SlideShare a Scribd company logo
1 of 26
Tercer Seminario regional agricultura y cambio climático:
 nuevas tecnologías en la mitigación y adaptación de la
            agricultura al cambio climático




     Arqueas metanógenas en al mitigación del
         cambio climático en la agricultura


                              Flávia Talarico Saia
 Chemistry Institute, Universidade Estadual Paulista Júlio de Mesquita Filho –
                          UNESP, Araraquara, SP, Brazil
                         Email: ftsaia@yahoo.com.br

                                                                                 1
l on climate change (IPCC), 2007
                                             Intergovernmental pane
               METHAN                                                                        19th century
                                                                                             anthropogenic
               E
          CH4 as a source of energy

        Anaerobic treatment of waste
                                                                            Methane concentration in the atmosphere




                                                                             CH4 as a greenhouse gas
                       CH4

               Recovered and used                                           Methane has global warming
Fonte: NASA/Goddardas clean energy
                   Space Flight Center                                      potential (GWP) 21-25 times more
                                                                            than CO2


                                                                            Methane accounts for about 20%
             Methane to Market                                              of global warming
                                                                                                                      2
• Mitigation strategies for methane emissions

    • Use of methane as a energy source




         •• Sources of methane emission
            Sources of methane emission
        •• Methanogenic microorganisms
           Methanogenic microorganisms
                                                3
THEY ARE THE ONLY MICROORGANISMS KNOWN THAT PRODUCE METHANE
Methanogenesis:
         The Process
      Anaerobic condition                                                                1



 multi-step process carried out by different
groups of microorganisms
    1. Hydrolytic Bacteria                                                                   2

    2. Fermentative Bacteria
    3. Acetogenic Bacteria
    4. Methanogenic Archaea
                                                                         3
Hydrogenotrophic        Acetoclastic   Methilotrophic
                                       Methilotrophic
   H2, formate          Acetate          Methanol
                                          Methanol
Methanobrevibacter     Methanosaeta      Methanosarcina




• It is important for carbon cycle since methanogenesis prevents a build-up of organic matter,
allowing the other microorganisms to support the oxidation of substrates
                                                                                                 5
Hydroeletric        Rice fields
                                                        wetlands




  Landfill

                             WHERE ARE METHANOGENIC ARCHAEA ?
                              Methanogens are ubiquitous in anoxic
                                        environments


Anaerobic digesters
                      Livestock - cattle     Termites




                                                                     6
Agriculture - source of methane

Major sources of methane emissions:
• Agriculture : In 2010 accounted for 53% of global methane emission
• Energy: oil and natural gas systems
• Waste: solid waste and wastewater treatment




     Yusulf et al. (2012) Renewable and Sustainable Energy Reviews     7
Agriculture sectors




            • Manure: stored or treated in liquid system
            - Top emmiting counties:
              U.S., Germany, India, China, France,
            Russia, Turkey and Brazil.




Yusulf et al. (2012) Renewable and Sustenaible Energy Reviews                     8
9
Agriculture - CH4 emissions                        Agriculture sectors
                 in Brazil




                                                                                                       glogster.com
                                                     Largest beef exporter in the world




                                                                                 novotempo.com
                                          Manure
                                        Management
                                            7%


               Landfills
                 10%




                                                                                 greencleanguide.com
                           Wastewater
    Agriculture            Treatment
accounting for 45% of         7%
    CH4 emission
                                                                                10
                                                                                  10
Vinasse – liquid waste from ethanol
        Sugarcane
         Sugarcane                      Ethanol
                                        Ethanol                      Vinasse
                                                                     Vinasse




    Vinasse has been used as fertilizer to sugarcane fields
   •Emission of methane during storage of vinasse
   • Emission of N2O from soil

   Brazil is the largest producer of sugarcane ethanol in the world and immense volume
    Brazil is the largest producer of sugarcane ethanol in the world and immense volume
   of vinasse is generated ––10L vinasse/L ethanol
    of vinasse is generated 10L vinasse/L ethanol
   In 2006/2007, 190 billions of liters of vinasse were produced
    In 2006/2007, 190 billions of liters of vinasse were produced
                                                                                          11
Rego e Hernández (2006); Oliveira (2011); Carmo et al., 2012
Brazilian authorities announced that the country
  will target a reduction in its GHG between
  36.1 and 38.9% from projected 2020 levels.




The Intergovernmental Panel on Climate Change - IPCC (2007)



                                                              12
Mitigation Strategies: Enteric Fermentation
                               • CH4 is not only GHG but it is also a waste of fed energy for
                               the animal


                                •Large number of MA are in the ruminal liquid: 107 to 109 cells/mL
                                (Kamra, 2005).



