SlideShare a Scribd company logo
1 of 97
Download to read offline
Image and Video
Phylogeny Reconstruction
Filipe de Oliveira Costa
Advisor: Prof. Anderson Rocha
Co-advisor: Prof. Zanoni Dias
Outline
• Introduction
• Image Phylogeny
• Video Phylogeny
• Conclusions
2
Introduction
3
Multimedia document
Modified versions
Source: Google Images
Dark side of the moon internet
4
Near-duplicate detection
5
Near-duplicate
detection
Multimedia Phylogeny
6
Multimedia Phylogeny
7
8
Multimedia Phylogeny
Phylogeny tree
Phylogeny forest
Main Objective
Design and develop solutions that allow us to identify
the structure (phylogeny tree / forest) that represents
the generation process overtime of images and videos
9
Contributions
• Image phylogeny
• Approaches to image phylogeny forest
reconstruction
• New dissimilarity measures for image phylogeny
• Video Phylogeny
• Phylogeny reconstruction for misaligned and
compressed video sequences
10
Image Phylogeny
Image Phylogeny
• Divided into two basic steps
• Dissimilarity calculation
• Phylogeny Reconstruction
12
Dissimilarity Calculation
Itgt
d(Isrc, Itgt)
13
d(Isrc, Itgt) = min
T!2T
|Itgt T!(Isrc)| point-wise comparison L.
Isrc
Dissimilarity Calculation
Geometric matching
14
Itgt
Isrc
Dissimilarity Calculation
Color and compression matching
Isrc Itgt
R
G
B
Compression
15
Dissimilarity Calculation
Point-wise comparison
(Mean Squared Error)
I0
src
L
16
Itgt
Phylogeny Reconstruction
A B C D E
A - 2 1 3 4
B 4 - 1 2 6
C 3 4 - 1 2
D 4 7 4 - 4
E 5 7 8 3 -
Dissimilarity
matrix
17
A
C
E D
B
Phylogeny tree
2
2
1
1
Phylogeny Reconstruction
18
• Oriented Kruskal (OK) [Dias et al. (2010)]
• Based on the classic Kruskal's Minimum
Spanning Tree algorithm
• Adapted for oriented graphs
• Optimum Branching (OB) [Edmonds (1957)]
• Always returns the optimum tree
• Image Phylogeny Forests Reconstruction
F. O. Costa, M. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha. Image phylogeny forests
reconstruction. IEEE Transactions on Information Forensics and Security (TIFS), vol.9, no.
10, pp. 1533–1546, 2014
• New dissimilarity measures
F. O. Costa, A. Oliveira, P. Ferrara, Z. Dias, S. Goldenstein, and A. Rocha. New dissimilarity
measures for image phylogeny reconstruction. Submitted to Springer Pattern Analysis and
Applications, 2016
Image Phylogeny
Contributions
19
Image Phylogeny Forests
Reconstruction
20
21
Image Phylogeny Forests
Reconstruction
Phylogeny tree
Phylogeny forest
Image Phylogeny Forests
Reconstruction
Dias et al.(2013b): Automatic Oriented Kruskal (AOK)
• Adaptation of the OK algorithm for forests
• Select the edges in crescent order
• Stops selecting edges according to a threshold
22
Hypothesis #1
Using exact approaches for phylogeny forests
reconstruction problem is at least as effective
than using heuristic-based approaches
23
Image Phylogeny Forests
Reconstruction
We designed and developed an algorithm for forests
reconstruction
• Automatic Optimum Branching (AOB)
• Adaptation of the OB algorithm
24
Automatic Optimum Branching
(AOB)
Optimum
Branching
25
Dissimilarity matrix
M 0 1 2 3 4 5 6 7 8 9
0 - 52 29 57 43 55 24 52 49 26
1 50 - 45 35 60 68 40 42 63 53
2 42 48 - 56 42 54 28 52 50 29
3 56 23 55 - 65 67 50 22 66 58
4 45 61 35 67 - 29 42 63 43 52
5 25 69 65 70 27 - 48 68 45 65
6 26 50 30 52 39 50 - 50 48 48
7 51 32 49 30 61 67 49 - 62 55
8 52 65 55 69 24 30 49 64 - 26
9 25 54 26 59 50 61 30 56 30 -
17
3
6
8
4
5
2
9
0
40
2322
26
26
26
30
24
29
Step X Y d(X,Y) Diff
1 3 7 22 - -
2 3 1 23 1 -
3 8 4 24 1 1,41
4 9 2 26 2 2,00
5 6 0 26 0 3,42
6 0 9 26 0 3,58
7 4 5 29 3 3,52
8 9 8 30 1 4,68
9 1 6 40 10 5,53
Automatic Optimum Branching
(AOB)
aob = 2.026
17
3
6
8
4
5
2
9
0
40
2322
26
26
26
30
24
29
aob ⇥
Automatic Optimum Branching
(AOB)
aob = 2.027
17
3
6
8
4
5
2
9
0
2322
26
26
26
30
24
29
Forest: [6, 3, 9, 3, 8, 4, 6, 3, 9, 0]
Cost: 206
Dissimilarity matrix
M 0 1 2 3 4 5 6 7 8 9
0 - 52 29 57 43 55 24 52 49 26
1 50 - 45 35 60 68 40 42 63 53
2 42 48 - 56 42 54 28 52 50 29
3 56 23 55 - 65 67 50 22 66 58
4 45 61 35 67 - 29 42 63 43 52
5 25 69 65 70 27 - 48 68 45 65
6 26 50 30 52 39 50 - 50 48 48
7 51 32 49 30 61 67 49 - 62 55
8 52 65 55 69 24 30 49 64 - 26
9 25 54 26 59 50 61 30 56 30 -
M 1 3 7 0 2 4 5 6 8 9
1 - 35 42 - - - - - - -
3 23 - 22 - - - - - - -
7 32 30 - - - - - - - -
0 - - - - 29 43 55 24 49 26
2 - - - 42 - 42 54 28 50 29
4 - - - 45 35 - 29 42 43 52
5 - - - 25 65 27 - 48 45 65
6 - - - 26 30 39 50 - 48 48
8 - - - 52 55 24 30 49 - 26
9 - - - 25 26 50 61 30 30 -
Extended Automatic Optimum
Branching (E-AOB)
28
17
3
6
8
4
5
2
9
0
Dissimilarity matrix
Extended Automatic Optimum
Branching (E-AOB)
Forest: [5, 3, 9, 3, 8, 4, 0, 3, 9, 0]
Cost: 204
29
17
3 6
8
4
5
2
9
0
2322
26
26
26
30
24
29
M 1 3 7 0 2 4 5 6 8 9
1 - 35 42 - - - - - - -
3 23 - 22 - - - - - - -
7 32 30 - - - - - - - -
0 - - - - 29 43 55 24 49 26
2 - - - 42 - 42 54 28 50 29
4 - - - 45 35 - 29 42 43 52
5 - - - 25 65 27 - 48 45 65
6 - - - 26 30 39 50 - 48 48
8 - - - 52 55 24 30 49 - 26
9 - - - 25 26 50 61 30 30 -
Dissimilarity matrix
Image Phylogeny Forests
Reconstruction
• Main approaches
• AOK: Greedy approach
• AOB/E-AOB: Exact approach
30
Hypothesis #2
It is possible to lead to complementary
properties of different forest reconstruction
algorithm and combine them for improving the
quality of the phylogeny forest reconstruction
31
Fusion approach
32
M
Additive noise
100
variations
Fusion approach
Tree count
V = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5]
Median(V) = (2 + 2)/2 = 2
100
variations
…
AOK
0
35
1
4
7
8
2
9
6
100
variations
…
AOB
0
3 5
1
4
7
8
2
9
6
100
variations
…
E-AOB
0
35
1
4 7
8
2
9
6
33
Fusion approach
100
variations
…
AOK
0
35
1
4
7
8
2
9
6
100
variations
…
AOB
0
3 5
1
4
7
8
2
9
6
100
variations
…
E-AOB
0
35
1
4 7
8
2
9
6
Sum of votes of each node
[260, 250, 90, 30, 35, 24, 0, 0, 0, 0]
Roots {0, 1}
34
0
351
4 7
8
2
9
6
Fusion approach
100
variations
…
AOK
0
35
1
4
7
8
2
9
6
100
variations
…
AOB
0
3 5
1
4
7
8
2
9
6
M 0 1 2 3 4 5 6 7 8 9
0 - - 0 270 0 286 0 0 0 0
1 - - 0 0 255 0 0 280 0 0
2 - - - 0 0 0 130 0 270 300
3 - - 280 - 0 0 0 0 30 0
4 - - 0 0 - 0 0 20 0 0
5 - - 20 0 0 - 0 0 0 0
6 - - 0 0 0 0 - 0 0 0
7 - - 0 0 10 0 0 - 0 0
8 - - 0 0 0 0 0 0 - 0
9 - - 0 0 0 0 170 0 0 -
100
variations
…
E-AOB
0
35
1
4 7
8
2
9
6
Final forest
[0, 1, 3, 0, 1, 0, 2, 1, 2, 2]
35
Experiments
36
Datasets
37
• 36,000 test cases
• [2..10] trees
• Ground truth is
available
• One Camera and
Multiple Cameras
Datasets
38
• Transformations
• Crop
• Resize
• Brightness, contrast

