SlideShare a Scribd company logo
1 of 72
Download to read offline
 
 
 
 
 
 
 
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs 
 
 
 
 
 
 
Riskpulse  
MET 431/531 
Fall Semester 2015 
   
 
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs 
 
 
Project Team:    Dominique Watson 
Robert Fritzen 
Kai Funahashi 
 
Project Advisor:    Dr. David Changnon 
 
Company Sponsor:    Riskpulse 
Chicago, IL 
 
Company Advisors:    Mr. Jon Davis 
Mr. Mark Russo 
 
 
 
 
MET 431/531 
 
Fall Semester 2015 
 
Department of Geography 
Northern Illinois University 
DeKalb, IL 60115 
 
1 
Abstract 
High Impact Winter Weather Events (HIWWE) cause disruptions across various sectors.                     
This project examined the climatology of certain winter temperature thresholds associated with                       
HIWWE for major transport hubs across the contiguous United States. Using temperature data                         
gathered from National Weather Service (NWS) first­order stations (FOS), daily probabilities                     
and time series were created. The motivation of this project lies in the potential to assist                               
Riskpulse decision makers to improve transportation­related winter weather forecasting.                 
Improved HIWWE forecasting will help the transportation sector plan for, and avoid these                         
extreme events. This in turn will help to avoid delays or damage to the goods and their                                 
transportation means. The results for the temperature study show that winter temperatures break                         
thresholds (i.e ­10ºF, 0ºF, 9ºF) more frequently in the northern U.S., especially farther inland.                           
Coastal areas experience lower probabilities of exceedence. The timing of the peak probabilities                         
shifts from early January east of the Rockies to late January in the western Great Lakes.                               
Temporal analysis of temperature show a decreasing trend for most U.S. locations that                         
experience colder air. On the other hand, results for HIWWE disruptive surface conditions reveal                           
a need for a much more in­depth understanding of what constitutes a “high­impact” winter                           
weather event in terms of transportation disruptions at specific locations. Forecasting HIWWE                       
disruptive surface conditions is difficult because of several non­meteorological factors that affect                       
transportation disruptions across the transport hubs. During major El Niños years, most stations                         
experienced fewer cold days. 
2 
Keywords: High Impact Winter Weather Event, United States, El Niño, temperature, 
precipitation   
3 
Acknowledgements 
Foremost, we would like to express our sincere gratitude to our advisor, Dr. David                           
Changnon, for giving us insightful suggestions and comments, for encouraging us with so much                           
enthusiasm, and for his guidance throughout the duration of this study. Our sincere thanks also                             
goes to the National Weather Services offices who took the time to read our emails and in return,                                   
took the time to respond back to us with insightful and descriptive responses that were utilized in                                 
this study. Last but not least, we would like to thank Mark Russo and Jon Davis from Riskpulse,                                   
for supplying this project idea and for allowing us to work alongside them as part of our time for                                     
this research project.   
4 
Table of Contents 
   
5 
I. Introduction 
Winter weather often presents a significant number of hazards to the transportation                       
sector, but some of the hazards are less known to the general public. While most individuals                               
associate heavy snow, ice storms, and blizzard conditions with transportation issues, businesses                       
must also consider the issue of temperatures affecting the quality of the goods being transported.                             
Riskpulse produces short and long term forecasts for clients, particularly those in the agricultural                           
and energy industries. They have presented the challenge of studying the effects of snow and                             
cold temperatures as it pertains to the transportation sector, and to generate a climatology of                             
these events to assist in future forecasting. High Impact Winter Weather Events (HIWWE)                         
generate all forms of hazards for the logistics industry and a climatology of these events can                               
assist Riskpulse in improving their forecasts. 
A. Background and Literature Review 
i. Impact analyses 
There are many ways that winter events can impact transportation systems, particularly                       
the ability to transport commercial goods. Most impact analyses focus on road and rail surface                             
conditions that suppress the ability of transportation means to function. Most literature on winter                           
weather hazards focus solely on surface conditions causing transportation disruptions. HIWWE                     
affects both the transportation mean and the goods that are being delivered. 
6 
 
Fig. 1.1.  ​An Amtrak blasts through a large snow drift, which can be potentially dangerous to rail logistics 
(Bloomington Pantagraph) 
The immediate effect of winter weather on surface conditions is treacherous roadways                       
and railways. The main concern of decision makers is the immediate disruption of transportation                           
that winter precipitation causes. These disruptions can be felt through various sources, such as                           
highway, air, and rail delays, of which the worst can be considered a traffic “paralysis” (Rooney                               
1967). An example of “paralyzed” traffic can be seen on the 22nd and 23rd of December 2004,                                 
after a winter storm that tracked over the Ohio River Valley dropped 29 inches of snow in                                 
localized areas. This winter storm also brought traffic to a standstill, especially because holiday                           
travels yielded much greater traffic during those two days (Changnon and Changnon 2005).                         
Other disruptions that occur from heavy snow include ice accumulations within the wheels and                           
the braking system of vehicles, hindering their ability to regulate speed (Changnon 2006). Winter                           
weather also causes accidents in both roadways and railways. 
7 
 
Fig. 1.2.  ​A traffic jam in downtown Chicago caused by a major snow event in 1967 (Illinois State Water Survey) 
 
Fig. 1.3.  ​A collision between a semi tractor trailer and an Amtrak train in Kirkwood, MO. (KMOX) 
 
8 
While snow can make transportation difficult or even impossible given enough                     
accumulation within a given time span, ice accumulations make transportation treacherous even                       
quicker. When liquid rain falls through temperatures below freezing, it solidifies on contact with                           
surfaces that are below freezing. This freezing rain, even if the accumulations are minor, can                             
quickly cause traffic accidents and casualties (Rauber et al. 2001). With enough snowfall or                           
prolonged cold temperatures, freezing of railroad switches can occur (Changnon 2006). 
 
Figure 1.4.​ Two crew members dig out a rail switch that froze switches closed. This problem was caused by snow, 
ice, and freezing temperatures​ ​(Changnon, 2006) 
9 
 
Figure 1.5. ​A train entering an overpass guardrail that, after a freezing rain event, got covered in ice along with 6 
inches of snow that fell afterward, further complicating rail passage (Changnon, 2006) 
 
 
Figure 1.6. ​Wyoming blizzard on April 16, 2015 caused a 70­vehicle pileup. (NBC) 
 
In addition to the transportation disruptions that HIWWE can inflict by deteriorating                       
surface conditions with snow, HIWWE can also include extreme cold temperatures that can                         
10 
impact the quality of goods. By improving forecasts of extreme cold outbreaks, damage to                           
goods, that are susceptible to these extreme temperatures, can be avoided. 
ii. Intensity Scales and Climatological Analyses 
General climatologies for winter weather events have been studied. From a storm                       
intensity standpoint, several variables can be assessed for climatological frequencies.                   
Additionally, over a range of years, winter storms can be put on a probability distribution, and                               
objective thresholds of storm intensity can be calculated with respect to deviations from the                           
normal distribution mean. For example, Zielenski (2002) developed a classification scheme for                       
winter storms using intensity and duration data of Nor’easter winter storm systems. The intensity                           
was measured by central pressure difference, pressure gradients, time rates of pressure change,                         
and the duration was measured by storm velocity. This classification scheme is similar to the                             
Saffir­Simpson Hurricane Wind Scale (SSHWS) because both classify storms by intensity.                     
Although these scales are convenient for classifying the storm itself, it is not an accurate measure                               
for storm impacts upon a location because storm intensity only addresses the ​potential impact                           
that the storm has on different locations. 
On the other hand, Rooney (1967) developed a classification scheme based on the                         
magnitude of a storm’s impact or disruption, particularly from snow hazards. First order                         
disruptions are considered “paralyzing,” which include the following within a city: Stalled                       
traffic; major civic, cultural, and athletic event cancellations or postponements; closure of                       
schools, retail establishments, and factories; power and communication failures (Rooney 1967).                     
The intensities diminish with higher order disruptions until the fifth order “minimal” disruptions,                         
which receive no press coverage for any affected city activities (Rooney 1967). This scale places                             
11 
the focus outside of the storm itself, categorizing the disruptions it causes regardless of storm                             
intensity. 
Other scales incorporate both disruption indices and storm intensity to provide                     
forecasting insight on potentially disruptive storms. For example, Kocin and Uccellini (2004)                       
developed the Northeastern Storm Intensity Scale (NESIS), a synoptic scale intensity index                       
based on the storm snowfall and estimated population of affected areas. On a more localized                             
scale than the NESIS, Cerruti and Decker (2011) formulated the Local Winter Storm Scale                           
(LWSS) based off of winds, snow and ice accumulations, and low visibilities with respect to                             
climatological means of the local area. This potential disruption, matched with local                       
susceptibility to winter hazards, can estimate the “realized disruption” of the area (Cerruti and                           
Decker 2011). Indices like the NESIS and the LWSS are useful tools in predicting the potential                               
disruption of HIWWE to specific areas. 
Another winter weather aspect that can potentially have damaging impacts is extreme                       
cold temperatures. Cold outbreaks are primarily focused in the northern half of the United States,                             
since winters are generally colder in the higher latitudes. Most cold temperatures are addressed                           
in terms of health and safety because those affected tend to fall victim to the cold through                                 
conditions such as hypothermia (Spencer 2009). Extreme cold temperatures are generally                     
associated with respect to normal distributions (e.g. means, record highs, and record lows) as                           
they relate to how a population is susceptible to extreme cold differ between climate regions. 
iii. Other Considerations 
There are other considerations to make while gathering climatological data for HIWWE.                       
First, with the current quality of weather observations, it is difficult to create an accurate measure                               
12 
of freezing rain accumulations using National Weather Service (NWS) first­order stations (FOS);                       
a close alternative to FOS observations are forensic analyses of ice damage in the aftermath of an                                 
event (Changnon 2004a). 
Second, in addition to the health and safety effects of extreme cold outbreaks, it is                             
important for businesses to consider how cold temperatures can affect the quality of the products                             
that they are shipping. These products will most likely have a set temperature tolerance, which                             
will not change even in different climate regions. 
B. Main Focus of Study 
This study will analyze two aspects of HIWWE: Precipitation and temperature. Winter                       
precipitation will affect surface conditions and subsequently, the ability for transportation means                       
to enter or exit major transport hubs. Understanding the precipitation climatology for these hubs                           
can help determine the probability that transportation means will not be able to enter or exit the                                 
region. Extreme winter temperatures will also be analyzed due to their nature to impact the                             
quality of the goods being transported. The goal of analyzing these temperature and precipitation                           
climatologies is to assist decision makers in preventing delays or loss of goods. In other words, if                                 
HIWWE are expected in an area, decision makers should not authorize transportation through                         
that area due to high risk of the transportation mean and potential damage to the goods being                                 
transported. HIWWE affects individuals in various ways; this study on the effects of HIWWE on                             
the transportation sector is only a piece of the winter weather spectrum. 
13 
II. Approach 
FOS observed temperature data were collected from the Midwestern Regional Climate                     
Center (MRCC) for the period of the study (1950 ­ 2014). Observed temperature data were then                               
fed into a program which analyzed the daily maximum and minimum temperatures for the period                             
of record to test for the set temperature thresholds. This program then used the information to                               
generate a probability table and a time series table for the individual station. 
Missing values in the data were identified and substituted using other nearby FOS data                           
and cooperative observer (COOP) station data. Stations that contained a considerable amount of                         
missing data were mainly found in the central United States in this study. In Detroit, Michigan,                               
DET was used to substitute missing data from the DTW station from October 1, 1950, through                               
November 30, 1958, because it was the closest station with high­quality data. For Kansas City,                             
MCI also contains missing data from October 1, 1950, through September 30, 1972, as well as                               
between May 31, 1996, through October 1, 1996. Therefore, data from the MKC station filled in                               
the gaps of missing data for MCI. In Chicago, Illinois, Midway 3SW was used to fill in missing                                   
data from for MDW from ​September 2, 1980, through April 30, 2015​. 
The selection of the stations for this project was primarily based on regional population,                           
however station selection also considered the importance of major transportation and rail hubs in                           
the area. A list of 36 stations are selected for this project (Appendix A) and are shown in Figure                                     
2.1. Collaborations with Riskpulse helped to fine tune the selections and identify the temperature                           
thresholds. While most stations are susceptible to HIWWE, others are not commonly known to                           
14 
be impacted by winter weather. These stations are still included as this primary focus of this                               
study is on the overall impact of winter weather across the CONUS. 
After selecting the 36 stations, email messages were sent to the National Weather Service                           
office that forecasted for the region of interest. The email was a query to ask for expert                                 
knowledge as it pertains to what defines a high impact winter weather event for the given region.                                 
The primary focus of the email was to determine a general 24­hour total snowfall amount that                               
dictates a HIWEE for the given location. 
 
