SlideShare a Scribd company logo
1 of 29
Download to read offline
Introduction Phenomenology Model Transport properties Results Conclusion
Gauge approach to pairing and superconductivity
in high Tc cuprates
Autore: Filippo Bovo
Relatore: Prof. Pieralberto Marchetti
UNIVERSIT`A DEGLI STUDI DI PADOVA
FACOLT`A DI SCIENZE MM. FF. NN.
DIPARTIMENTO DI FISICA “GALILEO GALILEI”
13 Luglio 2011
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
1 Introduction
2 Phenomenology
3 Model
4 Transport properties
5 Results
6 Conclusion
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Crystal structure
Typical structure: Copper-Oxygen planes
↓
+ Charge reservoir
(doping)
O, 2px
O, 2pyCu, 3dx -y2 2
Hole, 3dx -y2 2
Hole-doping removes
this electron allowing
holes to move
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram
Phases:
FL: Fermi Liquid;
SM: Strange Metal;
PG: Pseudogap;
AF: Antiferromagnetic;
SC: Superconducting.
δ: doping;
T: temperature [K].
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy model
Anderson’s idea of ”doping a Mott insulator” (1987)
↓
t-J model: low-energy physics of CuO2-planes
+
Gutzwiller projector PG
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy model
Anderson’s idea of ”doping a Mott insulator” (1987)
↓
t-J model: low-energy physics of CuO2-planes
+
Gutzwiller projector PG
↓
Ht−J = PG
<ij>
[−t(ˆc†
iαˆcjα + H.c) + JˆSi · ˆSj ]PG
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
⇓
PG → ˆni = ˆc†
iαˆciα = 0, 1 →
ˆh†
i
ˆhi = 0, 1 Automatic
α ˆs†
iαˆsiα = 1 Constraint
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
⇓
PG → ˆni = ˆc†
iαˆciα = 0, 1 →
ˆh†
i
ˆhi = 0, 1 Automatic
α ˆs†
iαˆsiα = 1 Constraint
+
Invariance under:
ˆhi → ˆhi eiϕ
ˆsiα → ˆsiαeiϕ
,
ϕ
U(1) local phase
⇒
Aµ
U(1) gauge field
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Improved mean-field approximation
Optimization of the spinon configurations and mean-field treatment:
ˆhj eiφh(j), fermion
ˆzj eiφs (j), boson
←−
The product
is still
a fermion
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Improved mean-field approximation
Optimization of the spinon configurations and mean-field treatment:
ˆhj eiφh(j), fermion
ˆzj eiφs (j), boson
←−
The product
is still
a fermion
⇒ φh(j) → Charge vortex φs(j) → Spin vortex
PG SM
↓
π-flux
↓
0-flux
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
+
Holon effective action:
PG: ⇒
(Formally) relativistic spinless fermion with small
half-circle Fermi surface (∼ δ) centered in
(±π/2, ±π/2) in MBZ1
, minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
+
Holon effective action:
PG: ⇒
(Formally) relativistic spinless fermion with small
half-circle Fermi surface (∼ δ) centered in
(±π/2, ±π/2) in MBZ1
, minimally coupled to Aµ
SM: ⇒
Non-relativistic spinless fermion with big circular
Fermi surface (∼ 1 − δ) centered in (±π, ±π) in
MBZ, minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
A
A
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Indirect spinon potential
Attraction scheme:
h
A
A
s
s
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Formation of holon pairs ⇒
energy-dependent (normalized)
holon density of states n(ω)
↓
Starting point: Kubo formula for holon conductivity
σ(ω, T) ∝ 1
Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate:
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Formation of holon pairs ⇒
energy-dependent (normalized)
holon density of states n(ω)
↓
Starting point: Kubo formula for holon conductivity
σ(ω, T) ∝ 1
Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate:
ΓTr (Ω, T) ∝
∞
0
dω˜I2
χTr (ω){n(Ω−ω)fem(Ω, ω, T)+n(Ω+ω)fab(Ω, ω, T)}
• ˜I2χTr : interaction spectral density (momentum averaged);
• fem, fab: holon probabilities of emission and absorption of the
gauge field.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Holon conductivity
Dressed holon propagator GR
h (ω, k) → n(ω) ∝ dk
(2π)2 GR
h (ω, k).
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ω0.0
0.5
1.0
1.5
2.0
n
δ
T
↑
The interaction between phase fluctuations of the paired holons
gets stronger as temperature decreases →
→ interpolation between FL and SC behaviours.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Real part of optical conductivity, SM
Hole re-composition through the Ioffe-Larking rule for complex
conductivities:
1
σ
=
1
σh
+
1
σs
Theory2 vs Experiment:
2
ω in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Real part of optical conductivity, PG
Hole re-composition through the Ioffe-Larking rule for complex
conductivities:
1
σ
=
1
σh
+
1
σs
Theory3 vs Experiment:
3
ω in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Transport scattering rate, SM
Ioffe-Larkin rule ⇒ Γtr = Γtr;h + Γtr;s
Theory4 vs Experiment:
Γ
4
T=300,270,250,230K. ω and Γtr in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Resistivity, SM
Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s
Theory5 vs Experiment:
5
δ = 0.10, 0.15, 0.20. ω and T in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Resistivity, PG
Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s
Theory6 vs Experiment:
6
δ = 0.03, 0.05. ω and T in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Conclusions
Good qualitative comparison between theoretical and experimental
results
⇓
The technique used to take into account the formation of holon
pairs is correct
+
Further step toward the validity of the model
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Further developments
Mapping of ∂2ρ/∂T2 to be compared with Ando et al. (Phys.
Rev. Lett., 93(26):267001, 2004) experiment:
Computation of the reflectivity to be compared with Giannetti et
al. (Nat Commun, 2:353, 06 2011) experiment:
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates

More Related Content

What's hot

Sci 1010 chapter 4
Sci 1010 chapter 4Sci 1010 chapter 4
Sci 1010 chapter 4
stanbridge
 
O level physics formula sheet
O level physics formula sheetO level physics formula sheet
O level physics formula sheet
srhyder21
 

What's hot (10)

Neutron Skin Measurements at Mainz
Neutron Skin Measurements at MainzNeutron Skin Measurements at Mainz
Neutron Skin Measurements at Mainz
 
CGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulationCGI2018 keynote - fluids simulation
CGI2018 keynote - fluids simulation
 
Molecular Dynamics - review
Molecular Dynamics - review Molecular Dynamics - review
Molecular Dynamics - review
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo PotentialGalalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
Galalactic Dynamics- Orbits in a Logarithmic Dark Matter Halo Potential
 
Sci 1010 chapter 4
Sci 1010 chapter 4Sci 1010 chapter 4
Sci 1010 chapter 4
 
MARM_chiral
MARM_chiralMARM_chiral
MARM_chiral
 
Physics formula list 2
Physics formula list 2Physics formula list 2
Physics formula list 2
 
Quantum Mechanics in Natural Planck Units
Quantum Mechanics in Natural Planck UnitsQuantum Mechanics in Natural Planck Units
Quantum Mechanics in Natural Planck Units
 
O level physics formula sheet
O level physics formula sheetO level physics formula sheet
O level physics formula sheet
 

Viewers also liked (15)

Modulo 4 lv
Modulo 4 lvModulo 4 lv
Modulo 4 lv
 
presentacion estadistica 1
presentacion estadistica 1presentacion estadistica 1
presentacion estadistica 1
 
20450
2045020450
20450
 
299-305 S. Nili
299-305 S. Nili299-305 S. Nili
299-305 S. Nili
 
18994
1899418994
18994
 
Búsqueda y gestión de la información en la
Búsqueda y gestión de la información en laBúsqueda y gestión de la información en la
Búsqueda y gestión de la información en la
 
Practica de aula
Practica de aulaPractica de aula
Practica de aula
 
Recommendation for BlackBerry Limited
Recommendation for BlackBerry LimitedRecommendation for BlackBerry Limited
Recommendation for BlackBerry Limited
 
Instaparty Pitch Deck - 2016
Instaparty Pitch Deck - 2016Instaparty Pitch Deck - 2016
Instaparty Pitch Deck - 2016
 
RHINITIS
RHINITISRHINITIS
RHINITIS
 
Paola
PaolaPaola
Paola
 
Historia del computador
Historia del computadorHistoria del computador
Historia del computador
 
Historia de seledina nieve
Historia de seledina nieveHistoria de seledina nieve
Historia de seledina nieve
 
Southend Pres
Southend PresSouthend Pres
Southend Pres
 
20449
2044920449
20449
 

Similar to Presentazione

UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdfUV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
ccgfffc1
 
Collective modes of CFL phase of QCD (QCD@Work 2010)
Collective modes of CFL phase of QCD (QCD@Work 2010)Collective modes of CFL phase of QCD (QCD@Work 2010)
Collective modes of CFL phase of QCD (QCD@Work 2010)
Roberto Anglani
 
