SlideShare a Scribd company logo
1 of 5
Download to read offline
School of Electronics, 
Electrical Engineering and 
Computer Science 
Queen’s University Belfast 
ELE8060 MSc Project 
Project Title: Planar Spirals for Multiband Antenna Radiators 
Student Name: Evangelos Stergiou 
Student Registration Number: 40118088 
Project Supervisor: Dr A. Schuchinsky 
Project Moderator: Dr R. Cahill 
4 September 2014
i 
Abstract 
The objective of this project is to design Paired Spiral Resonator (PSR) structures to 
operate as multiband radiators. Squared Spiral PSRs will be used to regard the 
dimensions of the ground plane, substrates, spirals width and gap as previously 
reported in [10] and [11]. Designs of Single Arm PSR and Dual Arms PSR will be 
analysed considering the two main types of feeding, edge discrete port and coaxial 
probe feeding techniques, as previous studies have demonstrated that these two 
techniques present considerably better performance compared to others and their 
radiation characteristics are approximately similar. 
Each technique has advantages and disadvantages in terms of convenience of 
implementation and radiation characteristics. An analysis based on antenna parameters 
such as radiation pattern and efficiency, mismatch losses, directivity, 3dB beamwidth, 
polarization pattern and current distribution will be held in order to investigate the 
performance of the PSRs. Improvements in the performance of the designed PSRs will 
be further investigated, by rotating the alignment of the bottom spiral in each case. 
The design of the PSRs and their simulations will be supported with the use of CST 
Microwave Studio 2011 (Computer Simulation Technology).
iii 
Project Outline 
The purpose of this report is to present all the key aspects which are about to be 
analysed in the MSc Final Year Project, entitled ‘’Planar Spirals for Multiband Antenna 
Radiators’’. Planar spirals constitute one of the major basic elements of printed circuit 
and antennas, in the recent years. The structure and the advantages of the stacked and 
interwoven planar spirals make them suitable for the design of frequency sensitive 
surfaces (FSS) and radiating elements of substantially sub-wavelength size. The design 
of these structures contributes additional degrees of freedom in tailoring multiband 
antennas and their radiation patterns. 
The purpose and the objectives of this project are to investigate configurations of 
stacked and interwoven pair spiral resonators (PSR) for multiband and tunable antenna 
radiators. The impact on the antenna’s parameters will be analysed in order to achieve 
the high performance of the interwoven and stacked spirals. The planar resonator 
designs and the configurations will be implemented with the use of electromagnetic 
simulators and especially through the use of Computer Simulation Technology (CST) 
Microwave Studio 2011. The optimization of the layout and the design will be based on 
physically realizable geometries accordant to modern fabrication techniques. The 
design, the configurations and the measurement of the performance will be based on 
different types of feeding techniques and proposing methods to improve the 
performance of the PSRs. 
The learning outcomes of this project are: 
1. The properties of the convoluted spiral resonators and the basic principles of 
their design for antenna applications. 
2. The modelling concepts for the design of complex electromagnetics structures, 
antenna radiating elements and feeders. 
3. Skills in operating the full-wave electromagnetic simulation tools (CST 
Microwave Studio) and their use for the design of microwave antennas.
v 
Table of Contents 
Abstract ............................................................................................................................ i 
Declaration of Originality ................................................................................................. ii 
Project Outline ................................................................................................................ iii 
Acknowledgements ........................................................................................................ iv 
Table of Contents ............................................................................................................ v 
List of Figures ................................................................................................................ vii 
List of Tables ................................................................................................................... x 
1 Introduction in Rings and Spirals Resonators ........................................................... 1 
1.1 Split Ring Resonators ......................................................................................... 1 
1.2 Multiple Split-Ring Resonators ........................................................................... 1 
1.3 Spiral Resonators ............................................................................................... 2 
2 Definitions of Antenna Terms .................................................................................... 4 
2.1 Radiation Pattern ................................................................................................ 4 
2.2 Directivity and Radiation Density ........................................................................ 4 
2.3 Radiation Pattern Lobes and Beamwidth ........................................................... 5 
2.4 Antenna Efficiency .............................................................................................. 6 
2.5 Gain .................................................................................................................... 6 
2.6 Bandwidth ........................................................................................................... 6 
2.7 Return Loss ........................................................................................................ 7 
2.8 Polarisation ......................................................................................................... 7 
3 Feeding Techniques.................................................................................................. 9 
3.1 Edge Discrete Feeding ....................................................................................... 9 
3.2 Coaxial Probe Feeding ..................................................................................... 10 
3.3 Proximity Coupled Feeding .............................................................................. 11 
3.4 Aperture Coupled Feeding ............................................................................... 12 
4 Single Arm Stacked PSR with Edge Discrete Port Feeding .................................... 14 
4.1 Single Arm Pair Spiral Resonator Configuration ............................................... 14 
4.2 Edge Discrete Port Feeding ............................................................................. 16 
4.3 Effect of Variation in Length of Inner Arm ......................................................... 21 
4.4 Effect of Bottom Spiral Rotation ....................................................................... 23
4.5 Effect of Differentiation in Materials .................................................................. 27 
5 Single Arm Stacked PSR with Coaxial Probe Feeding ........................................... 31 
5.1 Coaxial Probe Feeding at the Terminal of the Spiral ........................................ 31 
5.2 Effect of Bottom Spiral Rotation ....................................................................... 35 
5.3 Coaxial Probe Feeding at the Centre of the Spiral ........................................... 37 
6 Dual Arms Stacked Pair Spiral Resonators ............................................................. 40 
6.1 Dual Arms PSR Configuration .......................................................................... 40 
6.2 Coaxial Probe Terminals Fed Dual Arms PSR ................................................. 42 
6.3 Edge Discrete Port Fed Dual Arms PSR .......................................................... 46 
6.4 Coaxial Probe Centres Fed Dual Arms PSR .................................................... 50 
6.5 Coaxial Probe Terminal and Centre Fed Dual Arms PSR ................................ 55 
6.6 Effect of Bottom Spiral Rotation ....................................................................... 59 
6.6.1 Bottom Spiral Rotation in Coaxial Probe Centres Fed Dual Arms PSR ..... 59 
6.6.2 Bottom Spiral Rotation in Coaxial Probe Centre and Terminal Fed Dual 
Arms PSR ............................................................................................................... 61 
6.7 Effect of Shorting-Pin ........................................................................................ 62 
6.7.1 Coaxial Probe Centre Fed Dual Arms PSR, Shorting-Pin at the Centre .... 62 
6.7.2 Coaxial Probe Terminal Fed Dual Arms PSR, Shorting-Pin at the Centre . 64 
6.8 Effect of Shorting Pin with Bottom Spiral Rotation ............................................ 66 
6.8.1 Bottom Spiral Rotation in Coaxial Probe Centre Fed Dual Arms PSR, 
Shorting-Pin at the Centre ....................................................................................... 66 
6.8.2 Bottom Spiral Rotation in Coaxial Probe Terminal Fed Dual Arms PSR, 
Shorting-Pin at the Centre ....................................................................................... 68 
7 General Discussion ................................................................................................. 70 
8 Conclusions ............................................................................................................ 71 
9 References .............................................................................................................. 73 
Appendices .................................................................................................................... 75 
Appendix I – Absolute Radiation Patterns of Single Arm Edge Discrete Port Fed PSR 
under Real and Ideal Conditions ................................................................................ 75 
Appendix II – Absolute Radiation Patterns of Dual Arms Coaxial Probe Centre Fed 
PSR, Shorting-Pin at the Centre under Real and Ideal Conditions ............................ 84 
Appendix III – Absolute Radiation Patterns of Dual Arms Coaxial Probe Terminal Fed 
PSR, Shorting-Pin at the Centre under Real and Ideal Conditions ............................ 89 
vi

More Related Content

Similar to Evangelos_Stergiou_Planar Spirals for Multiband Antenna Radiators.

Design_report_1132999_FINAL
Design_report_1132999_FINALDesign_report_1132999_FINAL
Design_report_1132999_FINALJoseph Haystead
 
Internship report
Internship reportInternship report
Internship reportNeel Sheth
 
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam Dump
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam DumpComputer Integrated Design, Analysis and Shape Optimization of Proton Beam Dump
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam DumpIRJET Journal
 
Laser feedback interferometry.pdf
Laser feedback interferometry.pdfLaser feedback interferometry.pdf
Laser feedback interferometry.pdfbitconcepts
 
Chang_gsas.harvard.inactive_0084L_11709
Chang_gsas.harvard.inactive_0084L_11709Chang_gsas.harvard.inactive_0084L_11709
Chang_gsas.harvard.inactive_0084L_11709Willy Chang
 
MS Thesis_Sangjo_Yoo
MS Thesis_Sangjo_YooMS Thesis_Sangjo_Yoo
MS Thesis_Sangjo_YooSangjo Yoo
 
S.Denega_thesis_2011
S.Denega_thesis_2011S.Denega_thesis_2011
S.Denega_thesis_2011Sergii Denega
 
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsarsSurvey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsarsSaurabh Bondarde
 
1891121731 microstrip
1891121731 microstrip1891121731 microstrip
1891121731 microstriplhcnn
 
Lech Kupinski Thesis
Lech Kupinski ThesisLech Kupinski Thesis
Lech Kupinski ThesisLech Kupinski
 
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...aziznitham
 
Tunable and narrow linewidth mm-wave generation through monolithically integr...
Tunable and narrow linewidth mm-wave generation through monolithically integr...Tunable and narrow linewidth mm-wave generation through monolithically integr...
Tunable and narrow linewidth mm-wave generation through monolithically integr...Marco Zanola
 
Vortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine bladesVortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine bladesDickdick Maulana
 

Similar to Evangelos_Stergiou_Planar Spirals for Multiband Antenna Radiators. (20)

Design_report_1132999_FINAL
Design_report_1132999_FINALDesign_report_1132999_FINAL
Design_report_1132999_FINAL
 
Internship report
Internship reportInternship report
Internship report
 
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam Dump
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam DumpComputer Integrated Design, Analysis and Shape Optimization of Proton Beam Dump
Computer Integrated Design, Analysis and Shape Optimization of Proton Beam Dump
 
Laser feedback interferometry.pdf
Laser feedback interferometry.pdfLaser feedback interferometry.pdf
Laser feedback interferometry.pdf
 
Chang_gsas.harvard.inactive_0084L_11709
Chang_gsas.harvard.inactive_0084L_11709Chang_gsas.harvard.inactive_0084L_11709
Chang_gsas.harvard.inactive_0084L_11709
 
MS Thesis_Sangjo_Yoo
MS Thesis_Sangjo_YooMS Thesis_Sangjo_Yoo
MS Thesis_Sangjo_Yoo
 
Thesis
ThesisThesis
Thesis
 
S.Denega_thesis_2011
S.Denega_thesis_2011S.Denega_thesis_2011
S.Denega_thesis_2011
 
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsarsSurvey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
Survey & X-ray (Chandra) Spectral analysis of Fermi LAT gamma pulsars
 
Raghuraj_H_Dissertation
Raghuraj_H_DissertationRaghuraj_H_Dissertation
Raghuraj_H_Dissertation
 
1891121731 microstrip
1891121731 microstrip1891121731 microstrip
1891121731 microstrip
 
12098
1209812098
12098
 
Daniels_MASc_thesis
Daniels_MASc_thesisDaniels_MASc_thesis
Daniels_MASc_thesis
 
Final Thesis Report
Final Thesis ReportFinal Thesis Report
Final Thesis Report
 
2003_FVolpe
2003_FVolpe2003_FVolpe
2003_FVolpe
 
Lech Kupinski Thesis
Lech Kupinski ThesisLech Kupinski Thesis
Lech Kupinski Thesis
 
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
 
Tunable and narrow linewidth mm-wave generation through monolithically integr...
Tunable and narrow linewidth mm-wave generation through monolithically integr...Tunable and narrow linewidth mm-wave generation through monolithically integr...
Tunable and narrow linewidth mm-wave generation through monolithically integr...
 
Vortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine bladesVortex lattice modelling of winglets on wind turbine blades
Vortex lattice modelling of winglets on wind turbine blades
 
Go3511621168
Go3511621168Go3511621168
Go3511621168
 

Evangelos_Stergiou_Planar Spirals for Multiband Antenna Radiators.

  • 1. School of Electronics, Electrical Engineering and Computer Science Queen’s University Belfast ELE8060 MSc Project Project Title: Planar Spirals for Multiband Antenna Radiators Student Name: Evangelos Stergiou Student Registration Number: 40118088 Project Supervisor: Dr A. Schuchinsky Project Moderator: Dr R. Cahill 4 September 2014
  • 2. i Abstract The objective of this project is to design Paired Spiral Resonator (PSR) structures to operate as multiband radiators. Squared Spiral PSRs will be used to regard the dimensions of the ground plane, substrates, spirals width and gap as previously reported in [10] and [11]. Designs of Single Arm PSR and Dual Arms PSR will be analysed considering the two main types of feeding, edge discrete port and coaxial probe feeding techniques, as previous studies have demonstrated that these two techniques present considerably better performance compared to others and their radiation characteristics are approximately similar. Each technique has advantages and disadvantages in terms of convenience of implementation and radiation characteristics. An analysis based on antenna parameters such as radiation pattern and efficiency, mismatch losses, directivity, 3dB beamwidth, polarization pattern and current distribution will be held in order to investigate the performance of the PSRs. Improvements in the performance of the designed PSRs will be further investigated, by rotating the alignment of the bottom spiral in each case. The design of the PSRs and their simulations will be supported with the use of CST Microwave Studio 2011 (Computer Simulation Technology).
  • 3. iii Project Outline The purpose of this report is to present all the key aspects which are about to be analysed in the MSc Final Year Project, entitled ‘’Planar Spirals for Multiband Antenna Radiators’’. Planar spirals constitute one of the major basic elements of printed circuit and antennas, in the recent years. The structure and the advantages of the stacked and interwoven planar spirals make them suitable for the design of frequency sensitive surfaces (FSS) and radiating elements of substantially sub-wavelength size. The design of these structures contributes additional degrees of freedom in tailoring multiband antennas and their radiation patterns. The purpose and the objectives of this project are to investigate configurations of stacked and interwoven pair spiral resonators (PSR) for multiband and tunable antenna radiators. The impact on the antenna’s parameters will be analysed in order to achieve the high performance of the interwoven and stacked spirals. The planar resonator designs and the configurations will be implemented with the use of electromagnetic simulators and especially through the use of Computer Simulation Technology (CST) Microwave Studio 2011. The optimization of the layout and the design will be based on physically realizable geometries accordant to modern fabrication techniques. The design, the configurations and the measurement of the performance will be based on different types of feeding techniques and proposing methods to improve the performance of the PSRs. The learning outcomes of this project are: 1. The properties of the convoluted spiral resonators and the basic principles of their design for antenna applications. 2. The modelling concepts for the design of complex electromagnetics structures, antenna radiating elements and feeders. 3. Skills in operating the full-wave electromagnetic simulation tools (CST Microwave Studio) and their use for the design of microwave antennas.
  • 4. v Table of Contents Abstract ............................................................................................................................ i Declaration of Originality ................................................................................................. ii Project Outline ................................................................................................................ iii Acknowledgements ........................................................................................................ iv Table of Contents ............................................................................................................ v List of Figures ................................................................................................................ vii List of Tables ................................................................................................................... x 1 Introduction in Rings and Spirals Resonators ........................................................... 1 1.1 Split Ring Resonators ......................................................................................... 1 1.2 Multiple Split-Ring Resonators ........................................................................... 1 1.3 Spiral Resonators ............................................................................................... 2 2 Definitions of Antenna Terms .................................................................................... 4 2.1 Radiation Pattern ................................................................................................ 4 2.2 Directivity and Radiation Density ........................................................................ 4 2.3 Radiation Pattern Lobes and Beamwidth ........................................................... 5 2.4 Antenna Efficiency .............................................................................................. 6 2.5 Gain .................................................................................................................... 6 2.6 Bandwidth ........................................................................................................... 6 2.7 Return Loss ........................................................................................................ 7 2.8 Polarisation ......................................................................................................... 7 3 Feeding Techniques.................................................................................................. 9 3.1 Edge Discrete Feeding ....................................................................................... 9 3.2 Coaxial Probe Feeding ..................................................................................... 10 3.3 Proximity Coupled Feeding .............................................................................. 11 3.4 Aperture Coupled Feeding ............................................................................... 12 4 Single Arm Stacked PSR with Edge Discrete Port Feeding .................................... 14 4.1 Single Arm Pair Spiral Resonator Configuration ............................................... 14 4.2 Edge Discrete Port Feeding ............................................................................. 16 4.3 Effect of Variation in Length of Inner Arm ......................................................... 21 4.4 Effect of Bottom Spiral Rotation ....................................................................... 23
  • 5. 4.5 Effect of Differentiation in Materials .................................................................. 27 5 Single Arm Stacked PSR with Coaxial Probe Feeding ........................................... 31 5.1 Coaxial Probe Feeding at the Terminal of the Spiral ........................................ 31 5.2 Effect of Bottom Spiral Rotation ....................................................................... 35 5.3 Coaxial Probe Feeding at the Centre of the Spiral ........................................... 37 6 Dual Arms Stacked Pair Spiral Resonators ............................................................. 40 6.1 Dual Arms PSR Configuration .......................................................................... 40 6.2 Coaxial Probe Terminals Fed Dual Arms PSR ................................................. 42 6.3 Edge Discrete Port Fed Dual Arms PSR .......................................................... 46 6.4 Coaxial Probe Centres Fed Dual Arms PSR .................................................... 50 6.5 Coaxial Probe Terminal and Centre Fed Dual Arms PSR ................................ 55 6.6 Effect of Bottom Spiral Rotation ....................................................................... 59 6.6.1 Bottom Spiral Rotation in Coaxial Probe Centres Fed Dual Arms PSR ..... 59 6.6.2 Bottom Spiral Rotation in Coaxial Probe Centre and Terminal Fed Dual Arms PSR ............................................................................................................... 61 6.7 Effect of Shorting-Pin ........................................................................................ 62 6.7.1 Coaxial Probe Centre Fed Dual Arms PSR, Shorting-Pin at the Centre .... 62 6.7.2 Coaxial Probe Terminal Fed Dual Arms PSR, Shorting-Pin at the Centre . 64 6.8 Effect of Shorting Pin with Bottom Spiral Rotation ............................................ 66 6.8.1 Bottom Spiral Rotation in Coaxial Probe Centre Fed Dual Arms PSR, Shorting-Pin at the Centre ....................................................................................... 66 6.8.2 Bottom Spiral Rotation in Coaxial Probe Terminal Fed Dual Arms PSR, Shorting-Pin at the Centre ....................................................................................... 68 7 General Discussion ................................................................................................. 70 8 Conclusions ............................................................................................................ 71 9 References .............................................................................................................. 73 Appendices .................................................................................................................... 75 Appendix I – Absolute Radiation Patterns of Single Arm Edge Discrete Port Fed PSR under Real and Ideal Conditions ................................................................................ 75 Appendix II – Absolute Radiation Patterns of Dual Arms Coaxial Probe Centre Fed PSR, Shorting-Pin at the Centre under Real and Ideal Conditions ............................ 84 Appendix III – Absolute Radiation Patterns of Dual Arms Coaxial Probe Terminal Fed PSR, Shorting-Pin at the Centre under Real and Ideal Conditions ............................ 89 vi