and gamma correction
• Rotation
• JPEG Compression
10
6
7
9
8
25
3
11 7
Evaluation
39
2
8 9 103
65
4
39
4
Ground truth Reconstructed forest
Roots
3 10
6
71
2
8
95
1 7
Evaluation
40
2
8 9 103
65
4
40
4
Ground truth Reconstructed forest
Edges
10
6
71
2 9
3
1 7
Evaluation
41
2
8 9 103
65
4
41
8
5
4
Ground truth Reconstructed forest
Leaves
7
10
6
1
83
25
1 7
Evaluation
Ancestry
42
2
8 9 103
65
4
42
9
4
Ground truth Reconstructed forest
Results - One Camera
43
2 3 4 5 6 7 8 9 10
# of trees
0.65
0.7
0.75
0.8
0.85
0.9
0.95
Score
Root - One Camera
AOK
AOB
E-AOB
FUSION
2 3 4 5 6 7 8 9 10
# of trees
0.65
0.7
0.75
0.8
0.85
0.9
0.95
Score
Ancestry - One Camera
AOK
AOB
E-AOB
FUSION
Error Reduction (E-AOB vs. AOK): 19% Error Reduction (E-AOB vs. AOK): 18%
Error Reduction (FUSION vs. AOK): 17% Error Reduction (Fusion vs. AOK): 17%
Results - Multiple Cameras
44
2 3 4 5 6 7 8 9 10
# of trees
0.65
0.7
0.75
0.8
0.85
0.9
0.95
Score
Root - Multiple Cameras
AOK
AOB
E-AOB
FUSION
2 3 4 5 6 7 8 9 10
# of trees
0.65
0.7
0.75
0.8
0.85
0.9
0.95
Score
Ancestry - Multiple Cameras
AOK
AOB
E-AOB
FUSION
Error Reduction (E-AOB vs. AOK): 20% Error Reduction (E-AOB vs. AOK): 19%
Error Reduction (FUSION vs. AOK): 28% Error Reduction (Fusion vs. AOK): 21%
New dissimilarity measures
for image phylogeny reconstruction
45
New dissimilarity measures
for image phylogeny reconstruction
• Previous work: Mean Squared Error (MSE)
• Problems
• Few information about the content of the
images
• Small misaligned caused on mapping can affect
the results
46
Hypothesis #3
The comparison of the distributions of the
pixel values of two near-duplicate images is
more effective for the dissimilarity calculation
than their point-wise comparison
47
Gradient point-wise comparison
MSE
Gradient
Computation
I0
src Itgt
48
Gradient
Computation
Mutual Information comparison
49
MI(I0
src, Itgt)
I0
src Itgt
MI(I0
src, Itgt) = H(Itgt) H(Itgt|I0
src)
H(X) = Ex[log(P(X))]
Comparing gradients with
mutual information
Mutual