Madrid Scientific Poster
Madrid Scientific PosterMadrid Scientific Poster
Madrid Scientific Poster
Shimon Lerner
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
Rohan Jain
 

Similar to Presentazione (20)

Physical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change MemoriesPhysical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change Memories
 
Abs. Spectro.ppt
Abs. Spectro.pptAbs. Spectro.ppt
Abs. Spectro.ppt
 
Klein Tunneling
Klein TunnelingKlein Tunneling
Klein Tunneling
 
1411.3275
1411.32751411.3275
1411.3275
 
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
 
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
EFFECT OF ELECTRON-PHONON INTERACTION ON ELECTRON SPIN POLARIZATION IN A QUAN...
 
UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdfUV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
UV-Vis molecular absorption spectroscopy- BSc-Lect 5.pdf
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
Compton effect
Compton effectCompton effect
Compton effect
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopy
 
Uv vis
Uv visUv vis
Uv vis
 
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current SheetsComisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
 
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
 
Collective modes of CFL phase of QCD (QCD@Work 2010)
Collective modes of CFL phase of QCD (QCD@Work 2010)Collective modes of CFL phase of QCD (QCD@Work 2010)
Collective modes of CFL phase of QCD (QCD@Work 2010)
 
Electronic Spectrum
Electronic SpectrumElectronic Spectrum
Electronic Spectrum
 
Madrid Scientific Poster
Madrid Scientific PosterMadrid Scientific Poster
Madrid Scientific Poster
 
Spectroscopic methods in inorganic chemistry Part1 uv vis
Spectroscopic methods in inorganic chemistry Part1 uv visSpectroscopic methods in inorganic chemistry Part1 uv vis
Spectroscopic methods in inorganic chemistry Part1 uv vis
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
 
Hybrid quantum systems
Hybrid quantum systemsHybrid quantum systems
Hybrid quantum systems
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 