Figure 2.1.​ A map of the 36 selected stations for this study 
A. Winter Temperatures 
Temperature threshold values that were considered after receiving insight from Riskpulse                     
are the following: 9˚F, 0˚F, and ­10˚F. Exposure to temperatures within these thresholds affect                           
the quality of goods (e.g. Wishbone dressing freezing and exploding at 9˚F, or Budweiser beer                             
bottles exploding below ­10˚F) in a manner that would be unacceptable to recipients. These                           
15 
temperature thresholds mainly focus on how temperatures may affect the cargo being                       
transported, as opposed to how it may affect transportation means alone since low temperature                           
extremes are not considered major components that critically hinder rail operations. Issues that                         
may arise due to cold temperatures are usually resolved in a short time period (Changnon, 2006). 
Once the temperature data were collected, they were analyzed to determine a probability                         
of occurrence for each day in the defined winter season (October 1st through April 30th) that one                                 
of the selected temperature thresholds would be crossed. To assist Riskpulse decision makers, a                           
time series analysis was performed to see if extreme winter temperatures were changing in                           
frequency over time. 
Additionally, temperature data for strong El Niño winters were analyzed, identifying                     
correlations between El Niño events and probability of exceeding temperature thresholds, if any.                         
A major El Niño may indicate lower than average probability of exceedance because previous                           
major El Niño winters exhibited positive temperature anomalies. This analysis was useful in                         
producing a general insight in temperatures for the 2015­16 El Niño winter due to the high                               
potential of the winter of 2015­16 being a record setting El Niño winter. 
B. Surface Conditions 
The other aspect of HIWEE that needed to be analyzed were the effects of adverse                             
surface conditions that can cause disruptions to the transportation sector. Winter weather that                         
typically causes surface conditions to deteriorate include heavy snowfall, blizzard conditions,                     
and ice. Because ice accumulation is extremely difficult to analyze in the climatological record,                           
this study focused on heavy snow events. The goal of this part of the study was to determine a                                     
16 
regional threshold that could be used to signify a high impact event for the given station. The                                 
study could have considered the standard National Weather Service definition of 6” of snow in a                               
24 hour period; however, it was determined that reaching out to the individual NWS offices for                               
the 36 stations would offer a stronger scientific approach. An inquiry sent to the NWS offices for                                 
this study asked for a daily snowfall intensity (in inches per day) that would cause a major event                                   
for the region. 
III. Results 
This study analyzed HIWWE for 36 stations throughout the continental United States for                         
the period of 1950­2014 (i.e. winters of October 1, 1950 through April 30, 1951, up through                               
October 1, 2014 through April 30, 2015). For each station, the number of times that daily                               
observed minimum temperatures experienced a selected threshold of 9ºF, 0ºF, and ­10ºF were                         
determined using the climatological information gathered from the MRCC. 
A. Temperature Thresholds and Spatial Patterns 
Each of the 36 stations were analyzed independently using a program developed by the                           
research group. This program ensured that only high­quality data were analyzed. After the data                           
were cleaned, they were analyzed to count the number of times an individual threshold was                             
crossed for the given station. From these data, a series of maps were created to illustrate spatial                                 
patterns of the number of times a given threshold was crossed for the period of the study. 
17 
 
Figure 3.1.​ A map of the United States. Contours show the number of times the 9ºF threshold was crossed for the 
study period (1950­2014). 
 
 
Figure 3.2​ illustrates the 
temperature threshold 
analysis for Cincinnati, Ohio. 
The 9ºF threshold was broken 
716 times, the 0ºF threshold 
249 times, and the ­10ºF 
threshold 43 times. 
The 200­times contour is indicative of frequent low temperatures (Figure 3.1). Any                       
location at or above the 200­times contour experienced an average of at least three days a year in                                   
which temperatures fell below the 9ºF threshold. Moving south to north, these frequencies                         
increase. For example, Cincinnati, Ohio (CVG), experienced temperatures at or below 9ºF a total                           
of 716 times between the 1950 and 2014 winter seasons (Figure 3.2). Figure 3.1 illustrates that                               
locations south of the Louisiana­Arkansas border, and areas west of the Cascades Range rarely                           
18 
experience minimum temperatures at or below the 9ºF mark. Over the Rocky Mountain Range,                           
contours are less likely to be climatologically accurate as the small­scale topographic differences                         
impact the frequencies when thresholds are met or exceeded. 
 
Figure 3.3.​ A map of the United States. Contours show the number of times the 0ºF threshold was crossed for the 
study period (1950­2014). 
 
 
Figure 3.4.​ illustrates the 
temperature threshold 
analysis for Helena, Montana. 
The 9ºF threshold was broken 
2,546 times, the 0ºF threshold 
1,293 times, and the ­10ºF 
threshold 598 times. 
For most U.S. locations, the 0ºF threshold has generally been broken about half as many 
times as the 9ºF threshold was broken. In other words, the likelihood of temperatures falling at or 
19 
below 0ºF tends to be  much lower than the likelihood for 9ºF (Figure 3.3). Spatial trends are 
very similar between 0ºF and 9ºF exhibiting a maximum over the central U.S. east of the 
Rockies. For instance, the 5­times contour in Figure 3.3 closely resembles the 50­times contour 
in Figure 3.1. Areas north of the 100­times contour will experience an average of one, if not two, 
0ºF days in a given year. For example, temperatures in Helena, Montana (HLN), dropped below 
0ºF a total of 1,293 times between the 1950 and 2014 winters, which makes an average of about 
20 times per year (Figure 3.4). Along the East Coast from Rhode Island southward, the average 
number of days with a minimum temperature at or below 0ºF is less than once per winter. This 
same area experienced 3 or less days a winter with minimum temperatures of 9ºF or below.  
 
Figure 3.5.​ A map of the United States. Contours show the number of times the ­10ºF threshold was crossed for the 
study period (1950­2014). 
20 
 
Figure 3.6.​ illustrates the 
temperature threshold analysis 
for Bismarck, North Dakota. The 
9ºF threshold was broken 4,413 
times, the 0ºF threshold 2,757 
times, and the ­10ºF threshold 
1,360 times. Bismarck has 
broken all three temperature 
thresholds more frequently than 
any other station analyzed in this 
study. 
 
Figure 3.7.​ illustrates the 
temperature threshold analysis 
for Pittsburgh, Pennsylvania. 
The 9ºF threshold was broken 
890 times, the 0ºF threshold 210 
times, and the ­10ºF threshold 26 
times. 
As was the case with Figure 3.2, the contours continue to be placed farther north for the 
­10ºF threshold (Figure 3.5). Since ­10ºF is considered an “extreme” cold event (i.e. Wind Chill 
Warnings can be in effect when temperatures are at or below ­10ºF), even a single occurrence 
can severely impact most outdoor activities. Areas north of the 50­times contour line experience 
on average at least one ­10ºF day every year. The north­central United States still shows very 
high frequencies, including areas north and west of the Ohio River, north of the Missouri River, 
and into the Rocky Mountains. ­10ºF events occur on average more frequently than once a year 
in this region. On the other hand, temperatures do not fall at or below ­10ºF as frequently over 
areas east of the Indiana­Ohio border and south of the Colorado­New Mexico border, as is the 
21 
case with Pittsburgh, Pennsylvania (PIT) (Figure 3.7). An extreme example is Bismarck, North 
Dakota (BIS), where the temperature dropped to or below ­10ºF a total 1,360 times over the 65 
studied winters, an average of about 21 times per year (Figure 3.6). 
While frequency analyses of the three temperature thresholds aid forecasters in gaining                       
an insight of where extreme winter temperatures occur, creating daily probability distribution                       
charts of the temperature exceeding each thresholds will enable these forecasters to make                         
specific decisions on avoiding extreme temperatures that may damage certain goods. 
For each threshold, the daily probability of exceeding the temperature threshold was                       
calculated using the daily frequency and the 65­year range. This calculation reveals the                         
probability, based on observation history, that a certain day will observe a certain temperature.                           
For example, temperatures crossed the 9ºF threshold on January 18th a total of 18 times over the                                 
65­year January 18ths between 1951 and 2015 in Cincinnati, Ohio (CVG). This means that based                             
on the observed temperatures at CVG, there is a 27.69% chance that a given January 8th will                                 
experience temperatures at or below 9ºF (Figure 3.8). This probability analysis was performed                         
for all cities that observed temperatures breaking 9ºF, 0ºF, or ­10ºF thresholds. 
 