Information
I0
src Itgt
MSE
50
X
Gradient
Computation
Gradient
Computation
Color matching
• Previous work
• Normalization based on mean and standard
deviation of another image
• Problem
• Unexpected Artifacts
• New color matching approach
• Histogram matching [Gonzales (2007)]
51
Histogram color matching
52
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.025
0.05
0.075
0.1
0.125
0.15
p(i)
Histogram - SRC
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.025
0.05
0.075
0.1
0.125
0.15
p(i)
Histogram - TGT
Histogram
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
CDF(i)
CDF - SRC
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
CDF(i)
CDF - TGT
99 114
Histogram color matching
53
200 238
20 22
Cumulative Distribution Function
Histogram color matching
54
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.025
0.05
0.075
0.1
0.125
0.15
p(i)
Histogram - TGT
0 20 40 60 80 100 120 140 160 180 200 220 240 255
i
0
0.025
0.05
0.075
0.1
0.125
0.15
p(i)
Result of historgram matching
Resultant histogram
Color matching approaches
Result: Mean/STD Result: Histogram
Isrc Itgt
Color
Matching
Result: Mean/STD maching Result: Histogram maching
55
Experiments
56
Experimental setup
• Reconstruction
• Extended AOB
• Evaluation
• Roots, edges, leaves and ancestry
57
Roots - One Camera
Accuracy
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
Number of trees
1 2 3 4 5 6 7 8 9 10
MSE
GRAD
MINF
GRMI
HGMI
Results
58
Roots - Multiple Cameras
Accuracy
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
Number of trees
1 2 3 4 5 6 7 8 9 10
MSE
GRAD
MINF
GRMI
HGMI
Error Reduction (HGMI vs. MSE): 53% Error Reduction (HGMI vs. MSE): 47%
Results
59
Ancestry - One Camera
Accuracy
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
Number of trees
1 2 3 4 5 6 7 8 9 10
MSE
GRAD
MINF
GRMI
HGMI
Error Reduction (HGMI vs. MSE): 60% Error Reduction (HGMI vs. MSE): 58%
Ancestry - Multiple Cameras
Accuracy
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
Number of trees
1 2 3 4 5 6 7 8 9 10
MSE
GRAD
MINF
GRMI
HGMI
Qualitative results
Ellen DeGeneres’ Selfie
60
Group bGroup a
Group c
Group d
Group e
a09
a00 a11
a01 a02 a04 a05 a06 a07 a08
a03a10
a12
b03
b01 b06
b04
b02 c07
b05
c01
c08
c02 c05 c09 c10
c06
c03 c04
d08
d01 d07
d03 d02 d06 d05
d04
e01
e02 e03 e04 e05 e06
e07
61
Group b
Group a
Group c
Group d
Group e
Qualitative results
Ellen DeGeneres’ Selfie
a09
a00 a11
a01 a02 a04 a05 a06 a07 a08
a03a10
a12
b03
b01 b06
b04
b02 c07
b05
c01
c08
c02 c05 c09 c10
c06
c03 c04
d08
d01 d07
d03 d02 d06 d05
d04
e01
e02 e03 e04 e05 e06
e07
62
Group b
Group a
Group c
Group d
Group e
Qualitative results
Ellen DeGeneres’ Selfie
a09
a00 a11
a01 a02 a04 a05 a06 a07 a08
a03a10
a12
b03
b01 b06
b04
b02 c07
b05
c01
c08
c02 c05 c09 c10
c06
c03 c04
d08
d01 d07
d03 d02 d06 d05
d04
e01
e02 e03 e04 e05 e06
e07
63
Group b
Group a
Group c
Group d
Group e
Qualitative results
Ellen DeGeneres’ Selfie
a09
a00 a11
a01 a02 a04 a05 a06 a07 a08
a03a10
a12
b03
b01 b06
b04
b02 c07
b05
c01
c08
c02 c05 c09 c10
c06
c03 c04
d08
d01 d07
d03 d02 d06 d05
d04
e01
e02 e03 e04 e05 e06
e07
64
Group b
Group a
Group c
Group d
Group e
Qualitative results
Ellen DeGeneres’ Selfie
Video Phylogeny
Video Phylogeny
• More challenging problem than Image Phylogeny
• Now we have a new dimension: time
• Videos can be misaligned
• Videos can have different compression parameters
66
Hypothesis #4
Temporal alignment is paramount for a proper
video phylogeny reconstruction process
67
• Phylogeny reconstruction for misaligned and compressed
video sequences
F. O. Costa, S. Lameri, P. Bestagini, Z. Dias, A. Rocha, M. Tagliassachi, S. Tubaro. Phylogeny
reconstruction for misaligned and compressed video sequences. IEEE International
Conference on Image Processing (ICIP), 2015
• Hashing-based Temporal Alignment for Video Phylogeny
Reconstruction
F. O. Costa, P. Bestagini, S. Tubaro, Z. Dias, A. Rocha. Hashing-based Temporal Alignment
for Video Phylogeny Reconstruction. Submitted to IEEE WIFS, 2016
Video Phylogeny
Contributions
68
Phylogeny reconstruction for misaligned
and compressed video sequences
69
Video dissimilarity calculation
• Temporal alignment
• Frame registration
• Color matching
• Coding matching (controlled)
• Comparison (MSE)
70
Temporal alignment
71
V
1 2 3 4 5 6 7 8 9 10 … n-2 n-1 n
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 yn-2 yn-1 yn
yi = Average of luminance of V(i)
LDV = [y2 - y1, y3 - y2, … , yn-1 - yn-2, yn - yn-1 ]
Difference of luminance
50 100 150 200 250
0
i
L
50 100 150 200 250
0
5
10
i
LDV(i)
V = Vsrc
V = Vtgt
−200 −100 0 100 200
0
0.2
0.4
0.6
i
phase-corr.
Video Alignment
72
Phase-correlation: ˆi = arg maxi F 1
h F[LDVsrc ]·F[LDVtgt ]⇤
|F[LDVsrc ]·F[LDVtgt ]⇤|
i
(i)
Comparison
• We perform two kinds of comparison
• Average of MSE for the correspondent frames of
two videos
• Parenthood matrix
73
Parenthood matrix
74
Frequency
of the edges
Parenthood
Matrix
Optimum
branching
(MAX)
Final phylogeny tree
…M1 M2 M3 M4 M5 M6 Mn-1 Mn
V3 …
V1 …
V2
…
V4 …
V5
…
Experiments
75
Dataset
76
Available at https://media.xiph.org/video/derf/
•200 trees with 10 videos
•100 - No clip
•100 - Clip at the Beginning/end of the
stream
•Probability of clip: 50%
•CODEC: MPEG2, MPEG4, H264
•Crop, resize, bright, contrast, coding
and temporal clipping
Experimental Setup
• Phylogeny Reconstruction
• OB algorithm
• Evaluation metrics
• Root, edges, leaves,
ancestry and depth
77
1
2
3
5
4
4
23
5
1
Reconstructed treeGround truth
Depth = 1
Results #1
78
Verifying alignment and coding matching
Root Depth Edges Leaves Ancestry
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Score
Results - Dataset without temporal clipping
Without temporal alignment With temporal alignment With temporal alignment and compression matching
Root Depth Edges Leaves Ancestry
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Score
Results - Dataset with temporal clipping
Without alignment With alignment With alignment and compression matching
Root Depth Edges Leaves Ancestry
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Score
Results - Dataset with temporal clipping
A - NO COD
P - NO COD
A - COD
P - COD
Root Depth Edges Leaves Ancestry
Results - Dataset without temporal clipping
Results #2
79
Comparison: Average of MSE (A) x Parenthood matrix (P)
Root Depth Edges Leaves A
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Score
Results - Dataset with temporal clipping
A - NO COD
P - NO COD
A - COD
P - COD
Root Depth Edges Leaves Ancestry
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Score
Results - Dataset without temporal clipping
A - NO COMPRESSION MATCHING P - NO COMPRESSION MATCHING
A - WITH COMPRESSION MATCHING P - WITH COMPRESSION MATCHING
Hashing-based temporal alignment
for video phylogeny
80
• Near-duplicate matching
• Near-duplicate extraction
• Near-duplicate alignment
Hashing-based temporal
alignment
81
Step 1
Near-duplicate matching
• Groups of 64 frames
• All frames are resized to 32 x 32 pixel
82
1 frame
Temporal axis
……
1 2 3 4 5 6 7 8 9 10 59 60 61 62 63 64 65 66 67 68
Step 1
Near-duplicate matching
83
64
coefficients
32 coefficients
32coefficients
DCT coefficients
4 x 4 x 4
DCT coefficients
…
3D Discrete Cosine Transform
Step 1
Near-duplicate matching
• Binary hash
• According to the median of DCT
• Distance matrix
• Hamming distance of two binary hashes of
different videos
84
Step 2
Near-duplicate extraction
85
0 30 60 90 120 150 180 210 236
0
20
40
60
80
100
120
140
160
180
200
0 30 60 90
0
20
40
60
80
100
120
140
160
180
200
20 150 180 210 236 0 30 60 90 120 150 180 210 236
0
20
40
60
80
100
120
140
160
180
200
0 30 60 90
0
20
40
60
80
100
120
140
160
180
200
20 150 180 210 236 0 30 60 90 120 150 180 210 236
0
20
40
60
80
100
120
140
160
180
200
0 30 60 90
0
20
40
60
80
100
120
140
160
180
200
20 150 180 210 236 0 30 60 90 120 150 180 210 236
0
20
40
60
80
100
120
140
160
180
200
BinarizationOpeningExtraction
V1 V2
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Sequences without temporal alignment
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Alignment by phase correlation
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Hashing-based temporal alignment
86
Step 3
Near-duplicate alignment
V1 V2
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Sequences without temporal alignment
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Alignment by phase correlation
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Hashing-based temporal alignment
V1 V2
0 20 40 60 80 100 120 140
-3
-2
-1
0
1
2
3
Diff.ofluminance
Sequences witho
3
Alignment by
87
Step 3
Near-duplicate alignment
V1 V2
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Sequences without temporal alignment
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Alignment by phase correlation
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Hashing-based temporal alignment
88
Step 3
Near-duplicate alignment0 20 40 60 80 100 120 140
-3
-2
-1
Diff.
0 20 40 60 80 100 120 140
-3
-2
-1
0
1
2
3
Diff.ofluminance
Alignment by
V1 V2
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Sequences without temporal alignment
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Alignment by phase correlation
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
-3
-2
-1
0
1
2
3
Diff.ofluminance
Hashing-based temporal alignment
89
Step 3
Near-duplicate alignment
0 20 40 60 80 100 120 140
-3
-2
-1
0
Diff.oflu
-3
-2
-1
0
1
2
3
Diff.ofluminance
Hashing-based
Experiments
90
Experiments
•Dataset

