  a  base  material  of  type  316  covered  with   309MoL  and  a  few  layers  of  the  filler  material  SKWAM.  All  compositions  including  Stellite  6  can  be  found   in  table  1.  Type  316  and  309MoL  are  primarily  austenitic  and  SKWAM  is  predominantly  ferritic.  They  are   all  stainless  steels  and  are  highly  alloyed  with  chromium  and  none  of  them  contains  cobalt.  When  joining   these  grades  there  will  be  a  mixing  between  the  materials  and  new  phases  may  occur  that  can  cause   problems.   Table  1:  Composition  of  used  materials  in  wt%   Element   Carbon  steel   316   309MoL   SKWAM   Stellite  6   Fe   97.65   65.495   58.83   80.48   0   C   0.25   0.08   0.02   0.02   1.2   Si   0.5   0.75   0.45   0.7   0   Mn   1.6   2   1.5   0.7   0   Cr   0   17   21.5   17   30   Ni   0   12   15   0   0   Mo   0   2.5   2.7   1.1   0   S   0   0.03   0   0   0   P   0   0.045   0   0   0   N   0   0.1   0   0   0   Co   0   0   0   0   63.8   W   0   0   0   0   5        
  • 5.       5   In  this  project  the  thermodynamic  stability  of  the  weld  overlay  was  investigated  with  Thermo-­‐Calc  a   software  for  equilibrium  calculations  [1],  metallographic  examination  of  weld  overlay  was  performed   and  possible  upcoming  phases  and  problems  that  may  occur  in  the  future  after  long  operation  times   were  discussed.  Evaluation  of  thermodynamic  stability  was  focused  on  different  compositions  depending   on  cooling  conditions,  which  phases  were  to  be  expected  after  long  periods  of  time  and  how  chromium   is  distributed  in  the  different  phases.  Metallographic  examination  was  made  with  focus  on  determining   the  phases  in  the  overlay  and  comparing  with  thermodynamic  calculations.   Background   Materials   The  materials  of  interest  are  309MoL,  316  and  SKWAM  which  are  all  stainless  steels.  SKWAM  is  a  product   name  and  the  others  are  material  groups.  309MoL  and  316  are  both  austenitic  steels  while  SKWAM  is   ferritic-­‐martensitic.     Austenitic  stainless  steels   Austenitic  stainless  steels  are  the  most  produced  and  largest  category  of  stainless  steels.  Generally   austenitic  steels  have  good  mechanical  properties  such  as  high  toughness  and  ductility.  The  corrosion   resistance  is  good  in  most  environments  but  decreases  when  exposed  to  elevated  temperatures,  the   maximum  service  temperature  is  approximately  760  °C.  The  austenite  phase  is  promoted  by  addition  of   nickel,  carbon,  nitrogen  and  manganese  where  the  most  important  addition  is  nickel.  Austenitic  stainless   steels  generally  contain  about  8-­‐20  wt%  nickel  but  some  austenitic  stainless  steels  are  free  of  nickel.  In   this  case  nickel  is  replaced  with  manganese  and  nitrogen.  Austenitic  stainless  steels  are  used  in  a  series   of  applications,  most  of  them  at  low  temperatures,  such  as  structural  support,  kitchen  equipment  and   medical  products.  Austenitic  stainless  steel  is  considered  to  have  good  weldability  [2].   Ferritic  stainless  steels   Ferritic  stainless  steels  consist  mainly  of  ferrite  phase.  Ferritic  stainless  steels  generally  have  better   corrosion  resistance  compared  to  austenitic  stainless  steels  but  do  not  have  as  good  mechanical   properties.  The  corrosion  resistance  does  not  depend  on  the  ferritic  phase  but  rather  the  chromium  and   molybdenum  content.  Ferritic  stainless  steels  are  used  for  applications  where  corrosion  resistance  is   more  important  than  good  mechanical  properties,  such  as  exhaust  systems  for  cars  and  in  chemical   industries.  The  ferrite  phase  in  stainless  steels  is  favored  by  high  chromium  and  molybdenum  contents   and  low  nickel  content.  Compared  to  austenitic  stainless  steels  they  are  cheaper  due  to  fewer  alloy   elements  but  they  are  relatively  more  expensive  since  they  are  hard  to  manufacture.  Ferritic  stainless   steels  are  sensitive  to  embrittlement,  such  as  475  °C  embrittlement  and  are  therefore  used  at  relatively   low  temperatures,  up  to  400  °C  but  as  low  as  280  °C  pressure  vessel.  The  weldability  of  ferritic  stainless   steel  is  not  as  good  as  for  austenitic  because  grain  growth  reduces  toughness  and  ductility  [2].   Sigma  phase   When  stainless  steels  are  exposed  to  elevated  temperatures  for  an  extended  period  of  time  intermetallic   phases  may  precipitate  e.g.  sigma  phase.  The  sigma  phase  consists  of  mainly  iron  and  chromium  but  its  