Figure 3.8.​ illustrates the 
probability of breaking any of 
the three temperature thresholds 
for Cincinnati, Ohio. 
22 
 
Figure 3.9.​ illustrates the 
probability of breaking any of 
the three temperature thresholds 
for Helena, Montana. Note the 
secondary spike in high 
frequency of cold temperatures 
in late February­early March. 
 
Figure 3.10. ​ illustrates the 
probability of breaking any of 
the three temperature thresholds 
for Bismarck, North Dakota. 
Note that Bismarck contains the 
highest probability of breaking 
the temperature threshold than 
any of the 36 stations. 
 
Figure 3.12.​ illustrates the 
probability of breaking any of 
the three temperature thresholds 
for Pittsburgh, Pennsylvania 
The probability distributions were then used to identify the timing for the peak                         
probability of exceedance. The peak was determined by identifying the maximum probability of                         
23 
exceedance for each threshold. If there were multiple days with the same maximum probability,                           
the peak day was calculated by taking an average of the days that exceeded the threshold.  
Using the calculated peak probability of exceedance, a map was created to cluster data                           
with similar results. In this case, hubs with similar peak probabilities were clustered (Figure                           
3.11). Across the U.S., temperatures fall at or below the thresholds most frequently between                           
January 3rd and February 1st. Most of the central United States, typically along and east of the                                 
Rockies and including the Missouri Valley, experience their peak cold temperatures at the                         
beginning of a year, within the first two weeks of January. An example of a peak frequency                                 
within the first two weeks of the new year is Helena, MT (Figure 3.9) Areas to the north and east                                       
of this region typically follow afterwards, peaking in mid to late January, as is the case for                                 
Bismarck, ND (Figure 3.10) or Cincinnati, OH (Figure 3.8). A small band of the south­central                             
and south­east United States station was found to experience cold temperature maximums in mid                           
to late January. The Upper Midwest experienced its peak frequency around the end of January.                             
While some stations experienced maximum values in early February such as Milwaukee, WI,                         
with its peak frequency on February 4th and Minneapolis, MN, with its peak threshold on                             
February 1st, several other stations never experienced any extreme winter temperatures below                       
the 9ºF, 0ºF, or ­10ºF thresholds. For this reason, areas outside of the existing contours either                               
experienced a peak after February 1st or did not experience a peak at all (Figure 3.11). 
This analysis in peak probability of exceedance is useful for forecasters to identify when                           
would statistically be the least ideal day to allow shipments of goods that are susceptible to                               
extreme cold damage. A peak in cold temperatures on January 20th for a hub, for example, will                                 
24 
allow decision makers to be more informed in advance to be prepared for potential shipment                             
delays around January 20th. 
 
Figure 3.11.​ A map of the United States. Interpolated contour lines show the date at which the three temperature 
thresholds were crossed most frequently. Areas outside of the contours peak after February 1st, or not at all. 
B. Winter temperature and temporal changes 
In addition to spatial trends and probabilities for HIWWE temperatures, temporal                     
changes in the frequency of these extremes were analyzed over the 65­year period. The goal of                               
the analysis was to determine if the number of days where temperature thresholds occur are                             
changing over a long period of time and, if so, by how much. A time series analysis for stations                                     
where the 9ºF threshold exceeded 50 counts during the 65­year period was developed by                           
evaluating the winter number of days each year during the 65­year period. The analysis was then                               
analyzed for an average rate of change, peak decades, and statistical significance using r^2                           
values and t­scores of a normal probability distribution. 
25 
One example of a significant decrease is exhibited in Bismarck, ND between 1950 and                           
2014. Bismarck is losing threshold days over time: After a cool decade between 1955 and 1965,                               
a decreasing trend began and persisted throughout the analysis period. The trend line analysis for                             
Bismarck shows a loss of about 1 threshold day every 3.5 years (Figure 3.12). Cities like Helena,                                 
Montana (HLN), Milwaukee, Wisconsin (MKE), and Minneapolis­St. Paul, Minnesota (MSP),                   
observed a similar trend (see Appendix D). 
Figure 3.12.​ illustrates the 
time series of thresholds for 
Bismarck, ND. The statistical 
r­value of 0.314 for these 
curves shows up to 99% 
significance in temporal 
trends in frequencies of 
broken thresholds, however 
there has been a decreasing 
trend on average of 1 
threshold day every 3.5 years. 
On the other hand, Cleveland, OH has generally shown a slower decrease in the number                             
of threshold days over the period of the study. Similar to other regions in the Midwest, there was                                   
a peak in the threshold counts in the late 1970s followed by a steady decline over the rest of the                                       
analysis period (Figure 3.16). A trend analysis of these curves shows that Cleveland has lost                             
about one threshold day per 20 years, which is less evident than the trends in Bismarck, ND.                                 
Cleveland observes a high variance in the annual count for breaking thresholds. Localized                         
maxima indicate the strong variability in the data juxtaposing a weak long­range trend. Cities                           
like Detroit, Michigan (DTW), Denver, Colorado (DEN), and Pittsburgh, Pennsylvania (PIT),                     
observed similar weak trends. 
26 
 
Figure 3.13. ​illustrates the 
time series of thresholds for 
Cleveland, OH. Cleveland 
shows a negative trend with 
an r­value of 0.01206 for the 
9ºF threshold, which yields 
little to no temporal trend in 
frequencies of broken 
thresholds over time. In other 
words, the trend is a 
decreasing slope an average 
of about 1 threshold day 
every 20 years. 
It is noteworthy that the hubs with weak, statistically insignificant trends clustered                       
together: Cleveland, OH, Detroit, MI, Pittsburgh, PA, and Cincinnati, OH. Perhaps the location                         
and, thus, climate region affects how drastic the long­range changes are. Moreover, strong,                         
significant trends are clustered as well: Milwaukee, WI, Minneapolis­St. Paul, MN, Bismarck,                       
ND, and Sioux Falls, SD. Further research is needed to determine what is causing the overall                               
decrease in frequency across the entire region. 
By performing a time series analysis on each of the stations for which there was                             
sufficient data to do so, decision makers can be better informed of how the probabilities derived                               
in the earlier section may be changing over time. Almost every station for which the analysis was                                 
performed on saw a decreasing trend in the number of threshold days (Table 3.14). However,                             
Detroit, MI (DTW) observed a neutral trend, and Kansas City, MO (MCI) observed a positive                             
trend. As stated earlier, perhaps the neutral trend in Detroit is similar to the statistically                             
insignificant slow decrease in frequency of exceedance in Cleveland, OH (CLE) because they are                           
in similar regions. The positive trend in Kansas City, MO (MCI) may be a result of poor data, as                                     
27 
discussed earlier. Of course, further research must be conducted in order to thoroughly examine                           
the factors that affect the magnitude of these long­range temporal changes. 
Station  Trend  Peak Decade  Rate  r​2 
t​­score  Statistical 
Significance 
HLN  Decrease  1968­78  1 day every 5 years  0.0592  1.9909  ~95% 
DEN  Decrease  1955­65  1 day every 25 years  0.0121  0.8784  ~80% 
SLC  Decrease  1970­80  1 day every 9 years  0.0770  2.2917  ~95% 
CLE  Decrease  1975­85  1 day every 20 years  0.000145  0.09573  < 75% 
CVG  Decrease  1975­85  1 day every 20 years  0.0109  0.8348  ~80% 
PIT  Decrease  1975­85  1 day every 20 years  0.00904  0.7583  ~75% 
BIS  Decrease  1955­65  1 day every 3.5 years  0.0986  2.6251  ~99.5% 
DTW  Neutral  1975­85  Neutral  0.00462  0.5410  < 75% 
FSD  Decrease  1955­65  1 day every 6.5 years  0.0493  1.8072  ~97.5% 
ICT  Decrease  1975­85  1 day every 12.5 years  0.0600  2.0058  ~97.5% 
IND  Decrease  1975­85  1 day every 16 years  0.0166  1.0325  ~85% 
MCI  Positive  1975­85  1 day every 18.5 years  0.0177  1.0651  ~85% 
MDW  Decrease  1975­85  1 day every 10 years  0.0350  1.5109  ~95% 
MKE  Decrease  1975­85  1 day every 5 years  0.1176  2.8983  ~99.75% 
MSP  Decrease  1975­85  1 day every 5 years  0.0784  2.3150  ~99% 
OKC  Decrease  1975­85  1 day every 25 years  0.0515  1.8501  ~97.5% 
STL  Decrease  1975­85  1 day every 11.5 years  0.0534  1.8845  ~97.5% 
OMA  Decrease  1975­85  1 day every 14 years  0.0199  1.1304  ~90% 
Table 3.14. ​contains a list of the 18 stations for which time series analysis were performed on and the trend in the 
number of threshold days for those stations. Columns indicate for each hub the trend, peak decade of frequency of 
exceedance, the rate at which this trend is occurring, r​2​
 values, ​t​­scores, and statistical significance of trend. 
 
Similarities in the threshold counts were analyzed. Most stations saw a period of                         
significant cold temperatures in the mid to late 1970’s followed by a trend of decreasing                             
threshold days. Similarly, most stations saw a minima in the early 1980s as well as the early and                                   
late 1990’s. A majority of the stations saw a recent increase in threshold counts in the early                                 
2010’s, which could suggest a large­scale control may be affecting temperatures across the                         
CONUS. 
C. Major El Niño Events 
Major El Niño­Southern Oscillation (ENSO / El Niño) events occur about once every                         
decade and are generally associated with warmer temperatures and lower amounts of snowfall                         
28 
for most of the United States (Figure 3.15). This study looked at the effects of major El Niño                                   
years on the number of temperature threshold exceedances for the year in which the event                             
occurred. Because 2015 is expected to become the largest El Niño year on record, examining                             
past major El Niño years can provide great insight into what the winter season of 2015­16 may                                 
hold. 
 
Figure 3.15. ​Average temperature rankings during El Niño events, adapted from the Climate Prediction Center 
(CPC). ​Left​, average temperature rankings from October through December for El Niño  winters 1941­42, 1957­58, 
1963­64, 1965­66, 1972­73, 1982­83, 1987­88, 1991­92, and 1994­95. ​Right​, average temperature rankings from 
December through February for El Niño  winters 1940­41, 1957­58, 1965­66, 1972­73, 1982­83, 1986­87, 1987­88, 
1991­92, and 1994­95. Note how El Niño effects are most prevalent inland and over the northeastern part of the 
Rocky Mountains and the north central plains. 
 
