SlideShare a Scribd company logo
1 of 21
Download to read offline
ACOUSTIC ANALYSIS IN
KINDERGARTEN CLASSROOM
Student: Eduardo Artigas 201310871
Instructor: Poul Henning Kirkegaard
Course: Rum- og bygningsakustik
AARHUS
UNIVERSITY
DEPARTMENT OF ENGINEERING
Abstract	
  
	
  
1. Introduction	
  
	
  
2. Standard	
  requirements	
  
	
  
2.1 General	
  acoustic	
  requirements	
  
2.2 Educational	
  and	
  childcare	
  buildings	
  
	
  
3. Potential	
  acoustic	
  problems	
  in	
  a	
  Kindergarten	
  
	
  
4. Acoustics	
  of	
  a	
  room	
  design	
  for	
  speech	
  
	
  
4.1 Reverberation	
  time	
  
4.2 Absorption	
  treatment	
  
4.3 Speech	
  intelligibility	
  
4.3.1 Analytical	
  measure	
  methods	
  for	
  speech	
  intelligibility	
  
	
  
5. Methodology	
  
	
  
5.1 Room	
  description	
  and	
  analysis	
  setup	
  
5.2 Noise	
  criteria	
  
5.3 Source	
  and	
  receiver	
  position	
  
5.4 Parameter	
  variation	
  
5.5 Measurements	
  methods	
  
	
  
6. Simulation	
  results	
  
	
  
6.1 Sabine	
  equation	
  Vs.	
  CATT	
  simulation	
  
6.1.1 Classroom	
  1	
  (single)	
  and	
  Classroom	
  2	
  (double)	
  
	
  
6.2 Reverberation	
  time	
  (RT60)	
  
	
  
6.2.1 Classroom	
  1A:	
  single	
  room	
  with	
  high	
  absorptive	
  materials	
  
6.2.1.1 RT60	
  at	
  receiver	
  1:	
  analysis	
  at	
  frequency	
  level	
  
6.2.1.2 RT60	
  at	
  receiver	
  1:	
  analysis	
  at	
  each	
  setup	
  
6.2.2 Classroom	
  1B:	
  single	
  room	
  with	
  lower	
  absorptive	
  materials	
  
6.2.3 Classroom	
  1A	
  and	
  1B:	
  analysis	
  comparison	
  
	
  
6.2.4 Classroom	
  2A:	
  double	
  room	
  with	
  high	
  absorptive	
  materials	
  
6.2.4.1 RT60	
  at	
  receiver	
  1:	
  analysis	
  at	
  frequency	
  level	
  
6.2.4.2 RT60	
  at	
  receiver	
  1:	
  analysis	
  at	
  each	
  setup	
  
6.2.5 Classroom	
  2B:	
  double	
  room	
  with	
  lower	
  absorptive	
  materials	
  
6.2.6 Classroom	
  2A	
  and	
  2B:	
  analysis	
  comparison	
  
	
  
6.3 Speech	
  transmission	
  index	
  (STI)	
  
	
  
6.3.1 Classroom	
  1A:	
  single	
  room	
  with	
  high	
  absorptive	
  materials	
  
6.3.2 Classroom	
  1A	
  and	
  1B:	
  analysis	
  comparison	
  
6.3.3 Classroom	
  2A:	
  double	
  room	
  with	
  high	
  absorptive	
  materials	
  
6.3.4 Classroom	
  2A	
  and	
  2B:	
  analysis	
  comparison	
  
	
  
	
  
	
  
7. Discussion	
  
	
  
7.1 Sabine	
  equation	
  
7.2 Reverberation	
  time	
  
7.3 Speech	
  transmission	
  index	
  
7.4 Reverberation	
  time	
  &	
  STI	
  
	
  
8. Conclusion	
  
	
  
9. References	
  
	
  
	
  
Appendix	
  1:	
  Sabine	
  
	
  
Appendix	
  2:	
  RT60	
  Classroom	
  1	
  
	
  
Appendix	
  3:	
  STI	
  Classroom	
  1	
  
	
  
Appendix	
  4:	
  RT60	
  Classroom	
  2	
  
	
  
Appendix	
  5:	
  STI	
  Classroom	
  2	
  
	
  
 
1	
  
1. Introduction	
  
	
  
Acoustic	
   is	
   an	
   important	
   factor	
   to	
   achieve	
   a	
   high	
   indoor	
   climate	
   quality	
   level.	
  
“Good	
  acoustic”	
  is	
  defined	
  as	
  a	
  combination	
  of	
  objective	
  and	
  subjective	
  factors,	
  which	
  
can	
  be	
  divided	
  into	
  measures	
  that	
  are	
  related	
  to	
  the	
  distribution	
  of	
  sound,	
  the	
  dispersion	
  
in	
  the	
  room	
  and	
  multiple	
  measures	
  related	
  to	
  the	
  noise	
  level	
  in	
  the	
  room.	
  
	
  
Moreover,	
  acoustic	
  is	
  a	
  generic	
  concept	
  that	
  includes	
  several	
  interpretations	
  and	
  
definitions.	
   Generally,	
   the	
   definition	
   of	
   acoustic	
   is	
   divided	
   into	
   concepts	
   [1]:	
   building	
  
acoustics	
  or	
  sound	
  insulation	
  (damping	
  of	
  external	
  noise)	
  and	
  architectural	
  acoustics	
  or	
  
sound	
  control	
  (damping	
  of	
  internal	
  noise).	
  
	
  
In	
  non-­‐residential	
  profession	
  like	
  teaching,	
  noise	
  is	
  presumed	
  to	
  be	
  a	
  nuisance	
  
than	
   a	
   risk	
   factor	
   for	
   noise-­‐induced	
   hearing	
   loss.	
   Studies	
   establish	
   that	
   there	
   are	
  
indications	
   that	
   noise	
   exposure,	
   even	
   of	
   low	
   intensity,	
   is	
   associated	
   with	
   increased	
  
sickness	
  absence.	
  In	
  kindergarten	
  classrooms,	
  noise	
  has	
  the	
  potential	
  to	
  interrupt	
  on-­‐
going	
  activities	
  and	
  to	
  disturb	
  the	
  perception	
  of	
  the	
  speech	
  [2].	
  
	
  
In	
   educational	
   facilities,	
   the	
   main	
   mode	
   of	
   communication	
   are	
   speaking	
   and	
  
listening.	
  Due	
  to	
  these	
  factors,	
  it	
  is	
  important	
  to	
  design	
  a	
  good	
  acoustic	
  environment	
  that	
  
maximizes	
   the	
   learning	
   opportunities	
   for	
   the	
   students.	
   In	
   the	
   case	
   of	
   a	
   kindergarten,	
  
children	
  become	
  the	
  major	
  noise	
  source	
  in	
  classrooms	
  generating	
  high	
  level	
  of	
  noise.	
  
Then,	
  as	
  estate	
  in	
  the	
  previous	
  paragraph,	
  teaching	
  profession	
  might	
  have	
  a	
  high	
  noise	
  
exposure	
  that	
  is	
  associated	
  with	
  increased	
  sickness	
  absence	
  [2].	
  
	
  
The	
  paper	
  studies	
  the	
  architectural	
  acoustics	
  of	
  a	
  kindergarten’s	
  classroom	
  by	
  
CATT	
  simulation	
  software.	
  	
  This	
  program	
  uses	
  RTC-­‐II	
  (Randomized	
  Tail-­‐corrected	
  Cone	
  
tracing,	
  second	
  version),	
  Ray-­‐tracing	
  (method	
  for	
  calculating	
  the	
  path	
  of	
  waves	
  through	
  
a	
   system),	
   to	
   evaluate	
   the	
   acoustic	
   variables	
   [3].	
   First,	
   it	
   is	
   established	
   a	
   single	
   room	
  
distribution	
  for	
  the	
  case	
  of	
  teaching-­‐learning	
  communication	
  mode.	
  Two-­‐design	
  room	
  
configurations	
  are	
  set	
  up	
  for	
  the	
  previous	
  room	
  distribution,	
  one	
  with	
  better	
  acoustic	
  
materials	
  than	
  the	
  other	
  room.	
  Then,	
  each	
  configuration	
  is	
  improved	
  and	
  evaluated	
  by	
  a	
  
parametric	
   variation	
   study.	
   Three	
   measures	
   are	
   used	
   to	
   evaluated	
   the	
   acoustic	
  
environment:	
  reverberation	
  time,	
  signal	
  to	
  noise	
  ratio	
  and	
  speech	
  transmission	
  index.	
  
	
  
2. Standard	
  requirements	
  [4]	
  
	
  
2.1 General	
  acoustic	
  requirements	
  
	
  
The	
  concepts	
  of	
  reverberation	
  time	
  and	
  absorption	
  are	
  defined	
  in	
  DS/EN	
  12354-­‐
6,	
   Building	
   acoustics-­‐	
   Estimation	
   of	
   acoustic	
   performance	
   of	
   buildings	
   from	
   the	
  
performance	
   of	
   elements	
   –	
   Part	
   6:	
   Sound	
   absorption	
   in	
   enclosed	
   spaces.	
   Check	
  
measurements	
  of	
  sound	
  conditions	
  must	
  be	
  made	
  in	
  accordance	
  with	
  SBi	
  Guidelines	
  217,	
  
Performing	
  building	
  acoustics	
  measurements.	
  
	
  
2.2 Educational	
  and	
  childcare	
  buildings	
  
	
  
SBi	
  Guideline	
  218,	
  Sound	
  conditions	
  in	
  educational	
  and	
  childcare	
  buildings	
  specify	
  the	
  
sound	
   requirements	
   and	
   make	
   recommendations	
   in	
   respect	
   of	
   sound	
   conditions	
   in	
  
educational	
  and	
  childcare	
  institutions.	
  
	
  
o Reverberation	
  time,	
  T	
  
	
  
 
2	
  
-­‐ Occupiable	
  rooms	
  ≤	
  0.4	
  s	
  
	
  
o Absorption	
  area,	
  A	
  
	
  
-­‐ Occupiable	
   rooms	
   with	
   a	
   ceiling	
   height	
   greater	
   than	
   4	
   m	
   and	
   a	
   room	
  
volume	
  greater	
  than	
  300m3	
  ≥	
  1.2	
  x	
  room	
  floor	
  area.	
  
	
  
o Speech	
  Transmission	
  Index	
  (STI)	
  is	
  defined	
  in	
  DS/EN	
  60268-­‐16,	
  Sound	
  system	
  
requirement	
   –	
   Part	
   16:	
   Objective	
   rating	
   of	
   speech	
   intelligibility	
   by	
   speech	
  
transmission	
  index	
  (Danish	
  standards,	
  2003c)	
  and	
  DS/EN	
  ISO	
  14257,	
  Acoustics	
  –	
  
Measurements	
  and	
  parametric	
  description	
  of	
  spatial	
  sound	
  distribution	
  curves	
  in	
  
workrooms	
   for	
   evaluation	
   of	
   their	
   acoustical	
   performance	
   (Danish	
   Standards,	
  
2002a).	
  
	
  
-­‐ Within	
  a	
  teaching	
  group,	
  an	
  STI	
  in	
  excess	
  of	
  0.6	
  between	
  teacher	
  and	
  pupil	
  
and	
  from	
  pupil	
  to	
  pupil	
  should	
  enable	
  clear	
  communication.	
  
	
  
o Sound	
  transmission	
  attenuation	
  in	
  accordance	
  with	
  DS/EN	
  ISO	
  14257	
  (Danish	
  
standards,	
  2002a).	
  
	
  
-­‐ Recommended	
  sound	
  transmission	
  attenuation	
  should	
  be	
  greater	
  than	
  5	
  
dB	
  
	
  
3. Potential	
  acoustic	
  problems	
  in	
  a	
  Kindergarten	
  
	
  
Noise	
   in	
   classrooms	
   has	
   the	
   potential	
   to	
   interrupt	
   on	
   going	
   activities	
   and	
   to	
  
disturb	
   the	
   perception	
   of	
   speech.	
   The	
   annoying	
   noise	
   could	
   be	
   either	
   self-­‐	
   generated	
  
noise	
   from	
   laughing,	
   chatting	
   or	
   bullying	
   during	
   lessons	
   or	
   related	
   to	
   the	
   physical	
  
environment	
  such	
  as	
  noise	
  from	
  chairs	
  and	
  tables	
  or	
  external	
  noise,	
  such	
  as	
  from	
  other	
  
classrooms.	
  
	
  
As	
  it	
  is	
  mentioned	
  above,	
  either	
  children	
  or	
  teachers	
  suffer	
  the	
  consequences	
  from	
  noise	
  
and	
  poor	
  acoustics	
  environments.	
  However,	
  the	
  effects	
  on	
  them	
  are	
  relatively	
  different.	
  
	
  
From	
  a	
  teacher	
  view,	
  poor	
  acoustical	
  working	
  conditions	
  are	
  associated	
  with	
  increased	
  
sickness	
  absence	
  [5].	
  That	
  absence	
  is	
  produced	
  by	
  psychological	
  and	
  physical	
  factors:	
  
	
  
• Job	
  satisfaction;	
  low	
  satisfaction	
  is	
  associated	
  with	
  sickness	
  absence,	
  burnout,	
  
depression,	
  and	
  anxiety	
  [6],	
  as	
  well	
  as	
  lower	
  productivity.	
  
	
  
• Fatigue;	
   it	
   brings	
   negative	
   influence	
   on	
   task	
   performance,	
   as	
   well	
   as	
   it	
   may	
  
lower	
  energy	
  levels	
  and	
  aggravate	
  voice	
  symptoms.	
  
	
  
Regarding	
  the	
  world	
  of	
  the	
  child,	
  children	
  environment	
  is	
  becoming	
  much	
  noisier	
  than	
  
fifty	
   years	
   ago	
   [7].	
   Since	
   they	
   spend	
   a	
   big	
   part	
   of	
   their	
   days	
   at	
   schools,	
   acoustics	
  
conditions	
   there	
   have	
   a	
   big	
   influence	
   over	
   biological	
   (physiological	
   and	
   somatic),	
  
psychological,	
  social	
  and	
  emotional	
  aspects.	
  
	
  
Cognitive	
  effects:	
  
	
  
• Reading:	
   noise	
   on	
   children's	
   cognition	
   show	
   negative	
   effects	
   on	
   acquiring	
  
reading	
  skills.	
  
 
3	
  
• Memory:	
   several	
   studies	
   of	
   both	
   chronic	
   and	
   acute	
   noise	
   have	
   found	
   adverse	
  
effects	
   of	
   aircraft	
   noise	
   exposure	
   on	
   long-­‐term	
   memory	
   for	
   complex,	
   difficult	
  
material.	
  	
  
• Motivation:	
   children	
   chronically	
   exposed	
   to	
   noise	
   are	
   less	
   motivated	
   when	
  
placed	
   in	
   achievement	
   situations	
   in	
   which	
   task	
   performance	
   is	
   contingent	
   on	
  
persistence.	
  
• Mechanisms	
   and	
   underlying	
   processes:	
   Several	
   studies	
   suggest	
   that	
   noise	
   can	
  
interfere	
  in	
  important	
  ways	
  with	
  speech	
  perception	
  or	
  language	
  acquisition.	
  
	
  
Reading,	
   long-­‐term	
   memory	
   and	
   learning	
   in	
   children	
   are	
   particularly	
   sensitive	
   to	
  
noise.	
  
	
  
Besides	
  cognitive	
  effects,	
  noise	
  in	
  classrooms	
  can	
  have	
  further	
  complications	
  such	
  
as:	
  
	
  
• Higher	
  blood	
  pressure	
  [8]	
  
• Higher	
  epinephrine
	
  
(adrenaline)	
  levels	
  
• Higher	
  norepinephrine	
  levels	
  
• Sleeping	
  disorders	
  [9]	
  
	
  
4. Acoustics	
  of	
  a	
  room	
  design	
  for	
  speech	
  
	
  
In	
  rooms	
  designed	
  for	
  speech	
  applications,	
  like	
  the	
  case	
  of	
  a	
  classroom,	
  many	
  of	
  
the	
   same	
   criteria	
   used	
   for	
   any	
   other	
   room	
   will	
   still	
   apply.	
   However,	
   in	
   rooms	
   used	
  
primarily	
   for	
   speech,	
   some	
   criteria	
   might	
   be	
   arising	
   in	
   importance	
   and	
   some	
  
requirements	
  might	
  be	
  modified.	
  	
  
	
  
4.1 Reverberation	
  time	
  
	
  
	
   Reverberation	
  time	
  RT60	
  is	
  always	
  an	
  important	
  parameter	
  to	
  evaluate	
  the	
  sound	
  
quality	
  for	
  any	
  room,	
  and	
  to	
  room	
  volume.	
  It	
  is	
  defined	
  as	
  the	
  time	
  in	
  seconds	
  required	
  
for	
   sound	
   intensity	
   in	
   a	
   room	
   to	
   drop	
   60dB	
   from	
   its	
   original	
   level	
   [10].	
   Absorptive	
  
qualities	
  and	
  room	
  dimensions	
  influence	
  reverberation	
  time	
  and	
  it	
  does	
  not	
  depend	
  on	
  
the	
  position.	
  Figure	
  1	
  show	
  recommended	
  values	
  for	
  mean	
  reverberation	
  time	
  between	
  
two	
  octave	
  bandwidths	
  500	
  and	
  1,000	
  Hz	
  when	
  a	
  room	
  is	
  occupied	
  between	
  80%	
  and	
  
100%	
   [10]	
   .Two	
   classrooms	
   configurations	
   are	
   shown	
   in	
   Figure	
   1,	
   i)	
   Classroom	
  
configuration	
  1	
  (red	
  line)	
  recommended	
  a	
  RT60	
  of	
  0,6	
  for	
  a	
  volume	
  of	
  189	
  m3;	
  and	
  ii)	
  
Classroom	
  configuration	
  2	
  (blue	
  line)	
  recommended	
  a	
  RT60	
  of	
  0,8	
  for	
  a	
  volume	
  of	
  534	
  
m3.	
  