  • 6.       6   composition  is  varying  depending  on  the  alloying  elements.  It  is  precipitated  when  heat  treated  at  about   570-­‐1000  °C [2].  The  same  applies  for  the  interpass  temperature  during  welding  and  the  heat  input   should  be  minimized  [8].   Precipitation  of  sigma  phase  causes  embrittlement  of  the  material  since  the  sigma  particles  are  harder   than  the  surrounding  matrix  and  therefore  reduces  the  ductility  and  toughness.  Since  the  sigma  phase   contains  15-­‐70  %  chromium  it  is  most  likely  that  precipitation  will  occur  in  chromium  rich  environments   within  the  material  e.g.  the  ferrite  phase  [2].  Generally  the  chromium  content  needs  to  be  above  20  wt%   for  the  precipitation  to  take  place  and  if  the  chromium  content  is  raised  to  25-­‐30  wt%  sigma  phase  forms   rapidly  [3].   The  main  transformation  mechanism  for  the  precipitation  of  sigma  phase  is  the  transformation  of  ferrite   to  sigma  phase.  Sigma  phase  will  form  directly  in  chromium  rich  regions  of  the  ferrite  grains.  It  is  possible   for  sigma  phase  to  form  in  austenite  but  it  is  not  as  usual  since  it  is  harder  for  chromium  to  diffuse  in  FCC   than  BCC.  Except  for  chromium  other  ferrite  stabilizing  elements  such  as  silica  and  molybdenum  will   accelerate  the  formation  of  sigma  phase [3].   475  °C  embrittlement   It  is  mainly  ferritic  stainless  steels  that  experience  475  °C  embrittlement  if  they  are  exposed  to   temperatures  in  the  interval  of  425-­‐550  °C  [2].  475  °C  embrittlement  only  takes  place  in  stainless  steels  in   the  ferritic  phase  during  annealing  around  475  °C  [5].  Most  common  is  that  475  °C  embrittlement  does   not  occur  when  welding  because  long  time  exposure  to  high  temperatures  is  required.  It  will  therefore   be  important  to  know  the  environment,  such  as  the  temperature  range  the  material  will  be  exposed  to  in   its  application  [2].  A  broader  framing  of  the  material  suggests  that  475  °C  embrittlement  can  occur  in   steels  that  are  ferritic,  austenitic-­‐ferritic  and  in  filler  materials  that  contain  δ-­‐ferrite.  475  °C   embrittlement  is  due  to  spinodal  decomposition  [5].   Alloying  elements  affect  time  and  temperature  for  the  maximum  embrittlement  of  the  ferritic  phase.   Silicon,  aluminum,  chromium  and  molybdenum  do  all  accelerate  the  maximum  embrittlement.  Carbon   has  the  opposite  effect  and  reduces  the  maximum  effect  of  embrittlement  when  forming  chromium-­‐ carbides.  Alloys  that  contain  titanium  and  niobium  form  stable  carbides  before  chromium-­‐carbides  are   formed  so  the  embrittlement  effect  is  enhanced  as  long  as  there  are  such  stable  carbides  formed  instead   of  chromium-­‐carbides  [5].  Nitrogen  and  manganese  seems  to  have  no  impact  on  the  475  °C   embrittlement,  while  nickel  increases  the  effect  [5], [6].   The  dominant  theory  of  why  475  °C  embrittlement  occurs  is  the  coherent  precipitate  below  550  °C   because  of  the  miscibility  gap  in  the  iron-­‐chromium  phase  diagram  as  can  be  seen  in  Fig  1.  Iron-­‐ chromium  alloys  with  compositions  in  the  range  of  the  miscibility  gap  and  being  annealed  below  550  °C   tend  to  precipitate  two  phases,  α-­‐ferrite  and  α’-­‐ferrite.  α-­‐ferrite  is  an  iron-­‐rich  phase  with  BCC-­‐lattice.  α’-­‐ ferrite  is  a  chromium-­‐rich  phase  with  BCC-­‐lattice,  which  contains  about  61-­‐83  %  chromium  and  is   nonmagnetic  [2].  The  two  phases  are  said  to  have  different  morphologies  where  the  newly  formed  phase   of  α’-­‐ferrite  is  embedded  in  the  chromium  depleted  α-­‐ferrite.  There  are  two  ways  for  α’-­‐ferrite  to  form,   either  through  nucleation  and  growth  or  through  spinodal  decomposition  [7].  
  • 7.       7     Figure  1.  Parts  of  the  iron-­‐chromium  system [1].     Velocity  and  rate  of  embrittlement  can  be  seen  as  a  function  of  the  chromium  content.  High  chromium   content  and  higher  temperatures  results  in  more  embrittlement  whereas  stainless  steels  with  low   chromium  content  can  be  almost  exempt  from  475  °C  embrittlement  [2].  In  this  mechanism,  activation   energy  of  aging  is  similar  to  the  activation  energy  of  Cr  diffusion  in  the  ferrite  phase.  The  kinetics  for  475   °C  embrittlement  precipitation  can  be  tested  by  measuring  the  hardness  and  impact  strength  in  ferrite   with  Charpy-­‐V.  The  kinetics  of  the  embrittlement  can  be  of  significant  importance  in  certain  construction   parts  in  BWRs  [6].  Studies  of  both  ferritic-­‐  and  duplex  stainless  steels  have  shown  that  spinodal   decomposition  is  faster  in  duplex  steels.  Radiation  has  been  found  to  accelerate  the  spinodal   decomposition  and  also  effect  volume  fraction  and  morphology  [7].   Cold  working  affects  stainless  steels  so  that  precipitation  of  α’-­‐ferrite  increases  which  accelerates  the   embrittlement.  475  °C  embrittlement  also  makes  the  steel  less  resistant  to  corrosion  since  the  chromium   depleted  α-­‐ferrite  is  particularly  susceptible  to  corrosion.  There  are  some  alternatives  to  reduce  the   embrittlement  and  restore  the  mechanical  and  corrosion  properties.  By  heat  treatment  of  the  embrittled   material  in  the  temperature  interval  of  550-­‐600  °C  for  a  short  period  of  time  the  original  properties  of   the  stainless  steel  can  be  restored  and  α-­‐ferrite  and  α’-­‐ferrite  can  form  ferrite  again [2].  There  will  be   more  475  °C  embrittlement  in  materials  with  high  chromium  content  when  it  has  been  exposed  to   elevated  temperatures  for  long  periods  of  time.  Therefore  stainless  steels  with  high  chromium  content   should  not  be  heat-­‐treated  at  too  high  temperature[8].      