To analyze the effects of strong El Niño years on the temperature threshold count, the                             
individual years needed to be identified. To do this, CPC historical records were analyzed to                             
determine the years with the strongest El Niños. The records determined that the winters of                             
1957­58, 1972­73, 1982­83, 1991­92, and 1997­98 contained the highest values of El Niño sea                           
surface temperature anomalies, with 1982­83 being the largest on record prior to 2015. To                           
analyze the effects of the major El Niño years on the temperature thresholds, a localized analysis                               
was performed on the time series data by examining the five with major El Niño events to test                                   
for local minima (­), maxima (+), or neutral (0) counts of temperature thresholds (Table 3.16). 
29 
While El Niño years typically bring warmer temperatures and therefore a lower amount                         
of threshold crossing (63 of 90 stations, it is not the only variable in forecasting a season. The                                   
winter of 1972­73 is a peculiar example of how a forecast can fail even when there was certainty                                   
for a strong El Niño winter. Numerous stations actually saw temperature threshold maxima for                           
that season. 
Station  1957­58  1972­73  1982­83  1991­92  1997­98 
Helena, MT  ­  0  ­  0  ­ 
Denver, CO  ­  +  ­  ­  0 
Salt Lake City, UT  ­  +  ­  ­  0 
Cleveland, OH  0  ­  ­  ­  ­ 
Cincinnati, OH  +  0  ­  ­  ­ 
Pittsburgh, PA  0  +  ­  +  ­ 
Bismarck. ND  ­  ­  ­  ­  0 
Detroit, MI  0  ­  ­  ­  ­ 
Sioux Falls, SD  ­  ­  ­  ­  ­ 
Wichita, KS  ­  0  ­  ­  ­ 
Indianapolis, IN  0  ­  ­  ­  ­ 
Kansas City, MO  0  +  ­  ­  ­ 
Chicago, IL  0  ­  ­  ­  ­ 
Milwaukee, WI  0  ­  ­  ­  ­ 
Minneapolis, MN  ­  0  ­  ­  ­ 
Oklahoma City, OK  ­  0  ­  ­  0 
St. Louis, MO  0  ­  ­  0  ­ 
Omaha, NE  0  +  ­  ­  ­ 
Table 3.16. ​contains a listing of the stations where time series analysis were performed and shows how major El 
Niño years impacted the total amount of temperature thresholds crossed. Red squares indicate years where a 
localized threshold minima occurred, blue squares indicate a localized maxima, and white squares indicate a neutral 
case where no minima or maxima was found. 
 
A possible answer to how the 1972­73 winter was different lies within the North Atlantic                             
Oscillation (NAO). For the United States, the NAO is the other major contributor for seasonal                             
variation of weather events. Unlike ENSO that contains warm and cold phases, the NAO                           
contains positive and negative phases, each with short term modifications to the weather for the                             
United States. The NAO typically reverses these phases numerous times during a given year,                           
30 
however, in some cases, it can remain in a specific phase for an extended period of time,                                 
affecting the teleconnection range of other periodic climate oscillations like ENSO.  
To determine if the NAO had any potential effect on the winter temperature anomalies                           
for the winter of 1972­73, the CPC NAO historical records were analyzed to determine the                             
changes of phase (or lack thereof) in NAO for the given winter season.  
Season  NAO Phase Changes  Table 3.17. ​describes changes in the NAO phase for 
winter seasons for each major El Niño event 
1957 ­ 58  Changed from negative to positive 
1972 ­ 73  Continually positive throughout season 
1982 ­ 83  Changed from negative to positive 
1991 ­ 92  Reverses numerous times during season 
1997 ­ 98  Reverses numerous times during season 
 
The winter season of 1972­73 showed a continually positive NAO phase during a strong                           
El Niño event (Table 3.17). Positive NAO events cause regional low pressure systems to develop                             
in the northern Atlantic Ocean and in turn, this can cause a persistent trough pattern to develop                                 
over regions of the Northern Hemisphere. Since the NAO remained positive throughout the                         
entire season, the trough pattern could have persisted throughout a long period of the season                             
causing a cold air outbreak across regions of the United States. It still remains difficult to be                                 
certain that a continually positive NAO can override a strong El Niño event, but interactions                             
between positive NAO and  strong El Niño events should be explored further. 
Even with the NAO phase in mind, most stations in 1972­73 still saw a warmer than                               
average season. The winter of 1982­83 was the second strongest El Niño analyzed, and all                             
analyzed stations recorded a significant minimum with regards to thresholds. The strongest El                         
Niño year on record (1997­98) recorded a similar pattern, however some stations saw a neutral                             
31 
pattern with regards to threshold counts. This points to the important notion of how El Niño is                                 
only one of many potential seasonal controls that need to be studied in the future. Given the                                 
historical record of major El Niño events however, it can be assumed that 2015­16 winter season                               
will likely see a significant minimum in winter temperature thresholds being broken. Though El                           
Niño typically controls the temperatures during major years, it should still be noted that outlier                             
seasons are still possible during these seasons due to other teleconnections (1972­73, Table                         
3.16). 
D. Surface conditions and NWS insights 
Useful input from several National Weather Service Offices was taken into consideration                       
when evaluating the surface conditions that would be deemed a High Impact Winter Weather                           
Event. Societal impacts as well as the complexity of determining local criteria for each hub was                               
also discussed. Due to the complexity of winter storms, many offices also expressed how                           
difficult it is to determine exactly what would be considered a HIWWE for the specific areas. 
The New York City NWS stated that m​ost criteria for impact are set up by NWS                               
warnings. In the New York metropolitan area and most areas, 2 inches is determined to be a                                 
"plowable" snow and schools tend to close at 6 inches.The factor that is difficult to predict that                                 
has the biggest impact is response of the society. For example, if there were numerous cars on                                 
the road at the same time as was seen in Atlanta, disaster can result. This has occurred in many                                     
other parts of the country including New York. “A snow that begins at 2:00 pm and comes down                                   
heavy often results in gridlock” which causes transportation delays.   
The NWS in Oklahoma City expressed that the impacts from snowfall in the OKC area                             
“differ with each storm”. “These differences can be due to the physical aspects of a winter                               
32 
weather event (i.e. temperature, ground temperature...etc) or even time of day/day of week.”                         
Typically, 4 inches of snow would be seen as a "Winter Storm" which would result in high­end                                 
impacts. “However, under certain circumstances, 1­3 inch snowfalls could also result in                       
high­end impacts”. It is also obvious that ice is a major winter weather hazard in the OKC area.                                   
“Generally, 1/4 inch ice accumulation is considered high­end, but transportation can be impacted                         
with less”. OKC NWS also mentioned some factors to consider which include: wind, previous                           
weather conditions, ground temperature, other winter weather hazards (e.g.­freezing rain/drizzle,                   
sleet). A"Winter Storm Warning" is issued for 6 inches of snow accumulation in a 24­hour                             
period, but serious disruption can occur with much less. This southerly location “causes snow to                             
mix with sleet or freezing rain/drizzle far more often than not”. Additionally, “the general                           
windiness of this area causes issues with drifting and blowing snow when temperatures are low                             
enough for the precipitation to fall mostly as snow. The opposite effect occurs when ground                             
temperatures are relatively warm, as it can cause quite a lot of rapid snow melt on highways,                                 
while grassy areas see accumulation”. Generally speaking, ​any ​snow accumulation causes ​some                       
transportation difficulties in the area since snow is uncommon enough that local residents are not                             
well skilled in driving on the roads in these conditions and tend to slow down significantly (or                                 
slide off the roads). “However, to cause major transportation disruption usually requires more on                           
the order of 6 to 8 inches of new accumulation in 24 hours”.  
The NWS in ​Albuquerque, New Mexico states that “​disruptions are all about impacts,                         
and our diverse terrain contributes to a varying range of impacts during the winter season….our                             
forecast warning area is the largest in the CONUS and extends to the Arizona, Colorado, and                               
Texas borders for the northern two­thirds of New Mexico”. Travel on the two major interstates,                             
33 
I­40 and I­25, is often impacted during winter events, though infrastructure can play a greater                             
role than the weather. “Widespread freezing precipitation is rare in the area, although the                           
foothills of the Albuquerque metro area can be locally impacted by frozen precipitation when                           
east gaps winds associated with arctic air masses east of our central mountains usher in cold air.                                 
Ice on only a small portion of Interstate 40 can result in fairly significant local impacts and                                 
would not be identified using data from ABQ. Ice is possible but not very common across the                                 
eastern plains closer to Texas”. Dense fog during winter events, can also cause transportation                           
disruptions, “generally from Raton to Las Vegas on I­25 and near Clines Corners on I­40.                             
Otherwise, snow and blowing snow is the most common winter element to cause transportation                           
disruptions”. The NWS office in Albuquerque is currently making some minor revisions to their                           
winter weather advisory and warning criteria but also considering that a different criteria based                           
on terrain in the past was maintained. “Generally, high terrain zones need 8­10 inches for a                               
warning while lower terrain need 4­6 in. for a warning. Interstates are not located in higher                               
terrain zones except for the area between Raton and the Colorado border on I­25, the continental                               
divide area between Gallup and Grants on I­40, and Tijeras Pass just east of Albuquerque on                               
I­40”. Also, becoming aware that a shift to focus warnings on frequency of events, from common                               
to rare to historic, is being considered. “This can be difficult in New Mexico due to a paucity of                                     
data on which to base the statistics but certainly needs to be considered. Snow in Albuquerque is                                 
most likely during the cooler overnight hours, so 1­2 inches of snow falling just prior to the                                 
morning rush hour can have impacts comparable to 2­4 in. events. Across the entire region,                             
especially the eastern plains, blowing snow with accumulations of 2­4 inches, can be more                           
hazardous than wet events with higher accumulations”. Speaking in societal terms, the biggest                         
34 
criteria in when focusing on the impacts on transportation is related to the low population                             
densities away from the few "metro" areas. “For storms impacting western zones and/or the                           
continental divide, it is not uncommon for I­40 to be closed between Gallup and Albuquerque, as                               
there are very few hotel rooms between these two locations. Similarly, when the eastern plains                             
are being impacted, it is not uncommon for I­40 to be closed between Albuquerque and                             
Amarillo, TX for the same reason. Likewise, I­25 can be closed between Santa Fe or Las Vegas                                 
(NM) and Raton”. Here, conditions are often more severe along this stretch, but a lack of hotel                                 
rooms also contributes to closures. 
The NWS office located in Boston, MA indicated that a "major event" in the Boston area                               
would be one where snowfall exceeds 6 inches, but “significant disruption for lower snowfall                           
amounts that coincide with peak travel times (morning and evening rush hours, typically 6 to 10                               
am and 3 to 7 pm)” is also considered. “In some cases, as little as 1 to 3 inches falling at the peak                                             
of rush hour caused significant impacts”. Another factor to consider in terms of transportation is                             
the consistency of the snow. Also, “powdery (dry) snow has less of an impact on road treatment                                 
as compared to wet snow”. 
The NWS office in Phoenix, AZ, alike other locations that do not see much winter                             
weather, conveyed that ​any ​accumulation of winter weather would create problems for                       
transportation and would be then deemed as a “HIWWE”. The same story goes for New,                             
Orleans, LA. The NWS here also states that any accumulation of snow or ice creates a major                                 
travel disruption since there is a lack of snow plows or salt trucks in the region and “many                                   
elevated highways and bridges due to the swampy and coastal nature of the region”. There is no                                 
way to leave the city of New Orleans and consequently the port of New Orleans without crossing                                 
35 
over a bridge or major body of water. The entire region shuts down for any type of winter                                   
weather event, as the bridges freeze over and create extremely hazardous driving conditions”.                         
Additionally, “all of the major highways and roads out of the city are closed when any snow or                                   
ice is forecast to accumulate”. Fortunately, “rail traffic is the least impacted since the tracks are                               
rarely covered with enough snow or ice to cause significant issues”. “Snow and ice would be                               
considered an extreme event in this region as it is very rare’.  
In regards to Denver, CO, the NWS states that the “impact is the snowfall intensities or                               
snowfall rates per hour, even more so than maybe a overall "bigger event" where you get say 12                                   
inches of snow over 24 hours”. CDOT/airports can usually handle these lower intensity                         
snowfalls when they are less than 1 inch snow per hour. “Typically, when we see snowfall rates                                 
of 1 inch of snow or greater in less than an hour, then there will be impacts on the transportation                                       
system”. Snow impacts become more extreme when wind is added, especially across roadways                         
where wind may be blowing perpendicular to the roads at speeds of greater than 10 kts. Snow                                 
plows are not able to keep up when when intensity and wind is added. What was seen in the                                     
“past several years to be the biggest impacts is an intense, yet shorter duration snow event”,                               
especially if this event occurs during a rush hour period (e.g.­4­6pm). “Roadways may be                           
initially wet with solar heating, then there is rapid cooling with night fall and snowfall where                               
roadway surfaces freeze very quickly and become a glaze of ice. So even a minimal snowfall                               
event of 1­2 inches over a 2 hour period could cause a transportation nightmare on highways and                                 
roads as they become iced over and snow­packed”. “For an intense event, or for their highest                               
level impacts at DIA (when they issue a snow emergency, meaning they max out at 104 pieces of                                   
snow removal equipment), this equals greater than 10 inches of snow and/or winds greater than                             
36 
25 kts in a 6 hour period”. ‘This is not to say that we have had some historical snowfall events                                       
which have crippled portions of the city, with the most notable events in March of 2003 and                                 
December of 1982. ​The March 2003 storm was more of a heavy wet snow where impacts were                                 
roof collapses, power outages, and mountain avalanches. The 1982 storm was more                       
characterized by strong winds up to 51 mph and intense snowfall for 17 consecutive hours at                               
Stapleton Airport, which closed the airport and paralyzed the transportation system”.  
The Wichita, KS, NWS office identified that the most important factor in winter weather                           
affecting traffic is the timing of the snow. However, behaviors of the driver also play a role in                                   
how traffic can be impacted. Winter storm watches tend to cause more careless accidents than                             
winter storm warnings do. 
For Kansas City, MO, the timing was also discussed. Snowfall during rush hour is much                             
more hazardous compared to the weekend. Additionally, the NWS at Kansas City mentioned that                           
the first snow of the season causes more impacts than the tenth snow event of the season, and                                   
liquid­to­snow ratios also determines how much snow can cause massive disruptions. They also                         
noted that the accuracy and quality of communication of forecasts also plays a role on how each                                 
winter weather event is perceived by the public. Since snowfall is not very common in Kansas                               
City, a large snowstorm of 6 inches will typically shut the city down in an effort to mitigate                                   
impacts. 
The NWS office at Atlanta, GA, did not disclose a specific snowfall rate that causes                             
transportation impacts. Most of the factors that determine the level of impact, they say, are                             
non­meteorological. Freezing rain, incoming solar radiation, precipitation rates and timing were                     
also discussed in terms of how accumulations occur on the surface. Snowfall impacts are so                             
37 
complex that the NWS claims that summarizing impacts to simply daily snowfall rates is                           
“uncomfortable”, more so because most of the impacts are related with the ground rather than the                               
actual precipitation itself. Atlanta introduced a Canadian open­source road condition model                     
called the Model of the Environment and Temperature of Roads (METRo) that outputs road                           
forecasts for a given location. Research on road sensor observations and model forecasts do                           
exist, and road condition forecasting seems to be in development. The Atlanta NWS office                           
mentioned several examples of light winter events that caused significant impacts (e.g. the                         
“SnowJams” of January 12, 1982 and January 28, 2014), as well as extreme events that caused                               
little to no travel impacts (e.g. March 1, 2009) 
The NWS Office in Cleveland, OH began their response in societal terms. They stressed                           
the fact that “​people are not used to driving in snow and an inch of snow could cause a major                                       
disruption in the traffic around the Cleveland area; especially if accidents occur. Ice                         
accumulation just enough to glaze over the roadway will cause many accidents across the                           
Cleveland area and cause havoc. But, during the winter season once people are use to the snow,                                 
there is a scenario that can be disastrous for the city”. An example of an event that has happened                                     
in the past would be a lake effect snow band developed over the Cleveland area around 2:00 pm                                   
in the afternoon which rapidly changed into “a large blob of heavy lake effect snow right over                                 
downtown Cleveland”. This phenomenon caused many business to close early and send their                         
employees home. “Snow was accumulating at about 1 inch an hour and at times, 1 to 2 inches an                                     
hour”. This caused gridlock in and around the city of Cleveland to develop. This occurred since                               
“people were getting stuck in the snow and snow plows were unable to clear the roads due to all                                     
of the traffic. Some people spent up to 8 hours in their cars because of the gridlock”. “The key                                     
38 
factor is more so about ​the rate of snow rather than ​the amount of snow on the ground​.” There                                     
were instances where 6 inches of snow fell on the roads but the roads remained passable. In the                                   
above example, “the panic caused by the heavy snow falling inundated the roadways with too                             
many people trying to drive home at once”. Individuals normally trickle a few at a time out of                                   
the city at different hours but not all at once. 
The NWS office in Cincinnati, OH, also described the challenge in interpreting impact                         
forecasts. Similar to the Atlanta NWS office, the Cincinnati office also mentioned the conditions                           
of the pavement themselves as the main controls in travel impacts. They listed pavement skin                             
and subskin temperatures, chemical treatments for roads, and precipitation rates and timing. In                         
addition to mentioning the occurrence of light winter events causing massive travel disruptions                         
and extreme winter events causing minimal disruptions, the NWS at Cincinnati distinguished                       
between ​widespread impact and ​localized impact​, stating that most injuries occur in localized                         
impacts. They also mentioned how one inch of snow typically shuts down the city in an effort to                                   
mitigate impacts. 
In Portland, OR, the NWS states that “snowfall in the Portland metro area is fairly rare,                               
but usually high­impact”. The impacts from snowfall rely on the time of day and the day of the                                   
week. An example would be, “a 1­2 inch snowfall during primary morning or afternoon                           
commute times has a much bigger impact than the same amount of snow falling on a Sunday                                 
afternoon”. Snowfall of 2­4 inches usually cause issues in Portland. Most of the snowfall events                             
in this area are usually followed by a transition to freezing rain and then to rain Therefore, a                                   
mixed precipitation during a big winter storm is fairly common in Portland, OR. 
39 
The NWS office in Houston, TX describes any amount of snow or ice can have a                               
significant impact on transportation if it produces ice on roadways. Most of the main                           
transportation routes are elevated and are more susceptible to freeze than on surface streets.                           
When an event a few years ago where roughly one tenth of an inch of freezing drizzle occurred,                                   
about “1000 traffic accidents and numerous road closures of major routes in and around                           
Houston” took place. HGX uses 1/8 of an inch of freezing rain for the ice/winter storm warning                                 
threshold and 2 inches of snow for the winter storm warning threshold. With all of that aside,                                 
“the impacts ​can be significant for lesser amounts ​depending on whether the roads ice up or stay                                 
wet or develop an icy glaze”. In their efforts, “TexDOT pre­treats roadways and bridges with                             
varying degrees of success”. Jeff Evans, the MIC for the HGX NWS, points out that “sea fog can                                   
also have a significant impact on transportation (marine and land based) in the winter and early                               
spring”. Scenarios were seen where “the moisture content of the air and associated dew point                             
temperature are high relative to the colder water temperatures and sea for can result”. This                             
situation can result in shutting down transportation in and out of the Port of Houston and can also                                   
impact road travel. 
The NWS in Milwaukee, WI declares that “it is all about timing of when the snow is                                 
expected to fall and weather it is able to stick to the surfaces”. For example: if 2 inches of snow                                       
falls at 6:00 am the consequences are worse than if it falls at 11:00 pm when there are not as                                       
many people on the road. ​Timothy Halbach, a meteorologist from the office shared ​his local                             
study on “​using DOT accident rates and weather conditions to compare what conditions tend to                             
be similar to create our big accident day​s”. The study showed that in early season snows vs. late                                   
40 
season, “snows tend to have more accidents since people are not as acclimated to driving in the                                 
snow”. 
Helena, MT, gets little snow during the winters, but the surrounding mountains receive                         
much of the snowfall. The NWS office in Helena also mentioned that the daily snowfall is too                                 
broad to capture the impacts that the winter precipitation can cause. Traffic conditions and road                             
conditions (i.e. how many cars drive through it) can affect how quickly the snow turns to slush                                 
and then to ice. A coating of freezing drizzle can cause just as much impact as a 12­18 inch                                     
snowfall event within 24 hours. 
The NWS office in Detroit, MI, mentioned that the daily snowfall amount is too broad to                               
capture the impacts that winter precipitation can cause. Even in Detroit, half an inch of snow can                                 
cause significant disruption. The NWS office mentioned the criteria for issuing winter weather                         
advisories, including snow advisories for between 3 to 8 inches within 12 hours, 2 to 6 inches                                 
within 8 hours, and watches and warnings for over 8 inches within 12 hours or 6 inches in 8                                     
hours. 
The Los Angeles, CA, NWS office mentioned that there is not a lot of snow in the Los                                   
Angeles area. They mentioned significant impacts, if at all, based on the potential impacts of 1                               
inch for urban areas, 3 inches in Tejon, 6 inches on the mountains, and 3 inches elsewhere per                                   
day. 
Extreme variations exist in St. Louis, MO, on what precipitation outputs could be                         
considered a HIWWE. The NWS in St. Louis did not disclose a specific snowfall rate and                               
instead listed some of the factors to consider, including timing of the precipitation, the                           
temperatures of the air and the pavement, any residual pavement treatment for icing, the location                             
41 
of the roads (i.e. elevated, bridge, on the ground), the accuracy and quality of communication of                               
the forecast, and the climatology of the area (i.e. how susceptible and/or resilient is a certain                               
location to winter precipitation?). The NWS office stressed that the intensity of the winter                           
weather does not mean intense travel impacts. In other words, higher snowfall rates will                           
generally have a higher ​potential impact, but the potential impacts reveal virtually nothing about                           
actual impacts. 
Charlotte, SC, issues winter storm watches and warnings for heavy snow of 3 inches                           
within 12 hours, or 4 inches within 24 hours. The NWS office, however, noted that less snowfall                                 
can cause more travel disruptions. 
Defining HIWWE precipitation is an extremely complex process, and it takes a thorough                         
understanding of a plethora of variables that affect how the precipitation disrupts traffic (Table                           
3.33). Precipitation types and timing, location and resilience to winter weather were some of the                             
most common factors that the NWS considered. In short, no matter how accurate a forecast for                               
winter precipitation may be, that forecast does not correlate to an accurate prediction of traffic                             
disruptions. For any station, several issues must be adequately addressed by both forecasters and                           
users, including rush hour, trucking routes, type of shipping/trucks, etc. Forecasting traffic                       
disruptions becomes more of a social science than a physical science. 
   
42 
 
Physical Factors  Social Factors 
● Precipitation type (rain, snow, etc.) 
● Precipitation duration 
● Precipitation intensity 
● Horizontal visibility 
● Wind 
● Temperature 
● How much snow/ice already on ground 
● Traffic conditions 
● Road quality 
● Trucking schedules 
● Weather resiliency at or between hubs 
● Holiday? Major event? 
● Road types (bridge? underpass?) 
● Power outages? Communication lapses? 
Table 3.18.​ Physical and social factors that may affect transportation means as mentioned by the NWS offices. 
Factors such as precipitation type can be forecasted, but human factors like traffic conditions and resilience to 
weather has a greater effect on disruptions and is also more difficult to quantify. 
IV. Discussions 
Reflecting on the NWS comments on what determines HIWWE, the biggest challenge for                         
this project was determining the precipitation thresholds for what is considered a HIWWE that                           
disrupted surface transport. As discussed, the NWS emails revealed no consensus in what daily                           
snowfall will be considered “high impact” for many of the hubs. A thin coating of ice during                                 
rush hour before the holidays will disrupt traffic more than two inches of snow late Sunday                               
night. While local winter storm scales like that of Cerruti and Becker (2011) incorporate factors                             
that determine the perceived intensity of the event, such as precipitation timing, rates, and type,                             
winter weather susceptibility and resilience of a population, wind conditions, and temperature                       
changes, they only provide so much information on direct impacts because these factors only                           
describe the ​potential impact of the winter weather event. A general daily snowfall rate, in                             
addition to using daily snowfall observations, will only output extremely crude data on snowfall                           
across the CONUS. 
There is no one type of precipitation that determines the issue that is brought by HIWWE.                               
This complex issue should be addressed by the users themselves as opposed to climatologists and                             
43 
meteorologists. Issues with transporting commodities, whether examining harsh surface                 
conditions or analyzing extreme temperatures that may affect the quality of the produce, are                           
variable in every situation.  
A much more in­depth understanding of HIWWE at a specific location will be needed if                             
the project were to provide a conclusive presentation of the climatology of HIWWE                         
precipitations. There are two ways, therefore, to improve the data: (1) determining more detailed                           
thresholds than simply a daily snowfall rate, and (2) using hourly observations instead of daily                             
snowfall observations. 
Snowfall rate is just as rudimentary a measure for snowfall ​impacts ​as the Saffir­Simpson                           
Hurricane Wind Scale (SSHWS) is a measure for hurricane impacts. Factors outside of snowfall                           
rates affect the impact it has on a location. While these factors will need to be determined for a                                     
good summary of what a HIWWE can be considered, a better source may be from the companies                                 
themselves. If companies keep a record on why a certain transport was cancelled, the history of                               
cancelled or delayed shipments due to the weather can determine the winter precipitation rate,                           
type, and timing that tend to wreak havoc on the transportation sector the most for any given                                 
location. These findings can be used to determine a set HIWWE surface transportation criteria                           
that tends to cause the most disruption. 
 
V. Conclusions 
This study investigated two aspects of HIWWE: temperatures and surface                   
conditions.Extreme temperatures (­10​°F​, 0​°F​, 9​°F​) impact the quality of products and goods                       
44 
being transported in order to assist decision makers in preventing the loss of goods at specific                               
locations for the 36 U.S. locations. Winter precipitation affects the conditions of road surfaces or                             
rail surfaces, which affects the ability of transportation means to leave and enter cities. 
Specifically, decision makers can use temperature climatology to avoid potential damage                     
to the goods being transported. How often daily temperatures broke these thresholds depended                         
on a number of climate controls, primarily latitude and proximity to waters. By expanding the                             
daily frequency of these cold temperatures time of the seasons temperatures tended to break                           
thresholds most frequently, and climate controls such as topography, latitude, and wind patterns                         
affected the timing of these extreme winter temperatures. Additionally, forecasters can use                       
climatology of winter precipitation for similar decision making. However, the complexity of how                         
different social factors affects the magnitude of traffic disruptions makes producing a thorough                         
climatology of high­impact winter precipitation very difficult. 
Temperature thresholds were broken more frequently in the northern part of the                       
contiguous U.S. This trend is consistent with the fact that latitude is a major climate control that                                 
affects the temperature distribution throughout the winter season. The probability of exceedance                       
was greater farther inland, which justifies the continentality and proximity to ocean as a climate                             
control. Peaks of threshold days were generally concentrated in January, but a few stations                           
experienced peaks in February, and some did not experience any exceedance of thresholds                         
whatsoever (e.g. Phoenix, New Orleans). 
Temporal trends of HIWWE temperatures were also analyzed. In general, transport hubs                       
generally exhibited decreasing trends on the order of one fewer day each decade. Most stations                             
averaged a loss of about one threshold day every 10 years, while other rates were as fast as a day                                       
45 
every 3.5 years. While the causes for these changes can be discussed in a future project, these                                 
results on temporal trends can be used to identify any possible long­term changes in extreme                             
winter temperatures. 
The relationship between major El Niño events and the frequency at which temperatures                         
reached or exceeded each of the three thresholds was determined for the stations where time                             
series analysis were completed. Most stations experienced a localized threshold minimum during                       
El Niño years, meaning that the frequency of exceedance was lower than that of the winters                               
before and after. The winter of 1972­73 proved to be an outlier for usual El Niño years, with a                                     
large number of stations showing a localized maximum in threshold counts instead of the                           
expected minimum. A possible cause of this was the deviation of the NAO for the winter of                                 
1972­73. NAO remained in a positive phase throughout the 1972­73 winter season, which may                           
suggest that NAO affects the ability of ENSO anomalies to impact temperatures over the                           
CONUS. However, it was stipulated that the upcoming winter season (2015­16), possibly the                         
strongest to date, would have a significant decrease in threshold counts based on the prior record                               
setting El Niño years (1997­98, 1982­83). 
With the focus on winter temperatures for the purpose of the project, these findings are                             
important for Riskpulse because data on winter temperature extremes are hardly readily available                         
except for in the medical field. While hypothermia can affect consumers, extreme low                         
temperatures can affect goods which the consumers may want. This research topic is also unique                             
in that temperature threshold with respect to the quality of goods are based on the company’s                               
experiences, rather than the summaries or insights of physical science experts. While the project                           
explored precipitation probabilities, exact data cannot be produced using crude methods of                       
46 
scientific summaries of what a HIWWE is considered. Similar to the method to determine                           
temperature thresholds, precipitation with respect to surface conditions should also be based on                         
the company’s experiences rather than the summaries or insights of the NWS. In essence,                           
requesting histories of when winter weather disrupted trucking/railroad operations may help                     
identify the circumstances associated with the transportation disruptions.  
VI. Recommendations for Future Work 
Surface conditions and NWS responses that of, however, provided no consensus on how                         
much snowfall in general can be considered a HIWWE. There are too many other factors to                               
consider, including precipitation type, timing, and rates. Other factors include physical                     
geography and topography, social factors (e.g. special events, traffic/road conditions, and                     
socioeconomic differences). These factors make the HIWWE precipitation too complex to                     
perform data analysis of simply the daily snowfall record, and forecasters sometimes simply                         
determine the local precipitation thresholds or criteria on a case­by­case basis. Perhaps what                         
causes a ‘traffic nightmare’ is up to the transportation logistics to determine. Again, since there is                               
no one type of precipitation that determines the issue that is brought by HIWWE, the complex                               
issue could be addressed to the users themselves because they will have a better understanding                             
on how the conditions that will negatively affect the quality of their produce. Future work may                               
involve a more narrow examination on how HIWWE may affect each user at a specific location                               
in order to produce more accurate forecasts. 
Hubs that displayed long­range temporal changes can be studied to determine the                       
potential causes for the decreasing trend. While the most speculated cause is climate change,                           
47 
other factors (Major El Niño years) may play an important role in explaining these temporal                             
changes.  
Additionally, El Niño effects are far weaker in the East Coast as opposed to the Midwest                               
region. While climate controls may be the driving factor, a detailed study is needed to determine                               
what causes this difference in spatial patterns.  
Finally, as noted during the section on the seasonal variation of El Niño years, a study                               
that looks at the interaction of strong El Niño years with years in which the NAO remains                                 
continually positive may help to explain the anomalies that were found in the winter of 1972­73.                               
Exploring additional teleconnections and their representative effects on the studied region may                       
also help to answer the questions generated by the winter of 1972­73. 
   
48 
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs

More Related Content

Viewers also liked

El estudiante universitario como centro
El estudiante  universitario como centroEl estudiante  universitario como centro
El estudiante universitario como centroalicosa
 
83 matrix notation
83 matrix notation83 matrix notation
83 matrix notationmath126
 
Purposeful metrics v3
Purposeful metrics v3Purposeful metrics v3
Purposeful metrics v3Gregory Neil
 
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtadovalentina hurtado
 
Final Presentation
Final PresentationFinal Presentation
Final Presentationguest348048
 
1 introduction & agenda
1 introduction & agenda1 introduction & agenda
1 introduction & agendaburrellking
 
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"Expolink
 
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"Expolink
 
E types competition decision
E types competition decisionE types competition decision
E types competition decisionStavros Batzakas
 
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...Rodrigo Rojas Fernandez
 
Neuromarketing. tema 9, 10
Neuromarketing. tema 9, 10Neuromarketing. tema 9, 10
Neuromarketing. tema 9, 10Eric López
 
Orientazio lasterketak
Orientazio lasterketakOrientazio lasterketak
Orientazio lasterketakEsther
 
5 tipos de metas de una empresa
5 tipos de metas de una empresa5 tipos de metas de una empresa
5 tipos de metas de una empresaFrancisco Campoy
 
Los 3 tipos de hábitos y acciones para lograr tus metas
Los 3 tipos de hábitos y acciones para lograr tus metasLos 3 tipos de hábitos y acciones para lograr tus metas
Los 3 tipos de hábitos y acciones para lograr tus metasFrancisco Campoy
 
Tributación dentro de los negocios
Tributación dentro de los negociosTributación dentro de los negocios
Tributación dentro de los negociosLima Innova
 
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionales
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionalesNeuroventas tema 2. las neuro ventas frente a las ventas tradicionales
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionalesEric López
 
Segmentación de mercados, estrategias y variables
Segmentación de mercados, estrategias y variablesSegmentación de mercados, estrategias y variables
Segmentación de mercados, estrategias y variablesAle Leon
 

Viewers also liked (20)

Qué es un prospecto
Qué es un prospectoQué es un prospecto
Qué es un prospecto
 
8.5x11 Home Expo Handout
8.5x11 Home Expo Handout8.5x11 Home Expo Handout
8.5x11 Home Expo Handout
 
El estudiante universitario como centro
El estudiante  universitario como centroEl estudiante  universitario como centro
El estudiante universitario como centro
 
83 matrix notation
83 matrix notation83 matrix notation
83 matrix notation
 
Purposeful metrics v3
Purposeful metrics v3Purposeful metrics v3
Purposeful metrics v3
 
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado
8 3-16slidesharecitasyrefenciasbibliograficasvalentinahurtado
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 
El internet
El internetEl internet
El internet
 
1 introduction & agenda
1 introduction & agenda1 introduction & agenda
1 introduction & agenda
 
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"
Solar Security. Андрей Прозоров. "5 "почему" аутсорсинга ИБ"
 
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"
SearchInform. Илья Филичкин. "Как выбрать идеальную DLP-систему?"
 
E types competition decision
E types competition decisionE types competition decision
E types competition decision
 
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...
Seguimiento de ventas con Estrategias CRM - Dic 2015 - Colegio de Ingenieros ...
 
Neuromarketing. tema 9, 10
Neuromarketing. tema 9, 10Neuromarketing. tema 9, 10
Neuromarketing. tema 9, 10
 
Orientazio lasterketak
Orientazio lasterketakOrientazio lasterketak
Orientazio lasterketak
 
5 tipos de metas de una empresa
5 tipos de metas de una empresa5 tipos de metas de una empresa
5 tipos de metas de una empresa
 
Los 3 tipos de hábitos y acciones para lograr tus metas
Los 3 tipos de hábitos y acciones para lograr tus metasLos 3 tipos de hábitos y acciones para lograr tus metas
Los 3 tipos de hábitos y acciones para lograr tus metas
 
Tributación dentro de los negocios
Tributación dentro de los negociosTributación dentro de los negocios
Tributación dentro de los negocios
 
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionales
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionalesNeuroventas tema 2. las neuro ventas frente a las ventas tradicionales
Neuroventas tema 2. las neuro ventas frente a las ventas tradicionales
 
Segmentación de mercados, estrategias y variables
Segmentación de mercados, estrategias y variablesSegmentación de mercados, estrategias y variables
Segmentación de mercados, estrategias y variables
 

Similar to Climatology of High Impact Winter Weather Events for U.S. Transport Hubs

Extreme Weather in a Warming World
Extreme Weather in a Warming WorldExtreme Weather in a Warming World
Extreme Weather in a Warming WorldThe Risk Institute
 
Changes of Temperature Field in Storms Under Influence of Cold Surge
Changes of Temperature Field in Storms Under Influence of Cold SurgeChanges of Temperature Field in Storms Under Influence of Cold Surge
Changes of Temperature Field in Storms Under Influence of Cold SurgeAI Publications
 
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport HubsClimatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport HubsDominique Watson
 
Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Michael DePue
 
North, East, South East, South and South West Asia; asian monsoons and high m...
North, East, South East, South and South West Asia; asian monsoons and high m...North, East, South East, South and South West Asia; asian monsoons and high m...
North, East, South East, South and South West Asia; asian monsoons and high m...ipcc-media
 
O R I G I N A L P A P E RAssessment of lightning-related f.docx
O R I G I N A L P A P E RAssessment of lightning-related f.docxO R I G I N A L P A P E RAssessment of lightning-related f.docx
O R I G I N A L P A P E RAssessment of lightning-related f.docxhopeaustin33688
 
Observed Climate–Snowpack Relationships in California and thei.docx
Observed Climate–Snowpack Relationships in California and thei.docxObserved Climate–Snowpack Relationships in California and thei.docx
Observed Climate–Snowpack Relationships in California and thei.docxcherishwinsland
 
Nichi.11 12-13.nasa.cynthia rosenzweig
Nichi.11 12-13.nasa.cynthia rosenzweigNichi.11 12-13.nasa.cynthia rosenzweig
Nichi.11 12-13.nasa.cynthia rosenzweigNICHI_USA
 
Capstone Poster Design 4-23
Capstone Poster Design 4-23Capstone Poster Design 4-23
Capstone Poster Design 4-23Trevor Bengtsson
 
2013 North Atlantic Hurricane & Typhoon Season Primer
2013 North Atlantic Hurricane & Typhoon Season Primer2013 North Atlantic Hurricane & Typhoon Season Primer
2013 North Atlantic Hurricane & Typhoon Season PrimerEQECAT, Inc.
 
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...glennmcgillivray
 
SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015Yakov Elizarov
 
SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015Ron Sznaider
 
ChesapeakeBayCouncil_SeaLevelRiseImpact
ChesapeakeBayCouncil_SeaLevelRiseImpactChesapeakeBayCouncil_SeaLevelRiseImpact
ChesapeakeBayCouncil_SeaLevelRiseImpactSriram Bharadwaj
 
HU Research Day Presentation
HU Research Day PresentationHU Research Day Presentation
HU Research Day PresentationMussie Kebede
 
A climatology analysis of the petrie creek catchment maroochydore australia u...
A climatology analysis of the petrie creek catchment maroochydore australia u...A climatology analysis of the petrie creek catchment maroochydore australia u...
A climatology analysis of the petrie creek catchment maroochydore australia u...Alexander Decker
 
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_California
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_CaliforniaCollins_et_al_-_Monitoring_shallow_landslides_in_SFB_California
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_CaliforniaMichael Walker Whitman
 
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...riseagrant
 

Similar to Climatology of High Impact Winter Weather Events for U.S. Transport Hubs (20)

Extreme Weather in a Warming World
Extreme Weather in a Warming WorldExtreme Weather in a Warming World
Extreme Weather in a Warming World
 
Changes of Temperature Field in Storms Under Influence of Cold Surge
Changes of Temperature Field in Storms Under Influence of Cold SurgeChanges of Temperature Field in Storms Under Influence of Cold Surge
Changes of Temperature Field in Storms Under Influence of Cold Surge
 
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport HubsClimatology of High Impact Winter Weather Events for U.S. Transport Hubs
Climatology of High Impact Winter Weather Events for U.S. Transport Hubs
 
Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09Planning For Climate Change In The Technical Analysis 6 9 09
Planning For Climate Change In The Technical Analysis 6 9 09
 
North, East, South East, South and South West Asia; asian monsoons and high m...
North, East, South East, South and South West Asia; asian monsoons and high m...North, East, South East, South and South West Asia; asian monsoons and high m...
North, East, South East, South and South West Asia; asian monsoons and high m...
 
CapstoneFinal1-May
CapstoneFinal1-MayCapstoneFinal1-May
CapstoneFinal1-May
 
Tropical Storms 2
Tropical Storms 2Tropical Storms 2
Tropical Storms 2
 
O R I G I N A L P A P E RAssessment of lightning-related f.docx
O R I G I N A L P A P E RAssessment of lightning-related f.docxO R I G I N A L P A P E RAssessment of lightning-related f.docx
O R I G I N A L P A P E RAssessment of lightning-related f.docx
 
Observed Climate–Snowpack Relationships in California and thei.docx
Observed Climate–Snowpack Relationships in California and thei.docxObserved Climate–Snowpack Relationships in California and thei.docx
Observed Climate–Snowpack Relationships in California and thei.docx
 
Nichi.11 12-13.nasa.cynthia rosenzweig
Nichi.11 12-13.nasa.cynthia rosenzweigNichi.11 12-13.nasa.cynthia rosenzweig
Nichi.11 12-13.nasa.cynthia rosenzweig
 
Capstone Poster Design 4-23
Capstone Poster Design 4-23Capstone Poster Design 4-23
Capstone Poster Design 4-23
 
2013 North Atlantic Hurricane & Typhoon Season Primer
2013 North Atlantic Hurricane & Typhoon Season Primer2013 North Atlantic Hurricane & Typhoon Season Primer
2013 North Atlantic Hurricane & Typhoon Season Primer
 
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...
ICLR Friday Forum: Storm surge - lessons from Hurricane Sandy (September 3, 2...
 
SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015
 
SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015SE Weather Volatility White Paper - 2015
SE Weather Volatility White Paper - 2015
 
ChesapeakeBayCouncil_SeaLevelRiseImpact
ChesapeakeBayCouncil_SeaLevelRiseImpactChesapeakeBayCouncil_SeaLevelRiseImpact
ChesapeakeBayCouncil_SeaLevelRiseImpact
 
HU Research Day Presentation
HU Research Day PresentationHU Research Day Presentation
HU Research Day Presentation
 
A climatology analysis of the petrie creek catchment maroochydore australia u...
A climatology analysis of the petrie creek catchment maroochydore australia u...A climatology analysis of the petrie creek catchment maroochydore australia u...
A climatology analysis of the petrie creek catchment maroochydore australia u...
 
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_California
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_CaliforniaCollins_et_al_-_Monitoring_shallow_landslides_in_SFB_California
Collins_et_al_-_Monitoring_shallow_landslides_in_SFB_California
 
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...
Projected Climate Change Impacts for Rhode Island’s Coast: A Summary of the S...
 

