Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Surface hardening techniques are widely used to improve the rolling contact fatigue resistance of materials. This study investigated the rolling contact fatigue (RCF) resistance of hardened, ground steel rods made from three different aircraft-quality alloy steels (AISI 8620, 9310 and 4140), and hardened using different techniques (atmosphere carburizing, vacuum carburizing, and induction hardening) at different case depths. The fatigue life of the rods was determined using a three ball-on-rod rolling contact fatigue test machine. After testing, the surfaces of the rods were examined using scanning electron microscopy (SEM), and their microstructures were examined using metallographic techniques. In addition, the surface topography of the rods was measured using white-light interferometry. Relationships between surface hardness, case depth, and fatigue life were investigated. The longest lives were observed for the vacuum carburized AISI 9310 specimens, while the shortest lives were observed for the induction hardened AISI 4140 specimens. It was found the depth to a hardness of 613 HV (56 HRC), as opposed to the traditional definition of case depth as the depth to a hardness of 513 HV (50 HRC), provided a somewhat better correlation to RCF life, and the hardness at a depth of 0.254 mm provided a somewhat better correlation than the surface hardness to RCF life.
Be the first to comment