  • 8.       8   Carbides   In  cases  when  the  amount  of  carbides  in  austenitic  stainless  steels  is  critical,  a  solution  annealing   treatment  can  bring  carbides  back  into  solution.  By  quenching,  a  low  amount  of  carbides  can  be   obtained.  The  alloying  elements  that  precipitated  as  carbides  earlier  are  now  in  a  non-­‐equilibrium  state.   Depending  on  how  high  temperature  the  stainless  steel  will  be  exposed  to  in  its  application  the  diffusion   coefficient  changes  and  the  kinetics  for  alloying  elements  determine  if  stable  carbides  can  form  ones   again  [5].     For  stainless  steels  carbon  has  low  solubility  at  low  temperatures.  Excess  of  carbon  may  result  in   precipitation  of  iron-­‐chromium-­‐carbides  such  as  M23C6  and  M6C.  The  chromium  content  in  M23C6  is  often   in  the  range  of  42-­‐65  wt%.  Since  the  chromium  content  in  M23C6  is  two  to  four  times  as  much  as  the   average  matrix  content  the  close  surroundings  of  M23C6  will  be  depleted  in  chromium.  Variation  of   chromium  content  can  be  evened  out  by  heat  treatment.  During  heat  treatment  the  temperature  should   be  higher  than  the  temperature  range  where  M23C6  is  precipitated  otherwise  the  diffusion  for  chromium   and  iron  is  to  slow.  Precipitation  of  M23C6  is  mostly  concentrated  to  grain  boundaries  which  make   adjacent  areas  chromium  depleted.  Chromium  contents  below  11,5  wt%  increases  the  risk  of  corrosion.   Since  chromium  depletion  is  concentrated  to  grain  boundaries  activation  potential  of  intergranular   corrosion  increases  and  propagation  will  progress  along  chromium  depleted  grain  boundaries  [5].   Increased  carbon  content  increases  the  risk  of  intergranular  corrosion.  Nickel  contributes  to  increased   precipitation  of  M23C6  because  it  reduces  the  solubility  of  carbon  and  increases  the  carbon  activity.   Silicon  influence  carbide  precipitation  the  same  way  as  nickel  but  with  stronger  effect.  M23C6   precipitation  is  mildly  affected  of  increased  chromium  content,  the  intergranular  corrosion  resistance   increases  since  the  closest  surroundings  have  enhanced  chromium  content.  Molybdenum  reduces   carbon  solubility  and  carbides  can  be  precipitated  to  a  greater  extent.  Manganese  increases  carbon   solubility  and  reduces  carbon  activity  but  seems  to  have  no  influence  on  corrosion  resistance  [5].   Computations  and  experiments   Thermo-­‐Calc  calculations   The  composition  of  each  layer  in  the  weld  overlay  was  calculated  from  a  principle  of  70  %-­‐30  %  mixing   between  layers.  Each  layer  composition  was  input  data  in  Thermo-­‐Calc  3.0  beta  2,  thermodynamic   calculations  were  made  and  output  data  such  as  plots  and  tables  were  extracted.  Thermo-­‐Calc  was  set  to   use  TCFE7 [1]  database  in  all  calculations.  Calculations  were  carried  out  with  the  main  goal  to  extract   plots  of  stable  phases  in  each  layer  considering  two  different  methods,  70  %-­‐30  %  principle  and  70  %-­‐30   %  principle  with  subsequent  Scheil  calculations  when  3  %  melt  remained.  The  composition  used  in  the   last  method  was  the  composition  of  the  melt  when  97  %  had  solidified.  Reality  is  expected  to  be   somewhere  between  equilibrium  of  the  70  %-­‐30  %  principle  and  70  %-­‐30%  with  subsequent  Scheil   calculations.  Focus  has  also  been  on  determining  how  much  chromium  that  was  expected  to  be   distributed  in  each  phase  since  it  affects  475  °C  embrittlement.  Chromium  distribution  diagrams  for  each   phase  and  all  layers  were  calculated  using  Thermo-­‐Calc.  The  driving  force  for  precipitation  of  other   phases  than  BCC  and  FCC  were  also  calculated  with  Thermo-­‐Calc.  By  using  previous  equilibrium  