•300 trees with 10 videos

•100 - No clip

•100 - Clip at the Beginning/end of the stream

•100 - Clip anywhere
91
Results
92
Diff. of luminance vs. Hashing-based alignment
Difference of luminance Hashing-based
Root Depth Edges Leaves Ancestry Root Depth Edges Leaves Ancestry
No
coding
matching
No clip 0,630 0,500 0,772 0,832 0,674 0,650 0,440 0,777 0,828 0,702
Clip
border 0,710 0,35 0,788 0,826 0,724 0,710 0,330 0,807 0,846 0,740
Clip any 0,620 0,560 0,724 0,758 0,628 0,670 0,450 0,755 0,789 0,683
With
coding
matching
No clip 0,870 0,140 0,839 0,859 0,812 0,690 0,400 0,778 0,831 0,711
Clip
border 0,840 0,170 0,863 0,901 0,834 0,660 0,400 0,780 0,824 0,722
Clip any 0,720 0,390 0,801 0,828 0,696 0,660 0,470 0,765 0,810 0,696
Conclusion
93
Conclusion
• New solutions for multimedia phylogeny
• Robust methods for phylogeny forest reconstruction
• More robust dissimilarity measures
• Gradient + mutual information
• Good results for video phylogeny when dealing with
misaligned and compressed videos
94
Future work
• Other transformations
• Blurring, sharpness, content insertion…
• Videos with different frame rates
• Video dissimilarity calculation using time information
• Robust methods to reliably estimate the compression
parameters directly from the video
95
Acknowledgements
• Examiners
• Prof. Anderson Rocha and Prof. Zanoni Dias
• RECOD - IC/Unicamp
• ISPG - Politecnico di Milano
• FAPESP
• CAPES
96
Thanks!
97

More Related Content

Similar to filipe-costa-thesis-presentation-static-ilovepdf-compressed

Microsoft power point fowt2018-boscolofrancesco_v2.pptx
Microsoft power point   fowt2018-boscolofrancesco_v2.pptxMicrosoft power point   fowt2018-boscolofrancesco_v2.pptx
Microsoft power point fowt2018-boscolofrancesco_v2.pptxTECNALIA Marine Energy
 
Nist project final report
Nist project final reportNist project final report
Nist project final reportalikhosravani
 
Nist project final report
Nist project final reportNist project final report
Nist project final reportalikhosravani
 
Nist project final report
Nist project final reportNist project final report
Nist project final reportalikhosravani
 
Nist project final report
Nist project final reportNist project final report
Nist project final reportalikhosravani
 
Analysis update for GENEVA meeting 2011
Analysis update for GENEVA meeting 2011Analysis update for GENEVA meeting 2011
Analysis update for GENEVA meeting 2011USC
 
Introduction to machine learning algorithms
Introduction to machine learning algorithmsIntroduction to machine learning algorithms
Introduction to machine learning algorithmsbigdata trunk
 
jpg image processing nagham salim_as.ppt
jpg image processing nagham salim_as.pptjpg image processing nagham salim_as.ppt
jpg image processing nagham salim_as.pptnaghamallella
 
Ae abc general_grenoble_29_juin_25_30_min
Ae abc general_grenoble_29_juin_25_30_minAe abc general_grenoble_29_juin_25_30_min
Ae abc general_grenoble_29_juin_25_30_minMichael Blum
 
Comparing Machine Learning Algorithms in Text Mining
Comparing Machine Learning Algorithms in Text MiningComparing Machine Learning Algorithms in Text Mining
Comparing Machine Learning Algorithms in Text MiningAndrea Gigli
 
HOW 2019: Machine Learning for the Primary Vertex Reconstruction
HOW 2019: Machine Learning for the Primary Vertex ReconstructionHOW 2019: Machine Learning for the Primary Vertex Reconstruction
HOW 2019: Machine Learning for the Primary Vertex ReconstructionHenry Schreiner
 
06 ch ken black solution
06 ch ken black solution06 ch ken black solution
06 ch ken black solutionKrunal Shah
 
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG Minglei Kang
 
Model Compression
Model CompressionModel Compression
Model CompressionDarshanG13
 
Vibration study of a OCDC bracket
Vibration study of a OCDC bracketVibration study of a OCDC bracket
Vibration study of a OCDC bracketRussell Varvel
 