	
  
Figure	
  1:	
  The	
  recommended	
  mean	
  reverberation	
  time	
  between	
  500	
  and	
  1,000	
  Hz,	
  for	
  speech	
  and	
  music,	
  
with	
  respect	
  to	
  room	
  volume.	
  (Source:	
  [11])	
  
 
4	
  
Moreover,	
  it	
  has	
  to	
  be	
  considered	
  the	
  frequency	
  response	
  of	
  the	
  reverberation	
  
field.	
   Figure	
   2	
   shows	
   the	
   frequency	
   dependent	
   tolerance	
   rages	
   of	
   reverberation	
   time	
  
referenced	
   to	
   the	
   recommended	
   mean	
   reverberation	
   time	
   described	
   in	
   the	
   previous	
  
Figure	
  1.	
  
	
  
Figure	
  2	
  shows	
  that	
  reverberation	
  time	
  decrease	
  at	
  low	
  frequencies.	
  The	
  great	
  
majority	
  of	
  the	
  speech	
  power	
  is	
  below	
  1	
  KHz,	
  and	
  the	
  maximum	
  speech	
  energy	
  rage	
  is	
  
200	
  to	
  600	
  Hz.	
  Speech	
  vowels	
  occupy	
  low	
  frequencies,	
  while	
  consonants	
  occupy	
  higher	
  
frequencies.	
  Consonants	
  are	
  more	
  important	
  in	
  intelligibility,	
  so	
  specially	
  the	
  frequency	
  
range	
  between	
  2	
  to	
  4	
  kHz	
  is	
  the	
  responsible	
  for	
  the	
  speech	
  intelligibility	
  [10]	
  .	
  The	
  three	
  
bands	
  at	
  1,2	
  and	
  4kHz	
  provide	
  the	
  75%	
  of	
  speech	
  intelligibility	
  content.	
  
	
  
	
  
Figure	
  2:	
  The	
  frequency-­‐dependent	
  tolerance	
  range	
  of	
  reverberation	
  time,	
  as	
  referenced	
  to	
  recommended	
  
reverberation	
  time.	
  Speech.	
  (Source:	
  [11])	
  
There	
  are	
  different	
  ways	
  to	
  calculate	
  the	
  reverberation	
  time;	
  the	
  most	
  used	
  
equation	
  is	
  called	
  Sabine	
  equation.	
  This	
  is	
  given	
  by	
  the	
  equation:	
  
	
  
𝑅𝑇!"   =
0.161𝑉
𝐴
	
  
	
  
where	
  RT60	
  =	
  reverberation	
  time,	
  sec	
  
V=	
  volume	
  of	
  room,	
  m3	
  
A=	
  total	
  absorption	
  of	
  room,	
  metric	
  sabins	
  
	
  
4.2 Absorption	
  treatment	
  
	
  
For	
  the	
  classroom	
  configuration	
  1	
  (189	
  m3),	
  it	
  might	
  be	
  expected	
  that	
  the	
  people	
  
and	
  furniture	
  provide	
  the	
  majority	
  of	
  absorption;	
  therefore,	
  the	
  room	
  surfaces	
  can	
  be	
  
relatively	
  reflective.	
  	
  
	
  
In	
  the	
  classroom	
  configuration	
  2	
  (534	
  m3),	
  it	
  is	
  a	
  big	
  space	
  so	
  relatively	
  greater	
  
absorption	
  is	
  needed.	
  In	
  this	
  case,	
  strong	
  late	
  reflections	
  and	
  reverberation,	
  such	
  as	
  from	
  
rear	
   walls,	
   could	
   produce	
   echoes	
   problems.	
   Two	
   strategies	
   can	
   be	
   used	
   to	
   solve	
   that	
  
issue:	
  i)	
  the	
  implementation	
  of	
  reflective	
  materials	
  around	
  the	
  source	
  area	
  to	
  provide	
  
strong	
  early	
  reflections	
  that	
  are	
  better	
  integrated	
  with	
  the	
  direct	
  sound;	
  and	
  ii)	
  the	
  use	
  
of	
  absorptive	
  materials	
  in	
  the	
  seating	
  area	
  and	
  rear	
  of	
  the	
  wall	
  [10].	
  
	
  
4.3 Speech	
  intelligibility	
  
	
  
Speech	
   intelligibility	
   is	
   the	
   highest	
   design	
   priority	
   for	
   any	
   room	
   intended	
   for	
  
speaking-­‐listening	
  activities	
  [10].	
  In	
  the	
  classroom	
  case	
  where	
  amplification	
  is	
  not	
  used,	
  
 
5	
  
a	
  room	
  design	
  providing	
  high	
  speech	
  intelligibility	
  begins	
  by	
  recognizing	
  that	
  a	
  normal	
  
voice	
   will	
   generate	
   a	
   long-­‐term	
   average	
   normal	
   pressure	
   level	
   of	
   about	
   65dB.	
  
Satisfactory	
   speech	
   intelligibility	
   can	
   be	
   achieved	
   by	
   designing	
   for	
   an	
   appropriate	
  
reverberation	
  time.	
  In	
  particular,	
  reverberation	
  time	
  at	
  500	
  Hz.	
  The	
  speech	
  intelligibility	
  
is	
  influenced	
  by	
  two	
  quantities:	
  
	
  
• Signal	
  to	
  noise	
  ratio	
  (SNR),	
  is	
  described	
  as	
  the	
  ratio	
  between	
  the	
  levels	
  of	
  the	
  
useful	
   and	
   disturbing	
   signal.	
   SNR	
   is	
   influenced	
   by	
   several	
   parameters	
   of	
   the	
  
rooms.	
   The	
   SNR	
   is	
   described	
   as	
   the	
   ratio	
   between	
   the	
   level	
   of	
   the	
   useful	
   and	
  
disturbing	
  signal.	
  The	
  SNR	
  is	
  expressed	
  by	
  [12]:	
  
	
  
𝑆𝑁𝑅 𝑟, 𝑡 = 10𝑙𝑜𝑔
𝑝!
!"#,!"#$%&
(𝑟, 𝑡)
𝑝!
!"#,!"#$%(𝑟, 𝑡)
   𝑑𝐵 	
  
	
  
From	
  the	
  equation,	
  it	
  is	
  possible	
  to	
  see	
  that	
  the	
  SNR	
  is	
  a	
  function	
  of	
  time	
  and	
  
is	
   influenced	
   by	
   the	
   distance	
   from	
   the	
   source	
   to	
   the	
   receiver.	
   There	
   is	
   two	
  
measure	
   methods	
   based	
   on	
   the	
   SNR	
   to	
   evaluate	
   the	
   speech	
   intelligibility:	
   the	
  
articulation	
  index	
  (AI)	
  and	
  the	
  speech	
  transmission	
  index	
  (STI).	
  
	
  
• Direct	
   to	
   reverberant	
   ratio	
   (DRR),	
   is	
   the	
   ratio	
   between	
   the	
   direct	
   and	
  
reverberant	
  sound	
  levels	
  and	
  is	
  expressed	
  by	
  [12]:	
  
	
  
𝐷𝑅𝑅 𝑟 = 10𝑙𝑜𝑔
𝑝!
!"#,!"#$%&
(𝑟)
𝑝!
!"#,!"#"!$"!%&'(𝑟)
   𝑑𝐵 	
  
	
  
The	
  distance	
  to	
  the	
  source,	
  amount	
  of	
  absorption	
  present	
  in	
  the	
  room,	
  the	
  
dimensions	
  and	
  shape	
  of	
  the	
  room,	
  and	
  the	
  source	
  direction	
  influence	
  the	
  level	
  
of	
  reverberated	
  sound.	
  The	
  level	
  of	
  direct	
  sound	
  is	
  determined	
  by	
  distance	
  from	
  
the	
  source	
  to	
  the	
  receiver	
  and	
  the	
  source	
  directivity.	
  	
  
	
  
• Combined	
   effect	
   (SNR	
   +	
   DRR),	
   the	
   combined	
   effect	
   of	
   these	
   two	
   factors	
   is	
  
bigger	
  than	
  the	
  sum	
  of	
  the	
  individual	
  effects.	
  It	
  means,	
  the	
  interaction	
  of	
  noise	
  
and	
  reverberation	
  adversely	
  affects	
  speech	
  perception	
  to	
  a	
  greater	
  extent	
  than	
  
the	
  sum	
  of	
  both	
  effects	
  taken	
  independently	
  [12].	
  
	
  
4.3.1 Analytical	
  measure	
  methods	
  for	
  speech	
  intelligibility	
  
	
  
Various	
  analytical	
  measures	
  have	
  been	
  devised	
  to	
  assess	
  speech	
  intelligibility:	
  
	
  
• Articulation	
   index	
   (AI)	
   uses	
   acoustic	
   measurements	
   to	
   estimate	
   speech	
  
intelligibility	
   and	
   conversely,	
   speech	
   privacy.	
   AI	
   uses	
   weighting	
   factors	
   in	
   five	
  
octave	
  bands	
  from	
  25	
  HZ	
  to	
  4kHz.	
  AI	
  is	
  calculated	
  by	
  multiplying	
  the	
  signal-­‐to-­‐
noise	
   ratio	
   (SNR)	
   in	
   each	
   octave	
   band	
   by	
   the	
   weighting	
   factor	
   in	
   each	
   octave	
  
band,	
  and	
  summing	
  the	
  result.	
  AI	
  ranges	
  from	
  0	
  to	
  1;	
  the	
  higher	
  the	
  value,	
  the	
  
better	
  the	
  intelligibility	
  [10].	
  
	
  
• Percentage	
   articulation	
   loss	
   of	
   consonants	
   (%Alcons),	
   s	
   focuses	
   on	
   the	
  
perception	
  of	
  spoken	
  consonants.	
  %Alcons	
  can	
  be	
  approximately	
  measured	
  as:	
  
	
  
%𝐴𝑙𝑐𝑜𝑛𝑠   ≈ 0.652  
𝑟!!
𝑟!
!
𝑅𝑇!"	
  
 
6	
  
	
  %Alcons	
  scores	
  can	
  be	
  related	
  to	
  the	
  speech	
  intelligibility,	
  as:	
  i)	
  Ideal	
  (%Alcons	
  ≤	
  
3%);	
   ii)	
   Good	
   (%Alcons	
   3-­‐8%);	
   iii)	
   Satisfactory	
   (%Alcons	
   8-­‐11%);	
   iv)	
   Poor	
  
(%Alcons	
  >11%);	
  and	
  v)	
  Worthless	
  (%Alcons	
  >20%).	
  [10]	
  
	
  
• Speech	
   Transmission	
   Index	
   (STI)	
   predicts	
   the	
   speech	
   intelligibility	
   by	
  
measuring	
   the	
   reduction	
   in	
   the	
   modulation	
   depth	
   at	
   the	
   receiver	
   for	
   seven	
  
octave	
  bands	
  with	
  fourteen	
  modulation	
  frequencies.	
  The	
  modulation	
  might	
  be	
  
reduced	
  by	
  reverberation,	
  background	
  noise,	
  band-­‐pass	
  limiting	
  and	
  non-­‐linear	
  
distortion.	
   The	
   reduction	
   of	
   the	
   modulation	
   can	
   be	
   quantified	
   by	
   the	
   effective	
  
SNR	
   for	
   a	
   number	
   of	
   frequency	
   bands.	
   Then,	
   the	
   SNR	
   is	
   recalculated	
   to	
   a	
  
transmission	
  index	
  between	
  0	
  and	
  100%.	
  Table	
  1	
  shows	
  the	
  STI	
  in	
  relation	
  to	
  
intelligibility	
  [12].	
  
	
  
STI	
  (%)	
   0	
  -­‐30	
   30	
  –	
  45	
   45	
  -­‐60	
   60	
  –	
  75	
   75	
  -­‐	
  100	
  
Intelligibility	
   Unintelligible	
   Poor	
   Fair	
   Good	
   Excellent	
  
Table	
  1:	
  STI	
  in	
  relation	
  to	
  intelligibility	
  (Source:	
  [12])	
  
• Rapid	
   acoustics	
   speech	
   transmission	
   index	
   (RASTI),	
   measures	
   the	
   speech	
  
intelligibility	
  on	
  the	
  scale	
  of	
  0	
  to	
  1.	
  The	
  speech	
  intelligibility	
  should	
  be	
  at	
  least	
  
0,6	
  in	
  ordinary	
  classrooms	
  and	
  should	
  be	
  more	
  than	
  0,8	
  before	
  you	
  talk	
  about	
  
having	
  good	
  speech	
  intelligibility	
  in	
  a	
  room.	
  The	
  value	
  will	
  vary	
  from	
  seat	
  to	
  seat	
  
and	
  normally	
  there	
  are	
  dead	
  areas.	
  It	
  is	
  correlated	
  to	
  %Alcons	
  by	
  [10]:	
  
	
  
𝑅𝐴𝑆𝑇𝐼 = 0.9482 − 0.1845ln  (%𝐴𝑙𝑐𝑜𝑛𝑠)	
  
	
  
5. Methodology	
  
	
  
The	
   objective	
   of	
   this	
   study	
   is	
   an	
   in-­‐depth	
   investigation	
   of	
   the	
   architectural	
  
acoustics	
  of	
  a	
  classroom	
  in	
  a	
  kindergarten.	
  For	
  this,	
  it	
  is	
  designed	
  a	
  method	
  to	
  identify	
  
the	
  acoustic	
  factors	
  which	
  influence	
  in	
  the	
  acoustic	
  of	
  the	
  room	
  in	
  relation	
  to	
  the	
  need	
  of	
  
the	
  pupils	
  and	
  teacher.	
  
	
  
5.1 Room	
  description	
  and	
  analysis	
  setup	
  
	
  
The	
  kindergarten	
  has	
  3	
  blocks	
  of	
  classrooms	
  (each	
  block	
  is	
  2	
  classrooms),	
  one	
  
canteen	
  with	
  kitchen,	
  the	
  office	
  area	
  and	
  an	
  indoor	
  playground.	
  The	
  office	
  area	
  is	
  placed	
  
directly	
  to	
  the	
  main	
  street	
  (high	
  external	
  noise	
  sources)	
  while	
  the	
  classrooms	
  are	
  placed	
  
directly	
  to	
  a	
  green	
  area	
  (low	
  external	
  noise	
  sources).	
  
	
  
Figure	
  3:	
  Kidengarten	
  plan.	
  The	
  red	
  square	
  indicated	
  the	
  classroom	
  that	
  is	
  used	
  for	
  the	
  analysis	
  
 
7	
  
The	
   study	
   is	
   focused	
   in	
   the	
   block	
   of	
   classroom	
   shown	
   in	
   the	
   Figure	
   3.	
   The	
  
classroom	
  1	
  (see	
  Figure	
  4)	
  is	
  45	
  m2	
  where	
  13	
  m2	
  is	
  used	
  as	
  a	
  hall	
  area	
  (3m	
  height)	
  and	
  
37	
   m2	
   is	
   used	
   for	
   teaching	
   functions	
   (4m	
   height).	
   Additionally,	
   the	
   classroom	
   can	
   be	
  
opened	
   to	
   the	
   next	
   classroom,	
   giving	
   the	
   possibility	
   of	
   an	
   open	
   space	
   of	
   126	
   m2;	
   this	
  
open	
  configuration	
  is	
  named	
  as	
  Classroom	
  2	
  (see	
  Figure	
  4).	
  
	
  
Figure	
  4:	
  Description	
  of	
  both	
  classroom	
  configuration:	
  a)	
  Classroom	
  1-­‐Single	
  (left);	
  b)	
  Classroom	
  2	
  –	
  Double	
  
(right)	
  
	
   For	
  each	
  classroom	
  configuration	
  is	
  setup	
  two	
  options	
  to	
  be	
  analysed,	
  as	
  shown	
  
in	
  Figure	
  5.	
  
	
  
Figure	
  5:	
  Analysis	
  setup	
  
From	
  scenario	
  1,	
  it	
  is	
  developed	
  two	
  options:	
  
	
  
• Option	
  A	
  –	
  higher	
  absorptive	
  materials:	
  it	
  has	
  plastered	
  walls,	
  high	
  quality	
  
absorptive	
  ceiling	
  and	
  wooden	
  floor.	
  
• Option	
  B	
  –	
  lower	
  absorptive	
  materials:	
  it	
  has	
  concrete	
  walls,	
  ceiling	
  and	
  floor.	
  
	
  
The	
   main	
   different	
   between	
   these	
   two	
   options	
   lies	
   in	
   the	
   absorptive	
   materials	
  
present	
  in	
  the	
  room.	
  Table	
  2	
  shows	
  the	
  absorptive	
  characteristic	
  of	
  the	
  material	
  use	
  for	
  
the	
  simulations.	
  
	
  
Option	
   Surface	
  and	
  Material	
   125	
  
Hz	
  
250	
  
Hz	
  
500	
  
Hz	
  
1	
  
kHz	
  
2kHZ	
   4kHz	
  
A	
   	
  
	
   Floor	
  	
  
Wood	
  parquet	
  
0,04	
   0,04	
   0,07	
   0,06	
   0,06	
   0,07	
  
Walls	
  
Plaster	
  
0,01	
   0,02	
   0,02	
   0,03	
   0,04	
   0,05	
  
Ceiling	
  
Plasterboard	
  (12mm	
  in	
  suspended	
  ceiling	
  
grid)	
  
0,15	
   0,11	
   0,04	
   0,04	
   0,07	
   0,08	
  
B	
   	
  
	
  
	
  
	
  
	
  
Floor	
  
Concrete	
  (sealed	
  or	
  painted)	
  
0,01	
   0,01	
   0,02	
   0,02	
   0,02	
   0,02	
  
Walls	
  
Plaster	
  
0,01	
   0,02	
   0,02	
   0,03	
   0,04	
   0,05	
  
 
8	
  
A-­‐B	
   	
  
	
   Window	
  
Glass	
  (1,4``plate,	
  large	
  pane)	
  
0,18	
   0,06	
   0,04	
   0,03	
   0,02	
   0,02	
  
Door	
  
Solid	
  wood	
  panels	
  
0,1	
   0,07	
   0,05	
   0,04	
   0,04	
   0,04	
  
Table	
  2:	
  Absorption	
  characteristics	
  of	
  the	
  materials	
  
5.2 Noise	
  Criteria	
  
	
  
Another	
   important	
   aspect,	
   which	
   could	
   lead	
   to	
   big	
   difference	
   of	
   the	
   tested	
  
acoustic	
  variables,	
  besides	
  the	
  absorption,	
  is	
  the	
  amount	
  of	
  background	
  noise.	
  For	
  the	
  
case	
  of	
  a	
  kindergarten,	
  it	
  is	
  advisable	
  to	
  keep	
  the	
  noise	
  below	
  Noise	
  Criteria	
  35	
  (NC35).	
  
The	
  noise	
  levels	
  from	
  NC35	
  are	
  shown	
  in	
  Table	
  3.	
  
	
  
Freq.	
  Band	
  [Hz]	
   125	
  Hz	
   250	
  Hz	
   500	
  Hz	
   1	
  kHz	
   2kHZ	
   4kHz	
  
Noise	
  (dB)	
   48	
   40	
   34	
   30	
   27	
   25	
  
Table	
  3:	
  Noise	
  Criteria	
  25	
  noise	
  limits	
  (Source:	
  http://www.engineeringtoolbox.com)	
  
5.3 Source	
  and	
  Receiver	
  position	
  
	
  
In	
  order	
  to	
  run	
  the	
  simulations	
  the	
  source	
  and	
  receiver	
  position	
  is	
  given	
  as	
  in	
  
Figure	
  6.	
  Danish	
  standards	
  establish	
  occupancy	
  of	
  16	
  pupils	
  for	
  the	
  classroom	
  1	
  (single).	
  
Four	
  tables	
  are	
  placed	
  in	
  the	
  room	
  with	
  four	
  pupils	
  each	
  and	
  the	
  teacher	
  is	
  placed	
  in	
  the	
  
middle	
  of	
  the	
  classroom.	
  For	
  the	
  classroom	
  2,	
  the	
  distribution	
  of	
  the	
  previous	
  classroom	
  
is	
  reflected	
  so	
  there	
  is	
  occupancy	
  of	
  32	
  pupils	
  and	
  the	
  teacher	
  is	
  placed	
  in	
  the	
  middle	
  of	
  
the	
  open	
  room.	
  
	
  
Figure	
  6:	
  Source	
  and	
  receiver	
  position	
  for	
  a)	
  Classroom	
  1	
  (left)	
  and	
  b)	
  Classroom	
  2	
  (right)	
  
In	
  the	
  simulations	
  the	
  teacher	
  is	
  assumed	
  to	
  use	
  “original”	
  voice	
  at	
  normal	
  vocal	
  
effort.	
  The	
  sound	
  levels	
  at	
  1-­‐meter	
  distance	
  for	
  normal	
  and	
  raised	
  efforts	
  are	
  shown	
  in	
  
Table	
  4.	
  
Freq.	
  Band	
  [Hz]	
   125	
  Hz	
   250	
  Hz	
   500	
  Hz	
   1	
  kHz	
   2kHZ	
   4kHz	
  
Noise	
  (dB)	
   51,2	
   57,2	
   59,8	
   53,5	
   48,8	
   43,8	
  
Table	
  4:	
  Sound	
  level	
  at	
  1m	
  in	
  front	
  of	
  the	
  speaker	
  for	
  normal	
  effort,	
  from	
  Catt	
  acoustic	
  simulation	
  program.	
  
(Source:	
  [10])	
  
5.4 Parameter	
  variation	
  
	
  
Each	
  scenario	
  (four	
  scenarios	
  in	
  total)	
  is	
  simulated	
  under	
  five	
  variations:	
  
	
  
• Empty	
  room	
  
• Room	
  with	
  furniture	
  
• Room	
  with	
  furniture	
  and	
  people	
  
• Room	
  with	
  furniture,	
  people	
  and	
  rear	
  absorptive	
  wall	
  
Source
Recievers
12
34
CLASSROOM 1 (SINGLE) CLASSROOM 2 (DOUBLE)
12
34
56
78
 
9	
  
• Room	
  with	
  furniture,	
  people	
  and	
  absorptive	
  ceiling	
  
	
  
5.5 Measurements	
  methods	
  
	
  
	
   For	
   each	
   simulation	
   describe	
   previously,	
   it	
   is	
   obtained	
   data	
   to	
   evaluate	
   the	
  
quality	
  of	
  the	
  acoustic	
  environment	
  of	
  the	
  room	
  in	
  relation	
  to	
  the	
  function	
  of	
  the	
  space.	
  
The	
   main	
   function	
   of	
   the	
   room	
   is	
   the	
   speech	
   so	
   the	
   speech	
   intelligibility	
   is	
   the	
   main	
  
factor	
  to	
  be	
  analysed.	
  The	
  measure	
  methods	
  uses	
  for	
  the	
  analysed	
  are:	
  
	
  
• Reverberation	
  time	
  (RT60)	
  
• Speech	
  transmission	
  index	
  (STI)	
  
	
  
Both	
  measure	
  methods	
  are	
  described	
  in	
  section	
  4.1	
  and	
  section	
  4.3.	
  Moreover,	
  few	
  
measure	
  methods	
  for	
  speech	
  intelligibility	
  area	
  available	
  in	
  CATT	
  simulation	
  software.	
  
Reverberation	
  time	
  and	
  STI	
  are	
  the	
  only	
  one	
  available	
  to	
  be	
  measure	
  by	
  CATT	
  directly.	
  	
  
	
  
6. Simulation	
  Results	
  
6.1 Sabine	
  Equation	
  Vs.	
  CATT	
  Simulation	
  
6.1.1 Classroom	
  1(single)	
  and	
  Classroom2	
  (double)	
  
	
  
From	
  CATT	
  software	
  both,	
  analytical	
  and	
  simulation	
  results	
  for	
  Reverberation	
  
Time	
  (RT60)	
  can	
  be	
  obtained.	
  Results	
  from	
  both	
  methods	
  are	
  compared	
  in	
  order	
  to	
  see	
  
how	
  much	
  Sabine	
  equation	
  differs	
  from	
  simulations	
  results	
  in	
  different	
  cases.	
  
	
   	
  
Figure	
  7:	
  Sabine	
  Vs.	
  CATT	
  simulation:	
  a)	
  Empty	
  room	
  1A	
  at	
  receiver	
  1(left);	
  b)	
  Abs	
  ceiling	
  room	
  1A	
  at	
  
receiver	
  1	
  (right)	
  
	
   	
  
Figure	
  8:	
  Sabine	
  Vs.	
  CATT	
  simulation:	
  a)	
  Empty	
  room	
  2A	
  at	
  receiver	
  1(left);	
  b)	
  Abs	
  ceiling	
  room	
  2A	
  at	
  
receiver	
  1	
  (right)	
  
In	
  general,	
  Sabine	
  equation	
  results	
  are	
  a	
  bit	
  higher	
  or	
  almost	
  equal	
  to	
  simulation	
  
values	
   for	
   “empty	
   room”	
   case	
   (Figure	
   7-­‐a,	
   Figure	
   8-­‐a,	
   Appendix	
   1).	
   However,	
   for	
   the	
  
remaining	
   cases	
   (furniture,	
   furniture	
   +	
   people,	
   abs.	
   wall	
   and	
   abs.	
   ceiling)	
   Sabine	
  
0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"eq."
0"
0.2"
0.4"
0.6"
0.8"
1"
1.2"
1.4"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"eq."
0"
0.2"
0.4"
0.6"
0.8"
1"
1.2"
1.4"
1.6"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"eq."
0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"eq."
 
10	
  
equation	
   calculates	
   lower	
   RT60	
   values	
   comparing	
   to	
   simulations	
   by	
   CATT	
   methods	
  
(Figure	
  7-­‐a,	
  Figure	
  8-­‐a,	
  Appendix	
  1).	
  	
  
	
  
The	
  same	
  behaviour	
  can	
  be	
  extrapolated	
  to	
  Option	
  B	
  (see	
  Figure	
  9),	
  the	
  Sabine	
  
equation	
  calculates	
  RT60	
  a	
  bit	
  higher	
  or	
  equal	
  in	
  empty	
  room	
  case	
  but	
  when	
  absorptive	
  
materials	
  are	
  added,	
  Sabine	
  equation	
  overestimate	
  the	
  RT60	
  values.	
  
	
  
Figure	
  9:	
  Sabine	
  Vs.	
  CATT	
  simulation:	
  a)	
  Empty	
  room	
  1B	
  at	
  receiver	
  1(left);	
  b)	
  Empty	
  room	
  2B	
  at	
  receiver	
  1	
  
(right)	
  
6.2 Reverberation	
  Time	
  (RT60)	
  
	
  
6.2.1 Classroom	
  1A:	
  single	
  room	
  with	
  high	
  absorptive	
  materials	
  
	
  
	
   Reverberation	
   Time	
   is	
   simulated	
   for	
   the	
   different	
   set	
   ups.	
   The	
   RT60	
   average	
  
(from	
  500Hz	
  to	
  8kHz)	
  for	
  each	
  receiver	
  and	
  each	
  room	
  situation	
  (empty,	
  furniture…etc.)	
  
is	
  plot	
  in	
  Figure	
  10.	
  Figure	
  10	
  shows	
  that	
  RT60	
  from	
  one	
  receiver	
  to	
  another	
  remains	
  
virtually	
  constant.	
  Moreover,	
  it	
  is	
  easy	
  to	
  see	
  how	
  much	
  reverberation	
  time	
  differs	
  from	
  
one	
  set	
  up	
  to	
  another.	
  
	
  
Figure	
  10:	
  RT60	
  in	
  the	
  classroom	
  1ª	
  at	
  each	
  receiver	
  
6.2.1.1 RT60	
  at	
  Receiver	
  1:	
  analysis	
  at	
  frequency	
  level	
  
	
   Since	
  all	
  receivers	
  get	
  similar	
  RT60	
  values,	
  receiver	
  1	
  is	
  selected	
  to	
  show	
  
reverberation	
  times	
  depending	
  on	
  the	
  frequency.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  11:	
  RT60	
  in	
  the	
  classroom	
  1A	
  at	
  receiver	
  1.	
  Frequency	
  250	
  Hz	
  to	
  16kHz	
  
0.00#
0.50#
1.00#
1.50#
2.00#
2.50#
Receiver1# Receiver2# Receiver3# Receiver4#
Average'RT60'
Empty#
Furniture#
Furnit+people#
Abs.#Wall#
Abs.#Ceiling#
0"
1"
2"
3"
4"
5"
6"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"eq."
0"
1"
2"
3"
4"
5"
6"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Sabine%Eq.%
Reciever"1"
Sabine"Eq."
0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Reciever%1%
Empty"
Furniture"
Furniture+People"
Abs_Wall"
Abs_Ceiling"
 
11	
  
The	
  five	
  room’s	
  set	
  ups	
  are	
  shown	
  in	
  Figure	
  11.	
  “Empty”	
  and	
  “Furniture”	
  room	
  
behave	
  quite	
  similar,	
  getting	
  lower	
  times	
  when	
  furniture	
  is	
  included.	
  On	
  the	
  hand,	
  once	
  
people	
  is	
  taken	
  into	
  account,	
  a	
  big	
  change	
  in	
  RT60	
  performance	
  is	
  observed,	
  being	
  “Abs.	
  
wall”	
  and	
  “Abs.	
  ceiling”	
  the	
  ones	
  that	
  get	
  lower	
  reverberation	
  times.	
  
	
  
6.2.1.2 RT60	
  at	
  receiver	
  1:	
  analysis	
  at	
  each	
  setup	
  
	
  
Figure	
  12:	
  RT60	
  in	
  the	
  classroom	
  1A	
  at	
  receiver	
  1.	
  RT60	
  value	
  at	
  each	
  setup	
  and	
  RT60	
  reduction	
  at	
  each	
  setup	
  
from	
  the	
  empty	
  room	
  
	
  
Figure	
  12	
  represents	
  how	
  much	
  RT60	
  decreases	
  when	
  adding	
  new	
  absorptions	
  in	
  
the	
   room	
   compared	
   to	
   “empty	
   room”.	
   The	
   reduction	
   from	
   “empty”	
   to	
   “furniture”	
   is	
  
minimum;	
   nevertheless,	
   the	
   difference	
   becomes	
   more	
   notable	
   when	
   people	
   are	
  
included,	
  and	
  progressively	
  when	
  higher	
  absorptive	
  materials	
  are	
  place	
  on	
  the	
  wall	
  or	
  
ceiling.	
  	
  
	
  
6.2.2 Classroom	
  1B:	
  single	
  room	
  with	
  lower	
  absorptive	
  materials	
  
	
  
Due	
   to	
   the	
   behaviour	
   similarity	
   between	
   Classroom	
   1A	
   and	
   1B,	
   not	
   result	
   are	
  
shown	
  in	
  the	
  report.	
  Appendix	
  2	
  shows	
  the	
  results	
  for	
  classroom	
  1B	
  obtained	
  from	
  the	
  
simulations.	
  
6.2.3 Classroom	
  1A	
  and	
  1B:	
  analysis	
  comparison	
  
	
  
	
  
Figure	
  13:	
  RT60	
  room	
  average	
  per	
  each	
  simulation	
  setup	
  
	
  
Figure	
  13	
  shows	
  the	
  reverberation	
  time	
  at	
  each	
  room	
  case	
  for	
  both	
  classroom	
  
options	
   A	
   (high	
   absorptive	
   materials)	
   and	
   B	
   (low	
   absorptive	
   materials).	
   The	
   biggest	
  
deviation	
   takes	
   place	
   when	
   the	
   room	
   is	
   empty	
   or	
   just	
   with	
   furniture.	
   Then,	
  
reverberation	
  values	
  for	
  both	
  options	
  are	
  very	
  similar.	
  
	
  
	
  
2.04% 2.04%
1.04%
0.58% 0.55%
2.64%
2.49%
1.12%
0.62% 0.57%
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
Empty% Furniture% Furnit+people% Abs.%Wall% Abs.%Ceiling%
Average%Room%A%
Average%Room%B%
!3# !49# !72# !73#
2.05# 1.98# 1.04# 0.58# 0.54#
0#
20#
40#
60#
80#
100#
120#
Em
pty#
Furniture#
Furniture+People#
Abs_W
all#
Abs_Ceiling#
Avarage#RT60#
%#reduce#
 
12	
  
6.2.4 Classroom	
  2A:	
  double	
  room	
  with	
  high	
  absorptive	
  materials	
  
	
  
In	
  the	
  big	
  room	
  reverberation	
  time	
  is	
  also	
  simulated	
  for	
  the	
  five	
  different	
  set	
  ups,	
  
although	
  this	
  time	
  eight	
  receivers	
  are	
  placed	
  since	
  room	
  surface	
  is	
  considerable	
  bigger	
  
than	
   before.	
   The	
   RT	
   average	
   for	
   each	
   receiver	
   and	
   each	
   room	
   situation	
   (empty,	
  
furniture…)	
  is	
  plot	
  in	
  a	
  Figure	
  14.	
  Figure	
  14	
  shows	
  that	
  RT60	
  from	
  one	
  side	
  of	
  the	
  room	
  is	
  
lower	
   than	
   the	
   other.	
   Values	
   are	
   increasing	
   from	
   right	
   side	
   to	
   left	
   side	
   (receiver	
   1-­‐4	
  
lower	
  than	
  5-­‐8).	
  Moreover,	
  it	
  is	
  easy	
  to	
  see	
  how	
  much	
  reverberation	
  time	
  differs	
  from	
  
one	
  set	
  up	
  to	
  another.	
  
	
  
Figure	
  14:	
  RT60	
  in	
  the	
  classroom	
  1A	
  at	
  each	
  receiver	
  
6.2.4.1 RT60	
  at	
  Receiver	
  1:	
  analysis	
  at	
  frequency	
  level	
  
	
  
	
   Receivers	
  don’t	
  look	
  as	
  even	
  as	
  in	
  small	
  room,	
  therefore,	
  one	
  receiver	
  from	
  each	
  
side	
  of	
  the	
  class	
  is	
  analysed	
  through	
  the	
  different	
  frequencies.	
  
	
  
Figure	
  15:	
  RT60	
  in	
  the	
  classroom	
  2A	
  at	
  receiver	
  1.	
  Frequency	
  250	
  Hz	
  to	
  16kHz	
  
	
  
Looking	
  at	
  the	
  different	
  set-­‐ups	
  in	
  the	
  room,	
  the	
  differences	
  among	
  them	
  seems	
  
similar	
  to	
  small	
  room	
  (Figure	
  15);	
  empty	
  and	
  furniture	
  room	
  very	
  similar	
  and	
  then,	
  big	
  
contrast	
  when	
  adding	
  people.	
  	
  It	
  can	
  be	
  observed	
  a	
  light	
  increment	
  in	
  RT	
  from	
  receiver	
  1	
  
to	
   5.	
   However,	
   it	
   is	
   not	
   very	
   drastic,	
   and	
   then,	
   when	
   making	
   the	
   average	
   for	
   each	
  
receiver	
  along	
  the	
  frequencies,	
  values	
  are	
  pretty	
  similar.	
  
	
  
6.2.4.2 RT60	
  at	
  receiver	
  1	
  and	
  5:	
  analysis	
  at	
  each	
  setup	
  
	
  
Figure	
  16	
  represents	
  how	
  much	
  RT	
  decreases	
  when	
  adding	
  new	
  absorptions	
  to	
  
the	
   room	
   compared	
   to	
   “empty	
   room”.	
   Even	
   in	
   Figure	
   16	
   (the	
   one	
   in	
   the	
   overview	
  
section)	
  could	
  show	
  differences	
  between	
  receivers,	
  then,	
  when	
  looking	
  at	
  RT	
  in	
  general	
  
through	
  averages,	
  the	
  reduction	
  from	
  one	
  set-­‐up	
  to	
  another	
  is	
  similar.	
  	
  	
  
	
  
0.00#
0.50#
1.00#
1.50#
2.00#
2.50#
3.00#
Receiver1# Receiver2# Receiver3# Receiver4# Receiver5# Receiver6# Receiver7# Receiver8#
Average'RT60'(from'500Hz'to'8kHz)'
Empty#
Furniture#
Funiture+people#
Abs.wall#
Abs.ceiling#
0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"
4"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Reciever%1%
Empty"
Furniture"
Furniture+People"
Abs_Wall"
Abs_Ceiling"
0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"
4"
125" 250" 500" 1k" 2k" 4k" 8k" 16k"
RT60%&%Reciever%5%
Empty"
Furniture"
Furniture+People"
Abs_Wall"
Abs_Ceiling"
 
13	
  
Figure	
  16:	
  a)	
  RT60	
  in	
  the	
  classroom	
  2A	
  at	
  receiver	
  1;	
  b)	
  RT60	
  in	
  the	
  classroom	
  2A	
  at	
  receiver	
  5	
  
	
  
6.2.5 Classroom	
  2B:	
  double	
  room	
  with	
  lower	
  absorptive	
  materials	
  
	
  
Due	
   to	
   the	
   behaviour	
   similarity	
   between	
   Classroom	
   2A	
   and	
   2B,	
   not	
   result	
   are	
  
shown	
  in	
  the	
  report.	
  Appendix	
  4	
  shows	
  the	
  results	
  for	
  classroom	
  2B	
  obtained	
  from	
  the	
  
simulations.	
  
6.2.6 Classroom	
  2A	
  and	
  2B:	
  comparison	
  
	
  
The	
  reverberation	
  time	
  reduction	
  performs	
  similar	
  as	
  small	
  room	
  (Figure	
  17).	
  
	
  
Figure	
  17:	
  a)	
  RT60	
  in	
  the	
  classroom	
  2A	
  at	
  receiver	
  1;	
  b)	
  RT60	
  in	
  the	
  classroom	
  2A	
  at	
  receiver	
  5	
  
	
  
6.3 Speech	
  Transmission	
  Index	
  (STI)	
  
	
  
The	
  second	
  parameter	
  to	
  be	
  investigated	
  is	
  the	
  STI.	
  For	
  STI	
  in	
  noise	
  simulations	
  
a	
  background	
  noise	
  level	
  is	
  used	
  equal	
  to	
  Noise	
  Criteria	
  (NC35).	
  
	
  
STI	
  (%)	
   0	
  -­‐30	
   30	
  –	
  45	
   45	
  -­‐60	
   60	
  –	
  75	
   75	
  -­‐	
  100	
  
Intelligibility	
   Unintelligible	
   Poor	
   Fair	
   Good	
   Excellent	
  
Table	
  5:	
  STI	
  in	
  relation	
  to	
  intelligibility	
  (Source:	
  [10])	
  
6.3.1 Classroom	
  1A:	
  single	
  room	
  with	
  high	
  absorptive	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  18:	
  STI	
  simulation	
  in	
  classroom	
  1A	
  for	
  different	
  setups.	
  The	
  STI	
  value	
  at	
  each	
  receiver	
  is	
  the	
  average	
  
of	
  the	
  frequencies	
  from	
  250	
  Hz	
  to	
  16	
  kHz.	
  
2.22# 2.26#
1.36#
1.12#
0.64#
2.85# 2.82#
1.56#
1.21#
0.65#
0.00#
0.50#
1.00#
1.50#
2.00#
2.50#
3.00#
Em
pty#
Furniture#Funiture+people#
Abs.w
all#
Abs.ceiling#
Average#Room#A#
Average#Room#B#
100# 6%#
&37%#
&51%#
&68%#
2.41# 2.55# 1.52# 1.17# 0.77#
0#
20#
40#
60#
80#
100#
120#
Em
pty#
Furniture#
Furniture+People#
Abs_W
all#
Abs_Ceiling#
Avarage#RT60#
%#reduce#
100#
107#
%41#
%49#
%73#
2.02# 2.19# 1.18# 1.03# 0.54#
0#
20#
40#
60#
80#
100#
120#
Em
pty#
Furniture#
Furniture+People#
Abs_W
all#
Abs_Ceiling#
Avarage#RT60#
%#reduce#
40#
45#
50#
55#
60#
65#
70#
Receiver#1# Receiver#2# Receiver#3# Receiver#4#
STI$in$Classroom$1A$
Empty#
Furniture#
Furniture#+#People#
Abs_Wall#
Abs_Ceiling#
 
14	
  
Figure	
   18	
   shows	
   the	
   STI	
   improvements	
   by	
   adding	
   elements	
   with	
   higher	
  
absorptive	
   properties.	
   STI	
   keeps	
   similar	
   when	
   adding	
   furniture	
   respect	
   to	
   the	
   empty	
  
room	
  (regarded	
  as	
  a	
  “poor”	
  STI).	
  When	
  furniture	
  +	
  people	
  is	
  simulated,	
  STI	
  improves	
  
significantly	
  respect	
  to	
  the	
  previous	
  situations	
  (regarded	
  as	
  a	
  “fair”	
  STI).	
  Moreover,	
  with	
  
the	
  addition	
  of	
  a	
  high	
  absorbent	
  wall	
  or	
  high	
  absorbent	
  ceiling	
  the	
  highest	
  increases	
  of	
  
the	
  STI	
  are	
  found	
  (regarded	
  as	
  a	
  “good”	
  STI).	
  
	
  
	
  
Figure19:	
  STI	
  simulation	
  in	
  classroom	
  1A	
  at	
  receiver	
  1.	
  
	
   Figure	
   19	
   shows	
   how	
   STI	
   varies	
   from	
   frequency	
   250	
   Hz	
   to	
   16k.	
   The	
   three	
  
bands	
  at	
  1,	
  2	
  and	
  4kHz	
  provide	
  the	
  75%	
  of	
  speech	
  intelligibility	
  content.	
  The	
  band	
  250	
  
Hz	
  and	
  500	
  Hz	
  might	
  be	
  rejected	
  due	
  to	
  the	
  high	
  divergence	
  between	
  two	
  calculation	
  
methods:	
  impulse	
  response	
  and	
  energy	
  echogram.	
  It	
  is	
  detected	
  a	
  tendency	
  of	
  increase	
  
of	
  the	
  STI	
  from	
  lower	
  frequencies	
  to	
  higher	
  frequencies.	
  
	
  
Appendix	
  3	
  shows	
  the	
  results	
  of	
  Figure	
  18	
  and	
  Figure	
  19	
  but	
  for	
  the	
  case	
  of	
  the	
  
classroom	
  1B:	
  single	
  room	
  with	
  lower	
  absorptive	
  materials.	
  Due	
  to	
  the	
  similarity	
  of	
  the	
  
STI	
  results	
  between	
  classroom	
  1A	
  and	
  1B,	
  the	
  same	
  result	
  description	
  can	
  be	
  applied	
  for	
  
both.	
  
	
  
6.3.2 Classroom	
  1A	
  and	
  1B:	
  analysis	
  comparison	
  
	
  
	
  
Figure	
  20:	
  STI	
  differences	
  between	
  single	
  classroom	
  A	
  (high	
  absorptive	
  materials)	
  and	
  classroom	
  B	
  (lower	
  
absorptive	
  materials).	
  The	
  STI	
  values	
  for	
  each	
  setup	
  is	
  an	
  average	
  between	
  the	
  four	
  receiver	
  placed	
  in	
  the	
  
simulation.	
  
Figure	
   20	
   shows	
   how	
   STI	
   increases	
   for	
   each	
   classroom	
   when	
   adding	
   more	
  
elements	
   with	
   high	
   absorptive	
   characteristics.	
   	
   Moreover,	
   Figure	
   20	
   shows	
   how	
   STI	
  
differs	
  from	
  one	
  classroom	
  to	
  another	
  in	
  each	
  setup.	
  The	
  STI	
  differences	
  are	
  reduced	
  
with	
  the	
  addition	
  of	
  absorptive	
  elements.	
  
	
  
	
  
	
  
30#
35#
40#
45#
50#
55#
60#
65#
70#
75#
80#
250# 500# 1k# 2k# 4k# 8k# 16k#
Classroom(1A(+(STI(at(Reciever(1(
Empty#
Furniture#
Furniture+People#
Abs_Wall#
Abs_ceiling#
5"
5"
3"
1"
2"
35"
40"
45"
50"
55"
60"
65"
70"
Empty" Furniture" Furniture"+"
People"
Abs_Wall" Abs_Ceiling"
STI$difference$between$Classroom$A$&$B$
Classroom"A"
Classroom"B"
 
15	
  
6.3.3 Classroom	
  2A:	
  double	
  room	
  with	
  high	
  absorptive	
  materials	
  
	
  
	
  
Figure	
  21:	
  STI	
  simulation	
  in	
  classroom	
  2A	
  for	
  different	
  setups.	
  The	
  STI	
  value	
  at	
  each	
  receiver	
  is	
  the	
  average	
  
of	
  the	
  frequencies	
  from	
  250	
  Hz	
  to	
  16	
  kHz.	
  
Figure	
   21	
   shows	
   the	
   STI	
   improvements	
   by	
   adding	
   elements	
   with	
   higher	
  
absorptive	
   properties.	
   STI	
   keeps	
   almost	
   similar	
   when	
   adding	
   furniture	
   respect	
   to	
   the	
  
empty	
   room	
   (regarded	
   as	
   a	
   “poor”	
   STI).	
   When	
   furniture	
   +	
   people	
   is	
   simulated,	
   STI	
  
improves	
   significantly	
   respect	
   to	
   the	
   previous	
   situations	
   (regarded	
   as	
   a	
   “fair”	
   STI).	
  
Moreover,	
  the	
  addition	
  of	
  a	
  high	
  absorbent	
  wall	
  or	
  high	
  absorbent	
  ceiling	
  increases	
  the	
  
STI	
  (regarded	
  as	
  a	
  “good”	
  STI).	
  Due	
  to	
  the	
  distribution	
  of	
  the	
  source	
  and	
  receivers	
  (see	
  
Figure	
  6),	
  it	
  is	
  detected	
  a	
  “symmetry”	
  between	
  receivers	
  1-­‐4	
  with	
  receivers	
  5-­‐8.	
  These	
  
two	
   groups	
   of	
   receivers	
   follow	
   the	
   same	
   patron	
   but	
   the	
   receiver	
   5-­‐8	
   have	
   lower	
   STI	
  
values	
  respect	
  to	
  the	
  other	
  ones.	
  
	
  
	
  
Figure	
  22:	
  STI	
  simulation	
  in	
  classroom	
  1A	
  at	
  receiver	
  1.	
  
Figure	
  22	
  shows	
  how	
  STI	
  varies	
  from	
  frequency	
  250	
  Hz	
  to	
  16k.	
  The	
  three	
  bands	
  
at	
  1,2	
  and	
  4kHz	
  provide	
  the	
  75%	
  of	
  speech	
  intelligibility	
  content.	
  The	
  band	
  250	
  Hz	
  and	
  
500	
  Hz	
  might	
  be	
  rejected	
  due	
  to	
  the	
  high	
  divergence	
  between	
  two	
  calculation	
  methods:	
  
impulse	
  response	
  and	
  energy	
  echogram.	
  It	
  is	
  detected	
  a	
  tendency	
  of	
  increase	
  of	
  the	
  STI	
  
from	
   lower	
   frequencies	
   to	
   higher	
   frequencies.	
   The	
   addition	
   of	
   an	
   absorbent	
   ceiling	
  
increase	
  significantly	
  the	
  STI	
  respect	
  to	
  the	
  rest	
  of	
  the	
  variations.	
  
	
  
Appendix	
  5	
  shows	
  the	
  results	
  of	
  Figure	
  21	
  and	
  Figure	
  22	
  but	
  for	
  the	
  case	
  of	
  the	
  
classroom	
  2B:	
  double	
  room	
  with	
  lower	
  absorptive	
  materials.	
  Due	
  to	
  the	
  similarity	
  of	
  the	
  
STI	
  results	
  between	
  classroom	
  2A	
  and	
  2B,	
  the	
  same	
  result	
  description	
  can	
  be	
  applied	
  for	
  
both.	
  
	
  
	
  
	
  
	
  
	
  
35#
40#
45#
50#
55#
60#
65#
70#
Receiver#1# Receiver#2# Receiver#3# Receiver#4# Receiver#5# Receiver#6# Receiver#7# Receiver#8#
STI$in$Classroom$2A$
Empty#
Furniture#
Furniture#+#People#
Abs_Wall#
Abs_Ceiling#
25#
30#
35#
40#
45#
50#
55#
60#
65#
70#
75#
250# 500# 1k# 2k# 4k# 8k# 16k#
Classroom(2A(+(STI(at(reciever(1(
Empty#
Furniture#
Furniture+People#
Abs_Wall#
Abs_ceiling#
 
16	
  
6.3.4 Classroom	
  2A	
  and	
  2B:	
  analysis	
  comparison	
  
	
  
	
  
Figure	
  23:	
  STI	
  differences	
  between	
  classroom	
  2A	
  (high	
  absorptive	
  materials)	
  and	
  classroom	
  2B	
  (lower	
  
absorptive	
  materials).	
  The	
  STI	
  values	
  for	
  each	
  setup	
  is	
  an	
  average	
  between	
  the	
  four	
  receiver	
  placed	
  in	
  the	
  
simulation.	
  
Figure	
  23	
  shows	
  how	
  STI	
  increases	
  for	
  each	
  classroom	
  when	
  adding	
  more	
  
elements	
  with	
  high	
  absorptive	
  characteristics.	
  	
  Moreover,	
  Figure	
  23	
  shows	
  how	
  STI	
  
differs	
  from	
  one	
  classroom	
  to	
  another	
  in	
  each	
  setup.	
  The	
  STI	
  differences	
  are	
  reduced	
  
with	
  the	
  addition	
  of	
  absorptive	
  elements.	
  
	
  
7. Discussion	
  
	
  
7.1 Sabine	
  equation	
  
	
  
The	
   reliable	
   of	
   the	
   Sabine	
   equation	
   seems	
   very	
   sensible	
   to	
   absorption	
   values.	
  
Sabine	
   equation	
   looks	
   quite	
   accurate	
   when	
   it	
   is	
   applied	
   for	
   simple	
   setups.	
   When	
  
reverberation	
  time	
  is	
  simulated	
  for	
  the	
  “empty”	
  room	
  case,	
  CATT	
  simulation	
  and	
  Sabine	
  
equation	
   don’t	
   produce	
   high	
   divergences	
   between	
   both	
   of	
   them.	
   	
   By	
   contrast,	
   when	
  
multiple	
  materials	
  and	
  elements	
  are	
  added	
  to	
  the	
  room,	
  the	
  reverberation	
  time	
  results	
  
diverge	
  from	
  CATT	
  simulations	
  to	
  Sabine	
  equation.	
  	
  
	
  
Sabine	
  equation	
  is	
  not	
  very	
  accurate	
  for	
  complex	
  models.	
  In	
  those	
  cases,	
  Sabine	
  
equation	
  calculates	
  better	
  reverberation	
  conditions	
  times	
  when	
  comparing	
  to	
  the	
  CATT	
  
simulations.	
   It	
   could	
   result	
   in	
   a	
   wrong	
   perception	
   of	
   the	
   acoustic	
   environment	
   and	
  
thereby,	
  in	
  a	
  wrong	
  acoustic	
  design.	
  
	
  
7.2 Reverberation	
  time	
  
	
  
As	
  it	
  is	
  mentioned	
  in	
  section	
  4,	
  the	
  addition	
  of	
  people	
  in	
  the	
  simulation	
  has	
  a	
  
huge	
  effect	
  in	
  RT60	
  results.	
  Reverberation	
  Time	
  decrease	
  around	
  50%	
  when	
  people	
  is	
  
included,	
  consequentiality,	
  it	
  is	
  possible	
  to	
  say	
  that	
  the	
  occupancy	
  rate	
  of	
  room	
  has	
  a	
  
huge	
  influence	
  in	
  the	
  acoustic	
  environment.	
  
	
  
The	
  other	
  most	
  influent	
  factor	
  that	
  contribute	
  to	
  the	
  benefit	
  of	
  the	
  reverberation	
  
time,	
  it	
  is	
  the	
  addition	
  of	
  high	
  absorptive	
  surface.	
  Two	
  simulation	
  setups	
  (abs.	
  ceiling	
  
and	
   abs.	
   wall)	
   show	
   the	
   positive	
   effects	
   in	
   reverberation	
   time	
   when	
   adding	
   high	
  
absorptive	
  materials	
  to	
  the	
  room.	
  If	
  the	
  results	
  between	
  both	
  cases	
  are	
  compared,	
  some	
  
significant	
  issues	
  are	
  found.	
  In	
  classroom	
  1	
  (single),	
  similar	
  reverberation	
  time	
  results	
  
are	
   obtained	
   from	
   both	
   cases.	
   In	
   classroom	
   2	
   (double),	
   the	
   application	
   of	
   a	
   high	
  
absorptive	
   ceiling	
   produce	
   better	
   reverberation	
   time	
   values	
   than	
   the	
   high	
   absorptive	
  
wall.	
  The	
  reason	
  might	
  be	
  the	
  ratio	
  between	
  areas	
  (high	
  absorptive	
  area	
  to	
  room	
  floor).	
  