  • 9.       9   calculations  stable  phases  at  300  °C  were  detected.  All  stable  phases  except  BCC  and  FCC  were  excluded   in  equilibrium  calculations  but  still  the  driving  force  was  calculated,  the  rest  was  suspended  from  all   calculations.   Metallographic  examination   The  examined  sample  was  a  weld  overlay  consisting  of  a  base  layer  of  carbon  steel  covered  with  two   buffer  layers  of  309  MoL  and  two  layers  of  SKWAM.   Light  optical  microscope   Sample  preparation  started  with  cutting  a  piece  of  the  weld  overlay  with  a  saw.  Then  the  piece  was   casted  in  a  polymer  matrix.  The  piece  was  later  grinded  with  two  different  papers  and  later  polished.  Last   step  in  the  preparation  was  etching  with  a  10  %  solution  of  electrolytic  chromic  acid  until  phases  could   be  easily  detected.  The  sample  was  examined  with  light  optical  microscope  and  pictures  were  taken  to   examine  included  phases,  for  further  discussions  and  results.   Scanning  electron  microscope,  SEM   The  polished  and  etched  sample  was  put  in  a  beaker  containing  ethanol.  This  was  done  to  clean  the   sample.  Then  the  sample  was  horizontally  fixated  with  conducting  clay.  The  sample  was  then  examined   with  a  Hitachi  S-­‐3700N  scanning  electron  microscope.  The  composition  in  each  layer  was  measured  using   the  software  Brunker  Quantax  800.  Also  a  picture  of  each  layer  was  taken  with  the  SEM.  Carbon  and   nitrogen  cannot  be  measured  with  this  instrument  since  these  elements  are  too  light.     Figure  2.  Schaeffler-­‐diagram,  phases  to  be  expected  in  each  layer  of  the  weld  overlay.  [9]  
  • 10.       10   Assumptions   The  weld  overlay  consists  of  several  layers  that  will  interact  during  welding.  Whenever  a  new  layer  is   added  the  heat  will  partially  melt  the  base  layer  and  the  two  will  mix.  In  this  report  the  mixture  is   assumed  to  be  70  %-­‐30  %  between  the  layers.  This  means  that  if  material  A  is  welded  onto  material  B  the   new  layer  will  consist  of  70  %  material  A  and  30  %  material  B.  This  percentage  was  used  after   recommendations  from  AREVA  NP  Uddcomb  AB.  It  is  also  assumed  that  the  mixture  is  70  %-­‐30  %  all  over   the  layer.   The  operating  temperature  for  the  valve  seat  in  a  BWR  is  about  270  °C  and  the  calculated  worst-­‐case   scenario  gives  a  temperature  of  about  300  °C.  All  tables  in  this  report  are  calculated  at     300  °C.  The  most  interesting  temperature  is  the  operating  temperature  since  this  report  is  focusing  on   long  term  effects  but  since  the  difference  between  operating  and  worst  case  temperature  is  small  and   temperatures  are  low  it  is  assumed  that  300  °C  is  representative.  During  operation  the  valve  seat   experiences  a  pressure  of  about  69  bar  and  in  the  worst-­‐case  scenario  the  pressure  increases  to  about  80   bar.  In  this  report  it  is  assumed  that  the  pressure  does  not  affect  the  calculations  and  all  calculations  are   done  using  atmospheric  pressure.  Calculations  using  Thermo-­‐Calc  with  a  pressure  of  80  bar  were  carried   out  and  there  was  negligible  difference  as  when  carried  out  with  atmospheric  pressure.   During  the  Scheil  calculations  it  was  assumed  that  carbon  is  fast  diffusing.  From  the  Scheil  calculations   the  composition  of  the  liquid  phase  were  acquired,  which  was  used  to  create  plots  of  stable  phases.  The   composition  that  was  used  in  this  report  is  for  the  liquid  phase  when  97  %  of  the  system  is  solid.  In  this   case  it  is  assumed  that  the  diffusion  rate  will  be  low  and  the  remaining  3  %  will  solidify  with  another   composition  than  the  rest  of  the  system.  This  composition  is  assumed  to  be  a  worst-­‐case  scenario.     It  is  taken  into  account  that  it  is  not  possible  to  perform  calculations  on  diffusion  free  phase   transformations  using  Thermo-­‐Calc.  In  this  particular  case  irradiation  effects  on  the  weld  overlay  can  be   excluded  since  the  valve  seat  is  situated  in  an  area  of  the  plant  with  low  radiation.  This  assumption  was   made  after  discussions  with  AREVA  NP  Uddcomb  AB.      