Skema SPM SBP Add Maths Paper 2012
Skema SPM SBP Add Maths Paper 2012Skema SPM SBP Add Maths Paper 2012
Skema SPM SBP Add Maths Paper 2012Tuisyen Geliga
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Jhonatan Minchán
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_prialeJeff Chasi
 

Similar to filipe-costa-thesis-presentation-static-ilovepdf-compressed (20)

Microsoft power point fowt2018-boscolofrancesco_v2.pptx
Microsoft power point   fowt2018-boscolofrancesco_v2.pptxMicrosoft power point   fowt2018-boscolofrancesco_v2.pptx
Microsoft power point fowt2018-boscolofrancesco_v2.pptx
 
Nist project final report
Nist project final reportNist project final report
Nist project final report
 
Nist project final report
Nist project final reportNist project final report
Nist project final report
 
Nist project final report
Nist project final reportNist project final report
Nist project final report
 
Nist project final report
Nist project final reportNist project final report
Nist project final report
 
Analysis update for GENEVA meeting 2011
Analysis update for GENEVA meeting 2011Analysis update for GENEVA meeting 2011
Analysis update for GENEVA meeting 2011
 
Introduction to machine learning algorithms
Introduction to machine learning algorithmsIntroduction to machine learning algorithms
Introduction to machine learning algorithms
 
Đề Thi HK2 Toán 6 - THCS Ngô Thời Nhiệm
Đề Thi HK2 Toán 6 - THCS Ngô Thời NhiệmĐề Thi HK2 Toán 6 - THCS Ngô Thời Nhiệm
Đề Thi HK2 Toán 6 - THCS Ngô Thời Nhiệm
 
jpg image processing nagham salim_as.ppt
jpg image processing nagham salim_as.pptjpg image processing nagham salim_as.ppt
jpg image processing nagham salim_as.ppt
 
Ae abc general_grenoble_29_juin_25_30_min
Ae abc general_grenoble_29_juin_25_30_minAe abc general_grenoble_29_juin_25_30_min
Ae abc general_grenoble_29_juin_25_30_min
 
Comparing Machine Learning Algorithms in Text Mining
Comparing Machine Learning Algorithms in Text MiningComparing Machine Learning Algorithms in Text Mining
Comparing Machine Learning Algorithms in Text Mining
 
HOW 2019: Machine Learning for the Primary Vertex Reconstruction
HOW 2019: Machine Learning for the Primary Vertex ReconstructionHOW 2019: Machine Learning for the Primary Vertex Reconstruction
HOW 2019: Machine Learning for the Primary Vertex Reconstruction
 
06 ch ken black solution
06 ch ken black solution06 ch ken black solution
06 ch ken black solution
 
Tugas mtk 1.01
Tugas mtk 1.01Tugas mtk 1.01
Tugas mtk 1.01
 
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG Adaptive Aperture Commissioning Presentation at 57th PTCOG
Adaptive Aperture Commissioning Presentation at 57th PTCOG
 
Model Compression
Model CompressionModel Compression
Model Compression
 
Vibration study of a OCDC bracket
Vibration study of a OCDC bracketVibration study of a OCDC bracket
Vibration study of a OCDC bracket
 
Skema SPM SBP Add Maths Paper 2012
Skema SPM SBP Add Maths Paper 2012Skema SPM SBP Add Maths Paper 2012
Skema SPM SBP Add Maths Paper 2012
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
 
Sol mat haeussler_by_priale
Sol mat haeussler_by_prialeSol mat haeussler_by_priale
Sol mat haeussler_by_priale
 

