SlideShare a Scribd company logo
1 of 24
Download to read offline
A Working Protocol for Assignment of AbsoluteA Working Protocol for Assignment of Absolute
Configuration from UVConfiguration from UV--Visible CircularVisible Circular DichroismDichroism
Spectra and Theoretical CalculationsSpectra and Theoretical Calculations
Andrew Pudzianowski
Computer-Aided Drug Design
Bristol-Myers Squibb PRI
June 5, 2006
The Problem: What is “Isomer A?”The Problem: What is “Isomer A?”
• Many racemic compounds made and tested
• Interesting compounds often separated by chiral LC:
Isomers “A” and “B”
• One enantiomer may be more biologically active than the
other (if just binary diastereomers).
• Let’s say “isomer A” is more active: Is it R or S? That is,
what is its absolute configuration?
Can’t say without further experimental work….
Absolute Configuration: ExperimentalAbsolute Configuration: Experimental
MethodsMethods
• Stereospecific synthesis: Definitive, but can be time-
consuming and expensive.
• Crystallography: Phase ambiguity in small-molecule
diffraction…absolute configuration not a routine result.
• Chiroptical spectroscopy: Polarized light source. CD
(absorption) or ORD (dispersion). Easy experiment, not
destructive. Spectral bands have opposite sign (+ or -)
for enantiomers. Shapes, intensities related to electronic
structure, require interpretation….
• VCD: Chiral IR or Raman spectroscopy.
• NMR: New methods.
Experimental Methods: ComplementaryExperimental Methods: Complementary
ApproachesApproaches
• Physical methods can be complementary: One method
can strengthen another’s results, so….
• Multiple methodologies are good!
• Role of UV-vis CD: Many attractive properties – easy to
run; strong spectral features; direct link to molecular
electronic structure – can be important part of structural
tool kit. But…
Need general methodology to interpret spectra – expect great
diversity of compound types, so no “special rules.”
Methodology must be dependable, else one could just as well
flip a coin…heads it’s R, tails it’s S!
CD SpectroscopyCD Spectroscopy
• What’s measured: Differential absorption of right
and left circularly polarized light passing through
a medium. Observed as…
• Circular dichroism: ∆ε = εL – εR …. Difference in
absorption coefficients. Zero in optically inactive
media. Units: L/(mol-cm). Often expressed as…
• Molar ellipticity: [Θ] ≈ 3300 ∆ε …. Related to an
angle, where units should resemble °/mol (but
don’t quote me).
• Spectrum: Record ∆ε as wavelength varies.
Example CD SpectrumExample CD Spectrum
Note direct relationship
between CD and regular UV
absorption: Same electronic
states and same excitations
involved. (Same transitions,
slightly different experiments.)
Simplicity of CD spectrum is
attractive.
N. Harada et al., J. Am. Chem. Soc. 109, 1661 (1987)
Optical Activity: It’s Helical In HereOptical Activity: It’s Helical In Here
A simplified but not simplistic view:
Chiral molecules have the symmetry properties of helices.
Classic asymmetric carbon is
equivalent to conical helix
(point group C1).
Atropisomeric molecules are
related to cylindrical helix (point
group C2)…
Helical displacement of electron
density in a transition gives rise to
differential absorption of polarized
light!
Hook to Molecular Structure?Hook to Molecular Structure?
Since CD spectrum reflects electronic
structure…
Can electronic structure calculationsCan electronic structure calculations
“predict” CD?“predict” CD?
Answer: Given certain limits, a big YESYES.
Quantum Mechanics: TransitionsQuantum Mechanics: Transitions