Presentazione

  • 1. Introduction Phenomenology Model Transport properties Results Conclusion Gauge approach to pairing and superconductivity in high Tc cuprates Autore: Filippo Bovo Relatore: Prof. Pieralberto Marchetti UNIVERSIT`A DEGLI STUDI DI PADOVA FACOLT`A DI SCIENZE MM. FF. NN. DIPARTIMENTO DI FISICA “GALILEO GALILEI” 13 Luglio 2011 Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 2. Introduction Phenomenology Model Transport properties Results Conclusion 1 Introduction 2 Phenomenology 3 Model 4 Transport properties 5 Results 6 Conclusion Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 3. Introduction Phenomenology Model Transport properties Results Conclusion Crystal structure Typical structure: Copper-Oxygen planes ↓ + Charge reservoir (doping) O, 2px O, 2pyCu, 3dx -y2 2 Hole, 3dx -y2 2 Hole-doping removes this electron allowing holes to move Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 4. Introduction Phenomenology Model Transport properties Results Conclusion Phase diagram Phases: FL: Fermi Liquid; SM: Strange Metal; PG: Pseudogap; AF: Antiferromagnetic; SC: Superconducting. δ: doping; T: temperature [K]. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 5. Introduction Phenomenology Model Transport properties Results Conclusion Low-energy model Anderson’s idea of ”doping a Mott insulator” (1987) ↓ t-J model: low-energy physics of CuO2-planes + Gutzwiller projector PG Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 6. Introduction Phenomenology Model Transport properties Results Conclusion Low-energy model Anderson’s idea of ”doping a Mott insulator” (1987) ↓ t-J model: low-energy physics of CuO2-planes + Gutzwiller projector PG ↓ Ht−J = PG <ij> [−t(ˆc† iαˆcjα + H.c) + JˆSi · ˆSj ]PG Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 7. Introduction Phenomenology Model Transport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 8. Introduction Phenomenology Model Transport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i ⇓ PG → ˆni = ˆc† iαˆciα = 0, 1 → ˆh† i ˆhi = 0, 1 Automatic α ˆs† iαˆsiα = 1 Constraint Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 9. Introduction Phenomenology Model Transport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i ⇓ PG → ˆni = ˆc† iαˆciα = 0, 1 → ˆh† i ˆhi = 0, 1 Automatic α ˆs† iαˆsiα = 1 Constraint + Invariance under: ˆhi → ˆhi eiϕ ˆsiα → ˆsiαeiϕ , ϕ U(1) local phase ⇒ Aµ U(1) gauge field Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 10. Introduction Phenomenology Model Transport properties Results Conclusion Improved mean-field approximation Optimization of the spinon configurations and mean-field treatment: ˆhj eiφh(j), fermion ˆzj eiφs (j), boson ←− The product is still a fermion Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 11. Introduction Phenomenology Model Transport properties Results Conclusion Improved mean-field approximation Optimization of the spinon configurations and mean-field treatment: ˆhj eiφh(j), fermion ˆzj eiφs (j), boson ←− The product is still a fermion ⇒ φh(j) → Charge vortex φs(j) → Spin vortex PG SM ↓ π-flux ↓ 0-flux Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 12. Introduction Phenomenology Model Transport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 13. Introduction Phenomenology Model Transport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ + Holon effective action: PG: ⇒ (Formally) relativistic spinless fermion with small half-circle Fermi surface (∼ δ) centered in (±π/2, ±π/2) in MBZ1 , minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 14. Introduction Phenomenology Model Transport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ + Holon effective action: PG: ⇒ (Formally) relativistic spinless fermion with small half-circle Fermi surface (∼ δ) centered in (±π/2, ±π/2) in MBZ1 , minimally coupled to Aµ SM: ⇒ Non-relativistic spinless fermion with big circular Fermi surface (∼ 1 − δ) centered in (±π, ±π) in MBZ, minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 15. Introduction Phenomenology Model Transport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 16. Introduction Phenomenology Model Transport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 17. Introduction Phenomenology Model Transport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h A A Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 18. Introduction Phenomenology Model Transport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Indirect spinon potential Attraction scheme: h A A s s Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 19. Introduction Phenomenology Model Transport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 20. Introduction Phenomenology Model Transport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Formation of holon pairs ⇒ energy-dependent (normalized) holon density of states n(ω) ↓ Starting point: Kubo formula for holon conductivity σ(ω, T) ∝ 1 Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate: Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 21. Introduction Phenomenology Model Transport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Formation of holon pairs ⇒ energy-dependent (normalized) holon density of states n(ω) ↓ Starting point: Kubo formula for holon conductivity σ(ω, T) ∝ 1 Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate: ΓTr (Ω, T) ∝ ∞ 0 dω˜I2 χTr (ω){n(Ω−ω)fem(Ω, ω, T)+n(Ω+ω)fab(Ω, ω, T)} • ˜I2χTr : interaction spectral density (momentum averaged); • fem, fab: holon probabilities of emission and absorption of the gauge field. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 22. Introduction Phenomenology Model Transport properties Results Conclusion Holon conductivity Dressed holon propagator GR h (ω, k) → n(ω) ∝ dk (2π)2 GR h (ω, k). 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Ω0.0 0.5 1.0 1.5 2.0 n δ T ↑ The interaction between phase fluctuations of the paired holons gets stronger as temperature decreases → → interpolation between FL and SC behaviours. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 23. Introduction Phenomenology Model Transport properties Results Conclusion Real part of optical conductivity, SM Hole re-composition through the Ioffe-Larking rule for complex conductivities: 1 σ = 1 σh + 1 σs Theory2 vs Experiment: 2 ω in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 24. Introduction Phenomenology Model Transport properties Results Conclusion Real part of optical conductivity, PG Hole re-composition through the Ioffe-Larking rule for complex conductivities: 1 σ = 1 σh + 1 σs Theory3 vs Experiment: 3 ω in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 25. Introduction Phenomenology Model Transport properties Results Conclusion Transport scattering rate, SM Ioffe-Larkin rule ⇒ Γtr = Γtr;h + Γtr;s Theory4 vs Experiment: Γ 4 T=300,270,250,230K. ω and Γtr in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 26. Introduction Phenomenology Model Transport properties Results Conclusion Resistivity, SM Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s Theory5 vs Experiment: 5 δ = 0.10, 0.15, 0.20. ω and T in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 27. Introduction Phenomenology Model Transport properties Results Conclusion Resistivity, PG Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s Theory6 vs Experiment: 6 δ = 0.03, 0.05. ω and T in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 28. Introduction Phenomenology Model Transport properties Results Conclusion Conclusions Good qualitative comparison between theoretical and experimental results ⇓ The technique used to take into account the formation of holon pairs is correct + Further step toward the validity of the model Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 29. Introduction Phenomenology Model Transport properties Results Conclusion Further developments Mapping of ∂2ρ/∂T2 to be compared with Ando et al. (Phys. Rev. Lett., 93(26):267001, 2004) experiment: Computation of the reflectivity to be compared with Giannetti et al. (Nat Commun, 2:353, 06 2011) experiment: Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates