SlideShare a Scribd company logo
1 of 1
Download to read offline
RESEARCH POSTER PRESENTATION DESIGN © 2012
www.PosterPresentations.com
Using	
  a	
  Lloyd’s	
  mirror	
  interferometer,	
  I	
  have	
  created	
  lithographic	
  
paMerns,	
  which	
  are	
  then	
  used	
  to	
  produce	
  silver-­‐based	
  nanostructures.	
  	
  
Metallic	
  nanostructures	
  are	
  par/cularly	
  interes/ng,	
  because	
  they	
  
possess	
  op/cal	
  and	
  electrical	
  proper/es	
  that	
  are	
  largely	
  size-­‐
dependent.	
  	
  I	
  have	
  been	
  researching	
  the	
  theore/cal	
  background	
  for	
  
metal-­‐based	
  plasmonic	
  nanostructures,	
  as	
  well	
  as	
  some	
  of	
  the	
  methods	
  
for	
  fabrica/ng	
  these	
  structures	
  and	
  computa/onally	
  simula/ng	
  their	
  
op/cal	
  proper/es.	
  
ABSTRACT	
  
University	
  of	
  the	
  South:	
  Sewanee	
  
Frank	
  Odom,	
  Paul	
  Campbell,	
  Dr.	
  Eugenii	
  Donev	
  
Plasmonic	
  Nanostructures	
  
OBJECTIVES	
  
•  Explore	
  the	
  theore/cal	
  basis	
  of	
  plasmonics	
  &	
  nanomaterials.	
  
•  Observe	
  the	
  op/cal	
  effects	
  of	
  changing	
  the	
  size	
  and	
  shape	
  of	
  
nanostructures	
  using	
  FDTD	
  simula/ons.	
  
•  Using	
  a	
  Lloyd’s	
  mirror	
  interferometer,	
  a	
  posi/ve	
  photoresist,	
  and	
  a	
  
vapor	
  deposi/on	
  system,	
  create	
  silver-­‐based	
  nanostructures	
  to	
  be	
  
used	
  for	
  op/cal	
  measurements.	
  
•  Characterize	
  the	
  samples	
  by	
  observing	
  their	
  diffrac/on	
  paMerns,	
  as	
  
well	
  as	
  by	
  direct	
  measurement	
  in	
  the	
  electron-­‐beam	
  microscope	
  at	
  
Sewanee.	
  
•  Collect	
  measurements	
  of	
  the	
  op/cal	
  transmission	
  through	
  a	
  sample	
  
to	
  compare	
  to	
  the	
  FDTD	
  simula/on	
  results.	
  
THEORY	
  /	
  INTRODUCTION	
  
Plasmon	
  
	
  	
  	
  	
  	
  	
  Finite-­‐Difference	
  Time	
  Domain	
  (FDTD)	
  simula/ons	
  calculate	
  the	
  
scaMered	
  fields	
  due	
  to	
  a	
  nanopar/cle	
  by	
  discre/zing	
  the	
  dimensions	
  of	
  
the	
  par/cle	
  and	
  solving	
  Maxwell’s	
  equa/ons	
  at	
  each	
  /me	
  step.	
  
	
  	
  	
  	
  	
  	
  Light	
  is	
  scaMered	
  most	
  strongly	
  scaMered	
  when	
  the	
  incident	
  light	
  
matches	
  the	
  resonant	
  Localized	
  Surface	
  Plasmon	
  frequency.	
  For	
  a	
  
nanosphere	
  in	
  vacuum,	
  we	
  can	
  actually	
  solve	
  for	
  an	
  exact,	
  analy/cal	
  
solu/on	
  for	
  the	
  poten/al	
  outside	
  the	
  sphere,	
  
	
  from	
  which	
  we	
  derive	
  the	
  polarizability	
  of	
  the	
  nanosphere:	
  	
  
	
  	
  	
  	
  	
  	
  When	
  a	
  sample	
  of	
  silver	
  is	
  reduced	
  to	
  dimensions	
  on	
  the	
  order	
  of	
  
nanometers,	
  it	
  behaves	
  in	
  a	
  way	
  that	
  is	
  en/rely	
  different	
  from	
  what	
  is	
  
familiar.	
  	
  For	
  example,	
  a	
  silver	
  nanosphere,	
  when	
  illuminated	
  by	
  white	
  
light,	
  will	
  appear	
  blue.	
  
	
  	
  	
  	
  	
  	
  The	
  polarizability,	
  however,	
  will	
  vary	
  with	
  the	
  size	
  and	
  shape	
  of	
  the	
  
nanopar/cles	
  being	
  observed.	
  	
  We	
  turn	
  to	
  FDTD	
  numerical	
  simula/ons	
  
in	
  order	
  to	
  further	
  inves/gate	
  the	
  proper/es	
  of	
  nanopar/cles.	
  
FDTD	
  SIMULATION	
  
FDTD	
  benchmarked	
  with	
  Mie	
  Theory	
  
	
  	
  	
  	
  	
  	
  We	
  can	
  vary	
  the	
  size,	
  shape,	
  and	
  surrounding	
  medium,	
  or	
  even	
  
study	
  arrays	
  of	
  parNcles,	
  which	
  demonstrate	
  coupling	
  effects.	
  
Size	
  Dependence	
  of	
  resonant	
  LSP	
  frequency	
  
Shape	
  Dependence	
  and	
  Coupling	
  Effects	
  
EXPERIMENTAL	
  METHODS	
  
	
  	
  	
  	
  	
  	
  Using	
  a	
  spin-­‐coa/ng	
  device,	
  a	
  thin	
  layer	
  of	
  primer	
  (light	
  gray)	
  is	
  
deposited	
  on	
  a	
  glass	
  slide,	
  followed	
  by	
  a	
  layer	
  of	
  posi/ve	
  photoresist	
  
(orange).	
  Then,	
  with	
  a	
  Lloyd’s	
  mirror	
  interferometer,	
  double-­‐slit	
  
diffrac/on	
  paMerns	
  are	
  projected	
  onto	
  the	
  photoresist.	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  The	
  exposed	
  photoresist	
  is	
  then	
  chemically	
  removed.	
  	
  By	
  varying	
  the	
  
exposure	
  parameters,	
  different	
  paMerns	
  can	
  be	
  created.	
  Using	
  a	
  vapor	
  
deposi/on	
  system,	
  silver	
  is	
  uniformly	
  deposited	
  across	
  the	
  sample.	
  	
  The	
  
remaining	
  photoresist	
  is	
  removed,	
  leaving	
  an	
  array	
  of	
  silver	
  par/cles.	
  
Lloyd’s	
  Mirror	
  
	
  	
  	
  	
  	
  	
  The	
  silver	
  nanopar/cle	
  arrays	
  can	
  then	
  be	
  seen	
  with	
  a	
  microscope.	
  	
  
Par/cle	
  Array,	
  Microscope	
  (X100)	
  
Transmission,	
  Varying	
  Sample	
  Thicknesses	
  
In	
  prac/ce,	
  it	
  is	
  easier	
  to	
  observe	
  the	
  transmission	
  through	
  a	
  sample:	
  
Department	
  of	
  Physics	
  &	
  Astronomy	
  
ACKNOWLEDGEMENTS	
  
1.  C.,	
  Le	
  Ru	
  Eric,	
  and	
  Pablo	
  G.	
  Etchegoin.	
  	
  Principles	
  of	
  Surface-­‐Enhanced	
  
Raman	
  Spectroscopy.	
  	
  Amsterdam:	
  Elsevier,	
  2009.	
  	
  Print.	
  
2.  Novotny,	
  Lukas,	
  and	
  Bert	
  Hecht.	
  	
  Principles	
  of	
  Nano-­‐Op:cs.	
  	
  
Cambridge:	
  Cambridge	
  UP,	
  2006.	
  	
  Print.	
  
3.  Sala,	
  Fabio	
  Della,	
  and	
  Stefania	
  D’Agos/no.	
  	
  Handbook	
  of	
  Molecular	
  
Plasmonics.	
  	
  Singapore:	
  Pan	
  Stanford	
  Pub.,	
  2013.	
  	
  Print.	
  
4.  Bohren,	
  Craig	
  F.,	
  and	
  Donald	
  R.	
  Huffman.	
  	
  Absorp:on	
  and	
  Sca@ering	
  
of	
  Light	
  by	
  Small	
  Par:cles.	
  	
  New	
  York:	
  Wiley,	
  1983.	
  	
  Print.	
  
	
  	
  	
  	
  	
  	
  Now,	
  op/cal	
  measurements	
  are	
  needed	
  in	
  order	
  to	
  compare	
  the	
  
transmission	
  through	
  a	
  sample	
  to	
  the	
  results	
  from	
  FDTD	
  simula/ons.	
  
Transmission	
  Op/cs	
  
CONCLUSIONS	
  
RESULTS	
  
	
  	
  	
  	
  	
  	
  Given	
  more	
  /me,	
  the	
  FDTD	
  simula/on	
  could	
  be	
  corrected	
  to	
  u/lize	
  
the	
  correct	
  par/cle	
  dimensions.	
  	
  Then,	
  it	
  is	
  likely	
  that	
  the	
  FDTD	
  values	
  
would	
  fit	
  the	
  measured	
  values	
  much	
  more	
  closely.	
  
	
  	
  	
  	
  	
  	
  Although	
  this	
  project	
  is	
  far	
  from	
  finished,	
  significant	
  progress	
  has	
  
been	
  made,	
  par/cularly	
  in	
  experimental	
  methods.	
  	
  It	
  has	
  been	
  shown	
  
that	
  nanopar/cle	
  arrays	
  of	
  increasingly	
  smaller	
  periodici/es	
  (to	
  about	
  1	
  
micrometer)	
  can	
  be	
  produced	
  with	
  the	
  Lloyd’s	
  mirror	
  setup.	
  	
  The	
  op/cal	
  
measurements	
  of	
  transmission	
  through	
  a	
  sample	
  (shown	
  above)	
  are	
  the	
  
first	
  such	
  measurements	
  that	
  have	
  been	
  made	
  at	
  Sewanee.	
  	
  	
  
	
  	
  	
  	
  	
  	
  The	
  experimental	
  measurements	
  and	
  FDTD	
  simula/ons	
  will	
  agree	
  
more	
  closely	
  as	
  addi/onal	
  informa/on	
  is	
  uncovered	
  about	
  the	
  
nanopar/cle	
  arrays.	
  	
  With	
  the	
  Physics	
  Department’s	
  electron	
  microscope	
  
now	
  opera/onal,	
  there	
  will	
  be	
  ample	
  opportuni/es	
  to	
  measure	
  the	
  exact	
  
dimensions	
  of	
  the	
  par/cles.	
  
	
  	
  	
  	
  	
  	
  There	
  is	
  a	
  significant	
  discrepancy	
  between	
  the	
  measured	
  op/cal	
  
transmission	
  and	
  that	
  predicted	
  by	
  FDTD	
  simula/on.	
  	
  At	
  the	
  /me	
  of	
  the	
  
simula/on,	
  the	
  exact	
  dimensions	
  of	
  the	
  par/cles	
  were	
  not	
  yet	
  known	
  
(actual	
  diameter	
  ≈	
  950	
  nm,	
  rather	
  than	
  750	
  nm	
  from	
  simula/on).	
  	
  	
  
REFERENCES	
  
Dr.	
  Eugenii	
  Donev,	
  	
  Paul	
  Campbell	
  (C’	
  2014),	
  	
  Dr.	
  Randolph	
  Peterson	
  
Electron	
  Microscope	
  (X12,500)	
  

More Related Content

What's hot

UV Plasmonics
UV PlasmonicsUV Plasmonics
UV PlasmonicsECEatUtah
 
Jesus and ivonne chip2
Jesus and ivonne chip2Jesus and ivonne chip2
Jesus and ivonne chip2valrivera
 
Lithography and Nanolithography
Lithography and NanolithographyLithography and Nanolithography
Lithography and NanolithographySaheem Anwar
 
Phase contrast microscopy Likhith K
Phase contrast microscopy Likhith KPhase contrast microscopy Likhith K
Phase contrast microscopy Likhith KLIKHITHK1
 
Applications of LIBS
Applications of LIBSApplications of LIBS
Applications of LIBSDeepak Rajput
 
Xrd (X-ray Diffraction) presentation
Xrd (X-ray Diffraction) presentationXrd (X-ray Diffraction) presentation
Xrd (X-ray Diffraction) presentationKishan Kasundra
 
Phase contrast microscopy
Phase contrast microscopyPhase contrast microscopy
Phase contrast microscopyRaees Ahmad
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopyhephz
 
Characterization of nanopartical
Characterization of nanoparticalCharacterization of nanopartical
Characterization of nanoparticalAmany EL-Hallaq
 
Fluorescence microscopy introduction
Fluorescence microscopy introductionFluorescence microscopy introduction
Fluorescence microscopy introductionNicole Salgado Cortes
 
Guided nanophotonic devices and applications - Christiano de Matos
Guided nanophotonic devices and applications - Christiano de MatosGuided nanophotonic devices and applications - Christiano de Matos
Guided nanophotonic devices and applications - Christiano de MatosCPqD
 
Pharmaceutical imaging techniques (2)
Pharmaceutical imaging techniques (2)Pharmaceutical imaging techniques (2)
Pharmaceutical imaging techniques (2)sakshi9
 
SCANNING ELECTRON MICROSCOPY (SEM)
SCANNING ELECTRON MICROSCOPY (SEM)SCANNING ELECTRON MICROSCOPY (SEM)
SCANNING ELECTRON MICROSCOPY (SEM)Hamza Suharwardi
 
Particle size by sem and xrd
Particle size by sem and xrdParticle size by sem and xrd
Particle size by sem and xrdMehnaz Imran
 
Confocal laser scanning microscopy
Confocal laser scanning microscopyConfocal laser scanning microscopy
Confocal laser scanning microscopyBaskar Selvam
 
CHM1051L_Poster_2014.doc
CHM1051L_Poster_2014.docCHM1051L_Poster_2014.doc
CHM1051L_Poster_2014.docCristina Suarez
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttBusiness Turku
 
Powerpoint presentation on electron microscopy
Powerpoint presentation on electron microscopyPowerpoint presentation on electron microscopy
Powerpoint presentation on electron microscopykumar virbhadra
 

What's hot (20)

UV Plasmonics
UV PlasmonicsUV Plasmonics
UV Plasmonics
 
Jesus and ivonne chip2
Jesus and ivonne chip2Jesus and ivonne chip2
Jesus and ivonne chip2
 
Lithography and Nanolithography
Lithography and NanolithographyLithography and Nanolithography
Lithography and Nanolithography
 
Phase contrast microscopy Likhith K
Phase contrast microscopy Likhith KPhase contrast microscopy Likhith K
Phase contrast microscopy Likhith K
 
Applications of LIBS
Applications of LIBSApplications of LIBS
Applications of LIBS
 
Xrd (X-ray Diffraction) presentation
Xrd (X-ray Diffraction) presentationXrd (X-ray Diffraction) presentation
Xrd (X-ray Diffraction) presentation
 
Phase contrast microscopy
Phase contrast microscopyPhase contrast microscopy
Phase contrast microscopy
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopy
 
Characterization of nanopartical
Characterization of nanoparticalCharacterization of nanopartical
Characterization of nanopartical
 
Ptf V8
Ptf V8Ptf V8
Ptf V8
 
Fluorescence microscopy introduction
Fluorescence microscopy introductionFluorescence microscopy introduction
Fluorescence microscopy introduction
 
Guided nanophotonic devices and applications - Christiano de Matos
Guided nanophotonic devices and applications - Christiano de MatosGuided nanophotonic devices and applications - Christiano de Matos
Guided nanophotonic devices and applications - Christiano de Matos
 
Pharmaceutical imaging techniques (2)
Pharmaceutical imaging techniques (2)Pharmaceutical imaging techniques (2)
Pharmaceutical imaging techniques (2)
 
SCANNING ELECTRON MICROSCOPY (SEM)
SCANNING ELECTRON MICROSCOPY (SEM)SCANNING ELECTRON MICROSCOPY (SEM)
SCANNING ELECTRON MICROSCOPY (SEM)
 
Particle size by sem and xrd
Particle size by sem and xrdParticle size by sem and xrd
Particle size by sem and xrd
 
Confocal laser scanning microscopy
Confocal laser scanning microscopyConfocal laser scanning microscopy
Confocal laser scanning microscopy
 
CHM1051L_Poster_2014.doc
CHM1051L_Poster_2014.docCHM1051L_Poster_2014.doc
CHM1051L_Poster_2014.doc
 
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik SmåttPlasmon Enhanced Solar Cells, Jan-Henrik Smått
Plasmon Enhanced Solar Cells, Jan-Henrik Smått
 
"X ray crystallography" - Tathagata Pradhan , Department of Pharmaceutical Ch...
"X ray crystallography" - Tathagata Pradhan , Department of Pharmaceutical Ch..."X ray crystallography" - Tathagata Pradhan , Department of Pharmaceutical Ch...
"X ray crystallography" - Tathagata Pradhan , Department of Pharmaceutical Ch...
 
Powerpoint presentation on electron microscopy
Powerpoint presentation on electron microscopyPowerpoint presentation on electron microscopy
Powerpoint presentation on electron microscopy
 

Viewers also liked

OSMT Certificate
OSMT CertificateOSMT Certificate
OSMT CertificateA. Rowe
 
OzKFest 2015 - (Solid) State of the Nation
OzKFest 2015 - (Solid) State of the NationOzKFest 2015 - (Solid) State of the Nation
OzKFest 2015 - (Solid) State of the Nationapple2europlus
 
career pro search
career pro searchcareer pro search
career pro searchKarthik P
 
FunXtion & GymApps in Body Bizz
FunXtion & GymApps in Body BizzFunXtion & GymApps in Body Bizz
FunXtion & GymApps in Body BizzFunXtion
 
Concierto eso gruposmunicipalesayto
Concierto eso gruposmunicipalesaytoConcierto eso gruposmunicipalesayto
Concierto eso gruposmunicipalesaytoedukfuenla
 
Cask of amontillado
Cask of amontilladoCask of amontillado
Cask of amontilladotara67
 
StreamAssociateFlyer5
StreamAssociateFlyer5StreamAssociateFlyer5
StreamAssociateFlyer5Nancy Terry
 
Catalunya empresarial - Como aprender del fracaso
Catalunya empresarial - Como aprender del fracasoCatalunya empresarial - Como aprender del fracaso
Catalunya empresarial - Como aprender del fracasoAlbert Riba Trullols
 
Secret to Effective Digital Connection for Insurance Marketers
Secret to Effective Digital Connection for Insurance MarketersSecret to Effective Digital Connection for Insurance Marketers
Secret to Effective Digital Connection for Insurance Marketersedynamic
 
Presentatie werkenbijenexis dw14
Presentatie werkenbijenexis dw14Presentatie werkenbijenexis dw14
Presentatie werkenbijenexis dw14Bas Haterd
 
Análisis de la LOMCE
Análisis de la LOMCEAnálisis de la LOMCE
Análisis de la LOMCEIU_Navalmoral
 

Viewers also liked (16)

OSMT Certificate
OSMT CertificateOSMT Certificate
OSMT Certificate
 
OzKFest 2015 - (Solid) State of the Nation
OzKFest 2015 - (Solid) State of the NationOzKFest 2015 - (Solid) State of the Nation
OzKFest 2015 - (Solid) State of the Nation
 
diario Día 3
diario Día 3diario Día 3
diario Día 3
 
sociedades mercantiles
sociedades mercantilessociedades mercantiles
sociedades mercantiles
 
career pro search
career pro searchcareer pro search
career pro search
 
Energia nuclear
Energia nuclearEnergia nuclear
Energia nuclear
 
FunXtion & GymApps in Body Bizz
FunXtion & GymApps in Body BizzFunXtion & GymApps in Body Bizz
FunXtion & GymApps in Body Bizz
 
Concierto eso gruposmunicipalesayto
Concierto eso gruposmunicipalesaytoConcierto eso gruposmunicipalesayto
Concierto eso gruposmunicipalesayto
 
Cask of amontillado
Cask of amontilladoCask of amontillado
Cask of amontillado
 
StreamAssociateFlyer5
StreamAssociateFlyer5StreamAssociateFlyer5
StreamAssociateFlyer5
 
Catalunya empresarial - Como aprender del fracaso
Catalunya empresarial - Como aprender del fracasoCatalunya empresarial - Como aprender del fracaso
Catalunya empresarial - Como aprender del fracaso
 
Genetics of bipolar disorder
Genetics of bipolar disorderGenetics of bipolar disorder
Genetics of bipolar disorder
 
Secret to Effective Digital Connection for Insurance Marketers
Secret to Effective Digital Connection for Insurance MarketersSecret to Effective Digital Connection for Insurance Marketers
Secret to Effective Digital Connection for Insurance Marketers
 
Presentatie werkenbijenexis dw14
Presentatie werkenbijenexis dw14Presentatie werkenbijenexis dw14
Presentatie werkenbijenexis dw14
 
Análisis de la LOMCE
Análisis de la LOMCEAnálisis de la LOMCE
Análisis de la LOMCE
 
Unidad 11
Unidad 11 Unidad 11
Unidad 11
 

Similar to Poster1-Frank Odom

Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterAbstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterSonia Sanchez
 
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docx
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docxCalculation of Optical Properties of Nano ParticlePHYSICS 5535- .docx
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docxRAHUL126667
 
Brent Godau Chem 499 Thesis
Brent Godau Chem 499 ThesisBrent Godau Chem 499 Thesis
Brent Godau Chem 499 ThesisBrent Godau
 
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docx
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docxCarbohydrate Research 405 (2015) 55–65Contents lists availab.docx
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docxwendolynhalbert
 
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...Dario Scotto
 
Metal ano particles and rods for biosensors
Metal ano particles and rods for biosensorsMetal ano particles and rods for biosensors
Metal ano particles and rods for biosensorsvenkata016
 
A new Nanotechnology for Translational Medicine
A new Nanotechnology for Translational MedicineA new Nanotechnology for Translational Medicine
A new Nanotechnology for Translational MedicineInternet Medical Society
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyaimanmukhtar1
 
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...IJASCSE
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...Alexander Decker
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Alexander Decker
 
Technical Engineering Memorandum_2015
Technical Engineering Memorandum_2015Technical Engineering Memorandum_2015
Technical Engineering Memorandum_2015Jordan Lopez
 
True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016Supriya Pillai
 
libs applications in medical and dental firld lecture .pptx
libs applications in medical and dental firld lecture .pptxlibs applications in medical and dental firld lecture .pptx
libs applications in medical and dental firld lecture .pptxMSGAZAAR1
 
Optical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresOptical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresShashaanka Ashili
 
Transmission electron microscope (TEM) Likhith K
Transmission electron microscope  (TEM) Likhith KTransmission electron microscope  (TEM) Likhith K
Transmission electron microscope (TEM) Likhith KLIKHITHK1
 

Similar to Poster1-Frank Odom (20)

Ashok quantum dots
Ashok quantum dotsAshok quantum dots
Ashok quantum dots
 
Synopsis
SynopsisSynopsis
Synopsis
 
Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power SplitterAbstract 2D Photonic Crystal ( Pc ) Based Power Splitter
Abstract 2D Photonic Crystal ( Pc ) Based Power Splitter
 
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docx
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docxCalculation of Optical Properties of Nano ParticlePHYSICS 5535- .docx
Calculation of Optical Properties of Nano ParticlePHYSICS 5535- .docx
 
Brent Godau Chem 499 Thesis
Brent Godau Chem 499 ThesisBrent Godau Chem 499 Thesis
Brent Godau Chem 499 Thesis
 
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docx
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docxCarbohydrate Research 405 (2015) 55–65Contents lists availab.docx
Carbohydrate Research 405 (2015) 55–65Contents lists availab.docx
 
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...
Dario Scotto - Detecting and Imaging Magneto-Optically Trapped Rubidium-85 Io...
 
Metal ano particles and rods for biosensors
Metal ano particles and rods for biosensorsMetal ano particles and rods for biosensors
Metal ano particles and rods for biosensors
 
A new Nanotechnology for Translational Medicine
A new Nanotechnology for Translational MedicineA new Nanotechnology for Translational Medicine
A new Nanotechnology for Translational Medicine
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnology
 
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...
Analysis and Design of Lead Salt PbSe/PbSrSe Single Quantum Well In the Infra...
 
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...11.property analysis of quantum dot cuboid nanocrystals with different nanost...
11.property analysis of quantum dot cuboid nanocrystals with different nanost...
 
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
Property analysis of quantum dot cuboid nanocrystals with different nanostruc...
 
Ssntd ion track technology to nanotechnology
Ssntd ion track technology to nanotechnologySsntd ion track technology to nanotechnology
Ssntd ion track technology to nanotechnology
 
Technical Engineering Memorandum_2015
Technical Engineering Memorandum_2015Technical Engineering Memorandum_2015
Technical Engineering Memorandum_2015
 
True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016True_Silver_ Nat. Photonics 6 2016
True_Silver_ Nat. Photonics 6 2016
 
libs applications in medical and dental firld lecture .pptx
libs applications in medical and dental firld lecture .pptxlibs applications in medical and dental firld lecture .pptx
libs applications in medical and dental firld lecture .pptx
 
Optical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresOptical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled Microspheres
 
Transmission electron microscope (TEM) Likhith K
Transmission electron microscope  (TEM) Likhith KTransmission electron microscope  (TEM) Likhith K
Transmission electron microscope (TEM) Likhith K
 
Nanoparticle
NanoparticleNanoparticle
Nanoparticle
 

Poster1-Frank Odom

  • 1. RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com Using  a  Lloyd’s  mirror  interferometer,  I  have  created  lithographic   paMerns,  which  are  then  used  to  produce  silver-­‐based  nanostructures.     Metallic  nanostructures  are  par/cularly  interes/ng,  because  they   possess  op/cal  and  electrical  proper/es  that  are  largely  size-­‐ dependent.    I  have  been  researching  the  theore/cal  background  for   metal-­‐based  plasmonic  nanostructures,  as  well  as  some  of  the  methods   for  fabrica/ng  these  structures  and  computa/onally  simula/ng  their   op/cal  proper/es.   ABSTRACT   University  of  the  South:  Sewanee   Frank  Odom,  Paul  Campbell,  Dr.  Eugenii  Donev   Plasmonic  Nanostructures   OBJECTIVES   •  Explore  the  theore/cal  basis  of  plasmonics  &  nanomaterials.   •  Observe  the  op/cal  effects  of  changing  the  size  and  shape  of   nanostructures  using  FDTD  simula/ons.   •  Using  a  Lloyd’s  mirror  interferometer,  a  posi/ve  photoresist,  and  a   vapor  deposi/on  system,  create  silver-­‐based  nanostructures  to  be   used  for  op/cal  measurements.   •  Characterize  the  samples  by  observing  their  diffrac/on  paMerns,  as   well  as  by  direct  measurement  in  the  electron-­‐beam  microscope  at   Sewanee.   •  Collect  measurements  of  the  op/cal  transmission  through  a  sample   to  compare  to  the  FDTD  simula/on  results.   THEORY  /  INTRODUCTION   Plasmon              Finite-­‐Difference  Time  Domain  (FDTD)  simula/ons  calculate  the   scaMered  fields  due  to  a  nanopar/cle  by  discre/zing  the  dimensions  of   the  par/cle  and  solving  Maxwell’s  equa/ons  at  each  /me  step.              Light  is  scaMered  most  strongly  scaMered  when  the  incident  light   matches  the  resonant  Localized  Surface  Plasmon  frequency.  For  a   nanosphere  in  vacuum,  we  can  actually  solve  for  an  exact,  analy/cal   solu/on  for  the  poten/al  outside  the  sphere,    from  which  we  derive  the  polarizability  of  the  nanosphere:                When  a  sample  of  silver  is  reduced  to  dimensions  on  the  order  of   nanometers,  it  behaves  in  a  way  that  is  en/rely  different  from  what  is   familiar.    For  example,  a  silver  nanosphere,  when  illuminated  by  white   light,  will  appear  blue.              The  polarizability,  however,  will  vary  with  the  size  and  shape  of  the   nanopar/cles  being  observed.    We  turn  to  FDTD  numerical  simula/ons   in  order  to  further  inves/gate  the  proper/es  of  nanopar/cles.   FDTD  SIMULATION   FDTD  benchmarked  with  Mie  Theory              We  can  vary  the  size,  shape,  and  surrounding  medium,  or  even   study  arrays  of  parNcles,  which  demonstrate  coupling  effects.   Size  Dependence  of  resonant  LSP  frequency   Shape  Dependence  and  Coupling  Effects   EXPERIMENTAL  METHODS              Using  a  spin-­‐coa/ng  device,  a  thin  layer  of  primer  (light  gray)  is   deposited  on  a  glass  slide,  followed  by  a  layer  of  posi/ve  photoresist   (orange).  Then,  with  a  Lloyd’s  mirror  interferometer,  double-­‐slit   diffrac/on  paMerns  are  projected  onto  the  photoresist.                    The  exposed  photoresist  is  then  chemically  removed.    By  varying  the   exposure  parameters,  different  paMerns  can  be  created.  Using  a  vapor   deposi/on  system,  silver  is  uniformly  deposited  across  the  sample.    The   remaining  photoresist  is  removed,  leaving  an  array  of  silver  par/cles.   Lloyd’s  Mirror              The  silver  nanopar/cle  arrays  can  then  be  seen  with  a  microscope.     Par/cle  Array,  Microscope  (X100)   Transmission,  Varying  Sample  Thicknesses   In  prac/ce,  it  is  easier  to  observe  the  transmission  through  a  sample:   Department  of  Physics  &  Astronomy   ACKNOWLEDGEMENTS   1.  C.,  Le  Ru  Eric,  and  Pablo  G.  Etchegoin.    Principles  of  Surface-­‐Enhanced   Raman  Spectroscopy.    Amsterdam:  Elsevier,  2009.    Print.   2.  Novotny,  Lukas,  and  Bert  Hecht.    Principles  of  Nano-­‐Op:cs.     Cambridge:  Cambridge  UP,  2006.    Print.   3.  Sala,  Fabio  Della,  and  Stefania  D’Agos/no.    Handbook  of  Molecular   Plasmonics.    Singapore:  Pan  Stanford  Pub.,  2013.    Print.   4.  Bohren,  Craig  F.,  and  Donald  R.  Huffman.    Absorp:on  and  Sca@ering   of  Light  by  Small  Par:cles.    New  York:  Wiley,  1983.    Print.              Now,  op/cal  measurements  are  needed  in  order  to  compare  the   transmission  through  a  sample  to  the  results  from  FDTD  simula/ons.   Transmission  Op/cs   CONCLUSIONS   RESULTS              Given  more  /me,  the  FDTD  simula/on  could  be  corrected  to  u/lize   the  correct  par/cle  dimensions.    Then,  it  is  likely  that  the  FDTD  values   would  fit  the  measured  values  much  more  closely.              Although  this  project  is  far  from  finished,  significant  progress  has   been  made,  par/cularly  in  experimental  methods.    It  has  been  shown   that  nanopar/cle  arrays  of  increasingly  smaller  periodici/es  (to  about  1   micrometer)  can  be  produced  with  the  Lloyd’s  mirror  setup.    The  op/cal   measurements  of  transmission  through  a  sample  (shown  above)  are  the   first  such  measurements  that  have  been  made  at  Sewanee.                  The  experimental  measurements  and  FDTD  simula/ons  will  agree   more  closely  as  addi/onal  informa/on  is  uncovered  about  the   nanopar/cle  arrays.    With  the  Physics  Department’s  electron  microscope   now  opera/onal,  there  will  be  ample  opportuni/es  to  measure  the  exact   dimensions  of  the  par/cles.              There  is  a  significant  discrepancy  between  the  measured  op/cal   transmission  and  that  predicted  by  FDTD  simula/on.    At  the  /me  of  the   simula/on,  the  exact  dimensions  of  the  par/cles  were  not  yet  known   (actual  diameter  ≈  950  nm,  rather  than  750  nm  from  simula/on).       REFERENCES   Dr.  Eugenii  Donev,    Paul  Campbell  (C’  2014),    Dr.  Randolph  Peterson   Electron  Microscope  (X12,500)