System in state i, one of many possible states. Mathematical
representation: Ψi (state vector, wave function)
Observable property A. Mathematical representation: operator Â.
Calculate value of A: expectation value
ii AˆA ΨΨ=
Mathematical operation – Integration for wave functions, matrix
multiplication for state vectors.
For system transition from state i to excited state j, value of A…
jiij ΨΨ= AˆA
QM ofQM of ChiropticalChiroptical SpectroscopySpectroscopy
Energy: Absorption of light kicks molecule from state i (often
ground so i = 0) to excited state j. Excitation occurs at energy
given below, where H is Hamiltonian for the molecule. (Usually
converted to wavelength λij and expressed in nm.)
ji
ˆE ΨΨ= Hij
ji
ˆ ΨΨ= µµij
v
Intensity: Strength of ordinary absorption is determined by electric
dipole moment µ for transition (transition dipole)…
Strength of chiroptical absorption (rotatory strength) is determined by
interaction of electric dipole with magnetic dipole moment m…
ijji
2
ˆˆˆ
2
)Im( Ψ∇×Ψ•Ψ∇Ψ=•= r
mcE
he
mR
ij
jiijij
vv
µ
Quantum Chemical CalculationsQuantum Chemical Calculations
Wavefunctions: States expressed as finite combinations of MO’s
with specified occupancies by electrons (configurations). These
states are used to evaluate the energies and intensities of bands
in the spectral range of interest.
Programs:
•Gaussian 03: ab initio / DFT with calculation of chiroptical properties
for UV-visible (electronic) range. Uses TD-DFT for electronic
transitions…same machinery for states and transitions as CIS.
•Jaguar: Faster ab initio / DFT for geometries and LMP2 energies.
•AMPAC: Very fast geometry optimizations with semiempirical SAM1
methodology. Good filter between conf search and above calcs.
UV/CD ProtocolUV/CD Protocol
DFT geometry
optimization
SAM1 geometry
optimization
Conformations
Macromodel Monte Carlo,
Merck Molecular Force Field
Jaguar 6.5 program,
B3LYP/6-31+G(d,p)
AMPAC 8.16 program:
Semiempirical SCF/MO
Conformer
energy cutoff:
≤ 3.0 kcal/mol
TD-DFT electronic
transitions
Local MP2 energy
Fixed geometry
Gaussian 03 program,
TD-B3LYP/6-31+G(d,p)
λ and R values
Jaguar 6.5 program,
LMP2/6-31+G(d,p)
Compute UV/CD bands
and plot spectrum
MULTSPEC program,
GNUPlot
How It’s Done: Some detailsHow It’s Done: Some details
Brief details of the UV-CD protocol….
Conformations: MacroModel MCMM with MMFF.
Refine geometries: First AMPAC/SAM1, then Jaguar at
B3LYP/6-31+G(d,p) level of theory.
Refine energies: Jaguar LMP2/6-31+G(d,p) on optimized
geometries from previous step.
Excitations: Gaussian 03 TD-B3LYP/6-31+G(d,p) with 25
excited states per conformer.
Plots: Per conformer, feed wavelengths and rotatory
strengths, along with conformer energy, to MULTSPEC
program…Boltzmann-weighted sum of Gaussian bands
for calculated spectrum.
Assign (R) or (S): Compare with experimental CD bands.
2,2’2,2’--dimethyldimethyl--6,6’6,6’--dinitrobiphenyl (dinitrobiphenyl (dmdnbpdmdnbp))
K. M. Mislow et al., J. Am. Chem. Soc.
85, 1342-1349 (1963) TD-DFT B3LYP/6-31+G(d,p) spectrum
NO2NO2
CH3 CH3
2,2’2,2’--dihydroxymethyldihydroxymethyl--1,1’1,1’--binaphthylbinaphthyl
((dhmbndhmbn))
K. M. Mislow et al., J. Am. Chem. Soc.
85, 1342-1349 (1963) TD-DFT B3LYP/6-31+G(d,p) spectrum
CH2OH CH2OH
AA spirospiro acetalacetal troponoidtroponoid compoundcompound
TD-DFT B3LYP/6-31+G(d,p) spectrum
Note that strengths and
positions of longer wavelength
bands are off here, but pattern
is readily matched to
experimental spectrum.
N. Harada et al., J. Am. Chem. Soc. 109, 1661 (1987)
A closer lookA closer look……
Same with last two bands shiftedTD-DFT B3LYP/6-31+G(d,p) spectrum