In	
  the	
  classroom	
  1	
  (single),	
  the	
  ratio	
  between	
  areas	
  is	
  similar	
  for	
  both	
  cases.	
  In	
  contrast,	
  
6"
5"
3"
2"
0"
35"
40"
45"
50"
55"
60"
Empty" Furniture" Furniture"+"
People"
Abs_Wall" Abs_Ceiling"
STI$differences$between$Classroom$A6B$
Classroom"A"
Classroom"B"
 
17	
  
the	
   ratio	
   of	
   areas	
   is	
   not	
   keep	
   equal	
   for	
   the	
   classroom	
   2;	
   the	
   ceiling	
   surface	
   is	
   much	
  
bigger	
   while	
   the	
   wall	
   surface	
   is	
   kept	
   as	
   in	
   the	
   classroom	
   1	
   case.	
   That’s	
   why	
   ceiling	
  
simulation	
   setup	
   produce	
   a	
   higher	
   positive	
   impact	
   in	
   the	
   classroom	
   2,	
   resulting	
   in	
   a	
  
reverberation	
   time	
   between	
   0.5	
   and	
   1	
   while	
   the	
   wall	
   simulation	
   setup	
   results	
   in	
   a	
  
reverberation	
  time	
  between	
  1	
  and	
  1.5.	
  
	
  
Another	
   important	
   aspect	
   to	
   be	
   mentioned,	
   it	
   is	
   how	
   the	
   location	
   of	
   the	
   high	
  
absorptive	
   material	
   can	
   influence	
   in	
   the	
   room.	
   For	
   the	
   case	
   of	
   the	
   kindergarten,	
   a	
  
flexible	
   space	
   is	
   demanded	
   where	
   multiple	
   classroom	
   configurations	
   are	
   allowed.	
   A	
  
flexible	
  space	
  means	
  high	
  variation	
  in	
  the	
  source	
  positions,	
  as	
  well	
  as,	
  in	
  the	
  position	
  of	
  
the	
  receivers.	
  The	
  use	
  of	
  absorptive	
  wall	
  simulation	
  setup	
  might	
  not	
  contribute	
  to	
  the	
  
flexibility	
   of	
   the	
   space,	
   so	
   the	
   teacher	
   (source)	
   might	
   have	
   sometime	
   the	
   absorptive	
  
element	
  in	
  front	
  and	
  other	
  on	
  the	
  back.	
  For	
  that	
  reason,	
  it	
  might	
  be	
  more	
  optimum	
  to	
  
place	
  the	
  high	
  absorptive	
  element	
  in	
  the	
  ceiling	
  so	
  their	
  influence	
  is	
  equally	
  distributed	
  
along	
  the	
  room.	
  
	
  
Comparing	
   option	
   A	
   (room	
   with	
   higher	
   absorptive	
   materials)	
   and	
   option	
   B	
  
(room	
   with	
   lower	
   materials),	
   it	
   is	
   observed	
   that	
   when	
   high	
   absorptive	
   materials	
   are	
  
included	
  in	
  the	
  simulations,	
  both	
  options	
  perform	
  similar.	
  The	
  only	
  difference	
  between	
  
both	
  options	
  is	
  the	
  floor	
  material,	
  option	
  A	
  has	
  a	
  wood	
  floor	
  while	
  option	
  B	
  has	
  concrete	
  
floor.	
   When	
   comparing	
   the	
   first	
   simulation	
   setups	
   (empty	
   and	
   furniture),	
   option	
   A	
  
performs	
  better;	
  even	
  it	
  performs	
  better,	
  it	
  still	
  does	
  not	
  fulfil	
  the	
  requirements.	
  When	
  
absorptive	
  elements	
  are	
  included,	
  the	
  differenced	
  between	
  both	
  options	
  is	
  reduced.	
  It	
  
seems	
  that	
  materials	
  established	
  on	
  the	
  design	
  basis	
  may	
  reduce	
  their	
  influence	
  on	
  RT60	
  
if	
  high	
  absorptive	
  materials	
  are	
  added	
  in	
  the	
  design.	
  
	
  
In	
  classroom	
  2,	
  it	
  was	
  expected	
  symmetry	
  of	
  the	
  results	
  between	
  the	
  receivers	
  1-­‐
4	
  and	
  5-­‐8	
  but	
  the	
  receivers	
  behave	
  in	
  different	
  way.	
  The	
  reason	
  might	
  be	
  due	
  to	
  an	
  issue	
  
in	
  CATT	
  simulation	
  software	
  regarding	
  the	
  vector	
  normal	
  of	
  the	
  surface.	
  In	
  the	
  model,	
  
there	
  is	
  an	
  open	
  partition	
  wall	
  that	
  limits	
  the	
  space	
  between	
  both	
  classes.	
  When	
  adding	
  
the	
   material	
   properties	
   to	
   this	
   wall,	
   it	
   seems	
   to	
   be	
   added	
   to	
   one	
   face	
   instead	
   of	
   both	
  
surfaces.	
  This	
  might	
  be	
  the	
  reason	
  that	
  breaks	
  somehow	
  room	
  model	
  symmetry.	
  
	
  
7.3 Speech	
  Transmission	
  Index	
  
	
  
The	
   highest	
   increase	
   of	
   STI	
   is	
   produced	
   when	
   the	
   people	
   or	
   high	
   absorptive	
  
materials	
  are	
  implemented	
  in	
  the	
  simulations.	
  
	
  
When	
  the	
  STI	
  is	
  evaluated	
  at	
  frequency	
  level,	
  it	
  is	
  possible	
  to	
  see	
  how	
  it	
  is	
  improved	
  
from	
  lower	
  to	
  higher	
  frequencies.	
  This	
  improvement	
  might	
  have	
  special	
  influence	
  in	
  the	
  
speech	
  intelligibility	
  because	
  the	
  three	
  bands	
  at	
  1,2	
  and	
  4kHz	
  provide	
  the	
  75%	
  of	
  speech	
  
intelligibility	
  content.	
  
	
  
When	
   looking	
   to	
   the	
   classroom	
   1,	
   not	
   huge	
   differences	
   between	
   the	
   absorptive	
  
ceiling	
  and	
  wall	
  ceiling	
  are	
  found.	
  In	
  the	
  other	
  hand,	
  when	
  looking	
  to	
  the	
  classroom	
  2,	
  it	
  
is	
  possible	
  to	
  say	
  that	
  the	
  use	
  of	
  an	
  absorptive	
  ceiling	
  produce	
  higher	
  benefits	
  in	
  the	
  STI	
  
than	
  the	
  wall	
  absorptive	
  setup.	
  It	
  might	
  be	
  due	
  to	
  the	
  areas	
  ratio	
  between	
  the	
  absorptive	
  
material	
  area	
  and	
  room	
  floor.	
  	
  
	
  
When	
  comparing	
  option	
  A	
  and	
  B,	
  it	
  is	
  possible	
  to	
  see	
  that	
  the	
  application	
  of	
  high	
  
absorptive	
   materials	
   reduce	
   the	
   influence	
   of	
   the	
   materials	
   establish	
   as	
   a	
   base	
   for	
   the	
  
room.	
  
	
  
	
  
 
18	
  
7.4 Reverberation	
  time	
  &	
  STI	
  
	
  
As	
  it	
  is	
  known,	
  STI	
  is	
  affected	
  by	
  background	
  noise	
  and	
  reverberation	
  time.	
  In	
  
the	
  simulations	
  it	
  is	
  possible	
  to	
  observe	
  the	
  direct	
  relations	
  between	
  STI	
  and	
  RT0.	
  For	
  all	
  
the	
  simulations	
  when	
  reverberation	
  time	
  is	
  reduced	
  in	
  the	
  same	
  way	
  STI	
  is	
  increased.	
  
	
  
8. Conclusion	
  
	
  
The	
   report	
   analysis	
   the	
   speech	
   intelligibility	
   in	
   a	
   kindergarten	
   by	
   two	
   measures:	
  
reverberation	
  time	
  and	
  speech	
  transmission	
  index.	
  It	
  is	
  found	
  a	
  high	
  relation	
  between	
  
the	
  occupancy	
  rate	
  of	
  the	
  room	
  and	
  the	
  quality	
  of	
  the	
  acoustic	
  environment.	
  
	
  
Moreover,	
  the	
  use	
  of	
  high	
  absorptive	
  materials	
  is	
  a	
  good	
  strategy	
  to	
  achieve	
  a	
  good	
  
acoustic	
   environment.	
   It	
   is	
   found	
   that	
   is	
   crucial	
   to	
   optimize	
   the	
   relation	
   between	
   the	
  
absorptive	
  material	
  area	
  and	
  the	
  room	
  volume.	
  In	
  addition,	
  it	
  is	
  important	
  the	
  location	
  
of	
  the	
  absorptive	
  materials	
  in	
  relation	
  to	
  the	
  function	
  of	
  the	
  space.	
  In	
  the	
  case	
  of	
  this	
  
kindergarten,	
   a	
   flexible	
   space	
   is	
   demanded.	
   Then,	
   it	
   is	
   recommended	
   to	
   place	
   the	
  
absorptive	
   elements	
   in	
   somehow	
   that	
   their	
   influence	
   is	
   equally	
   distributed	
   along	
   the	
  
entire	
  room,	
  e.g.	
  absorbent	
  elements	
  in	
  the	
  ceiling.	
  	
  
	
  
To	
   achieve	
   the	
   standard	
   requirements,	
   the	
   use	
   of	
   high	
   absorbent	
   materials	
   is	
  
required.	
  When	
  high	
  absorptive	
  elements	
  are	
  included,	
  the	
  materials	
  established	
  on	
  the	
  
design	
  basis	
  reduce	
  their	
  influence	
  to	
  improve	
  the	
  acoustic	
  environment.	
  Then,	
  from	
  a	
  
budget	
  perspective,	
  it	
  is	
  more	
  profitable	
  to	
  use	
  lower	
  absorptive	
  material	
  on	
  the	
  design	
  
bases	
   and	
   include	
   high	
   absorptive	
   materials	
   in	
   specific	
   place	
   to	
   achieve	
   standard	
  
requirements.	
  
	
  
9. References	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Kirkergaard,	
   P.H.	
   (2004).	
   Building	
   and	
   Room	
   acoustics.	
   Structural	
   dynamics,	
   vol	
   10.	
  
Aalborg	
  University.	
  
2	
  Mealings,	
  K.T.,	
  Buchholz,	
  J.M.,	
  Denuth,	
  K.,	
  &	
  Dillon,	
  H.	
  (2014).	
  An	
  investigation	
  into	
  the	
  
acoustics	
   of	
   a	
   open	
   plan	
   compared	
   to	
   enclosed	
   kindergarten	
   classroom.	
   Macquarie	
  
University,	
  Australia.	
  
3	
  CATT-­‐Acoustic	
  v9.0.	
  Introduction	
  manual.	
  
4	
  SBi	
   230.	
   Guidelines	
   on	
   building	
   regulation	
   2010.	
   Danish	
   building	
   research	
   institute.	
  
Aalborg	
  University.	
  
5	
  Clausen T, Christensen KB, Lund T, Kristiansen J (2009) Self- reported noise exposure as a
risk factor for long-term sickness absence. Noise Health 11(43):93–97	
  
6	
  Faragher,	
   E.	
   B.,	
   Cass,	
   M.,	
   &	
   Cooper,	
   C.	
   L.	
   (2005).	
   The	
   relationship	
   between	
   job	
  
satisfaction	
   and	
   health:	
   A	
   meta-­‐analysis.	
   Occupational and Environmental Medicine, 62,	
  
112.
7	
  Marie	
  Louise	
  Bistrup,	
  Health	
  effects	
  of	
  noise	
  on	
  children	
  and	
  perception	
  of	
  the	
  risk	
  of	
  
noise,	
  coordinated	
  by	
  the	
  National	
  Institute	
  of	
  Public	
  Health	
  Denmark,	
  2001.	
  
8 	
  Evans,	
   G.W.,	
   Bullinger,	
   M.,	
   Hygge,	
   S.,	
   Chronic	
   noise	
   exposure	
   and	
   psychological	
  
response	
  a	
  prospective	
  study	
  of	
  children	
  living	
  under	
  environmental	
  stress.
9	
  Noise	
  from	
  Civilian	
  Aircraft	
  in	
  the	
  Vicinity	
  of	
  Airports	
  –	
  Implications	
  for	
  Human	
  Health,	
  
Healt	
  Canada.
10	
  Everest,	
  F.A.,	
  &	
  Pohlmann,	
  K.C.	
  (2009).	
  Master	
  handbook	
  of	
  acoustics.	
  5th	
  Edition.	
  Ed.	
  
Mc	
  Graw	
  Hill.	
  
11	
  Anhert,	
  W.	
  &	
  Tennhardt,	
  H.P.	
  (2008).	
  acoustic	
  for	
  auditoriums	
  and	
  concert	
  halls,	
  in	
  
Handbook	
  for	
  sound	
  engineers,	
  ed.	
  G.M.	
  
12	
  Zeilstra,	
  G.J.	
  (2009).	
  Speech	
  intelligibility	
  in	
  classrooms.	
  A	
  new	
  mwasurement	
  method.	
  
Master	
  thesis	
  Project.	
  Delft	
  University.	
  

More Related Content

Viewers also liked

Factors affecting acoustic of building and their remedies
Factors affecting acoustic of building and their remediesFactors affecting acoustic of building and their remedies
Factors affecting acoustic of building and their remediesDhrupal Patel
 
Acoustic case study
Acoustic case studyAcoustic case study
Acoustic case studyEsa Shaikh
 
Acoustic, Sound and Noise Control
Acoustic, Sound and Noise Control Acoustic, Sound and Noise Control
Acoustic, Sound and Noise Control haroldtaylor1113
 
Auditorium Acoustics
Auditorium Acoustics Auditorium Acoustics
Auditorium Acoustics mominzaki
 
Acoustical materials
Acoustical materialsAcoustical materials
Acoustical materialsshahzeb163
 

Viewers also liked (6)

Factors affecting acoustic of building and their remedies
Factors affecting acoustic of building and their remediesFactors affecting acoustic of building and their remedies
Factors affecting acoustic of building and their remedies
 
Architectural acoustics
Architectural acousticsArchitectural acoustics
Architectural acoustics
 
Acoustic case study
Acoustic case studyAcoustic case study
Acoustic case study
 
Acoustic, Sound and Noise Control
Acoustic, Sound and Noise Control Acoustic, Sound and Noise Control
Acoustic, Sound and Noise Control
 
Auditorium Acoustics
Auditorium Acoustics Auditorium Acoustics
Auditorium Acoustics
 
Acoustical materials
Acoustical materialsAcoustical materials
Acoustical materials
 

Similar to 03.Acoustic_Eduardo

Acoustic Analysis Project 1
Acoustic Analysis Project 1Acoustic Analysis Project 1
Acoustic Analysis Project 1J-Sern Phua
 
Classroom_Acoustics_for_Architects_4_18_15.pdf
Classroom_Acoustics_for_Architects_4_18_15.pdfClassroom_Acoustics_for_Architects_4_18_15.pdf
Classroom_Acoustics_for_Architects_4_18_15.pdfurangoo29
 
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...RicardoVallejo30
 
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...Patrik Burda
 
B.science ii report
B.science ii reportB.science ii report
B.science ii reportBolin Loong
 
Master of Facilities management Thesis, June, 2015
Master of Facilities management Thesis, June, 2015Master of Facilities management Thesis, June, 2015
Master of Facilities management Thesis, June, 2015Joel Nyoni
 
Sound-Acoustic Design of Schools.pdf
Sound-Acoustic Design of Schools.pdfSound-Acoustic Design of Schools.pdf
Sound-Acoustic Design of Schools.pdfssuserffb5611
 
Building Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignBuilding Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignNik Ahmad Munawwar Nik Din
 
IRJET- Study of Acoustic Problem in SDPS Women’s College Classrooms and i...
IRJET-  	  Study of Acoustic Problem in SDPS Women’s College Classrooms and i...IRJET-  	  Study of Acoustic Problem in SDPS Women’s College Classrooms and i...
IRJET- Study of Acoustic Problem in SDPS Women’s College Classrooms and i...IRJET Journal
 
STCKM_TSS_06Sept13.doc
STCKM_TSS_06Sept13.docSTCKM_TSS_06Sept13.doc
STCKM_TSS_06Sept13.docchan194576
 
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...A Study of noise pollution at the campus of Madan Mohan Malaviya University o...
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...IRJET Journal
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Reportjisunfoo
 
Ingles exposicion
Ingles exposicionIngles exposicion
Ingles exposiciondaniel840
 

Similar to 03.Acoustic_Eduardo (20)

Acoustic Analysis Project 1
Acoustic Analysis Project 1Acoustic Analysis Project 1
Acoustic Analysis Project 1
 
ACOUSTIC
ACOUSTICACOUSTIC
ACOUSTIC
 
Acoustic Improvement of School Buildings
Acoustic Improvement of School BuildingsAcoustic Improvement of School Buildings
Acoustic Improvement of School Buildings
 
Classroom_Acoustics_for_Architects_4_18_15.pdf
Classroom_Acoustics_for_Architects_4_18_15.pdfClassroom_Acoustics_for_Architects_4_18_15.pdf
Classroom_Acoustics_for_Architects_4_18_15.pdf
 
Canadian light speed with proxemics
Canadian light speed with proxemicsCanadian light speed with proxemics
Canadian light speed with proxemics
 
Ht3114821486
Ht3114821486Ht3114821486
Ht3114821486
 
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...
Recording Distortion Product Otoacoustic Emissions using the Adaptive Noise C...
 
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...
Patrik-Burda_Thorbjørn-L.-Basse_Eik-L.-Nielsen_Investigation_of_auditorium_ac...
 
B.science ii report
B.science ii reportB.science ii report
B.science ii report
 
Master of Facilities management Thesis, June, 2015
Master of Facilities management Thesis, June, 2015Master of Facilities management Thesis, June, 2015
Master of Facilities management Thesis, June, 2015
 
Sound-Acoustic Design of Schools.pdf
Sound-Acoustic Design of Schools.pdfSound-Acoustic Design of Schools.pdf
Sound-Acoustic Design of Schools.pdf
 
Building Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic DesignBuilding Science II Project 1 - Acoustic Design
Building Science II Project 1 - Acoustic Design
 
IRJET- Study of Acoustic Problem in SDPS Women’s College Classrooms and i...
IRJET-  	  Study of Acoustic Problem in SDPS Women’s College Classrooms and i...IRJET-  	  Study of Acoustic Problem in SDPS Women’s College Classrooms and i...
IRJET- Study of Acoustic Problem in SDPS Women’s College Classrooms and i...
 
STCKM_TSS_06Sept13.doc
STCKM_TSS_06Sept13.docSTCKM_TSS_06Sept13.doc
STCKM_TSS_06Sept13.doc
 
I0773072914 final
I0773072914 finalI0773072914 final
I0773072914 final
 
75 78
75 7875 78
75 78
 
75 78
75 7875 78
75 78
 
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...A Study of noise pollution at the campus of Madan Mohan Malaviya University o...
A Study of noise pollution at the campus of Madan Mohan Malaviya University o...
 
Auditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design ReportAuditorium: A Case Study on Acoustic Design Report
Auditorium: A Case Study on Acoustic Design Report
 
Ingles exposicion
Ingles exposicionIngles exposicion
Ingles exposicion
 

03.Acoustic_Eduardo

  • 1. ACOUSTIC ANALYSIS IN KINDERGARTEN CLASSROOM Student: Eduardo Artigas 201310871 Instructor: Poul Henning Kirkegaard Course: Rum- og bygningsakustik AARHUS UNIVERSITY DEPARTMENT OF ENGINEERING
  • 2. Abstract     1. Introduction     2. Standard  requirements     2.1 General  acoustic  requirements   2.2 Educational  and  childcare  buildings     3. Potential  acoustic  problems  in  a  Kindergarten     4. Acoustics  of  a  room  design  for  speech     4.1 Reverberation  time   4.2 Absorption  treatment   4.3 Speech  intelligibility   4.3.1 Analytical  measure  methods  for  speech  intelligibility     5. Methodology     5.1 Room  description  and  analysis  setup   5.2 Noise  criteria   5.3 Source  and  receiver  position   5.4 Parameter  variation   5.5 Measurements  methods     6. Simulation  results     6.1 Sabine  equation  Vs.  CATT  simulation   6.1.1 Classroom  1  (single)  and  Classroom  2  (double)     6.2 Reverberation  time  (RT60)     6.2.1 Classroom  1A:  single  room  with  high  absorptive  materials   6.2.1.1 RT60  at  receiver  1:  analysis  at  frequency  level   6.2.1.2 RT60  at  receiver  1:  analysis  at  each  setup   6.2.2 Classroom  1B:  single  room  with  lower  absorptive  materials   6.2.3 Classroom  1A  and  1B:  analysis  comparison     6.2.4 Classroom  2A:  double  room  with  high  absorptive  materials   6.2.4.1 RT60  at  receiver  1:  analysis  at  frequency  level   6.2.4.2 RT60  at  receiver  1:  analysis  at  each  setup   6.2.5 Classroom  2B:  double  room  with  lower  absorptive  materials   6.2.6 Classroom  2A  and  2B:  analysis  comparison     6.3 Speech  transmission  index  (STI)     6.3.1 Classroom  1A:  single  room  with  high  absorptive  materials   6.3.2 Classroom  1A  and  1B:  analysis  comparison   6.3.3 Classroom  2A:  double  room  with  high  absorptive  materials   6.3.4 Classroom  2A  and  2B:  analysis  comparison        
  • 3. 7. Discussion     7.1 Sabine  equation   7.2 Reverberation  time   7.3 Speech  transmission  index   7.4 Reverberation  time  &  STI     8. Conclusion     9. References       Appendix  1:  Sabine     Appendix  2:  RT60  Classroom  1     Appendix  3:  STI  Classroom  1     Appendix  4:  RT60  Classroom  2     Appendix  5:  STI  Classroom  2    
  • 4.   1   1. Introduction     Acoustic   is   an   important   factor   to   achieve   a   high   indoor   climate   quality   level.   “Good  acoustic”  is  defined  as  a  combination  of  objective  and  subjective  factors,  which   can  be  divided  into  measures  that  are  related  to  the  distribution  of  sound,  the  dispersion   in  the  room  and  multiple  measures  related  to  the  noise  level  in  the  room.     Moreover,  acoustic  is  a  generic  concept  that  includes  several  interpretations  and   definitions.   Generally,   the   definition   of   acoustic   is   divided   into   concepts   [1]:   building   acoustics  or  sound  insulation  (damping  of  external  noise)  and  architectural  acoustics  or   sound  control  (damping  of  internal  noise).     In  non-­‐residential  profession  like  teaching,  noise  is  presumed  to  be  a  nuisance   than   a   risk   factor   for   noise-­‐induced   hearing   loss.   Studies   establish   that   there   are   indications   that   noise   exposure,   even   of   low   intensity,   is   associated   with   increased   sickness  absence.  In  kindergarten  classrooms,  noise  has  the  potential  to  interrupt  on-­‐ going  activities  and  to  disturb  the  perception  of  the  speech  [2].     In   educational   facilities,   the   main   mode   of   communication   are   speaking   and   listening.  Due  to  these  factors,  it  is  important  to  design  a  good  acoustic  environment  that   maximizes   the   learning   opportunities   for   the   students.   In   the   case   of   a   kindergarten,   children  become  the  major  noise  source  in  classrooms  generating  high  level  of  noise.   Then,  as  estate  in  the  previous  paragraph,  teaching  profession  might  have  a  high  noise   exposure  that  is  associated  with  increased  sickness  absence  [2].     The  paper  studies  the  architectural  acoustics  of  a  kindergarten’s  classroom  by   CATT  simulation  software.    This  program  uses  RTC-­‐II  (Randomized  Tail-­‐corrected  Cone   tracing,  second  version),  Ray-­‐tracing  (method  for  calculating  the  path  of  waves  through   a   system),   to   evaluate   the   acoustic   variables   [3].   First,   it   is   established   a   single   room   distribution  for  the  case  of  teaching-­‐learning  communication  mode.  Two-­‐design  room   configurations  are  set  up  for  the  previous  room  distribution,  one  with  better  acoustic   materials  than  the  other  room.  Then,  each  configuration  is  improved  and  evaluated  by  a   parametric   variation   study.   Three   measures   are   used   to   evaluated   the   acoustic   environment:  reverberation  time,  signal  to  noise  ratio  and  speech  transmission  index.     2. Standard  requirements  [4]     2.1 General  acoustic  requirements     The  concepts  of  reverberation  time  and  absorption  are  defined  in  DS/EN  12354-­‐ 6,   Building   acoustics-­‐   Estimation   of   acoustic   performance   of   buildings   from   the   performance   of   elements   –   Part   6:   Sound   absorption   in   enclosed   spaces.   Check   measurements  of  sound  conditions  must  be  made  in  accordance  with  SBi  Guidelines  217,   Performing  building  acoustics  measurements.     2.2 Educational  and  childcare  buildings     SBi  Guideline  218,  Sound  conditions  in  educational  and  childcare  buildings  specify  the   sound   requirements   and   make   recommendations   in   respect   of   sound   conditions   in   educational  and  childcare  institutions.     o Reverberation  time,  T    
  • 5.   2   -­‐ Occupiable  rooms  ≤  0.4  s     o Absorption  area,  A     -­‐ Occupiable   rooms   with   a   ceiling   height   greater   than   4   m   and   a   room   volume  greater  than  300m3  ≥  1.2  x  room  floor  area.     o Speech  Transmission  Index  (STI)  is  defined  in  DS/EN  60268-­‐16,  Sound  system   requirement   –   Part   16:   Objective   rating   of   speech   intelligibility   by   speech   transmission  index  (Danish  standards,  2003c)  and  DS/EN  ISO  14257,  Acoustics  –   Measurements  and  parametric  description  of  spatial  sound  distribution  curves  in   workrooms   for   evaluation   of   their   acoustical   performance   (Danish   Standards,   2002a).     -­‐ Within  a  teaching  group,  an  STI  in  excess  of  0.6  between  teacher  and  pupil   and  from  pupil  to  pupil  should  enable  clear  communication.     o Sound  transmission  attenuation  in  accordance  with  DS/EN  ISO  14257  (Danish   standards,  2002a).     -­‐ Recommended  sound  transmission  attenuation  should  be  greater  than  5   dB     3. Potential  acoustic  problems  in  a  Kindergarten     Noise   in   classrooms   has   the   potential   to   interrupt   on   going   activities   and   to   disturb   the   perception   of   speech.   The   annoying   noise   could   be   either   self-­‐   generated   noise   from   laughing,   chatting   or   bullying   during   lessons   or   related   to   the   physical   environment  such  as  noise  from  chairs  and  tables  or  external  noise,  such  as  from  other   classrooms.     As  it  is  mentioned  above,  either  children  or  teachers  suffer  the  consequences  from  noise   and  poor  acoustics  environments.  However,  the  effects  on  them  are  relatively  different.     From  a  teacher  view,  poor  acoustical  working  conditions  are  associated  with  increased   sickness  absence  [5].  That  absence  is  produced  by  psychological  and  physical  factors:     • Job  satisfaction;  low  satisfaction  is  associated  with  sickness  absence,  burnout,   depression,  and  anxiety  [6],  as  well  as  lower  productivity.     • Fatigue;   it   brings   negative   influence   on   task   performance,   as   well   as   it   may   lower  energy  levels  and  aggravate  voice  symptoms.     Regarding  the  world  of  the  child,  children  environment  is  becoming  much  noisier  than   fifty   years   ago   [7].   Since   they   spend   a   big   part   of   their   days   at   schools,   acoustics   conditions   there   have   a   big   influence   over   biological   (physiological   and   somatic),   psychological,  social  and  emotional  aspects.     Cognitive  effects:     • Reading:   noise   on   children's   cognition   show   negative   effects   on   acquiring   reading  skills.  
  • 6.   3   • Memory:   several   studies   of   both   chronic   and   acute   noise   have   found   adverse   effects   of   aircraft   noise   exposure   on   long-­‐term   memory   for   complex,   difficult   material.     • Motivation:   children   chronically   exposed   to   noise   are   less   motivated   when   placed   in   achievement   situations   in   which   task   performance   is   contingent   on   persistence.   • Mechanisms   and   underlying   processes:   Several   studies   suggest   that   noise   can   interfere  in  important  ways  with  speech  perception  or  language  acquisition.     Reading,   long-­‐term   memory   and   learning   in   children   are   particularly   sensitive   to   noise.     Besides  cognitive  effects,  noise  in  classrooms  can  have  further  complications  such   as:     • Higher  blood  pressure  [8]   • Higher  epinephrine   (adrenaline)  levels   • Higher  norepinephrine  levels   • Sleeping  disorders  [9]     4. Acoustics  of  a  room  design  for  speech     In  rooms  designed  for  speech  applications,  like  the  case  of  a  classroom,  many  of   the   same   criteria   used   for   any   other   room   will   still   apply.   However,   in   rooms   used   primarily   for   speech,   some   criteria   might   be   arising   in   importance   and   some   requirements  might  be  modified.       4.1 Reverberation  time       Reverberation  time  RT60  is  always  an  important  parameter  to  evaluate  the  sound   quality  for  any  room,  and  to  room  volume.  It  is  defined  as  the  time  in  seconds  required   for   sound   intensity   in   a   room   to   drop   60dB   from   its   original   level   [10].   Absorptive   qualities  and  room  dimensions  influence  reverberation  time  and  it  does  not  depend  on   the  position.  Figure  1  show  recommended  values  for  mean  reverberation  time  between   two  octave  bandwidths  500  and  1,000  Hz  when  a  room  is  occupied  between  80%  and   100%   [10]   .Two   classrooms   configurations   are   shown   in   Figure   1,   i)   Classroom   configuration  1  (red  line)  recommended  a  RT60  of  0,6  for  a  volume  of  189  m3;  and  ii)   Classroom  configuration  2  (blue  line)  recommended  a  RT60  of  0,8  for  a  volume  of  534   m3.     Figure  1:  The  recommended  mean  reverberation  time  between  500  and  1,000  Hz,  for  speech  and  music,   with  respect  to  room  volume.  (Source:  [11])  
  • 7.   4   Moreover,  it  has  to  be  considered  the  frequency  response  of  the  reverberation   field.   Figure   2   shows   the   frequency   dependent   tolerance   rages   of   reverberation   time   referenced   to   the   recommended   mean   reverberation   time   described   in   the   previous   Figure  1.     Figure  2  shows  that  reverberation  time  decrease  at  low  frequencies.  The  great   majority  of  the  speech  power  is  below  1  KHz,  and  the  maximum  speech  energy  rage  is   200  to  600  Hz.  Speech  vowels  occupy  low  frequencies,  while  consonants  occupy  higher   frequencies.  Consonants  are  more  important  in  intelligibility,  so  specially  the  frequency   range  between  2  to  4  kHz  is  the  responsible  for  the  speech  intelligibility  [10]  .  The  three   bands  at  1,2  and  4kHz  provide  the  75%  of  speech  intelligibility  content.       Figure  2:  The  frequency-­‐dependent  tolerance  range  of  reverberation  time,  as  referenced  to  recommended   reverberation  time.  Speech.  (Source:  [11])   There  are  different  ways  to  calculate  the  reverberation  time;  the  most  used   equation  is  called  Sabine  equation.  This  is  given  by  the  equation:     𝑅𝑇!"   = 0.161𝑉 𝐴     where  RT60  =  reverberation  time,  sec   V=  volume  of  room,  m3   A=  total  absorption  of  room,  metric  sabins     4.2 Absorption  treatment     For  the  classroom  configuration  1  (189  m3),  it  might  be  expected  that  the  people   and  furniture  provide  the  majority  of  absorption;  therefore,  the  room  surfaces  can  be   relatively  reflective.       In  the  classroom  configuration  2  (534  m3),  it  is  a  big  space  so  relatively  greater   absorption  is  needed.  In  this  case,  strong  late  reflections  and  reverberation,  such  as  from   rear   walls,   could   produce   echoes   problems.   Two   strategies   can   be   used   to   solve   that   issue:  i)  the  implementation  of  reflective  materials  around  the  source  area  to  provide   strong  early  reflections  that  are  better  integrated  with  the  direct  sound;  and  ii)  the  use   of  absorptive  materials  in  the  seating  area  and  rear  of  the  wall  [10].     4.3 Speech  intelligibility     Speech   intelligibility   is   the   highest   design   priority   for   any   room   intended   for   speaking-­‐listening  activities  [10].  In  the  classroom  case  where  amplification  is  not  used,  
  • 8.   5   a  room  design  providing  high  speech  intelligibility  begins  by  recognizing  that  a  normal   voice   will   generate   a   long-­‐term   average   normal   pressure   level   of   about   65dB.   Satisfactory   speech   intelligibility   can   be   achieved   by   designing   for   an   appropriate   reverberation  time.  In  particular,  reverberation  time  at  500  Hz.  The  speech  intelligibility   is  influenced  by  two  quantities:     • Signal  to  noise  ratio  (SNR),  is  described  as  the  ratio  between  the  levels  of  the   useful   and   disturbing   signal.   SNR   is   influenced   by   several   parameters   of   the   rooms.   The   SNR   is   described   as   the   ratio   between   the   level   of   the   useful   and   disturbing  signal.  The  SNR  is  expressed  by  [12]:     𝑆𝑁𝑅 𝑟, 𝑡 = 10𝑙𝑜𝑔 𝑝! !"#,!"#$%& (𝑟, 𝑡) 𝑝! !"#,!"#$%(𝑟, 𝑡)   𝑑𝐵     From  the  equation,  it  is  possible  to  see  that  the  SNR  is  a  function  of  time  and   is   influenced   by   the   distance   from   the   source   to   the   receiver.   There   is   two   measure   methods   based   on   the   SNR   to   evaluate   the   speech   intelligibility:   the   articulation  index  (AI)  and  the  speech  transmission  index  (STI).     • Direct   to   reverberant   ratio   (DRR),   is   the   ratio   between   the   direct   and   reverberant  sound  levels  and  is  expressed  by  [12]:     𝐷𝑅𝑅 𝑟 = 10𝑙𝑜𝑔 𝑝! !"#,!"#$%& (𝑟) 𝑝! !"#,!"#"!$"!%&'(𝑟)   𝑑𝐵     The  distance  to  the  source,  amount  of  absorption  present  in  the  room,  the   dimensions  and  shape  of  the  room,  and  the  source  direction  influence  the  level   of  reverberated  sound.  The  level  of  direct  sound  is  determined  by  distance  from   the  source  to  the  receiver  and  the  source  directivity.       • Combined   effect   (SNR   +   DRR),   the   combined   effect   of   these   two   factors   is   bigger  than  the  sum  of  the  individual  effects.  It  means,  the  interaction  of  noise   and  reverberation  adversely  affects  speech  perception  to  a  greater  extent  than   the  sum  of  both  effects  taken  independently  [12].     4.3.1 Analytical  measure  methods  for  speech  intelligibility     Various  analytical  measures  have  been  devised  to  assess  speech  intelligibility:     • Articulation   index   (AI)   uses   acoustic   measurements   to   estimate   speech   intelligibility   and   conversely,   speech   privacy.   AI   uses   weighting   factors   in   five   octave  bands  from  25  HZ  to  4kHz.  AI  is  calculated  by  multiplying  the  signal-­‐to-­‐ noise   ratio   (SNR)   in   each   octave   band   by   the   weighting   factor   in   each   octave   band,  and  summing  the  result.  AI  ranges  from  0  to  1;  the  higher  the  value,  the   better  the  intelligibility  [10].     • Percentage   articulation   loss   of   consonants   (%Alcons),   s   focuses   on   the   perception  of  spoken  consonants.  %Alcons  can  be  approximately  measured  as:     %𝐴𝑙𝑐𝑜𝑛𝑠   ≈ 0.652   𝑟!! 𝑟! ! 𝑅𝑇!"  
  • 9.   6    %Alcons  scores  can  be  related  to  the  speech  intelligibility,  as:  i)  Ideal  (%Alcons  ≤   3%);   ii)   Good   (%Alcons   3-­‐8%);   iii)   Satisfactory   (%Alcons   8-­‐11%);   iv)   Poor   (%Alcons  >11%);  and  v)  Worthless  (%Alcons  >20%).  [10]     • Speech   Transmission   Index   (STI)   predicts   the   speech   intelligibility   by   measuring   the   reduction   in   the   modulation   depth   at   the   receiver   for   seven   octave  bands  with  fourteen  modulation  frequencies.  The  modulation  might  be   reduced  by  reverberation,  background  noise,  band-­‐pass  limiting  and  non-­‐linear   distortion.   The   reduction   of   the   modulation   can   be   quantified   by   the   effective   SNR   for   a   number   of   frequency   bands.   Then,   the   SNR   is   recalculated   to   a   transmission  index  between  0  and  100%.  Table  1  shows  the  STI  in  relation  to   intelligibility  [12].     STI  (%)   0  -­‐30   30  –  45   45  -­‐60   60  –  75   75  -­‐  100   Intelligibility   Unintelligible   Poor   Fair   Good   Excellent   Table  1:  STI  in  relation  to  intelligibility  (Source:  [12])   • Rapid   acoustics   speech   transmission   index   (RASTI),   measures   the   speech   intelligibility  on  the  scale  of  0  to  1.  The  speech  intelligibility  should  be  at  least   0,6  in  ordinary  classrooms  and  should  be  more  than  0,8  before  you  talk  about   having  good  speech  intelligibility  in  a  room.  The  value  will  vary  from  seat  to  seat   and  normally  there  are  dead  areas.  It  is  correlated  to  %Alcons  by  [10]:     𝑅𝐴𝑆𝑇𝐼 = 0.9482 − 0.1845ln  (%𝐴𝑙𝑐𝑜𝑛𝑠)     5. Methodology     The   objective   of   this   study   is   an   in-­‐depth   investigation   of   the   architectural   acoustics  of  a  classroom  in  a  kindergarten.  For  this,  it  is  designed  a  method  to  identify   the  acoustic  factors  which  influence  in  the  acoustic  of  the  room  in  relation  to  the  need  of   the  pupils  and  teacher.     5.1 Room  description  and  analysis  setup     The  kindergarten  has  3  blocks  of  classrooms  (each  block  is  2  classrooms),  one   canteen  with  kitchen,  the  office  area  and  an  indoor  playground.  The  office  area  is  placed   directly  to  the  main  street  (high  external  noise  sources)  while  the  classrooms  are  placed   directly  to  a  green  area  (low  external  noise  sources).     Figure  3:  Kidengarten  plan.  The  red  square  indicated  the  classroom  that  is  used  for  the  analysis  
  • 10.   7   The   study   is   focused   in   the   block   of   classroom   shown   in   the   Figure   3.   The   classroom  1  (see  Figure  4)  is  45  m2  where  13  m2  is  used  as  a  hall  area  (3m  height)  and   37   m2   is   used   for   teaching   functions   (4m   height).   Additionally,   the   classroom   can   be   opened   to   the   next   classroom,   giving   the   possibility   of   an   open   space   of   126   m2;   this   open  configuration  is  named  as  Classroom  2  (see  Figure  4).     Figure  4:  Description  of  both  classroom  configuration:  a)  Classroom  1-­‐Single  (left);  b)  Classroom  2  –  Double   (right)     For  each  classroom  configuration  is  setup  two  options  to  be  analysed,  as  shown   in  Figure  5.     Figure  5:  Analysis  setup   From  scenario  1,  it  is  developed  two  options:     • Option  A  –  higher  absorptive  materials:  it  has  plastered  walls,  high  quality   absorptive  ceiling  and  wooden  floor.   • Option  B  –  lower  absorptive  materials:  it  has  concrete  walls,  ceiling  and  floor.     The   main   different   between   these   two   options   lies   in   the   absorptive   materials   present  in  the  room.  Table  2  shows  the  absorptive  characteristic  of  the  material  use  for   the  simulations.     Option   Surface  and  Material   125   Hz   250   Hz   500   Hz   1   kHz   2kHZ   4kHz   A       Floor     Wood  parquet   0,04   0,04   0,07   0,06   0,06   0,07   Walls   Plaster   0,01   0,02   0,02   0,03   0,04   0,05   Ceiling   Plasterboard  (12mm  in  suspended  ceiling   grid)   0,15   0,11   0,04   0,04   0,07   0,08   B             Floor   Concrete  (sealed  or  painted)   0,01   0,01   0,02   0,02   0,02   0,02   Walls   Plaster   0,01   0,02   0,02   0,03   0,04   0,05  
  • 11.   8   A-­‐B       Window   Glass  (1,4``plate,  large  pane)   0,18   0,06   0,04   0,03   0,02   0,02   Door   Solid  wood  panels   0,1   0,07   0,05   0,04   0,04   0,04   Table  2:  Absorption  characteristics  of  the  materials   5.2 Noise  Criteria     Another   important   aspect,   which   could   lead   to   big   difference   of   the   tested   acoustic  variables,  besides  the  absorption,  is  the  amount  of  background  noise.  For  the   case  of  a  kindergarten,  it  is  advisable  to  keep  the  noise  below  Noise  Criteria  35  (NC35).   The  noise  levels  from  NC35  are  shown  in  Table  3.     Freq.  Band  [Hz]   125  Hz   250  Hz   500  Hz   1  kHz   2kHZ   4kHz   Noise  (dB)   48   40   34   30   27   25   Table  3:  Noise  Criteria  25  noise  limits  (Source:  http://www.engineeringtoolbox.com)   5.3 Source  and  Receiver  position     In  order  to  run  the  simulations  the  source  and  receiver  position  is  given  as  in   Figure  6.  Danish  standards  establish  occupancy  of  16  pupils  for  the  classroom  1  (single).   Four  tables  are  placed  in  the  room  with  four  pupils  each  and  the  teacher  is  placed  in  the   middle  of  the  classroom.  For  the  classroom  2,  the  distribution  of  the  previous  classroom   is  reflected  so  there  is  occupancy  of  32  pupils  and  the  teacher  is  placed  in  the  middle  of   the  open  room.     Figure  6:  Source  and  receiver  position  for  a)  Classroom  1  (left)  and  b)  Classroom  2  (right)   In  the  simulations  the  teacher  is  assumed  to  use  “original”  voice  at  normal  vocal   effort.  The  sound  levels  at  1-­‐meter  distance  for  normal  and  raised  efforts  are  shown  in   Table  4.   Freq.  Band  [Hz]   125  Hz   250  Hz   500  Hz   1  kHz   2kHZ   4kHz   Noise  (dB)   51,2   57,2   59,8   53,5   48,8   43,8   Table  4:  Sound  level  at  1m  in  front  of  the  speaker  for  normal  effort,  from  Catt  acoustic  simulation  program.   (Source:  [10])   5.4 Parameter  variation     Each  scenario  (four  scenarios  in  total)  is  simulated  under  five  variations:     • Empty  room   • Room  with  furniture   • Room  with  furniture  and  people   • Room  with  furniture,  people  and  rear  absorptive  wall   Source Recievers 12 34 CLASSROOM 1 (SINGLE) CLASSROOM 2 (DOUBLE) 12 34 56 78
  • 12.   9   • Room  with  furniture,  people  and  absorptive  ceiling     5.5 Measurements  methods       For   each   simulation   describe   previously,   it   is   obtained   data   to   evaluate   the   quality  of  the  acoustic  environment  of  the  room  in  relation  to  the  function  of  the  space.   The   main   function   of   the   room   is   the   speech   so   the   speech   intelligibility   is   the   main   factor  to  be  analysed.  The  measure  methods  uses  for  the  analysed  are:     • Reverberation  time  (RT60)   • Speech  transmission  index  (STI)     Both  measure  methods  are  described  in  section  4.1  and  section  4.3.  Moreover,  few   measure  methods  for  speech  intelligibility  area  available  in  CATT  simulation  software.   Reverberation  time  and  STI  are  the  only  one  available  to  be  measure  by  CATT  directly.       6. Simulation  Results   6.1 Sabine  Equation  Vs.  CATT  Simulation   6.1.1 Classroom  1(single)  and  Classroom2  (double)     From  CATT  software  both,  analytical  and  simulation  results  for  Reverberation   Time  (RT60)  can  be  obtained.  Results  from  both  methods  are  compared  in  order  to  see   how  much  Sabine  equation  differs  from  simulations  results  in  different  cases.       Figure  7:  Sabine  Vs.  CATT  simulation:  a)  Empty  room  1A  at  receiver  1(left);  b)  Abs  ceiling  room  1A  at   receiver  1  (right)       Figure  8:  Sabine  Vs.  CATT  simulation:  a)  Empty  room  2A  at  receiver  1(left);  b)  Abs  ceiling  room  2A  at   receiver  1  (right)   In  general,  Sabine  equation  results  are  a  bit  higher  or  almost  equal  to  simulation   values   for   “empty   room”   case   (Figure   7-­‐a,   Figure   8-­‐a,   Appendix   1).   However,   for   the   remaining   cases   (furniture,   furniture   +   people,   abs.   wall   and   abs.   ceiling)   Sabine   0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"eq." 0" 0.2" 0.4" 0.6" 0.8" 1" 1.2" 1.4" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"eq." 0" 0.2" 0.4" 0.6" 0.8" 1" 1.2" 1.4" 1.6" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"eq." 0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"eq."
  • 13.   10   equation   calculates   lower   RT60   values   comparing   to   simulations   by   CATT   methods   (Figure  7-­‐a,  Figure  8-­‐a,  Appendix  1).       The  same  behaviour  can  be  extrapolated  to  Option  B  (see  Figure  9),  the  Sabine   equation  calculates  RT60  a  bit  higher  or  equal  in  empty  room  case  but  when  absorptive   materials  are  added,  Sabine  equation  overestimate  the  RT60  values.     Figure  9:  Sabine  Vs.  CATT  simulation:  a)  Empty  room  1B  at  receiver  1(left);  b)  Empty  room  2B  at  receiver  1   (right)   6.2 Reverberation  Time  (RT60)     6.2.1 Classroom  1A:  single  room  with  high  absorptive  materials       Reverberation   Time   is   simulated   for   the   different   set   ups.   The   RT60   average   (from  500Hz  to  8kHz)  for  each  receiver  and  each  room  situation  (empty,  furniture…etc.)   is  plot  in  Figure  10.  Figure  10  shows  that  RT60  from  one  receiver  to  another  remains   virtually  constant.  Moreover,  it  is  easy  to  see  how  much  reverberation  time  differs  from   one  set  up  to  another.     Figure  10:  RT60  in  the  classroom  1ª  at  each  receiver   6.2.1.1 RT60  at  Receiver  1:  analysis  at  frequency  level     Since  all  receivers  get  similar  RT60  values,  receiver  1  is  selected  to  show   reverberation  times  depending  on  the  frequency.                       Figure  11:  RT60  in  the  classroom  1A  at  receiver  1.  Frequency  250  Hz  to  16kHz   0.00# 0.50# 1.00# 1.50# 2.00# 2.50# Receiver1# Receiver2# Receiver3# Receiver4# Average'RT60' Empty# Furniture# Furnit+people# Abs.#Wall# Abs.#Ceiling# 0" 1" 2" 3" 4" 5" 6" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"eq." 0" 1" 2" 3" 4" 5" 6" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Sabine%Eq.% Reciever"1" Sabine"Eq." 0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Reciever%1% Empty" Furniture" Furniture+People" Abs_Wall" Abs_Ceiling"
  • 14.   11   The  five  room’s  set  ups  are  shown  in  Figure  11.  “Empty”  and  “Furniture”  room   behave  quite  similar,  getting  lower  times  when  furniture  is  included.  On  the  hand,  once   people  is  taken  into  account,  a  big  change  in  RT60  performance  is  observed,  being  “Abs.   wall”  and  “Abs.  ceiling”  the  ones  that  get  lower  reverberation  times.     6.2.1.2 RT60  at  receiver  1:  analysis  at  each  setup     Figure  12:  RT60  in  the  classroom  1A  at  receiver  1.  RT60  value  at  each  setup  and  RT60  reduction  at  each  setup   from  the  empty  room     Figure  12  represents  how  much  RT60  decreases  when  adding  new  absorptions  in   the   room   compared   to   “empty   room”.   The   reduction   from   “empty”   to   “furniture”   is   minimum;   nevertheless,   the   difference   becomes   more   notable   when   people   are   included,  and  progressively  when  higher  absorptive  materials  are  place  on  the  wall  or   ceiling.       6.2.2 Classroom  1B:  single  room  with  lower  absorptive  materials     Due   to   the   behaviour   similarity   between   Classroom   1A   and   1B,   not   result   are   shown  in  the  report.  Appendix  2  shows  the  results  for  classroom  1B  obtained  from  the   simulations.   6.2.3 Classroom  1A  and  1B:  analysis  comparison       Figure  13:  RT60  room  average  per  each  simulation  setup     Figure  13  shows  the  reverberation  time  at  each  room  case  for  both  classroom   options   A   (high   absorptive   materials)   and   B   (low   absorptive   materials).   The   biggest   deviation   takes   place   when   the   room   is   empty   or   just   with   furniture.   Then,   reverberation  values  for  both  options  are  very  similar.       2.04% 2.04% 1.04% 0.58% 0.55% 2.64% 2.49% 1.12% 0.62% 0.57% 0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% Empty% Furniture% Furnit+people% Abs.%Wall% Abs.%Ceiling% Average%Room%A% Average%Room%B% !3# !49# !72# !73# 2.05# 1.98# 1.04# 0.58# 0.54# 0# 20# 40# 60# 80# 100# 120# Em pty# Furniture# Furniture+People# Abs_W all# Abs_Ceiling# Avarage#RT60# %#reduce#
  • 15.   12   6.2.4 Classroom  2A:  double  room  with  high  absorptive  materials     In  the  big  room  reverberation  time  is  also  simulated  for  the  five  different  set  ups,   although  this  time  eight  receivers  are  placed  since  room  surface  is  considerable  bigger   than   before.   The   RT   average   for   each   receiver   and   each   room   situation   (empty,   furniture…)  is  plot  in  a  Figure  14.  Figure  14  shows  that  RT60  from  one  side  of  the  room  is   lower   than   the   other.   Values   are   increasing   from   right   side   to   left   side   (receiver   1-­‐4   lower  than  5-­‐8).  Moreover,  it  is  easy  to  see  how  much  reverberation  time  differs  from   one  set  up  to  another.     Figure  14:  RT60  in  the  classroom  1A  at  each  receiver   6.2.4.1 RT60  at  Receiver  1:  analysis  at  frequency  level       Receivers  don’t  look  as  even  as  in  small  room,  therefore,  one  receiver  from  each   side  of  the  class  is  analysed  through  the  different  frequencies.     Figure  15:  RT60  in  the  classroom  2A  at  receiver  1.  Frequency  250  Hz  to  16kHz     Looking  at  the  different  set-­‐ups  in  the  room,  the  differences  among  them  seems   similar  to  small  room  (Figure  15);  empty  and  furniture  room  very  similar  and  then,  big   contrast  when  adding  people.    It  can  be  observed  a  light  increment  in  RT  from  receiver  1   to   5.   However,   it   is   not   very   drastic,   and   then,   when   making   the   average   for   each   receiver  along  the  frequencies,  values  are  pretty  similar.     6.2.4.2 RT60  at  receiver  1  and  5:  analysis  at  each  setup     Figure  16  represents  how  much  RT  decreases  when  adding  new  absorptions  to   the   room   compared   to   “empty   room”.   Even   in   Figure   16   (the   one   in   the   overview   section)  could  show  differences  between  receivers,  then,  when  looking  at  RT  in  general   through  averages,  the  reduction  from  one  set-­‐up  to  another  is  similar.         0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00# Receiver1# Receiver2# Receiver3# Receiver4# Receiver5# Receiver6# Receiver7# Receiver8# Average'RT60'(from'500Hz'to'8kHz)' Empty# Furniture# Funiture+people# Abs.wall# Abs.ceiling# 0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 4" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Reciever%1% Empty" Furniture" Furniture+People" Abs_Wall" Abs_Ceiling" 0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 4" 125" 250" 500" 1k" 2k" 4k" 8k" 16k" RT60%&%Reciever%5% Empty" Furniture" Furniture+People" Abs_Wall" Abs_Ceiling"
  • 16.   13   Figure  16:  a)  RT60  in  the  classroom  2A  at  receiver  1;  b)  RT60  in  the  classroom  2A  at  receiver  5     6.2.5 Classroom  2B:  double  room  with  lower  absorptive  materials     Due   to   the   behaviour   similarity   between   Classroom   2A   and   2B,   not   result   are   shown  in  the  report.  Appendix  4  shows  the  results  for  classroom  2B  obtained  from  the   simulations.   6.2.6 Classroom  2A  and  2B:  comparison     The  reverberation  time  reduction  performs  similar  as  small  room  (Figure  17).     Figure  17:  a)  RT60  in  the  classroom  2A  at  receiver  1;  b)  RT60  in  the  classroom  2A  at  receiver  5     6.3 Speech  Transmission  Index  (STI)     The  second  parameter  to  be  investigated  is  the  STI.  For  STI  in  noise  simulations   a  background  noise  level  is  used  equal  to  Noise  Criteria  (NC35).     STI  (%)   0  -­‐30   30  –  45   45  -­‐60   60  –  75   75  -­‐  100   Intelligibility   Unintelligible   Poor   Fair   Good   Excellent   Table  5:  STI  in  relation  to  intelligibility  (Source:  [10])   6.3.1 Classroom  1A:  single  room  with  high  absorptive                 Figure  18:  STI  simulation  in  classroom  1A  for  different  setups.  The  STI  value  at  each  receiver  is  the  average   of  the  frequencies  from  250  Hz  to  16  kHz.   2.22# 2.26# 1.36# 1.12# 0.64# 2.85# 2.82# 1.56# 1.21# 0.65# 0.00# 0.50# 1.00# 1.50# 2.00# 2.50# 3.00# Em pty# Furniture#Funiture+people# Abs.w all# Abs.ceiling# Average#Room#A# Average#Room#B# 100# 6%# &37%# &51%# &68%# 2.41# 2.55# 1.52# 1.17# 0.77# 0# 20# 40# 60# 80# 100# 120# Em pty# Furniture# Furniture+People# Abs_W all# Abs_Ceiling# Avarage#RT60# %#reduce# 100# 107# %41# %49# %73# 2.02# 2.19# 1.18# 1.03# 0.54# 0# 20# 40# 60# 80# 100# 120# Em pty# Furniture# Furniture+People# Abs_W all# Abs_Ceiling# Avarage#RT60# %#reduce# 40# 45# 50# 55# 60# 65# 70# Receiver#1# Receiver#2# Receiver#3# Receiver#4# STI$in$Classroom$1A$ Empty# Furniture# Furniture#+#People# Abs_Wall# Abs_Ceiling#
  • 17.   14   Figure   18   shows   the   STI   improvements   by   adding   elements   with   higher   absorptive   properties.   STI   keeps   similar   when   adding   furniture   respect   to   the   empty   room  (regarded  as  a  “poor”  STI).  When  furniture  +  people  is  simulated,  STI  improves   significantly  respect  to  the  previous  situations  (regarded  as  a  “fair”  STI).  Moreover,  with   the  addition  of  a  high  absorbent  wall  or  high  absorbent  ceiling  the  highest  increases  of   the  STI  are  found  (regarded  as  a  “good”  STI).       Figure19:  STI  simulation  in  classroom  1A  at  receiver  1.     Figure   19   shows   how   STI   varies   from   frequency   250   Hz   to   16k.   The   three   bands  at  1,  2  and  4kHz  provide  the  75%  of  speech  intelligibility  content.  The  band  250   Hz  and  500  Hz  might  be  rejected  due  to  the  high  divergence  between  two  calculation   methods:  impulse  response  and  energy  echogram.  It  is  detected  a  tendency  of  increase   of  the  STI  from  lower  frequencies  to  higher  frequencies.     Appendix  3  shows  the  results  of  Figure  18  and  Figure  19  but  for  the  case  of  the   classroom  1B:  single  room  with  lower  absorptive  materials.  Due  to  the  similarity  of  the   STI  results  between  classroom  1A  and  1B,  the  same  result  description  can  be  applied  for   both.     6.3.2 Classroom  1A  and  1B:  analysis  comparison       Figure  20:  STI  differences  between  single  classroom  A  (high  absorptive  materials)  and  classroom  B  (lower   absorptive  materials).  The  STI  values  for  each  setup  is  an  average  between  the  four  receiver  placed  in  the   simulation.   Figure   20   shows   how   STI   increases   for   each   classroom   when   adding   more   elements   with   high   absorptive   characteristics.     Moreover,   Figure   20   shows   how   STI   differs  from  one  classroom  to  another  in  each  setup.  The  STI  differences  are  reduced   with  the  addition  of  absorptive  elements.         30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 80# 250# 500# 1k# 2k# 4k# 8k# 16k# Classroom(1A(+(STI(at(Reciever(1( Empty# Furniture# Furniture+People# Abs_Wall# Abs_ceiling# 5" 5" 3" 1" 2" 35" 40" 45" 50" 55" 60" 65" 70" Empty" Furniture" Furniture"+" People" Abs_Wall" Abs_Ceiling" STI$difference$between$Classroom$A$&$B$ Classroom"A" Classroom"B"
  • 18.   15   6.3.3 Classroom  2A:  double  room  with  high  absorptive  materials       Figure  21:  STI  simulation  in  classroom  2A  for  different  setups.  The  STI  value  at  each  receiver  is  the  average   of  the  frequencies  from  250  Hz  to  16  kHz.   Figure   21   shows   the   STI   improvements   by   adding   elements   with   higher   absorptive   properties.   STI   keeps   almost   similar   when   adding   furniture   respect   to   the   empty   room   (regarded   as   a   “poor”   STI).   When   furniture   +   people   is   simulated,   STI   improves   significantly   respect   to   the   previous   situations   (regarded   as   a   “fair”   STI).   Moreover,  the  addition  of  a  high  absorbent  wall  or  high  absorbent  ceiling  increases  the   STI  (regarded  as  a  “good”  STI).  Due  to  the  distribution  of  the  source  and  receivers  (see   Figure  6),  it  is  detected  a  “symmetry”  between  receivers  1-­‐4  with  receivers  5-­‐8.  These   two   groups   of   receivers   follow   the   same   patron   but   the   receiver   5-­‐8   have   lower   STI   values  respect  to  the  other  ones.       Figure  22:  STI  simulation  in  classroom  1A  at  receiver  1.   Figure  22  shows  how  STI  varies  from  frequency  250  Hz  to  16k.  The  three  bands   at  1,2  and  4kHz  provide  the  75%  of  speech  intelligibility  content.  The  band  250  Hz  and   500  Hz  might  be  rejected  due  to  the  high  divergence  between  two  calculation  methods:   impulse  response  and  energy  echogram.  It  is  detected  a  tendency  of  increase  of  the  STI   from   lower   frequencies   to   higher   frequencies.   The   addition   of   an   absorbent   ceiling   increase  significantly  the  STI  respect  to  the  rest  of  the  variations.     Appendix  5  shows  the  results  of  Figure  21  and  Figure  22  but  for  the  case  of  the   classroom  2B:  double  room  with  lower  absorptive  materials.  Due  to  the  similarity  of  the   STI  results  between  classroom  2A  and  2B,  the  same  result  description  can  be  applied  for   both.             35# 40# 45# 50# 55# 60# 65# 70# Receiver#1# Receiver#2# Receiver#3# Receiver#4# Receiver#5# Receiver#6# Receiver#7# Receiver#8# STI$in$Classroom$2A$ Empty# Furniture# Furniture#+#People# Abs_Wall# Abs_Ceiling# 25# 30# 35# 40# 45# 50# 55# 60# 65# 70# 75# 250# 500# 1k# 2k# 4k# 8k# 16k# Classroom(2A(+(STI(at(reciever(1( Empty# Furniture# Furniture+People# Abs_Wall# Abs_ceiling#
  • 19.   16   6.3.4 Classroom  2A  and  2B:  analysis  comparison       Figure  23:  STI  differences  between  classroom  2A  (high  absorptive  materials)  and  classroom  2B  (lower   absorptive  materials).  The  STI  values  for  each  setup  is  an  average  between  the  four  receiver  placed  in  the   simulation.   Figure  23  shows  how  STI  increases  for  each  classroom  when  adding  more   elements  with  high  absorptive  characteristics.    Moreover,  Figure  23  shows  how  STI   differs  from  one  classroom  to  another  in  each  setup.  The  STI  differences  are  reduced   with  the  addition  of  absorptive  elements.     7. Discussion     7.1 Sabine  equation     The   reliable   of   the   Sabine   equation   seems   very   sensible   to   absorption   values.   Sabine   equation   looks   quite   accurate   when   it   is   applied   for   simple   setups.   When   reverberation  time  is  simulated  for  the  “empty”  room  case,  CATT  simulation  and  Sabine   equation   don’t   produce   high   divergences   between   both   of   them.     By   contrast,   when   multiple  materials  and  elements  are  added  to  the  room,  the  reverberation  time  results   diverge  from  CATT  simulations  to  Sabine  equation.       Sabine  equation  is  not  very  accurate  for  complex  models.  In  those  cases,  Sabine   equation  calculates  better  reverberation  conditions  times  when  comparing  to  the  CATT   simulations.   It   could   result   in   a   wrong   perception   of   the   acoustic   environment   and   thereby,  in  a  wrong  acoustic  design.     7.2 Reverberation  time     As  it  is  mentioned  in  section  4,  the  addition  of  people  in  the  simulation  has  a   huge  effect  in  RT60  results.  Reverberation  Time  decrease  around  50%  when  people  is   included,  consequentiality,  it  is  possible  to  say  that  the  occupancy  rate  of  room  has  a   huge  influence  in  the  acoustic  environment.     The  other  most  influent  factor  that  contribute  to  the  benefit  of  the  reverberation   time,  it  is  the  addition  of  high  absorptive  surface.  Two  simulation  setups  (abs.  ceiling   and   abs.   wall)   show   the   positive   effects   in   reverberation   time   when   adding   high   absorptive  materials  to  the  room.  If  the  results  between  both  cases  are  compared,  some   significant  issues  are  found.  In  classroom  1  (single),  similar  reverberation  time  results   are   obtained   from   both   cases.   In   classroom   2   (double),   the   application   of   a   high   absorptive   ceiling   produce   better   reverberation   time   values   than   the   high   absorptive   wall.  The  reason  might  be  the  ratio  between  areas  (high  absorptive  area  to  room  floor).   In  the  classroom  1  (single),  the  ratio  between  areas  is  similar  for  both  cases.  In  contrast,   6" 5" 3" 2" 0" 35" 40" 45" 50" 55" 60" Empty" Furniture" Furniture"+" People" Abs_Wall" Abs_Ceiling" STI$differences$between$Classroom$A6B$ Classroom"A" Classroom"B"
  • 20.   17   the   ratio   of   areas   is   not   keep   equal   for   the   classroom   2;   the   ceiling   surface   is   much   bigger   while   the   wall   surface   is   kept   as   in   the   classroom   1   case.   That’s   why   ceiling   simulation   setup   produce   a   higher   positive   impact   in   the   classroom   2,   resulting   in   a   reverberation   time   between   0.5   and   1   while   the   wall   simulation   setup   results   in   a   reverberation  time  between  1  and  1.5.     Another   important   aspect   to   be   mentioned,   it   is   how   the   location   of   the   high   absorptive   material   can   influence   in   the   room.   For   the   case   of   the   kindergarten,   a   flexible   space   is   demanded   where   multiple   classroom   configurations   are   allowed.   A   flexible  space  means  high  variation  in  the  source  positions,  as  well  as,  in  the  position  of   the  receivers.  The  use  of  absorptive  wall  simulation  setup  might  not  contribute  to  the   flexibility   of   the   space,   so   the   teacher   (source)   might   have   sometime   the   absorptive   element  in  front  and  other  on  the  back.  For  that  reason,  it  might  be  more  optimum  to   place  the  high  absorptive  element  in  the  ceiling  so  their  influence  is  equally  distributed   along  the  room.     Comparing   option   A   (room   with   higher   absorptive   materials)   and   option   B   (room   with   lower   materials),   it   is   observed   that   when   high   absorptive   materials   are   included  in  the  simulations,  both  options  perform  similar.  The  only  difference  between   both  options  is  the  floor  material,  option  A  has  a  wood  floor  while  option  B  has  concrete   floor.   When   comparing   the   first   simulation   setups   (empty   and   furniture),   option   A   performs  better;  even  it  performs  better,  it  still  does  not  fulfil  the  requirements.  When   absorptive  elements  are  included,  the  differenced  between  both  options  is  reduced.  It   seems  that  materials  established  on  the  design  basis  may  reduce  their  influence  on  RT60   if  high  absorptive  materials  are  added  in  the  design.     In  classroom  2,  it  was  expected  symmetry  of  the  results  between  the  receivers  1-­‐ 4  and  5-­‐8  but  the  receivers  behave  in  different  way.  The  reason  might  be  due  to  an  issue   in  CATT  simulation  software  regarding  the  vector  normal  of  the  surface.  In  the  model,   there  is  an  open  partition  wall  that  limits  the  space  between  both  classes.  When  adding   the   material   properties   to   this   wall,   it   seems   to   be   added   to   one   face   instead   of   both   surfaces.  This  might  be  the  reason  that  breaks  somehow  room  model  symmetry.     7.3 Speech  Transmission  Index     The   highest   increase   of   STI   is   produced   when   the   people   or   high   absorptive   materials  are  implemented  in  the  simulations.     When  the  STI  is  evaluated  at  frequency  level,  it  is  possible  to  see  how  it  is  improved   from  lower  to  higher  frequencies.  This  improvement  might  have  special  influence  in  the   speech  intelligibility  because  the  three  bands  at  1,2  and  4kHz  provide  the  75%  of  speech   intelligibility  content.     When   looking   to   the   classroom   1,   not   huge   differences   between   the   absorptive   ceiling  and  wall  ceiling  are  found.  In  the  other  hand,  when  looking  to  the  classroom  2,  it   is  possible  to  say  that  the  use  of  an  absorptive  ceiling  produce  higher  benefits  in  the  STI   than  the  wall  absorptive  setup.  It  might  be  due  to  the  areas  ratio  between  the  absorptive   material  area  and  room  floor.       When  comparing  option  A  and  B,  it  is  possible  to  see  that  the  application  of  high   absorptive   materials   reduce   the   influence   of   the   materials   establish   as   a   base   for   the   room.      
  • 21.   18   7.4 Reverberation  time  &  STI     As  it  is  known,  STI  is  affected  by  background  noise  and  reverberation  time.  In   the  simulations  it  is  possible  to  observe  the  direct  relations  between  STI  and  RT0.  For  all   the  simulations  when  reverberation  time  is  reduced  in  the  same  way  STI  is  increased.     8. Conclusion     The   report   analysis   the   speech   intelligibility   in   a   kindergarten   by   two   measures:   reverberation  time  and  speech  transmission  index.  It  is  found  a  high  relation  between   the  occupancy  rate  of  the  room  and  the  quality  of  the  acoustic  environment.     Moreover,  the  use  of  high  absorptive  materials  is  a  good  strategy  to  achieve  a  good   acoustic   environment.   It   is   found   that   is   crucial   to   optimize   the   relation   between   the   absorptive  material  area  and  the  room  volume.  In  addition,  it  is  important  the  location   of  the  absorptive  materials  in  relation  to  the  function  of  the  space.  In  the  case  of  this   kindergarten,   a   flexible   space   is   demanded.   Then,   it   is   recommended   to   place   the   absorptive   elements   in   somehow   that   their   influence   is   equally   distributed   along   the   entire  room,  e.g.  absorbent  elements  in  the  ceiling.       To   achieve   the   standard   requirements,   the   use   of   high   absorbent   materials   is   required.  When  high  absorptive  elements  are  included,  the  materials  established  on  the   design  basis  reduce  their  influence  to  improve  the  acoustic  environment.  Then,  from  a   budget  perspective,  it  is  more  profitable  to  use  lower  absorptive  material  on  the  design   bases   and   include   high   absorptive   materials   in   specific   place   to   achieve   standard   requirements.     9. References                                                                                                                   1  Kirkergaard,   P.H.   (2004).   Building   and   Room   acoustics.   Structural   dynamics,   vol   10.   Aalborg  University.   2  Mealings,  K.T.,  Buchholz,  J.M.,  Denuth,  K.,  &  Dillon,  H.  (2014).  An  investigation  into  the   acoustics   of   a   open   plan   compared   to   enclosed   kindergarten   classroom.   Macquarie   University,  Australia.   3  CATT-­‐Acoustic  v9.0.  Introduction  manual.   4  SBi   230.   Guidelines   on   building   regulation   2010.   Danish   building   research   institute.   Aalborg  University.   5  Clausen T, Christensen KB, Lund T, Kristiansen J (2009) Self- reported noise exposure as a risk factor for long-term sickness absence. Noise Health 11(43):93–97   6  Faragher,   E.   B.,   Cass,   M.,   &   Cooper,   C.   L.   (2005).   The   relationship   between   job   satisfaction   and   health:   A   meta-­‐analysis.   Occupational and Environmental Medicine, 62,   112. 7  Marie  Louise  Bistrup,  Health  effects  of  noise  on  children  and  perception  of  the  risk  of   noise,  coordinated  by  the  National  Institute  of  Public  Health  Denmark,  2001.   8  Evans,   G.W.,   Bullinger,   M.,   Hygge,   S.,   Chronic   noise   exposure   and   psychological   response  a  prospective  study  of  children  living  under  environmental  stress. 9  Noise  from  Civilian  Aircraft  in  the  Vicinity  of  Airports  –  Implications  for  Human  Health,   Healt  Canada. 10  Everest,  F.A.,  &  Pohlmann,  K.C.  (2009).  Master  handbook  of  acoustics.  5th  Edition.  Ed.   Mc  Graw  Hill.   11  Anhert,  W.  &  Tennhardt,  H.P.  (2008).  acoustic  for  auditoriums  and  concert  halls,  in   Handbook  for  sound  engineers,  ed.  G.M.   12  Zeilstra,  G.J.  (2009).  Speech  intelligibility  in  classrooms.  A  new  mwasurement  method.   Master  thesis  Project.  Delft  University.