  • 11.       11   Results  and  discussion   Sigma  phase  at  300  °C   After  evaluation  of  Fig  3  it  can  be  stated  that  the  sigma  phase  has  no  thermodynamic  stability  at     300  °C.  Therefore  sigma  phase  will  not  be  precipitated  even  after  long  periods  of  time  at  300  °C.  If  any   sigma  phase  is  present  it  has  been  an  effect  from  the  welding  thermal  cycle  but  sigma  phase  precipitate   after  long  time  and  welding  usually  concerns  rapid  cooling.       Buffer  layer   First  SKWAM  layer       Second  SKWAM  layer   Third  SKWAM  layer   Figure  3.  Amount  vs.  temperature  of  all  stable  phases  for  all  layers. [1]  
  • 12.       12   The  equilibrium  calculations  using  the  composition  from  Scheil  calculations  of  the  third  SKWAM  layer   when  3  %  melt  remains  show  that  sigma  phase  is  thermodynamically  stable,  as  can  be  seen  in  Fig  4.  Even   if  the  sigma  phase  would  precipitate  in  this  layer  the  volume  of  sigma  phase  would  be  small  considering   the  whole  sample,  also  the  kinetics  of  the  reaction  must  be  taken  in  to  account  since  the  temperature  is   low.       Buffer  layer   First  SKWAM  layer       Second  SKWAM  layer   Third  SKWAM  layer   Figure  4:  Amount  vs.  temperature  of  all  stable  phases  for  liquid  composition  in  all  layers  during  Scheil   calculations  when  3  %  of  the  system  is  in  liquid  phase. [1]  
  • 13.       13   Carbides  at  300  °C   The  carbon  content  is  decreasing  from  base  material  to  top  layer.  At  equilibrium  the  amount  of  carbides   at  300  °C  follows  the  carbon  content  tendency.  Carbides  M23C6  and  M6C  are  both  thermodynamically   stable  but  the  total  amount  of  them  never  surpass  1  mole%.  M23C6  and  M6C  do  not  seem  to  coexist  in  the   same  layer  at  equilibrium.  In  the  buffer  layer  and  the  first  SKWAM  layer  M23C6  is  thermodynamically   stable,  for  the  second  and  the  third  SKWAM  layers  M6C  is  thermodynamically  stable.  The  equilibrium   calculation  using  the  composition  from  the  Scheil  calculations  when  3  %  of  melt  remains  shows  that  all   layers  contain  a  higher  amount  of  carbides,  both  M23C6  and  M6C  can  coexist.  The  increased   concentration  of  carbides  is  an  effect  of  about  six  time’s  higher  carbon  content.  Even  though  the  carbide   content  is  high  in  the  3  %  melt  the  carbide  concentration  in  the  whole  sample  is  low.  The  amount  of   carbon  and  carbides  decreases  from  the  base  layer  to  the  top  layer  in  the  same  way  as  in  the  calculations   at  equilibrium.  The  opposite  is  true  considering  the  driving  force  for  precipitation  of  carbides.  The  driving   force  for  carbide  precipitation  increases  from  the  base  layer  to  the  top  layer  as  seen  in  table  2.  Even   though  carbides  are  thermodynamically  stable  at  300  °C  AREVA  NP  Uddcomb  AB  has  not  had  any   problem  with  carbides  in  the  weld  overlay.  This  states  that  no  substantial  amount  is  formed  during   welding  and  that  the  kinetics  is  slow  at  the  operating  temperature.     Table  2:  Driving  force  for  precipitation  of  carbides  at  300  °C  for  each  layer.     Buffer  layer   1st  SKWAM  layer   2nd  SKWAM  layer   3rd  SKWAM  layer   M23C6   0,045   0   0   3,7   M6C   0   2,09   3,14   3,14        
  • 14.       14   Spinodal  decomposition  at  300  °C   Spinodal  decomposition  is  thermodynamically  stable  at  300  °C.  If  the  weld  overlay  reaches  equilibrium   Fe-­‐rich  BCC  and  Cr-­‐rich  BCC  will  be  dominating  phases  in  all  layers  which  can  be  seen  in  Fig  3.  If  the   system  reaches  equilibrium  the  absolute  majority  of  the  total  Cr-­‐content  will  be  in  the  Cr-­‐rich  BCC  phase   as  can  be  seen  in  Fig  5.       Figure  5.  Weight  percentage  of  total  chromium  content  in  α’-­‐ferrite  for  all  layers  at  300  °C  when   equilibrium  is  reached.       67.7%   77.1%   78.2%   78.2%   0.0%   20.0%   40.0%   60.0%   80.0%   100.0%   Buffer  layer   First  SKWAM  layer   Second  SKWAM  layer   Third  SKWAM  layer   Weight-­‐%  of  total  Cr-­‐content  in  Cr-­‐rich  BCC  at  equilibrium   for  each  layer  
  • 15.       15   Fig  6  is  displaying  the  Cr-­‐content  in  all  phases  for  the  different  layers.  The  Cr-­‐content  in  the  Cr-­‐rich  BCC  is   increasing  while  decreasing  in  the  Fe-­‐rich  BCC.  This  shows  that  there  is  a  driving  force  for  spinodal   decomposition  as  the  temperature  decreases.         Buffer  layer   First  SKWAM  layer       Second  SKWAM  layer   Third  SKWAM  layer   Figure  6.  Amount  of  Cr  in  all  stable  phases  at  equilibrium  for  all  layers. [1]   Considering  only  the  thermodynamics  the  separation  between  iron  and  chromium  into  two  different  BCC   phases  will  be  greater  as  temperature  decreases.  Fig  7  shows  that  there  is  a  substantial  amount  of  Cr-­‐ rich  BCC  in  all  layers.  It  also  shows  that  the  amount  of  Cr-­‐rich  BCC  stays  basically  the  same  even  though   the  total  Cr-­‐amount  in  each  layer  is  decreasing  towards  the  third  SKWAM  layer.  The  decreased  
  • 16.       16   chromium  content  in  the  SKWAM  layers  is  probably  compensated  by  an  increased  amount  of  ferrite,   which  can  decompose.  In  the  buffer  layer  a  large  part  of  the  system  is  austenite.     Figure  7:  Amount  of  Cr-­‐rich  and  Fe-­‐rich  BCC  in  each  layer  at  equilibrium.   Even  though  the  thermodynamics  states  that  the  ferrite  should  be  separated  into  one  Cr-­‐rich  and  one   Fe-­‐rich  phase  at  300  °C  the  calculations  do  not  consider  the  kinetics  for  the  reactions.  For  instance  it  is   not  likely  to  have  spinodal  decomposition  right  after  welding  since  high  temperatures  under  longer   periods  of  time  is  required.  In  reality  the  reaction  for  spinodal  decomposition  is  slow  and  requires   chromium  diffusion  in  solid  state.  The  valve  seats  within  the  nuclear  plant  will  be  exposed  to  a  somewhat   elevated  temperature,  270  °C  under  normal  circumstances,  which  will  enhance  spinodal  decomposition   but  it  still  is  below  the  most  critical  temperatures.  The  most  critical  temperature  according  to  literature  is   approximately  475  °C,  the  reaction  rate  for  spinodal  decomposition  is  highest  at  this  temperature.  The   operating  temperature  for  the  valve  seat  is  lower  than  475  °C  but  since  nuclear  plants  run  day  and  night   all  year  around  it  will  be  exposed  to  this  elevated  temperature  for  long  periods  of  time.  With  all  certainty   the  kinetics  is  lower  at  the  operating  temperature  but  since  all  calculations  in  this  project  is  done   assuming  equilibrium  it  is  not  possible  to  determine  the  decomposition  rate  at  270  °C.   The  results  from  the  Scheil  calculations  are  not  relevant  when  talking  about  spinodal  decomposition   since  the  composition  used  in  calculations  only  represent  the  3  %  of  liquid  phase  remaining.  The   composition  of  the  remaining  97  %  that  is  solidified  has  almost  the  same  composition  as  at  the  original   composition  and  is  assumed  to  behave  the  same  way.     0,151   0,155   0,154   0,152   0,575   0,785   0,833   0,837   0   0,1   0,2   0,3   0,4   0,5   0,6   0,7   0,8   0,9   Buffer  layer   1st  SKWAM  layer   2nd  SKWAM  layer   3rd  SKWAM  layer   Cr-­‐rich  BCC   Fe-­‐rich  BCC  
  • 17.       17   Comparing  layers  in  the  weld  overlay   According  to  Fig  7  the  spinodal  decomposition  is  similar  in  all  SKWAM  layers,  but  the  buffer  layer  differs   and  has  lower  amount  of  Fe-­‐rich  BCC.  The  main  reason  that  the  buffer  layer  does  not  contain  much  Fe-­‐ rich  BCC  is  because  there  is  large  amount  of  austenite  present,  which  does  not  decompose.  Since  the  Cr-­‐ content  is  higher  in  the  buffer  layer  it  suggests  that  the  amount  of  Cr-­‐rich  BCC  should  be  higher   compared  to  the  SKWAM  layers.  But  it  follows  the  opposite  trend,  the  buffer  layer  does  contain  more   chromium  but  much  of  it  is  found  in  austenite  and  other  Cr-­‐rich  phases.  Fig  5  shows  that  in  the  buffer   layer  less  chromium  are  absorbed  in  Cr-­‐rich  BCC.  In  the  SKWAM  layers  lower  amount  of  austenite  is   found  and  other  Cr-­‐rich  phases  are  also  found  in  smaller  amounts,  this  result  in  more  BCC.     The  general  trend  for  all  layers  is  that  Fe-­‐rich  BCC  is  reduced  and  more  Cr-­‐rich  BCC  is  precipitated  at   lower  temperatures  as  can  be  seen  in  Fig  3.   Metallographic  examination   In  Fig  2  the  composition  for  each  layer  is  pointed  out  in  a  Schaeffler-­‐diagram.  In  the  metallographic   examination  no  precise  determination  of  the  amount  of  each  phase  was  performed  so  there  can  only  be   a  brief  discussion  of  expected  and  actual  precipitated  phases.   • All  layers:  An  overview  of  all  layers  in  the  weld  overlay  can  be  seen  in  Fig  8.     Figure  8.  All  layers.  Magnification  x12.5.      
  • 18.       18   • Buffer  layer  1:  From  Schaeffler-­‐diagram,  100  %  austenite  was  to  be  expected  and  Fig  9  show  that   there  is  probably  a  few  percent  of  ferrite  present  in  the  sample.     Figure  9.  First  buffer  layer,  material  309MoL.  Magnification  x200.     • Buffer  layer  2:  From  Schaeffler-­‐diagram,  5  %  ferrite  and  95  %  austenite  were  to  be  expected  and   Fig  10  shows  that  austenite  and  ferrite  are  present.  The  two  buffer  layers  has  approximately   same  ratio  between  austenite  and  ferrite.     Figure  10.  Second  buffer  layer,  material  309MoL.  Magnification  x200.     White areas: Dendrite of austenite Dark areas: Ferrite Dark areas: Primary precipitation of ferrite White areas: Dendrites of austenite
  • 19.       19   • SKWAM  layer  1:  From  Schaeffler-­‐diagram,  a  mixture  of  austenite,  ferrite  and  martensite  with   approximately  80  %  ferrite  can  be  expected.  The  ratio  is  hard  to  determine  from  Fig  11  but  it  is   clear  that  ferrite,  austenite  and  martensite  is  present.  Ferrite  seems  to  be  the  dominating  phase.     Figure  11.  First  SKWAM  layer.  Magnification  x500.     • SKWAM  layer  2:  From  Schaeffler-­‐diagram,  only  ferrite  should  be  present.  Fig  12  shows  that  there   are  three  phases  present,  ferrite,  austenite  and  martensite.  Ferrite  is  the  dominating  phase.     Figure  12.  Second  SKWAM  layer.  Magnification  x100.     White areas: Ferrite Grey areas: Dendrites of Austenite Dark areas: Martensite White area: Ferrite Grey/Dark area: Martensite and austenite
  • 20.       20   15,05   19,57   17,77   17,23   9,29   17,71   17,16   16,96   Calculated  wt%  Cr  in  each  layer   SEM  valvue  of  wt%  Cr  in  each  layer        Buffer  layer                          SKWAM  1                                SKWAM  2                                  SKWAM  3             Martensite  is  present  in  all  SKWAM  layers  as  seen  in  Fig  11  and  12.  It  is  not  possible  to  see  martensite  in   the  Thermo-­‐Calc  calculations  since  it  is  not  thermodynamically  stable  but  if  precipitated  the   decomposition  is  slow.  Martensite  is  an  effect  of  welding  and  rapid  cooling  from  the  austenitic  region.   During  operation  in  the  nuclear  plant  more  martensite  will  not  form  in  the  SKWAM  layers  since  rapid   cooling  from  high  temperatures  is  required  to  form  martensite.  In  this  case  the  valve  seat  will  be   exposed  to  a  somewhat  elevated  temperature  for  a  long  time  but  not  high  enough.   Fig  13  shows  that  the  assumption  of  a  70  %-­‐30  %  mixture  is  quite  accurate  for  the  chromium  content  in   each  layer.                     Figure  13.  Calculated  wt%  chromium  with  70  %-­‐30  %  mixture  in  each  layer  of  the  examined  sample  and   measured  wt%  chromium  from  SEM.      
  • 21.       21   The  calculated  values  and  the  values  measured  with  SEM  for  all  elements  are  summarized  in  table  3.   Table  3:  Calculated  values  from  70  %-­‐30  %  mixture  and  composition  of  elements  using  SEM.     Fe   Si   Mn   Cr   Ni   Mo   Buffer  layer  1     calculated   70,47   0,47   1,53   15,05   10,5   1,89   Buffer  layer  1   from  SEM   82,07   0,18   1,06   9,29   6,65   0,76   Buffer  layer  2     calculated   62,32   0,45   1,51   19,57   13,65   2,46   Buffer  layer  2   from  SEM   66,22   0,3   1,47   17,71   11,55   2,67   SKWAM  layer  1   calculated   75,03   0,63   0,94   17,77   4,1   1,51   SKWAM  layer  1   from  SEM   72,66   0,33   0,84   17,16   7,4   1,55   SKWAM  layer  2   calculated   78,85   0,68   0,77   17,23   1,23   1,22   SKWAM  layer  2   from  SEM   78,91   0,45   0,6   16,96   2,04   0,95   Sources  of  error   The  mixture  between  layers  in  the  weld  overlay  was  assumed  to  be  exactly  70  %-­‐30  %  mixture.  It  is   unreasonable  that  the  mixture  is  exactly  70  %-­‐30  %  in  the  whole  layer.  Reasonable  is  that  the  area   closest  to  the  layer  beneath  is  more  mixed  than  at  the  top  of  the  new  layer,  as  a  gradient.   During  Scheil  calculations  it  was  assumed  that  the  melt  segregates  until  3  %  of  the  melt  is  remaining.   When  the  3  %  melt  remains  calculations  were  aborted  because  otherwise  temperature  of  solidification   would  be  unrealistically  low.  3  %  melt  were  discussed  with  our  supervisors  and  it  was  decided  that  it  was   a  reasonable  amount.  This  was  thought  to  be  a  worst  case  scenario  for  the  weld  overlays  composition.     When  the  Scheil  calculations  were  performed  carbon  was  assumed  to  be  a  fast  diffusing  element   because  of  its  small  size.  Since  nitrogen  has  approximately  the  same  size  as  carbon  it  is  possible  that  it   also  should  have  been  considered  to  be  fast  diffusing.   All  calculations  in  Thermo-­‐Calc  were  done  with  the  constitution  of  three  SKWAM  layers  and  one  buffer   layer.  Unfortunately  the  samples  from  AREVA  NP  Uddcomb  AB  consisted  of  two  SKWAM  layers  and  two   buffer  layers.  Also  the  base  material  was  carbon  steel  instead  of  stainless  steel  type  316.  This  makes  the   comparison  between  the  calculations  and  the  samples  less  meaningful.   The  samples  from  AREVA  NP  Uddcomb  AB  have  not  been  in  operation  in  a  nuclear  plant.  Comparing   samples  with  the  calculations  makes  them  less  accurate  since  calculations  are  focusing  on  long-­‐term   effect  due  to  an  elevated  temperature.  The  samples  only  show  the  structure  right  after  welding.  
  • 22.       22   Conclusions   The  method  was  to  perform  equilibrium  calculations  using  Thermo-­‐Calc  to  gain  information  on  which   phases  that  are  present  in  the  different  layers  of  this  particular  weld  overlay.  A  metallographic   examination  was  carried  out  to  compare  the  calculations  with  the  samples.  One  shortcoming  in  this   project  was  that  the  sample  that  was  examined  has  not  been  in  operation  and  because  of  that  no  long-­‐ term  effects  could  be  observed.  One  way  to  improve  the  method  would  be  to  use  a  sample  that  had   been  in  operation.  During  the  metallographic  examination  martensite  was  observed  in  the  SKWAM   layers.  This  was  assumed  to  be  an  effect  from  welding  and  is  not  possible  to  predict  using  Thermo-­‐Calc.   Since  martensite  will  influence  the  mechanical  properties  of  the  valve  seat  an  improvement  would  be  to   find  a  way  to  predict  the  amount  of  martensite  formed.   Among  the  thermodynamic  effects  that  occur  after  long  time  exposure  to  the  operating  temperature   spinodal  decomposition  seems  to  be  the  most  severe.  At  equilibrium  the  spinodal  decomposition  is   extensive  but  in  the  calculations  performed  in  Thermo-­‐Calc  the  kinetics  was  not  considered.  This  is  a   shortcoming  with  the  method  and  to  get  more  accurate  results  kinetic  calculations  should  be  performed.   For  example  if  the  kinetics  for  the  spinodal  decomposition  at  the  operating  temperature  is  slow  this   might  not  be  a  problem  but  it  can  have  large  impact  on  the  mechanical  properties  if  the  kinetics  is  fast.   The  chromium  composition  is  crucial  for  the  spinodal  decomposition  since  it  is  depending  on  chromium   diffusion.  By  using  SEM  the  calculated  wt%  of  chromium  in  each  layer  could  be  controlled.  Fig  13  shows   that  the  approximation  is  good  when  the  composition  between  layers  is  similar  but  between  the  carbon   steel  and  the  highly  alloyed  buffer  layer  the  difference  is  large.   The  method  also  offers  some  advantages.  Phases  that  do  not  exist  in  the  weld  overlay  after  welding  can   be  disregarded  if  they  are  not  thermodynamically  stable  at  the  operation  temperature.  For  example  the   sigma  phase  will  not  be  a  problem  in  this  case  since  it  is  not  stable  at  the  operating  temperature   according  to  Fig  3  and  was  not  detected  in  the  samples.  Using  this  method  it  is  possible  to  exclude   several  phases  but  not  to  get  an  exact  result.  The  most  important  improvement  in  this  case  would  be  to   learn  more  about  the  kinetics  for  spinodal  decomposition  at  the  operating  temperature.   Acknowledgements   Thanks  for  all  help  and  support  from  supervisors’  professor  Malin  Selleby  and  PhD  Sten  Wessman  at   Dept.  of  Material  Science  and  Engineering  at  KTH.  Thanks  to  Wenli  Long  for  your  help  with  SEM.  For   helping  us  with  the  preparation  of  the  samples  thanks  to  Ian  Patterson  and  Jonas  Guldbrandsson  for   demonstrating  welding  procedure  at  AREVA  NP  Uddcomb  AB.  Most  of  all  thanks  to  Tomislav  Buzancic  for   assigning  us  this  project,  support  and  the  field  trip  to  AREVA  NP  Uddcomb  office  in  Karlskrona.  
  • 23.       23   References   [1]  Thomas  Helander,  Lars  Höglund,  Pingfang  Shi,  Bo  Sundman  J-­‐O  Andersson,  "THERMO-­‐CALC  &  DICTRA,   Computational  Tools  For  Materials  Science,"  Calphad,  vol.  26,  pp.  273-­‐312,  2002.   [2]  John  C.  Lippold  and  Damian  J  Kotecki,  Welding  metallurgy  and  weldability  of  stainless  steels.   Hoboken,  NJ,  USA:  John  Wiley,  2005.   [3]  Chih-­‐Chun  Hsieh  and  Weite  Wu,  "Overview  of  Intermetallic  sigma  phase  precipitation  in  stainless   steels,"  ISRN  Metallurgy,  vol.  2012,  january  2012.   [4]  T.H.  Chen  and  J.R.  Yang,  "Effects  of  solution  treatment  and  continuous  cooling  on  sigma-­‐phase   precipitation  in  a  2205  duplex  stainless  steel,"  Materials  science  and  engineering,  vol.  311,  2000.   [5]  Erich  Folkhard,  Welding  metallurgy  of  stainless  steels.  Wien,  Austria:  Spinger-­‐Verlag,  1988.   [6]  J.K.  Sahu,  U.  Krupp,  R.N.  Ghosh,  and  H.J.  Christ,  "Effect  of  475  °C  embrittlement  on  the  mechanical   properties  of  duplex  stainless  steels,"  Materials  science  and  engineering,  vol.  508,  pp.  1-­‐14,  january   2009.   [8]  Kobe  Steel,  LTD,  Arc  welding  of  specific  steels  and  cast  irons,  4th  ed.  Tokyo,  Japan:  Kobe  steel,  LTD,   2011.   [7]  K.H.  Lo,  C.H.  Shek,  and  J.K.L.  Lai,  "Recent  development  in  stainless  steels,"  Physics  and  Materials   Science,  City  University  of  Hong  Kong,  april  26,  2009.   [9]  Schaeffler,  Welding  journal,  1947.