If two longest-wavelength bands are shifted left by 60 nm and spectrum is
replotted (right), get a much closer match to experimental spectrum. Thus, long
wavelengths may sometimes be too long but are not qualitatively wrong.
Incidentally, a “bigger” TD-DFT calculation with the 6-311+G(d,p) basis set
doesn’t improve the results. Perhaps DFT functionals other than B3-LYP?....
BMS: Application to Eg5 InhibitorsBMS: Application to Eg5 Inhibitors
N
H3C
CH3
N
O
OH
CH3
CH3
*
TD-DFT CD for (R) configuration
Cpd 32: C. M. Tarby et al., Bioorg. Med. Chem.
Lett. 16, 2095-2100 (2006)…racemic
Below right: UV-CD spectrum (methanol) for
active enantiomer…
Not hard to assign (R) configuration here.
Another BMS Example:Another BMS Example:
Calculated CD Spectrum for (R)Calculated CD Spectrum for (R) EnantiomerEnantiomer
*
Fused ring
system
Aromatic
ring
TD-DFT B3LYP/6-31+G(d,p)
Four rotatable bonds
Below right: UV-CD spectrum (methanol)…
Not hard to assign (R) configuration here.
Conformer Contributions: EnergiesConformer Contributions: Energies
Note what happens to conformer energies as theory gets better…
Note: Basis set for B3LYP and MP2 entries is 6-31+G(d,p).
7.446.155.61.47
0.280.330.500.01.26
----identical to
conf 4
1.05
4.393.531.90.74
2.021.821.90.53
3.983.051.90.22
0.000.000.000.00.01
(Full MP2)LMP2 Erel
(kcal/mol)
B3LYP Erel
(kcal/mol)
SAM1 ∆Hrel
(kcal/mol)
MMFF Erel
(kcal/mol)
MCMM
conf #
How important are conformers?How important are conformers?
Look at individual (R) conformer spectra…Look at individual (R) conformer spectra…
Calculated CD
spectra for
isolated
conformers and
relative LMP2
energies
(Boltzmann
weights in
parentheses).
Conf 3: 2.02 kcal/mol (0.033)Conf 1: 0.0 kcal/mol (1.00)
Conf 4: 3.98 kcal/mol (0.0012)Conf 2: 0.33 kcal/mol (0.57)
How important are conformers? (cont.)...How important are conformers? (cont.)...
Conf 5: 4.39 kcal/mol (0.00061)
TD-DFT composite CD spectrum
While isolated confs can have drastically
different spectra, composite CD spectrum for
all 5 confs (left) looks amazingly like weighted
sum of confs 1 and 2. Boltzmann factor drops
10-fold per 1.36 kcal/mol increment above
lowest energy… confs above ~3 kcal/mol
relative energy contribute very little to overall
spectrum.
Summary and ConclusionsSummary and Conclusions
CD spectrum is correlated with molecular structure by established theory.
Computing resources and algorithms now provide enough power to express
theory at rather high level, so….
B3LYP and LMP2 with 6-31+G(d,p) basis set are reliable for providing
structures and conformer energies (for Boltzmann weights), and TD-DFT can
reliably calculate UV-vis CD spectra, all on a useful time scale.
Absolute configuration can be assigned from CD spectra, within some
limits….
No more than 4, perhaps 5 rotatable bonds
Correlation with experimental spectrum may not be easy if calculated
positions and strengths of bands are off…look at pattern.
CD-based assignments can’t always be made, so technique provides
additional method without superseding others.
VCD and UV-vis CD can cross-check each other, as well as other methods.
They can also point up ambiguities in experimental data and suggest
another look when stereo assignment is a priority.
AcknowledgmentsAcknowledgments
Bill Pitts, Al Dyckman (Discovery Chemistry)
Adrienne Tymiak (DAS), Steve Gozo (AR&D) (initial
discussions about UV-vis and VCD at BMS)
Atsu Apedo (DAS) (Experimental CD spectra)
Jack Gougoutas (AR&D), Wes Cosand (MMS) (Gaussian
03 acquisition)
Malcolm Davis, Brian Claus, Jano Jusuf (CADD) and Shibu
Nair, Brian Wong (DTCS) (SGI and Linux support)

More Related Content

What's hot

Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...ABDERRAHMANE REGGAD
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FTClaudio Attaccalite
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorConcettina Sfienti
 
Neutron Skin Measurements at Mainz
Neutron Skin Measurements at MainzNeutron Skin Measurements at Mainz
Neutron Skin Measurements at MainzConcettina Sfienti
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsABDERRAHMANE REGGAD
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 
Ir mass interpration
Ir mass interprationIr mass interpration
Ir mass interprationGanesh Shinde
 
Quantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenationQuantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenationStephan Irle
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Study of de broglie wavelength of electrons
Study of de broglie wavelength of electronsStudy of de broglie wavelength of electrons
Study of de broglie wavelength of electronsSubhamChakraborty28
 
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)SubhamChakraborty28
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review Inon Sharony
 
Ap physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesAp physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesArvenz Gavino
 

What's hot (19)

Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...Anderson localization, wave diffusion and the effect of nonlinearity in disor...
Anderson localization, wave diffusion and the effect of nonlinearity in disor...
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FT
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
 
Ewald summation
Ewald summationEwald summation
Ewald summation
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
Neutron Skin Measurements at Mainz
Neutron Skin Measurements at MainzNeutron Skin Measurements at Mainz
Neutron Skin Measurements at Mainz
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Ir mass interpration
Ir mass interprationIr mass interpration
Ir mass interpration
 
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock ApproximationNANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
 
Quantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenationQuantum chemical molecular dynamics simulations of graphene hydrogenation
Quantum chemical molecular dynamics simulations of graphene hydrogenation
 
Cmr
CmrCmr
Cmr
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Hartree fock theory
Hartree fock theoryHartree fock theory
Hartree fock theory
 
Study of de broglie wavelength of electrons
Study of de broglie wavelength of electronsStudy of de broglie wavelength of electrons
Study of de broglie wavelength of electrons
 
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
Deep Inelastic Scattering at HERA (Hadron-Electron Ring Acceleartor)
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review
 
Ap physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forcesAp physics b_-_electric_fields_and_forces
Ap physics b_-_electric_fields_and_forces
 

Viewers also liked

Referentes clásicos en la música
Referentes clásicos en la músicaReferentes clásicos en la música
Referentes clásicos en la músicaLaura Tarazaga
 
Actividades de peso y tiempo
Actividades de peso y tiempoActividades de peso y tiempo
Actividades de peso y tiempoDianitha Blake
 
Actividades para los niños muestra
Actividades para los niños muestraActividades para los niños muestra
Actividades para los niños muestraDianitha Blake
 
Formato proyectos de aula yira cardenas, tamaco
Formato proyectos de aula yira cardenas, tamacoFormato proyectos de aula yira cardenas, tamaco
Formato proyectos de aula yira cardenas, tamacototumal
 
Cocteles de sebastiny brucs
Cocteles de sebastiny brucsCocteles de sebastiny brucs
Cocteles de sebastiny brucssebastiny
 
Logistica
LogisticaLogistica
Logisticastefaya
 
Consumer behavior 2
Consumer behavior   2Consumer behavior   2
Consumer behavior 2msquare77
 
Bernardo Vanegas G. - 77414
Bernardo Vanegas G. - 77414Bernardo Vanegas G. - 77414
Bernardo Vanegas G. - 77414Bernardo Vanegas
 
Aprendizaje y nuevas perspectivas didácticas en el aula
Aprendizaje y nuevas perspectivas didácticas en el aulaAprendizaje y nuevas perspectivas didácticas en el aula
Aprendizaje y nuevas perspectivas didácticas en el aulaDianitha Blake
 
Tema 15 aplicaciones de dos capas por gio
Tema 15   aplicaciones de dos capas por gioTema 15   aplicaciones de dos capas por gio
Tema 15 aplicaciones de dos capas por gioRobert Wolf
 
【kintone hive 上海】天津ネットワーク様講演資料_160918
【kintone hive 上海】天津ネットワーク様講演資料_160918【kintone hive 上海】天津ネットワーク様講演資料_160918
【kintone hive 上海】天津ネットワーク様講演資料_160918Cybozucommunity
 
La tecnología en la vida cotidiana
La tecnología en la vida cotidianaLa tecnología en la vida cotidiana
La tecnología en la vida cotidianacruzazul97
 

Viewers also liked (18)

Referentes clásicos en la música
Referentes clásicos en la músicaReferentes clásicos en la música
Referentes clásicos en la música
 
Actividades de peso y tiempo
Actividades de peso y tiempoActividades de peso y tiempo
Actividades de peso y tiempo
 
Actividades para los niños muestra
Actividades para los niños muestraActividades para los niños muestra
Actividades para los niños muestra
 
Formato proyectos de aula yira cardenas, tamaco
Formato proyectos de aula yira cardenas, tamacoFormato proyectos de aula yira cardenas, tamaco
Formato proyectos de aula yira cardenas, tamaco
 
Cocteles de sebastiny brucs
Cocteles de sebastiny brucsCocteles de sebastiny brucs
Cocteles de sebastiny brucs
 
Logistica
LogisticaLogistica
Logistica
 
Consumer behavior 2
Consumer behavior   2Consumer behavior   2
Consumer behavior 2
 
Mito teseo
Mito teseoMito teseo
Mito teseo
 
Bernardo Vanegas G. - 77414
Bernardo Vanegas G. - 77414Bernardo Vanegas G. - 77414
Bernardo Vanegas G. - 77414
 
Transistores
TransistoresTransistores
Transistores
 
Aprendizaje y nuevas perspectivas didácticas en el aula
Aprendizaje y nuevas perspectivas didácticas en el aulaAprendizaje y nuevas perspectivas didácticas en el aula
Aprendizaje y nuevas perspectivas didácticas en el aula
 
PLANEACIÓN
PLANEACIÓNPLANEACIÓN
PLANEACIÓN
 
Tema 15 aplicaciones de dos capas por gio
Tema 15   aplicaciones de dos capas por gioTema 15   aplicaciones de dos capas por gio
Tema 15 aplicaciones de dos capas por gio
 
【kintone hive 上海】天津ネットワーク様講演資料_160918
【kintone hive 上海】天津ネットワーク様講演資料_160918【kintone hive 上海】天津ネットワーク様講演資料_160918
【kintone hive 上海】天津ネットワーク様講演資料_160918
 
La tecnología en la vida cotidiana
La tecnología en la vida cotidianaLa tecnología en la vida cotidiana
La tecnología en la vida cotidiana
 
Conceptos de medida
Conceptos de medidaConceptos de medida
Conceptos de medida
 
Musculos superiores
Musculos superioresMusculos superiores
Musculos superiores
 
Proyecto situado 2
Proyecto situado 2Proyecto situado 2
Proyecto situado 2
 

Similar to MARM_chiral

Similar to MARM_chiral (20)

Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistry
 
Chapter 7 notes
Chapter 7 notes Chapter 7 notes
Chapter 7 notes
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Week2_Notes.pdf
Week2_Notes.pdfWeek2_Notes.pdf
Week2_Notes.pdf
 
IR Spectroscopy - MC.pptx
IR Spectroscopy - MC.pptxIR Spectroscopy - MC.pptx
IR Spectroscopy - MC.pptx
 
C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE
 
Introduction-NMR.pdf
Introduction-NMR.pdfIntroduction-NMR.pdf
Introduction-NMR.pdf
 
Chapter_5.pptx .
Chapter_5.pptx                                    .Chapter_5.pptx                                    .
Chapter_5.pptx .
 
78298077-Ir-Application.ppt
78298077-Ir-Application.ppt78298077-Ir-Application.ppt
78298077-Ir-Application.ppt
 
JASCO-CD-Webinar-Part-1-FINAL.pptx
JASCO-CD-Webinar-Part-1-FINAL.pptxJASCO-CD-Webinar-Part-1-FINAL.pptx
JASCO-CD-Webinar-Part-1-FINAL.pptx
 
nmr_1.ppt
nmr_1.pptnmr_1.ppt
nmr_1.ppt
 
Nmr
NmrNmr
Nmr
 
Potential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular GraphicsPotential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular Graphics
 
Structure ofmatter fin
Structure ofmatter finStructure ofmatter fin
Structure ofmatter fin
 
Circular Dichroism ppt,
Circular Dichroism ppt, Circular Dichroism ppt,
Circular Dichroism ppt,
 
NMR spectroscopy full details instrumental .ppt
NMR spectroscopy full details instrumental .pptNMR spectroscopy full details instrumental .ppt
NMR spectroscopy full details instrumental .ppt
 
NMR
NMRNMR
NMR
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
 

MARM_chiral

  • 1. A Working Protocol for Assignment of AbsoluteA Working Protocol for Assignment of Absolute Configuration from UVConfiguration from UV--Visible CircularVisible Circular DichroismDichroism Spectra and Theoretical CalculationsSpectra and Theoretical Calculations Andrew Pudzianowski Computer-Aided Drug Design Bristol-Myers Squibb PRI June 5, 2006
  • 2. The Problem: What is “Isomer A?”The Problem: What is “Isomer A?” • Many racemic compounds made and tested • Interesting compounds often separated by chiral LC: Isomers “A” and “B” • One enantiomer may be more biologically active than the other (if just binary diastereomers). • Let’s say “isomer A” is more active: Is it R or S? That is, what is its absolute configuration? Can’t say without further experimental work….
  • 3. Absolute Configuration: ExperimentalAbsolute Configuration: Experimental MethodsMethods • Stereospecific synthesis: Definitive, but can be time- consuming and expensive. • Crystallography: Phase ambiguity in small-molecule diffraction…absolute configuration not a routine result. • Chiroptical spectroscopy: Polarized light source. CD (absorption) or ORD (dispersion). Easy experiment, not destructive. Spectral bands have opposite sign (+ or -) for enantiomers. Shapes, intensities related to electronic structure, require interpretation…. • VCD: Chiral IR or Raman spectroscopy. • NMR: New methods.
  • 4. Experimental Methods: ComplementaryExperimental Methods: Complementary ApproachesApproaches • Physical methods can be complementary: One method can strengthen another’s results, so…. • Multiple methodologies are good! • Role of UV-vis CD: Many attractive properties – easy to run; strong spectral features; direct link to molecular electronic structure – can be important part of structural tool kit. But… Need general methodology to interpret spectra – expect great diversity of compound types, so no “special rules.” Methodology must be dependable, else one could just as well flip a coin…heads it’s R, tails it’s S!
  • 5. CD SpectroscopyCD Spectroscopy • What’s measured: Differential absorption of right and left circularly polarized light passing through a medium. Observed as… • Circular dichroism: ∆ε = εL – εR …. Difference in absorption coefficients. Zero in optically inactive media. Units: L/(mol-cm). Often expressed as… • Molar ellipticity: [Θ] ≈ 3300 ∆ε …. Related to an angle, where units should resemble °/mol (but don’t quote me). • Spectrum: Record ∆ε as wavelength varies.
  • 6. Example CD SpectrumExample CD Spectrum Note direct relationship between CD and regular UV absorption: Same electronic states and same excitations involved. (Same transitions, slightly different experiments.) Simplicity of CD spectrum is attractive. N. Harada et al., J. Am. Chem. Soc. 109, 1661 (1987)
  • 7. Optical Activity: It’s Helical In HereOptical Activity: It’s Helical In Here A simplified but not simplistic view: Chiral molecules have the symmetry properties of helices. Classic asymmetric carbon is equivalent to conical helix (point group C1). Atropisomeric molecules are related to cylindrical helix (point group C2)… Helical displacement of electron density in a transition gives rise to differential absorption of polarized light!
  • 8. Hook to Molecular Structure?Hook to Molecular Structure? Since CD spectrum reflects electronic structure… Can electronic structure calculationsCan electronic structure calculations “predict” CD?“predict” CD? Answer: Given certain limits, a big YESYES.
  • 9. Quantum Mechanics: TransitionsQuantum Mechanics: Transitions System in state i, one of many possible states. Mathematical representation: Ψi (state vector, wave function) Observable property A. Mathematical representation: operator Â. Calculate value of A: expectation value ii AˆA ΨΨ= Mathematical operation – Integration for wave functions, matrix multiplication for state vectors. For system transition from state i to excited state j, value of A… jiij ΨΨ= AˆA
  • 10. QM ofQM of ChiropticalChiroptical SpectroscopySpectroscopy Energy: Absorption of light kicks molecule from state i (often ground so i = 0) to excited state j. Excitation occurs at energy given below, where H is Hamiltonian for the molecule. (Usually converted to wavelength λij and expressed in nm.) ji ˆE ΨΨ= Hij ji ˆ ΨΨ= µµij v Intensity: Strength of ordinary absorption is determined by electric dipole moment µ for transition (transition dipole)… Strength of chiroptical absorption (rotatory strength) is determined by interaction of electric dipole with magnetic dipole moment m… ijji 2 ˆˆˆ 2 )Im( Ψ∇×Ψ•Ψ∇Ψ=•= r mcE he mR ij jiijij vv µ
  • 11. Quantum Chemical CalculationsQuantum Chemical Calculations Wavefunctions: States expressed as finite combinations of MO’s with specified occupancies by electrons (configurations). These states are used to evaluate the energies and intensities of bands in the spectral range of interest. Programs: •Gaussian 03: ab initio / DFT with calculation of chiroptical properties for UV-visible (electronic) range. Uses TD-DFT for electronic transitions…same machinery for states and transitions as CIS. •Jaguar: Faster ab initio / DFT for geometries and LMP2 energies. •AMPAC: Very fast geometry optimizations with semiempirical SAM1 methodology. Good filter between conf search and above calcs.
  • 12. UV/CD ProtocolUV/CD Protocol DFT geometry optimization SAM1 geometry optimization Conformations Macromodel Monte Carlo, Merck Molecular Force Field Jaguar 6.5 program, B3LYP/6-31+G(d,p) AMPAC 8.16 program: Semiempirical SCF/MO Conformer energy cutoff: ≤ 3.0 kcal/mol TD-DFT electronic transitions Local MP2 energy Fixed geometry Gaussian 03 program, TD-B3LYP/6-31+G(d,p) λ and R values Jaguar 6.5 program, LMP2/6-31+G(d,p) Compute UV/CD bands and plot spectrum MULTSPEC program, GNUPlot
  • 13. How It’s Done: Some detailsHow It’s Done: Some details Brief details of the UV-CD protocol…. Conformations: MacroModel MCMM with MMFF. Refine geometries: First AMPAC/SAM1, then Jaguar at B3LYP/6-31+G(d,p) level of theory. Refine energies: Jaguar LMP2/6-31+G(d,p) on optimized geometries from previous step. Excitations: Gaussian 03 TD-B3LYP/6-31+G(d,p) with 25 excited states per conformer. Plots: Per conformer, feed wavelengths and rotatory strengths, along with conformer energy, to MULTSPEC program…Boltzmann-weighted sum of Gaussian bands for calculated spectrum. Assign (R) or (S): Compare with experimental CD bands.
  • 14. 2,2’2,2’--dimethyldimethyl--6,6’6,6’--dinitrobiphenyl (dinitrobiphenyl (dmdnbpdmdnbp)) K. M. Mislow et al., J. Am. Chem. Soc. 85, 1342-1349 (1963) TD-DFT B3LYP/6-31+G(d,p) spectrum NO2NO2 CH3 CH3
  • 15. 2,2’2,2’--dihydroxymethyldihydroxymethyl--1,1’1,1’--binaphthylbinaphthyl ((dhmbndhmbn)) K. M. Mislow et al., J. Am. Chem. Soc. 85, 1342-1349 (1963) TD-DFT B3LYP/6-31+G(d,p) spectrum CH2OH CH2OH
  • 16. AA spirospiro acetalacetal troponoidtroponoid compoundcompound TD-DFT B3LYP/6-31+G(d,p) spectrum Note that strengths and positions of longer wavelength bands are off here, but pattern is readily matched to experimental spectrum. N. Harada et al., J. Am. Chem. Soc. 109, 1661 (1987)
  • 17. A closer lookA closer look…… Same with last two bands shiftedTD-DFT B3LYP/6-31+G(d,p) spectrum If two longest-wavelength bands are shifted left by 60 nm and spectrum is replotted (right), get a much closer match to experimental spectrum. Thus, long wavelengths may sometimes be too long but are not qualitatively wrong. Incidentally, a “bigger” TD-DFT calculation with the 6-311+G(d,p) basis set doesn’t improve the results. Perhaps DFT functionals other than B3-LYP?....
  • 18. BMS: Application to Eg5 InhibitorsBMS: Application to Eg5 Inhibitors N H3C CH3 N O OH CH3 CH3 * TD-DFT CD for (R) configuration Cpd 32: C. M. Tarby et al., Bioorg. Med. Chem. Lett. 16, 2095-2100 (2006)…racemic Below right: UV-CD spectrum (methanol) for active enantiomer… Not hard to assign (R) configuration here.
  • 19. Another BMS Example:Another BMS Example: Calculated CD Spectrum for (R)Calculated CD Spectrum for (R) EnantiomerEnantiomer * Fused ring system Aromatic ring TD-DFT B3LYP/6-31+G(d,p) Four rotatable bonds Below right: UV-CD spectrum (methanol)… Not hard to assign (R) configuration here.
  • 20. Conformer Contributions: EnergiesConformer Contributions: Energies Note what happens to conformer energies as theory gets better… Note: Basis set for B3LYP and MP2 entries is 6-31+G(d,p). 7.446.155.61.47 0.280.330.500.01.26 ----identical to conf 4 1.05 4.393.531.90.74 2.021.821.90.53 3.983.051.90.22 0.000.000.000.00.01 (Full MP2)LMP2 Erel (kcal/mol) B3LYP Erel (kcal/mol) SAM1 ∆Hrel (kcal/mol) MMFF Erel (kcal/mol) MCMM conf #
  • 21. How important are conformers?How important are conformers? Look at individual (R) conformer spectra…Look at individual (R) conformer spectra… Calculated CD spectra for isolated conformers and relative LMP2 energies (Boltzmann weights in parentheses). Conf 3: 2.02 kcal/mol (0.033)Conf 1: 0.0 kcal/mol (1.00) Conf 4: 3.98 kcal/mol (0.0012)Conf 2: 0.33 kcal/mol (0.57)
  • 22. How important are conformers? (cont.)...How important are conformers? (cont.)... Conf 5: 4.39 kcal/mol (0.00061) TD-DFT composite CD spectrum While isolated confs can have drastically different spectra, composite CD spectrum for all 5 confs (left) looks amazingly like weighted sum of confs 1 and 2. Boltzmann factor drops 10-fold per 1.36 kcal/mol increment above lowest energy… confs above ~3 kcal/mol relative energy contribute very little to overall spectrum.
  • 23. Summary and ConclusionsSummary and Conclusions CD spectrum is correlated with molecular structure by established theory. Computing resources and algorithms now provide enough power to express theory at rather high level, so…. B3LYP and LMP2 with 6-31+G(d,p) basis set are reliable for providing structures and conformer energies (for Boltzmann weights), and TD-DFT can reliably calculate UV-vis CD spectra, all on a useful time scale. Absolute configuration can be assigned from CD spectra, within some limits…. No more than 4, perhaps 5 rotatable bonds Correlation with experimental spectrum may not be easy if calculated positions and strengths of bands are off…look at pattern. CD-based assignments can’t always be made, so technique provides additional method without superseding others. VCD and UV-vis CD can cross-check each other, as well as other methods. They can also point up ambiguities in experimental data and suggest another look when stereo assignment is a priority.
  • 24. AcknowledgmentsAcknowledgments Bill Pitts, Al Dyckman (Discovery Chemistry) Adrienne Tymiak (DAS), Steve Gozo (AR&D) (initial discussions about UV-vis and VCD at BMS) Atsu Apedo (DAS) (Experimental CD spectra) Jack Gougoutas (AR&D), Wes Cosand (MMS) (Gaussian 03 acquisition) Malcolm Davis, Brian Claus, Jano Jusuf (CADD) and Shibu Nair, Brian Wong (DTCS) (SGI and Linux support)