                                Hydrogenotrophic methanogens: Methanobacteriales,
                               Methanomicrobiales, Methanosarcinales have been found




Methanobrevibacter smithii   Methanobacterium formicicum    Methanosarcina barkeri




                                                                                            13
                                                                                     microbewiki
Enteric Fermentation – mitigation strategies (MS) to methane
                              emission

           MS target the methanogens of the rumen directly or indirectly


  • Diet Composition: use of easy degradable carbohydrate – reduce pH in the rumen –
  decreases MA. However, accumulation of organic acids can occur, leading to subacute
  ruminal acidosis (SARA) and disruption of the rumen microbiota (Plaizier et al., 2008).


       • Lipids: Fatty acids and oils (Johnson and Johnson, 1995; Hook et al., 2010).

         - inhibition of protozoa which supply methanogens with hydrogen
          - Increase the production of propionic acid - it is not used for methanogens
          - Binding to the cell membrane of methanogens and interrupting
       membrane transport

    • Defaunation: decrease the number of protozoa by the use of copper, sulphate, acids,
     (Hook et al., 2010)

                     • Vaccines: target methanogens directly (Wedlock et al., 2010)
                                                                                            14
Hook et al. (2010)
Enteric Fermentation – mitigation strategies (MS) to
                      methane emission

     • Other strategies: selection of high quality grasses, increase grain level and
     increasing feed conversion efficiency to produce meat and milk

    Researches have shown:
    Researches have shown:

   ••MS are limited by the diet feed, the management conditions, physiological
     MS are limited by the diet feed, the management conditions, physiological
   condition, use of the animal, and government laws.
    condition, use of the animal, and government laws.

   ••Long-term experiments in vivo need to be done to implement MS
      Long-term experiments in vivo need to be done to implement MS

   •• Economic viability of the producer needs to be addressed
       Economic viability of the producer needs to be addressed

Brazil: diversty of methahogens related with diet – hay proportions ( Neves et al., 2010)
        improvement of meat production related with sugarcane feeding in dry season
      (Primavesi et al., 2003)

                                                                                       15
Hook et al. (2010); Yusuf et al., 2012
Rice fields

                                                      CH4 is produced by anaerobic
                                                      degradation of organic matter
                                                      that occurs in soil and also in
                                                      roots

                                                               CH4 oxidation by
                                                               methanotrophic
                                                                   bacteria


                                                           Anaerobic CH4 oxidation




    www1.ethz.ch
                                                             MS = net methane emission
                                                                                   16
Phillipot et al. (2009), Dubey (2005)
••Acetoclastic but mainly hydrogenotrofic methanogens
   Acetoclastic but mainly hydrogenotrofic methanogens

 Methanolinea           Methanobacterium kanagiense   Methanoculleus chikugoensis




   Sakai et al., 2012       Kitamura et al., 2011      Dianou et al., 2011


••Methanotrophic bacteria
  Methanotrophic bacteria
                                                       Methylomonas koyamae sp
                        Adachi et al 2001


                        Methylosinus



                                                        Ogiso et al., 2011     17
Mitigation Strategies: Rice field
      • Mitigation strategies include:
       - reduction of methane production; increasing methane oxidation,
      lowering methane transport through the plant
   ••Selection of cultivars with low exudation rates
      Selection of cultivars with low exudation rates

   •• To keep the soil as dry as possible in the off- rice season : : adverse environmental
       To keep the soil as dry as possible in the off- rice season adverse environmental
   condition for methanogenesis
    condition for methanogenesis

   ••Use of fertilizer: ammonium nitrate and sulphate instead of urea
     Use of fertilizer: ammonium nitrate and sulphate instead of urea



Current information is insufficient for the development of technology
and strategy for reduction in methane emission




     To improve the knowldgement of methanogens and                       Phillipot et al. (2009),
     methanotrophic bacteria in soil and in roots                         Dubey (2005) 18
Mitigation Strategy: anaerobic treatment of manure and vinasse


                                             Aim: to apply anaerobic technology to
                                             Aim: to apply anaerobic technology to

                                               PRODUCE METHANE for BIOENERGY
                                                PRODUCE METHANE for BIOENERGY
                                                         PURPOSES
                                                          PURPOSES




                                                Land applications
                                                    (N, K, P)
                                                   pathogenic
                                                microorganisms




         Methane has a high energy value (ΔHo= 816 kJ/mol or 102 kJ/e- eq)
  that can be captured through combustion and used for space heating or eletricity   19
• Studies
        have been carried out to better understand the anaerobic
process in order to control the process and achieve optimum biogas yiel

 Configuration of reactors                             Support medium


    UASB




                                                     Polyhurethane foam


                                   HAIB
                                                • Effect of inhibitory
                                                substances:
                                                ammounium, salt content,
                                                sulphate, temperature
   Lettinga (1980)


                                                                           20
                        Foresti et al. (1995)
Microorganisms – biodigestors treating manure slurries
• Methanosarcinaceae and Methanobacteriales are predominant in
  anaerobic reactors treating different kinds of manure

• Due to high levels of ammonium, pointig out the importance of
  hydrogenotrophic methanogenesis (Netmman et al., 2010)

                   Methanomicrobium       Methanobrevibacter
 Methanosarcina




                                                               21
Microorganisms – biodigestors treating vinasse

• Acetoclastic and hydrogenothrophic methanogens
                          Methanomicrobium sp          Methanosaeta
  Methanosarcina




    microbewiki                                          Araújo et al. (2003)
                         bacmap.wishartlab.com


••Termophilic process ––vinasse is produced at high temperatures (80-900C)
   Termophilic process vinasse is produced at high temperatures (80-900C)
Souza et al. (1992); Viana (2006); Ribas (2006)
 Souza et al. (1992); Viana (2006); Ribas (2006)

    - sludge stable among harvests
    - It is necessary to decrease temperature
     - process is faster than mesophilic                                        22
Hydrogen and methane production
 Use of two -stage bioreactors to produce hydrogen and methane




 Vinasse     Acidogenic
              Acidogenic                      Methanogenic
                                              Methanogenic
               reactor
                reactor                         reactor
                                                 reactor


     H2 and acids production                Consumption of acids and
                                            production of methane




Peixoto et al. (2012)
                                                                       23
Conclusions
 Emissions of methane from agriculture activities are a
 Emissions of methane from agriculture activities are a
worlwide problem, mainly regarding enteric fermentation, rice
 worlwide problem, mainly regarding enteric fermentation, rice
field and manure managment
 field and manure managment

 In Brazil: contribution of vinasse used as fertilizer
 In Brazil: contribution of vinasse used as fertilizer



 Studies have shown that there are mitigation strategies,
  however a better understanding of the microorganisms, the
  factors affecting symbiotic relation with other microbial
  population and their environment, also long term expriments
  are needed to implement MS

                                                             24
Brazil
• Studies focused on microbial diversity:

             Amazon and Pantanal




                                            25
Muchas gracias

   Flávia Talarico Saia
 ftsaia@yahoo.com.br
    55 16 33019506
                          26

More Related Content

Similar to 1 09 flavia talarico

Arqueas Metanógenas en la mitigación del cambio climático en la agricultura
Arqueas Metanógenas en la mitigación del cambio climático en la agricultura Arqueas Metanógenas en la mitigación del cambio climático en la agricultura
Arqueas Metanógenas en la mitigación del cambio climático en la agricultura FAO
 
20 Monreal Serena
20 Monreal Serena20 Monreal Serena
20 Monreal SerenaC tb
 
Methanogens by kk sahu
Methanogens by kk sahu Methanogens by kk sahu
Methanogens by kk sahu KAUSHAL SAHU
 
Methane emission from paddy field.pptx
Methane emission from paddy field.pptxMethane emission from paddy field.pptx
Methane emission from paddy field.pptxSupun Madushanka
 
Soussana jean francois
Soussana jean francois Soussana jean francois
Soussana jean francois REMEDIAnetwork
 
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Farming Futures
 
Methane Mitigation In Ruminants Through Nutritional Interventions
Methane Mitigation In Ruminants Through Nutritional InterventionsMethane Mitigation In Ruminants Through Nutritional Interventions
Methane Mitigation In Ruminants Through Nutritional InterventionsBrishketu Kumar
 
Final Presentation 2010 Up
Final Presentation 2010 UpFinal Presentation 2010 Up
Final Presentation 2010 UpMam.Gh
 
Mie Kodwo - From 'Burgers' to Biofuels
Mie Kodwo - From 'Burgers' to BiofuelsMie Kodwo - From 'Burgers' to Biofuels
Mie Kodwo - From 'Burgers' to BiofuelsAGYC Conference 2012
 
Biogas production from garbage/waste
Biogas production from garbage/wasteBiogas production from garbage/waste
Biogas production from garbage/wasteBonganiGod
 
Thermodynamic analysis of methane production process from lignin
Thermodynamic analysis of methane production process from ligninThermodynamic analysis of methane production process from lignin
Thermodynamic analysis of methane production process from ligninEduardo Baltierra Trejo
 
Sustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestionSustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestioneisenmannusa
 
The Philippine Carabao A Paradigm For Bep 20 Min
The Philippine Carabao A Paradigm For Bep  20 MinThe Philippine Carabao A Paradigm For Bep  20 Min
The Philippine Carabao A Paradigm For Bep 20 MinFiorello Abenes
 

Similar to 1 09 flavia talarico (20)

Arqueas Metanógenas en la mitigación del cambio climático en la agricultura
Arqueas Metanógenas en la mitigación del cambio climático en la agricultura Arqueas Metanógenas en la mitigación del cambio climático en la agricultura
Arqueas Metanógenas en la mitigación del cambio climático en la agricultura
 
20 Monreal Serena
20 Monreal Serena20 Monreal Serena
20 Monreal Serena
 
Joseph et al 2015
Joseph et al 2015Joseph et al 2015
Joseph et al 2015
 
Methanogens by kk sahu
Methanogens by kk sahu Methanogens by kk sahu
Methanogens by kk sahu
 
Methane emission from paddy field.pptx
Methane emission from paddy field.pptxMethane emission from paddy field.pptx
Methane emission from paddy field.pptx
 
6 weber amaral
6   weber amaral6   weber amaral
6 weber amaral
 
Szwarc second generation biofuels_a_szwarc_unica_final
Szwarc second generation biofuels_a_szwarc_unica_finalSzwarc second generation biofuels_a_szwarc_unica_final
Szwarc second generation biofuels_a_szwarc_unica_final
 
Livestock mitigation- Mario Herrero - Nov 2012
Livestock mitigation- Mario Herrero - Nov 2012Livestock mitigation- Mario Herrero - Nov 2012
Livestock mitigation- Mario Herrero - Nov 2012
 
Herrero - Livestock and GHG emissions
Herrero - Livestock and GHG emissionsHerrero - Livestock and GHG emissions
Herrero - Livestock and GHG emissions
 
Bioenergy 101
Bioenergy 101Bioenergy 101
Bioenergy 101
 
Soussana jean francois
Soussana jean francois Soussana jean francois
Soussana jean francois
 
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
Beef and sheep: What can Improved Feeding do to Increase Efficiency & Reduce ...
 
Methane Mitigation In Ruminants Through Nutritional Interventions
Methane Mitigation In Ruminants Through Nutritional InterventionsMethane Mitigation In Ruminants Through Nutritional Interventions
Methane Mitigation In Ruminants Through Nutritional Interventions
 
Final Presentation 2010 Up
Final Presentation 2010 UpFinal Presentation 2010 Up
Final Presentation 2010 Up
 
Mie Kodwo - From 'Burgers' to Biofuels
Mie Kodwo - From 'Burgers' to BiofuelsMie Kodwo - From 'Burgers' to Biofuels
Mie Kodwo - From 'Burgers' to Biofuels
 
Biogas production from garbage/waste
Biogas production from garbage/wasteBiogas production from garbage/waste
Biogas production from garbage/waste
 
Biogas notes
Biogas notesBiogas notes
Biogas notes
 
Thermodynamic analysis of methane production process from lignin
Thermodynamic analysis of methane production process from ligninThermodynamic analysis of methane production process from lignin
Thermodynamic analysis of methane production process from lignin
 
Sustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestionSustainability in an urban environment through anaerobic digestion
Sustainability in an urban environment through anaerobic digestion
 
The Philippine Carabao A Paradigm For Bep 20 Min
The Philippine Carabao A Paradigm For Bep  20 MinThe Philippine Carabao A Paradigm For Bep  20 Min
The Philippine Carabao A Paradigm For Bep 20 Min
 

More from Oficina Regional de la FAO para América Latina y el Caribe

More from Oficina Regional de la FAO para América Latina y el Caribe (20)

Agricultura familiar, alimentación escolar y la realización del derecho a la...
Agricultura familiar, alimentación escolar y la realización  del derecho a la...Agricultura familiar, alimentación escolar y la realización  del derecho a la...
Agricultura familiar, alimentación escolar y la realización del derecho a la...
 
La Reforma Constitucional 2014 y el derecho a la Alimentación adecuada en Nic...
La Reforma Constitucional 2014 y el derecho a la Alimentación adecuada en Nic...La Reforma Constitucional 2014 y el derecho a la Alimentación adecuada en Nic...
La Reforma Constitucional 2014 y el derecho a la Alimentación adecuada en Nic...
 
La seguridad alimentaria del Islote San Bernardo desde un enfoque de desarrol...
La seguridad alimentaria del Islote San Bernardo desde un enfoque de desarrol...La seguridad alimentaria del Islote San Bernardo desde un enfoque de desarrol...
La seguridad alimentaria del Islote San Bernardo desde un enfoque de desarrol...
 
Contribución de la caracterización de seguridad alimentaria y nutricional del...
Contribución de la caracterización de seguridad alimentaria y nutricional del...Contribución de la caracterización de seguridad alimentaria y nutricional del...
Contribución de la caracterización de seguridad alimentaria y nutricional del...
 
Evaluación del derecho a la alimentación metodología de indicadores de la OEA
Evaluación del derecho a la alimentación metodología de indicadores de la OEAEvaluación del derecho a la alimentación metodología de indicadores de la OEA
Evaluación del derecho a la alimentación metodología de indicadores de la OEA
 
Directriz voluntaria 8 de la FAO en los Planes de Desarrollo del municipio de...
Directriz voluntaria 8 de la FAO en los Planes de Desarrollo del municipio de...Directriz voluntaria 8 de la FAO en los Planes de Desarrollo del municipio de...
Directriz voluntaria 8 de la FAO en los Planes de Desarrollo del municipio de...
 
Las directrices voluntarias en apoyo a la realización progresiva del derecho ...
Las directrices voluntarias en apoyo a la realización progresiva del derecho ...Las directrices voluntarias en apoyo a la realización progresiva del derecho ...
Las directrices voluntarias en apoyo a la realización progresiva del derecho ...
 
Diagnóstico de las políticas públicas alimentarias de la ciudad de Cartagena ...
Diagnóstico de las políticas públicas alimentarias de la ciudad de Cartagena ...Diagnóstico de las políticas públicas alimentarias de la ciudad de Cartagena ...
Diagnóstico de las políticas públicas alimentarias de la ciudad de Cartagena ...
 
Justiciabilidad del derecho a la alimentación en el sistema jurídico colombia...
Justiciabilidad del derecho a la alimentación en el sistema jurídico colombia...Justiciabilidad del derecho a la alimentación en el sistema jurídico colombia...
Justiciabilidad del derecho a la alimentación en el sistema jurídico colombia...
 
El orden jurídico argentino en diálogo con las directrices voluntarias de FAO
El orden jurídico argentino en diálogo con las directrices voluntarias de FAOEl orden jurídico argentino en diálogo con las directrices voluntarias de FAO
El orden jurídico argentino en diálogo con las directrices voluntarias de FAO
 
La alimentación complementaria escolar en el marco de las autonomías
La alimentación complementaria escolar en el marco de las autonomíasLa alimentación complementaria escolar en el marco de las autonomías
La alimentación complementaria escolar en el marco de las autonomías
 
Diez años de las directrices voluntarias de FAO. Una mirada acerca de su impl...
Diez años de las directrices voluntarias de FAO. Una mirada acerca de su impl...Diez años de las directrices voluntarias de FAO. Una mirada acerca de su impl...
Diez años de las directrices voluntarias de FAO. Una mirada acerca de su impl...
 
La satisfacción del derecho a la alimentación de grupos en situación de vulne...
La satisfacción del derecho a la alimentación de grupos en situación de vulne...La satisfacción del derecho a la alimentación de grupos en situación de vulne...
La satisfacción del derecho a la alimentación de grupos en situación de vulne...
 
Najla Veloso - Fortalecimiento de Programas de Alimentación Escolar en el Mar...
Najla Veloso - Fortalecimiento de Programas de Alimentación Escolar en el Mar...Najla Veloso - Fortalecimiento de Programas de Alimentación Escolar en el Mar...
Najla Veloso - Fortalecimiento de Programas de Alimentación Escolar en el Mar...
 
María Augusta Calle - Avances normativos relativos a la agricultura familiar ...
María Augusta Calle - Avances normativos relativos a la agricultura familiar ...María Augusta Calle - Avances normativos relativos a la agricultura familiar ...
María Augusta Calle - Avances normativos relativos a la agricultura familiar ...
 
Guido Girardi - Chile, País Saludable.
Guido Girardi - Chile, País Saludable. Guido Girardi - Chile, País Saludable.
Guido Girardi - Chile, País Saludable.
 
Contribución del PARLATINO a la Agenda de Desarrollo Post 2015
Contribución del PARLATINO a la Agenda de Desarrollo Post 2015Contribución del PARLATINO a la Agenda de Desarrollo Post 2015
Contribución del PARLATINO a la Agenda de Desarrollo Post 2015
 
Fabián Sislian - REAF
Fabián Sislian - REAFFabián Sislian - REAF
Fabián Sislian - REAF
 
Discurso Cristina Lizardo, Vicepresidenta del Senado de República Dominicana,...
Discurso Cristina Lizardo, Vicepresidenta del Senado de República Dominicana,...Discurso Cristina Lizardo, Vicepresidenta del Senado de República Dominicana,...
Discurso Cristina Lizardo, Vicepresidenta del Senado de República Dominicana,...
 
Discurso de Abel Martínez, Presidente de la Cámara de Diputados de República ...
Discurso de Abel Martínez, Presidente de la Cámara de Diputados de República ...Discurso de Abel Martínez, Presidente de la Cámara de Diputados de República ...
Discurso de Abel Martínez, Presidente de la Cámara de Diputados de República ...
 

1 09 flavia talarico

  • 1. Tercer Seminario regional agricultura y cambio climático: nuevas tecnologías en la mitigación y adaptación de la agricultura al cambio climático Arqueas metanógenas en al mitigación del cambio climático en la agricultura Flávia Talarico Saia Chemistry Institute, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Araraquara, SP, Brazil Email: ftsaia@yahoo.com.br 1
  • 2. l on climate change (IPCC), 2007 Intergovernmental pane METHAN 19th century anthropogenic E CH4 as a source of energy Anaerobic treatment of waste Methane concentration in the atmosphere CH4 as a greenhouse gas CH4 Recovered and used Methane has global warming Fonte: NASA/Goddardas clean energy Space Flight Center potential (GWP) 21-25 times more than CO2 Methane accounts for about 20% Methane to Market of global warming 2
  • 3. • Mitigation strategies for methane emissions • Use of methane as a energy source •• Sources of methane emission Sources of methane emission •• Methanogenic microorganisms Methanogenic microorganisms 3
  • 4. THEY ARE THE ONLY MICROORGANISMS KNOWN THAT PRODUCE METHANE
  • 5. Methanogenesis: The Process Anaerobic condition 1  multi-step process carried out by different groups of microorganisms 1. Hydrolytic Bacteria 2 2. Fermentative Bacteria 3. Acetogenic Bacteria 4. Methanogenic Archaea 3 Hydrogenotrophic Acetoclastic Methilotrophic Methilotrophic H2, formate Acetate Methanol Methanol Methanobrevibacter Methanosaeta Methanosarcina • It is important for carbon cycle since methanogenesis prevents a build-up of organic matter, allowing the other microorganisms to support the oxidation of substrates 5
  • 6. Hydroeletric Rice fields wetlands Landfill WHERE ARE METHANOGENIC ARCHAEA ? Methanogens are ubiquitous in anoxic environments Anaerobic digesters Livestock - cattle Termites 6
  • 7. Agriculture - source of methane Major sources of methane emissions: • Agriculture : In 2010 accounted for 53% of global methane emission • Energy: oil and natural gas systems • Waste: solid waste and wastewater treatment Yusulf et al. (2012) Renewable and Sustainable Energy Reviews 7
  • 8. Agriculture sectors • Manure: stored or treated in liquid system - Top emmiting counties: U.S., Germany, India, China, France, Russia, Turkey and Brazil. Yusulf et al. (2012) Renewable and Sustenaible Energy Reviews 8
  • 9. 9
  • 10. Agriculture - CH4 emissions Agriculture sectors in Brazil glogster.com Largest beef exporter in the world novotempo.com Manure Management 7% Landfills 10% greencleanguide.com Wastewater Agriculture Treatment accounting for 45% of 7% CH4 emission 10 10
  • 11. Vinasse – liquid waste from ethanol Sugarcane Sugarcane Ethanol Ethanol Vinasse Vinasse Vinasse has been used as fertilizer to sugarcane fields •Emission of methane during storage of vinasse • Emission of N2O from soil Brazil is the largest producer of sugarcane ethanol in the world and immense volume Brazil is the largest producer of sugarcane ethanol in the world and immense volume of vinasse is generated ––10L vinasse/L ethanol of vinasse is generated 10L vinasse/L ethanol In 2006/2007, 190 billions of liters of vinasse were produced In 2006/2007, 190 billions of liters of vinasse were produced 11 Rego e Hernández (2006); Oliveira (2011); Carmo et al., 2012
  • 12. Brazilian authorities announced that the country will target a reduction in its GHG between 36.1 and 38.9% from projected 2020 levels. The Intergovernmental Panel on Climate Change - IPCC (2007) 12
  • 13. Mitigation Strategies: Enteric Fermentation • CH4 is not only GHG but it is also a waste of fed energy for the animal •Large number of MA are in the ruminal liquid: 107 to 109 cells/mL (Kamra, 2005).  Hydrogenotrophic methanogens: Methanobacteriales, Methanomicrobiales, Methanosarcinales have been found Methanobrevibacter smithii Methanobacterium formicicum Methanosarcina barkeri 13 microbewiki
  • 14. Enteric Fermentation – mitigation strategies (MS) to methane emission MS target the methanogens of the rumen directly or indirectly • Diet Composition: use of easy degradable carbohydrate – reduce pH in the rumen – decreases MA. However, accumulation of organic acids can occur, leading to subacute ruminal acidosis (SARA) and disruption of the rumen microbiota (Plaizier et al., 2008). • Lipids: Fatty acids and oils (Johnson and Johnson, 1995; Hook et al., 2010). - inhibition of protozoa which supply methanogens with hydrogen - Increase the production of propionic acid - it is not used for methanogens - Binding to the cell membrane of methanogens and interrupting membrane transport • Defaunation: decrease the number of protozoa by the use of copper, sulphate, acids, (Hook et al., 2010) • Vaccines: target methanogens directly (Wedlock et al., 2010) 14 Hook et al. (2010)
  • 15. Enteric Fermentation – mitigation strategies (MS) to methane emission • Other strategies: selection of high quality grasses, increase grain level and increasing feed conversion efficiency to produce meat and milk  Researches have shown:  Researches have shown: ••MS are limited by the diet feed, the management conditions, physiological MS are limited by the diet feed, the management conditions, physiological condition, use of the animal, and government laws. condition, use of the animal, and government laws. ••Long-term experiments in vivo need to be done to implement MS Long-term experiments in vivo need to be done to implement MS •• Economic viability of the producer needs to be addressed Economic viability of the producer needs to be addressed Brazil: diversty of methahogens related with diet – hay proportions ( Neves et al., 2010) improvement of meat production related with sugarcane feeding in dry season (Primavesi et al., 2003) 15 Hook et al. (2010); Yusuf et al., 2012
  • 16. Rice fields CH4 is produced by anaerobic degradation of organic matter that occurs in soil and also in roots CH4 oxidation by methanotrophic bacteria Anaerobic CH4 oxidation www1.ethz.ch MS = net methane emission 16 Phillipot et al. (2009), Dubey (2005)
  • 17. ••Acetoclastic but mainly hydrogenotrofic methanogens Acetoclastic but mainly hydrogenotrofic methanogens Methanolinea Methanobacterium kanagiense Methanoculleus chikugoensis Sakai et al., 2012 Kitamura et al., 2011 Dianou et al., 2011 ••Methanotrophic bacteria Methanotrophic bacteria Methylomonas koyamae sp Adachi et al 2001 Methylosinus Ogiso et al., 2011 17
  • 18. Mitigation Strategies: Rice field • Mitigation strategies include: - reduction of methane production; increasing methane oxidation, lowering methane transport through the plant ••Selection of cultivars with low exudation rates Selection of cultivars with low exudation rates •• To keep the soil as dry as possible in the off- rice season : : adverse environmental To keep the soil as dry as possible in the off- rice season adverse environmental condition for methanogenesis condition for methanogenesis ••Use of fertilizer: ammonium nitrate and sulphate instead of urea Use of fertilizer: ammonium nitrate and sulphate instead of urea Current information is insufficient for the development of technology and strategy for reduction in methane emission To improve the knowldgement of methanogens and Phillipot et al. (2009), methanotrophic bacteria in soil and in roots Dubey (2005) 18
  • 19. Mitigation Strategy: anaerobic treatment of manure and vinasse Aim: to apply anaerobic technology to Aim: to apply anaerobic technology to PRODUCE METHANE for BIOENERGY PRODUCE METHANE for BIOENERGY PURPOSES PURPOSES Land applications (N, K, P) pathogenic microorganisms Methane has a high energy value (ΔHo= 816 kJ/mol or 102 kJ/e- eq) that can be captured through combustion and used for space heating or eletricity 19
  • 20. • Studies have been carried out to better understand the anaerobic process in order to control the process and achieve optimum biogas yiel Configuration of reactors Support medium UASB Polyhurethane foam HAIB • Effect of inhibitory substances: ammounium, salt content, sulphate, temperature Lettinga (1980) 20 Foresti et al. (1995)
  • 21. Microorganisms – biodigestors treating manure slurries • Methanosarcinaceae and Methanobacteriales are predominant in anaerobic reactors treating different kinds of manure • Due to high levels of ammonium, pointig out the importance of hydrogenotrophic methanogenesis (Netmman et al., 2010) Methanomicrobium Methanobrevibacter Methanosarcina 21
  • 22. Microorganisms – biodigestors treating vinasse • Acetoclastic and hydrogenothrophic methanogens Methanomicrobium sp Methanosaeta Methanosarcina microbewiki Araújo et al. (2003) bacmap.wishartlab.com ••Termophilic process ––vinasse is produced at high temperatures (80-900C) Termophilic process vinasse is produced at high temperatures (80-900C) Souza et al. (1992); Viana (2006); Ribas (2006) Souza et al. (1992); Viana (2006); Ribas (2006) - sludge stable among harvests - It is necessary to decrease temperature - process is faster than mesophilic 22
  • 23. Hydrogen and methane production Use of two -stage bioreactors to produce hydrogen and methane Vinasse Acidogenic Acidogenic Methanogenic Methanogenic reactor reactor reactor reactor H2 and acids production Consumption of acids and production of methane Peixoto et al. (2012) 23
  • 24. Conclusions  Emissions of methane from agriculture activities are a  Emissions of methane from agriculture activities are a worlwide problem, mainly regarding enteric fermentation, rice worlwide problem, mainly regarding enteric fermentation, rice field and manure managment field and manure managment  In Brazil: contribution of vinasse used as fertilizer  In Brazil: contribution of vinasse used as fertilizer  Studies have shown that there are mitigation strategies, however a better understanding of the microorganisms, the factors affecting symbiotic relation with other microbial population and their environment, also long term expriments are needed to implement MS 24
  • 25. Brazil • Studies focused on microbial diversity: Amazon and Pantanal 25
  • 26. Muchas gracias Flávia Talarico Saia ftsaia@yahoo.com.br 55 16 33019506 26

Editor's Notes

  1. Methane, together with carbon dioxide and nitrous oxide, is a greenhouse gas and its concentration in atmosphere have been increasing since the 19th century due to anthropogenic activities. Methane is of concern since it is a much more powerful greenhouse gas than CO2 with a high global warming potential (GWP) of 21–25timesmorethanCO2 and it accounts for about 20% of global warming. But methane is also a source of energy that can be produced by anaerobic tretament of residues and recovered and used as Clean energery – so here we have methane to market.
  2. So, for mitigation strategies of methane emissions and also strategies that focus on the use of methane as a energy source, we need to know: the sources of methane as well as the microorganisms involved in methanogenesis.
  3. and this biological process occurs under anaerobic condition during the degradation of organic matter Methanogenic archaea depend on bacteria for generation of their substrates. Complex polímeres are hidrolized to mónumers, which are fermented to organic acids and hydrogen, acetate – the substrates of methanogenenic archaea. By removing hydrogen, methanogens allow the microorganisms involved in fermentation to function optimally and support the complete oxidation of substrates - Methanogens are classified according their subtrates for methane production. from the ruminal environment as a terminal step of carbohydrate fermentation Methanogenesis actually refers to a multi-step process that is catalyzed by different groups of prokaryotes: Group 1 (hydrolytic) : breakdown complex polymers into monomers (sugars, amino acids) Group 2 (Fermentative) : breakdown products are converted into organic acids Group 3 (Acidogenic) : converts organic acids into H2, CO2, and Acetate Group 4 (Methanogens) : convert CO2, H2 and acetate to CH4 and sometimes CO2 For the conversion of a typical polysaccharide to methane - as many as 5 major physiological groups of prokaryotes may be involved. As a group, methanogens can convert at least ten substrates to methane. Only two genera of methanogens can convert acetate to methane, and this is a very significant ecological process - high competition between sulfate-reducers and methanogens for acetate.
  4. Including those used for agriculture activitivities.
  5. And this Figure shows that And this activity is the most important contributor to methane emission, accounting for 54%, followed by 29% from energy sector and 18% from waste sector. Regarding sources of methane, this figure shows that agriculture is the most important sector, followed by energy sector and waste. This trend has been observed since 1990. In 2010, emissions of methane from agriculture accounted for 54%, against 29% from energy sector and 18% from waste sector.
  6. Regarding agriculture, enteric fermentation is the major contributor with 53% of methane emission followed by rice cultivation and manure management.This trend has been observed since 1990. Enteric fermentation with contribution of deiri and beed káttle, as well as sheep and goats. Brazil is the second largest contributer, behind China. Ric field: methane emission mainly from flooded rice Dairy – deiri Káttle´sheep – ship, golt - the top emitting countries are the U.S., Germany, India, China, France, Russia, Turkey, and Brazil.
  7. in Brazil, agriculture is also the major source of methane, accounting for 45%. Enteric fermentation is the major contributor, followed by rice cultivation and manure management. Brazil is the largest beef exporter in the world
  8. Another source of greenhouse gas in Brazil is originated by the use of vinasse, the liquid waste of ethanol, as fertilizer to sugar cane fields. This use is responsible for the emission of methane
  9. Mitigation strategies for enteric fermentation are needed, since methane is not only a GHG but also a waste of fed energy for the animal. Large numer of MA are in the ruminal liquid and most of them are hydrogenotrophic methanogens.
  10. by limitation of substrate availability ( mainly H 2 ) – knowledegment of associations with other organisms (rumen protozoa) is important Abatement strategies are often limited by the diet fed, the management conditions, physiological state and use of the animal, as well as government regulations No matter what the lipid form used for supplementation, it is important to consider the ruminant species and the diet being examined, as methane reductions can vary depending on the feed components present (see Table 1) [6]. Further, lipid inclusion can affect palatability, intake, animal performance, and milk components, all of which can have implications for practical on-farm use [57, 67]. Finally, the majority of  in vivo  experiments conducted to investigate lipids as methane abatement strategies are short-term, making it nearly impossible to draw conclusions about long-term repressive effects. Therefore, long-term supplementation experiments need to be conducted to thoroughly gauge the efficacy of lipid supplementation as an abatement strategy. The search for strategies to reduce methane from enteric fermentation of ruminants is ongoing since quite some time as methane not only represents a greenhouse gas but also a loss of feed energy to the animal. - Strategies to mitigate enteric methanogenesis can be distinguished into direct or indirect effects. While direct strategies affect the methanogenic activity or the proliferation of methanogens, indirect strategies rather limit the supply of substrates for the methanogens often by inhibiting other ruminal microbes and therewith the fermentative activity in the rumen.
  11. Other strategies that focus to increase feed conversion eff to produce meat and milk However, no matter what MS used, researches have shown…
  12. In rice fields is produced... Ant its emission to atmosphere occurs through
  13. Hydrogenotrophic methanogen is the main source of CH4
  14. About structure and function of methanogens and methanotrophic and the mechanisms of methane turnover in rice fields and methanotrophs communities will be beneficial for understanding the microbial ecology of methane to control the methane turnover in rice soils.
  15. Anaerobic reactors are operated to promote methanogenesis
  16. Have been studied
  17. Studies are recent
  18. No matter the configuration of the reactor studied, we can find all the methanogic archaea kinds, not only the hydrogenotrophi ones. There is no input of energy to decrease temperature
  19. Acidogenic biorreactor is operated to maximize