filipe-costa-thesis-presentation-static-ilovepdf-compressed

  • 1. Image and Video Phylogeny Reconstruction Filipe de Oliveira Costa Advisor: Prof. Anderson Rocha Co-advisor: Prof. Zanoni Dias
  • 2. Outline • Introduction • Image Phylogeny • Video Phylogeny • Conclusions 2
  • 4. Multimedia document Modified versions Source: Google Images Dark side of the moon internet 4
  • 9. Main Objective Design and develop solutions that allow us to identify the structure (phylogeny tree / forest) that represents the generation process overtime of images and videos 9
  • 10. Contributions • Image phylogeny • Approaches to image phylogeny forest reconstruction • New dissimilarity measures for image phylogeny • Video Phylogeny • Phylogeny reconstruction for misaligned and compressed video sequences 10
  • 12. Image Phylogeny • Divided into two basic steps • Dissimilarity calculation • Phylogeny Reconstruction 12
  • 13. Dissimilarity Calculation Itgt d(Isrc, Itgt) 13 d(Isrc, Itgt) = min T!2T |Itgt T!(Isrc)| point-wise comparison L. Isrc
  • 15. Dissimilarity Calculation Color and compression matching Isrc Itgt R G B Compression 15
  • 16. Dissimilarity Calculation Point-wise comparison (Mean Squared Error) I0 src L 16 Itgt
  • 17. Phylogeny Reconstruction A B C D E A - 2 1 3 4 B 4 - 1 2 6 C 3 4 - 1 2 D 4 7 4 - 4 E 5 7 8 3 - Dissimilarity matrix 17 A C E D B Phylogeny tree 2 2 1 1
  • 18. Phylogeny Reconstruction 18 • Oriented Kruskal (OK) [Dias et al. (2010)] • Based on the classic Kruskal's Minimum Spanning Tree algorithm • Adapted for oriented graphs • Optimum Branching (OB) [Edmonds (1957)] • Always returns the optimum tree
  • 19. • Image Phylogeny Forests Reconstruction F. O. Costa, M. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha. Image phylogeny forests reconstruction. IEEE Transactions on Information Forensics and Security (TIFS), vol.9, no. 10, pp. 1533–1546, 2014 • New dissimilarity measures F. O. Costa, A. Oliveira, P. Ferrara, Z. Dias, S. Goldenstein, and A. Rocha. New dissimilarity measures for image phylogeny reconstruction. Submitted to Springer Pattern Analysis and Applications, 2016 Image Phylogeny Contributions 19
  • 22. Image Phylogeny Forests Reconstruction Dias et al.(2013b): Automatic Oriented Kruskal (AOK) • Adaptation of the OK algorithm for forests • Select the edges in crescent order • Stops selecting edges according to a threshold 22
  • 23. Hypothesis #1 Using exact approaches for phylogeny forests reconstruction problem is at least as effective than using heuristic-based approaches 23
  • 24. Image Phylogeny Forests Reconstruction We designed and developed an algorithm for forests reconstruction • Automatic Optimum Branching (AOB) • Adaptation of the OB algorithm 24
  • 25. Automatic Optimum Branching (AOB) Optimum Branching 25 Dissimilarity matrix M 0 1 2 3 4 5 6 7 8 9 0 - 52 29 57 43 55 24 52 49 26 1 50 - 45 35 60 68 40 42 63 53 2 42 48 - 56 42 54 28 52 50 29 3 56 23 55 - 65 67 50 22 66 58 4 45 61 35 67 - 29 42 63 43 52 5 25 69 65 70 27 - 48 68 45 65 6 26 50 30 52 39 50 - 50 48 48 7 51 32 49 30 61 67 49 - 62 55 8 52 65 55 69 24 30 49 64 - 26 9 25 54 26 59 50 61 30 56 30 - 17 3 6 8 4 5 2 9 0 40 2322 26 26 26 30 24 29
  • 26. Step X Y d(X,Y) Diff 1 3 7 22 - - 2 3 1 23 1 - 3 8 4 24 1 1,41 4 9 2 26 2 2,00 5 6 0 26 0 3,42 6 0 9 26 0 3,58 7 4 5 29 3 3,52 8 9 8 30 1 4,68 9 1 6 40 10 5,53 Automatic Optimum Branching (AOB) aob = 2.026 17 3 6 8 4 5 2 9 0 40 2322 26 26 26 30 24 29 aob ⇥
  • 27. Automatic Optimum Branching (AOB) aob = 2.027 17 3 6 8 4 5 2 9 0 2322 26 26 26 30 24 29 Forest: [6, 3, 9, 3, 8, 4, 6, 3, 9, 0] Cost: 206 Dissimilarity matrix M 0 1 2 3 4 5 6 7 8 9 0 - 52 29 57 43 55 24 52 49 26 1 50 - 45 35 60 68 40 42 63 53 2 42 48 - 56 42 54 28 52 50 29 3 56 23 55 - 65 67 50 22 66 58 4 45 61 35 67 - 29 42 63 43 52 5 25 69 65 70 27 - 48 68 45 65 6 26 50 30 52 39 50 - 50 48 48 7 51 32 49 30 61 67 49 - 62 55 8 52 65 55 69 24 30 49 64 - 26 9 25 54 26 59 50 61 30 56 30 -
  • 28. M 1 3 7 0 2 4 5 6 8 9 1 - 35 42 - - - - - - - 3 23 - 22 - - - - - - - 7 32 30 - - - - - - - - 0 - - - - 29 43 55 24 49 26 2 - - - 42 - 42 54 28 50 29 4 - - - 45 35 - 29 42 43 52 5 - - - 25 65 27 - 48 45 65 6 - - - 26 30 39 50 - 48 48 8 - - - 52 55 24 30 49 - 26 9 - - - 25 26 50 61 30 30 - Extended Automatic Optimum Branching (E-AOB) 28 17 3 6 8 4 5 2 9 0 Dissimilarity matrix
  • 29. Extended Automatic Optimum Branching (E-AOB) Forest: [5, 3, 9, 3, 8, 4, 0, 3, 9, 0] Cost: 204 29 17 3 6 8 4 5 2 9 0 2322 26 26 26 30 24 29 M 1 3 7 0 2 4 5 6 8 9 1 - 35 42 - - - - - - - 3 23 - 22 - - - - - - - 7 32 30 - - - - - - - - 0 - - - - 29 43 55 24 49 26 2 - - - 42 - 42 54 28 50 29 4 - - - 45 35 - 29 42 43 52 5 - - - 25 65 27 - 48 45 65 6 - - - 26 30 39 50 - 48 48 8 - - - 52 55 24 30 49 - 26 9 - - - 25 26 50 61 30 30 - Dissimilarity matrix
  • 30. Image Phylogeny Forests Reconstruction • Main approaches • AOK: Greedy approach • AOB/E-AOB: Exact approach 30
  • 31. Hypothesis #2 It is possible to lead to complementary properties of different forest reconstruction algorithm and combine them for improving the quality of the phylogeny forest reconstruction 31
  • 33. Fusion approach Tree count V = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5] Median(V) = (2 + 2)/2 = 2 100 variations … AOK 0 35 1 4 7 8 2 9 6 100 variations … AOB 0 3 5 1 4 7 8 2 9 6 100 variations … E-AOB 0 35 1 4 7 8 2 9 6 33
  • 34. Fusion approach 100 variations … AOK 0 35 1 4 7 8 2 9 6 100 variations … AOB 0 3 5 1 4 7 8 2 9 6 100 variations … E-AOB 0 35 1 4 7 8 2 9 6 Sum of votes of each node [260, 250, 90, 30, 35, 24, 0, 0, 0, 0] Roots {0, 1} 34
  • 35. 0 351 4 7 8 2 9 6 Fusion approach 100 variations … AOK 0 35 1 4 7 8 2 9 6 100 variations … AOB 0 3 5 1 4 7 8 2 9 6 M 0 1 2 3 4 5 6 7 8 9 0 - - 0 270 0 286 0 0 0 0 1 - - 0 0 255 0 0 280 0 0 2 - - - 0 0 0 130 0 270 300 3 - - 280 - 0 0 0 0 30 0 4 - - 0 0 - 0 0 20 0 0 5 - - 20 0 0 - 0 0 0 0 6 - - 0 0 0 0 - 0 0 0 7 - - 0 0 10 0 0 - 0 0 8 - - 0 0 0 0 0 0 - 0 9 - - 0 0 0 0 170 0 0 - 100 variations … E-AOB 0 35 1 4 7 8 2 9 6 Final forest [0, 1, 3, 0, 1, 0, 2, 1, 2, 2] 35
  • 37. Datasets 37 • 36,000 test cases • [2..10] trees • Ground truth is available • One Camera and Multiple Cameras
  • 38. Datasets 38 • Transformations • Crop • Resize • Brightness, contrast
 and gamma correction • Rotation • JPEG Compression
  • 39. 10 6 7 9 8 25 3 11 7 Evaluation 39 2 8 9 103 65 4 39 4 Ground truth Reconstructed forest Roots
  • 40. 3 10 6 71 2 8 95 1 7 Evaluation 40 2 8 9 103 65 4 40 4 Ground truth Reconstructed forest Edges
  • 41. 10 6 71 2 9 3 1 7 Evaluation 41 2 8 9 103 65 4 41 8 5 4 Ground truth Reconstructed forest Leaves
  • 42. 7 10 6 1 83 25 1 7 Evaluation Ancestry 42 2 8 9 103 65 4 42 9 4 Ground truth Reconstructed forest
  • 43. Results - One Camera 43 2 3 4 5 6 7 8 9 10 # of trees 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Score Root - One Camera AOK AOB E-AOB FUSION 2 3 4 5 6 7 8 9 10 # of trees 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Score Ancestry - One Camera AOK AOB E-AOB FUSION Error Reduction (E-AOB vs. AOK): 19% Error Reduction (E-AOB vs. AOK): 18% Error Reduction (FUSION vs. AOK): 17% Error Reduction (Fusion vs. AOK): 17%
  • 44. Results - Multiple Cameras 44 2 3 4 5 6 7 8 9 10 # of trees 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Score Root - Multiple Cameras AOK AOB E-AOB FUSION 2 3 4 5 6 7 8 9 10 # of trees 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Score Ancestry - Multiple Cameras AOK AOB E-AOB FUSION Error Reduction (E-AOB vs. AOK): 20% Error Reduction (E-AOB vs. AOK): 19% Error Reduction (FUSION vs. AOK): 28% Error Reduction (Fusion vs. AOK): 21%
  • 45. New dissimilarity measures for image phylogeny reconstruction 45
  • 46. New dissimilarity measures for image phylogeny reconstruction • Previous work: Mean Squared Error (MSE) • Problems • Few information about the content of the images • Small misaligned caused on mapping can affect the results 46
  • 47. Hypothesis #3 The comparison of the distributions of the pixel values of two near-duplicate images is more effective for the dissimilarity calculation than their point-wise comparison 47
  • 49. Mutual Information comparison 49 MI(I0 src, Itgt) I0 src Itgt MI(I0 src, Itgt) = H(Itgt) H(Itgt|I0 src) H(X) = Ex[log(P(X))]
  • 50. Comparing gradients with mutual information Mutual
 Information I0 src Itgt MSE 50 X Gradient Computation Gradient Computation
  • 51. Color matching • Previous work • Normalization based on mean and standard deviation of another image • Problem • Unexpected Artifacts • New color matching approach • Histogram matching [Gonzales (2007)] 51
  • 52. Histogram color matching 52 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.025 0.05 0.075 0.1 0.125 0.15 p(i) Histogram - SRC 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.025 0.05 0.075 0.1 0.125 0.15 p(i) Histogram - TGT Histogram
  • 53. 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CDF(i) CDF - SRC 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CDF(i) CDF - TGT 99 114 Histogram color matching 53 200 238 20 22 Cumulative Distribution Function
  • 54. Histogram color matching 54 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.025 0.05 0.075 0.1 0.125 0.15 p(i) Histogram - TGT 0 20 40 60 80 100 120 140 160 180 200 220 240 255 i 0 0.025 0.05 0.075 0.1 0.125 0.15 p(i) Result of historgram matching Resultant histogram
  • 55. Color matching approaches Result: Mean/STD Result: Histogram Isrc Itgt Color Matching Result: Mean/STD maching Result: Histogram maching 55
  • 57. Experimental setup • Reconstruction • Extended AOB • Evaluation • Roots, edges, leaves and ancestry 57
  • 58. Roots - One Camera Accuracy 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% Number of trees 1 2 3 4 5 6 7 8 9 10 MSE GRAD MINF GRMI HGMI Results 58 Roots - Multiple Cameras Accuracy 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% Number of trees 1 2 3 4 5 6 7 8 9 10 MSE GRAD MINF GRMI HGMI Error Reduction (HGMI vs. MSE): 53% Error Reduction (HGMI vs. MSE): 47%
  • 59. Results 59 Ancestry - One Camera Accuracy 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% Number of trees 1 2 3 4 5 6 7 8 9 10 MSE GRAD MINF GRMI HGMI Error Reduction (HGMI vs. MSE): 60% Error Reduction (HGMI vs. MSE): 58% Ancestry - Multiple Cameras Accuracy 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% Number of trees 1 2 3 4 5 6 7 8 9 10 MSE GRAD MINF GRMI HGMI
  • 60. Qualitative results Ellen DeGeneres’ Selfie 60 Group bGroup a Group c Group d Group e
  • 61. a09 a00 a11 a01 a02 a04 a05 a06 a07 a08 a03a10 a12 b03 b01 b06 b04 b02 c07 b05 c01 c08 c02 c05 c09 c10 c06 c03 c04 d08 d01 d07 d03 d02 d06 d05 d04 e01 e02 e03 e04 e05 e06 e07 61 Group b Group a Group c Group d Group e Qualitative results Ellen DeGeneres’ Selfie
  • 62. a09 a00 a11 a01 a02 a04 a05 a06 a07 a08 a03a10 a12 b03 b01 b06 b04 b02 c07 b05 c01 c08 c02 c05 c09 c10 c06 c03 c04 d08 d01 d07 d03 d02 d06 d05 d04 e01 e02 e03 e04 e05 e06 e07 62 Group b Group a Group c Group d Group e Qualitative results Ellen DeGeneres’ Selfie
  • 63. a09 a00 a11 a01 a02 a04 a05 a06 a07 a08 a03a10 a12 b03 b01 b06 b04 b02 c07 b05 c01 c08 c02 c05 c09 c10 c06 c03 c04 d08 d01 d07 d03 d02 d06 d05 d04 e01 e02 e03 e04 e05 e06 e07 63 Group b Group a Group c Group d Group e Qualitative results Ellen DeGeneres’ Selfie
  • 64. a09 a00 a11 a01 a02 a04 a05 a06 a07 a08 a03a10 a12 b03 b01 b06 b04 b02 c07 b05 c01 c08 c02 c05 c09 c10 c06 c03 c04 d08 d01 d07 d03 d02 d06 d05 d04 e01 e02 e03 e04 e05 e06 e07 64 Group b Group a Group c Group d Group e Qualitative results Ellen DeGeneres’ Selfie
  • 66. Video Phylogeny • More challenging problem than Image Phylogeny • Now we have a new dimension: time • Videos can be misaligned • Videos can have different compression parameters 66
  • 67. Hypothesis #4 Temporal alignment is paramount for a proper video phylogeny reconstruction process 67
  • 68. • Phylogeny reconstruction for misaligned and compressed video sequences F. O. Costa, S. Lameri, P. Bestagini, Z. Dias, A. Rocha, M. Tagliassachi, S. Tubaro. Phylogeny reconstruction for misaligned and compressed video sequences. IEEE International Conference on Image Processing (ICIP), 2015 • Hashing-based Temporal Alignment for Video Phylogeny Reconstruction F. O. Costa, P. Bestagini, S. Tubaro, Z. Dias, A. Rocha. Hashing-based Temporal Alignment for Video Phylogeny Reconstruction. Submitted to IEEE WIFS, 2016 Video Phylogeny Contributions 68
  • 69. Phylogeny reconstruction for misaligned and compressed video sequences 69
  • 70. Video dissimilarity calculation • Temporal alignment • Frame registration • Color matching • Coding matching (controlled) • Comparison (MSE) 70
  • 71. Temporal alignment 71 V 1 2 3 4 5 6 7 8 9 10 … n-2 n-1 n y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 yn-2 yn-1 yn yi = Average of luminance of V(i) LDV = [y2 - y1, y3 - y2, … , yn-1 - yn-2, yn - yn-1 ] Difference of luminance
  • 72. 50 100 150 200 250 0 i L 50 100 150 200 250 0 5 10 i LDV(i) V = Vsrc V = Vtgt −200 −100 0 100 200 0 0.2 0.4 0.6 i phase-corr. Video Alignment 72 Phase-correlation: ˆi = arg maxi F 1 h F[LDVsrc ]·F[LDVtgt ]⇤ |F[LDVsrc ]·F[LDVtgt ]⇤| i (i)
  • 73. Comparison • We perform two kinds of comparison • Average of MSE for the correspondent frames of two videos • Parenthood matrix 73
  • 74. Parenthood matrix 74 Frequency of the edges Parenthood Matrix Optimum branching (MAX) Final phylogeny tree …M1 M2 M3 M4 M5 M6 Mn-1 Mn V3 … V1 … V2 … V4 … V5 …
  • 76. Dataset 76 Available at https://media.xiph.org/video/derf/ •200 trees with 10 videos •100 - No clip •100 - Clip at the Beginning/end of the stream •Probability of clip: 50% •CODEC: MPEG2, MPEG4, H264 •Crop, resize, bright, contrast, coding and temporal clipping
  • 77. Experimental Setup • Phylogeny Reconstruction • OB algorithm • Evaluation metrics • Root, edges, leaves, ancestry and depth 77 1 2 3 5 4 4 23 5 1 Reconstructed treeGround truth Depth = 1
  • 78. Results #1 78 Verifying alignment and coding matching Root Depth Edges Leaves Ancestry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Score Results - Dataset without temporal clipping Without temporal alignment With temporal alignment With temporal alignment and compression matching Root Depth Edges Leaves Ancestry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Score Results - Dataset with temporal clipping Without alignment With alignment With alignment and compression matching
  • 79. Root Depth Edges Leaves Ancestry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Score Results - Dataset with temporal clipping A - NO COD P - NO COD A - COD P - COD Root Depth Edges Leaves Ancestry Results - Dataset without temporal clipping Results #2 79 Comparison: Average of MSE (A) x Parenthood matrix (P) Root Depth Edges Leaves A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Score Results - Dataset with temporal clipping A - NO COD P - NO COD A - COD P - COD Root Depth Edges Leaves Ancestry 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Score Results - Dataset without temporal clipping A - NO COMPRESSION MATCHING P - NO COMPRESSION MATCHING A - WITH COMPRESSION MATCHING P - WITH COMPRESSION MATCHING
  • 81. • Near-duplicate matching • Near-duplicate extraction • Near-duplicate alignment Hashing-based temporal alignment 81
  • 82. Step 1 Near-duplicate matching • Groups of 64 frames • All frames are resized to 32 x 32 pixel 82 1 frame Temporal axis …… 1 2 3 4 5 6 7 8 9 10 59 60 61 62 63 64 65 66 67 68
  • 83. Step 1 Near-duplicate matching 83 64 coefficients 32 coefficients 32coefficients DCT coefficients 4 x 4 x 4 DCT coefficients … 3D Discrete Cosine Transform
  • 84. Step 1 Near-duplicate matching • Binary hash • According to the median of DCT • Distance matrix • Hamming distance of two binary hashes of different videos 84
  • 85. Step 2 Near-duplicate extraction 85 0 30 60 90 120 150 180 210 236 0 20 40 60 80 100 120 140 160 180 200 0 30 60 90 0 20 40 60 80 100 120 140 160 180 200 20 150 180 210 236 0 30 60 90 120 150 180 210 236 0 20 40 60 80 100 120 140 160 180 200 0 30 60 90 0 20 40 60 80 100 120 140 160 180 200 20 150 180 210 236 0 30 60 90 120 150 180 210 236 0 20 40 60 80 100 120 140 160 180 200 0 30 60 90 0 20 40 60 80 100 120 140 160 180 200 20 150 180 210 236 0 30 60 90 120 150 180 210 236 0 20 40 60 80 100 120 140 160 180 200 BinarizationOpeningExtraction
  • 86. V1 V2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Sequences without temporal alignment 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Alignment by phase correlation 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Hashing-based temporal alignment 86 Step 3 Near-duplicate alignment
  • 87. V1 V2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Sequences without temporal alignment 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Alignment by phase correlation 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Hashing-based temporal alignment V1 V2 0 20 40 60 80 100 120 140 -3 -2 -1 0 1 2 3 Diff.ofluminance Sequences witho 3 Alignment by 87 Step 3 Near-duplicate alignment
  • 88. V1 V2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Sequences without temporal alignment 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Alignment by phase correlation 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Hashing-based temporal alignment 88 Step 3 Near-duplicate alignment0 20 40 60 80 100 120 140 -3 -2 -1 Diff. 0 20 40 60 80 100 120 140 -3 -2 -1 0 1 2 3 Diff.ofluminance Alignment by
  • 89. V1 V2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Sequences without temporal alignment 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Alignment by phase correlation 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 -3 -2 -1 0 1 2 3 Diff.ofluminance Hashing-based temporal alignment 89 Step 3 Near-duplicate alignment 0 20 40 60 80 100 120 140 -3 -2 -1 0 Diff.oflu -3 -2 -1 0 1 2 3 Diff.ofluminance Hashing-based
  • 91. Experiments •Dataset •300 trees with 10 videos •100 - No clip •100 - Clip at the Beginning/end of the stream •100 - Clip anywhere 91
  • 92. Results 92 Diff. of luminance vs. Hashing-based alignment Difference of luminance Hashing-based Root Depth Edges Leaves Ancestry Root Depth Edges Leaves Ancestry No coding matching No clip 0,630 0,500 0,772 0,832 0,674 0,650 0,440 0,777 0,828 0,702 Clip border 0,710 0,35 0,788 0,826 0,724 0,710 0,330 0,807 0,846 0,740 Clip any 0,620 0,560 0,724 0,758 0,628 0,670 0,450 0,755 0,789 0,683 With coding matching No clip 0,870 0,140 0,839 0,859 0,812 0,690 0,400 0,778 0,831 0,711 Clip border 0,840 0,170 0,863 0,901 0,834 0,660 0,400 0,780 0,824 0,722 Clip any 0,720 0,390 0,801 0,828 0,696 0,660 0,470 0,765 0,810 0,696
  • 94. Conclusion • New solutions for multimedia phylogeny • Robust methods for phylogeny forest reconstruction • More robust dissimilarity measures • Gradient + mutual information • Good results for video phylogeny when dealing with misaligned and compressed videos 94
  • 95. Future work • Other transformations • Blurring, sharpness, content insertion… • Videos with different frame rates • Video dissimilarity calculation using time information • Robust methods to reliably estimate the compression parameters directly from the video 95
  • 96. Acknowledgements • Examiners • Prof. Anderson Rocha and Prof. Zanoni Dias • RECOD - IC/Unicamp • ISPG - Politecnico di Milano • FAPESP • CAPES 96