Climatology of High Impact Winter Weather Events for U.S. Transport Hubs

  • 2. Climatology of High Impact Winter Weather Events for U.S. Transport Hubs      Project Team:    Dominique Watson  Robert Fritzen  Kai Funahashi    Project Advisor:    Dr. David Changnon    Company Sponsor:    Riskpulse  Chicago, IL    Company Advisors:    Mr. Jon Davis  Mr. Mark Russo          MET 431/531    Fall Semester 2015    Department of Geography  Northern Illinois University  DeKalb, IL 60115    1 
  • 3. Abstract  High Impact Winter Weather Events (HIWWE) cause disruptions across various sectors.                      This project examined the climatology of certain winter temperature thresholds associated with                        HIWWE for major transport hubs across the contiguous United States. Using temperature data                          gathered from National Weather Service (NWS) first­order stations (FOS), daily probabilities                      and time series were created. The motivation of this project lies in the potential to assist                                Riskpulse decision makers to improve transportation­related winter weather forecasting.                  Improved HIWWE forecasting will help the transportation sector plan for, and avoid these                          extreme events. This in turn will help to avoid delays or damage to the goods and their                                  transportation means. The results for the temperature study show that winter temperatures break                          thresholds (i.e ­10ºF, 0ºF, 9ºF) more frequently in the northern U.S., especially farther inland.                            Coastal areas experience lower probabilities of exceedence. The timing of the peak probabilities                          shifts from early January east of the Rockies to late January in the western Great Lakes.                                Temporal analysis of temperature show a decreasing trend for most U.S. locations that                          experience colder air. On the other hand, results for HIWWE disruptive surface conditions reveal                            a need for a much more in­depth understanding of what constitutes a “high­impact” winter                            weather event in terms of transportation disruptions at specific locations. Forecasting HIWWE                        disruptive surface conditions is difficult because of several non­meteorological factors that affect                        transportation disruptions across the transport hubs. During major El Niños years, most stations                          experienced fewer cold days.  2 
  • 5. Acknowledgements  Foremost, we would like to express our sincere gratitude to our advisor, Dr. David                            Changnon, for giving us insightful suggestions and comments, for encouraging us with so much                            enthusiasm, and for his guidance throughout the duration of this study. Our sincere thanks also                              goes to the National Weather Services offices who took the time to read our emails and in return,                                    took the time to respond back to us with insightful and descriptive responses that were utilized in                                  this study. Last but not least, we would like to thank Mark Russo and Jon Davis from Riskpulse,                                    for supplying this project idea and for allowing us to work alongside them as part of our time for                                      this research project.    4 
  • 7. I. Introduction  Winter weather often presents a significant number of hazards to the transportation                        sector, but some of the hazards are less known to the general public. While most individuals                                associate heavy snow, ice storms, and blizzard conditions with transportation issues, businesses                        must also consider the issue of temperatures affecting the quality of the goods being transported.                              Riskpulse produces short and long term forecasts for clients, particularly those in the agricultural                            and energy industries. They have presented the challenge of studying the effects of snow and                              cold temperatures as it pertains to the transportation sector, and to generate a climatology of                              these events to assist in future forecasting. High Impact Winter Weather Events (HIWWE)                          generate all forms of hazards for the logistics industry and a climatology of these events can                                assist Riskpulse in improving their forecasts.  A. Background and Literature Review  i. Impact analyses  There are many ways that winter events can impact transportation systems, particularly                        the ability to transport commercial goods. Most impact analyses focus on road and rail surface                              conditions that suppress the ability of transportation means to function. Most literature on winter                            weather hazards focus solely on surface conditions causing transportation disruptions. HIWWE                      affects both the transportation mean and the goods that are being delivered.  6 
  • 8.   Fig. 1.1.  ​An Amtrak blasts through a large snow drift, which can be potentially dangerous to rail logistics  (Bloomington Pantagraph)  The immediate effect of winter weather on surface conditions is treacherous roadways                        and railways. The main concern of decision makers is the immediate disruption of transportation                            that winter precipitation causes. These disruptions can be felt through various sources, such as                            highway, air, and rail delays, of which the worst can be considered a traffic “paralysis” (Rooney                                1967). An example of “paralyzed” traffic can be seen on the 22nd and 23rd of December 2004,                                  after a winter storm that tracked over the Ohio River Valley dropped 29 inches of snow in                                  localized areas. This winter storm also brought traffic to a standstill, especially because holiday                            travels yielded much greater traffic during those two days (Changnon and Changnon 2005).                          Other disruptions that occur from heavy snow include ice accumulations within the wheels and                            the braking system of vehicles, hindering their ability to regulate speed (Changnon 2006). Winter                            weather also causes accidents in both roadways and railways.  7 
  • 10. While snow can make transportation difficult or even impossible given enough                      accumulation within a given time span, ice accumulations make transportation treacherous even                        quicker. When liquid rain falls through temperatures below freezing, it solidifies on contact with                            surfaces that are below freezing. This freezing rain, even if the accumulations are minor, can                              quickly cause traffic accidents and casualties (Rauber et al. 2001). With enough snowfall or                            prolonged cold temperatures, freezing of railroad switches can occur (Changnon 2006).    Figure 1.4.​ Two crew members dig out a rail switch that froze switches closed. This problem was caused by snow,  ice, and freezing temperatures​ ​(Changnon, 2006)  9 
  • 12. impact the quality of goods. By improving forecasts of extreme cold outbreaks, damage to                            goods, that are susceptible to these extreme temperatures, can be avoided.  ii. Intensity Scales and Climatological Analyses  General climatologies for winter weather events have been studied. From a storm                        intensity standpoint, several variables can be assessed for climatological frequencies.                    Additionally, over a range of years, winter storms can be put on a probability distribution, and                                objective thresholds of storm intensity can be calculated with respect to deviations from the                            normal distribution mean. For example, Zielenski (2002) developed a classification scheme for                        winter storms using intensity and duration data of Nor’easter winter storm systems. The intensity                            was measured by central pressure difference, pressure gradients, time rates of pressure change,                          and the duration was measured by storm velocity. This classification scheme is similar to the                              Saffir­Simpson Hurricane Wind Scale (SSHWS) because both classify storms by intensity.                      Although these scales are convenient for classifying the storm itself, it is not an accurate measure                                for storm impacts upon a location because storm intensity only addresses the ​potential impact                            that the storm has on different locations.  On the other hand, Rooney (1967) developed a classification scheme based on the                          magnitude of a storm’s impact or disruption, particularly from snow hazards. First order                          disruptions are considered “paralyzing,” which include the following within a city: Stalled                        traffic; major civic, cultural, and athletic event cancellations or postponements; closure of                        schools, retail establishments, and factories; power and communication failures (Rooney 1967).                      The intensities diminish with higher order disruptions until the fifth order “minimal” disruptions,                          which receive no press coverage for any affected city activities (Rooney 1967). This scale places                              11 
  • 13. the focus outside of the storm itself, categorizing the disruptions it causes regardless of storm                              intensity.  Other scales incorporate both disruption indices and storm intensity to provide                      forecasting insight on potentially disruptive storms. For example, Kocin and Uccellini (2004)                        developed the Northeastern Storm Intensity Scale (NESIS), a synoptic scale intensity index                        based on the storm snowfall and estimated population of affected areas. On a more localized                              scale than the NESIS, Cerruti and Decker (2011) formulated the Local Winter Storm Scale                            (LWSS) based off of winds, snow and ice accumulations, and low visibilities with respect to                              climatological means of the local area. This potential disruption, matched with local                        susceptibility to winter hazards, can estimate the “realized disruption” of the area (Cerruti and                            Decker 2011). Indices like the NESIS and the LWSS are useful tools in predicting the potential                                disruption of HIWWE to specific areas.  Another winter weather aspect that can potentially have damaging impacts is extreme                        cold temperatures. Cold outbreaks are primarily focused in the northern half of the United States,                              since winters are generally colder in the higher latitudes. Most cold temperatures are addressed                            in terms of health and safety because those affected tend to fall victim to the cold through                                  conditions such as hypothermia (Spencer 2009). Extreme cold temperatures are generally                      associated with respect to normal distributions (e.g. means, record highs, and record lows) as                            they relate to how a population is susceptible to extreme cold differ between climate regions.  iii. Other Considerations  There are other considerations to make while gathering climatological data for HIWWE.                        First, with the current quality of weather observations, it is difficult to create an accurate measure                                12 
  • 14. of freezing rain accumulations using National Weather Service (NWS) first­order stations (FOS);                        a close alternative to FOS observations are forensic analyses of ice damage in the aftermath of an                                  event (Changnon 2004a).  Second, in addition to the health and safety effects of extreme cold outbreaks, it is                              important for businesses to consider how cold temperatures can affect the quality of the products                              that they are shipping. These products will most likely have a set temperature tolerance, which                              will not change even in different climate regions.  B. Main Focus of Study  This study will analyze two aspects of HIWWE: Precipitation and temperature. Winter                        precipitation will affect surface conditions and subsequently, the ability for transportation means                        to enter or exit major transport hubs. Understanding the precipitation climatology for these hubs                            can help determine the probability that transportation means will not be able to enter or exit the                                  region. Extreme winter temperatures will also be analyzed due to their nature to impact the                              quality of the goods being transported. The goal of analyzing these temperature and precipitation                            climatologies is to assist decision makers in preventing delays or loss of goods. In other words, if                                  HIWWE are expected in an area, decision makers should not authorize transportation through                          that area due to high risk of the transportation mean and potential damage to the goods being                                  transported. HIWWE affects individuals in various ways; this study on the effects of HIWWE on                              the transportation sector is only a piece of the winter weather spectrum.  13 
  • 15. II. Approach  FOS observed temperature data were collected from the Midwestern Regional Climate                      Center (MRCC) for the period of the study (1950 ­ 2014). Observed temperature data were then                                fed into a program which analyzed the daily maximum and minimum temperatures for the period                              of record to test for the set temperature thresholds. This program then used the information to                                generate a probability table and a time series table for the individual station.  Missing values in the data were identified and substituted using other nearby FOS data                            and cooperative observer (COOP) station data. Stations that contained a considerable amount of                          missing data were mainly found in the central United States in this study. In Detroit, Michigan,                                DET was used to substitute missing data from the DTW station from October 1, 1950, through                                November 30, 1958, because it was the closest station with high­quality data. For Kansas City,                              MCI also contains missing data from October 1, 1950, through September 30, 1972, as well as                                between May 31, 1996, through October 1, 1996. Therefore, data from the MKC station filled in                                the gaps of missing data for MCI. In Chicago, Illinois, Midway 3SW was used to fill in missing                                    data from for MDW from ​September 2, 1980, through April 30, 2015​.  The selection of the stations for this project was primarily based on regional population,                            however station selection also considered the importance of major transportation and rail hubs in                            the area. A list of 36 stations are selected for this project (Appendix A) and are shown in Figure                                      2.1. Collaborations with Riskpulse helped to fine tune the selections and identify the temperature                            thresholds. While most stations are susceptible to HIWWE, others are not commonly known to                            14 
  • 16. be impacted by winter weather. These stations are still included as this primary focus of this                                study is on the overall impact of winter weather across the CONUS.  After selecting the 36 stations, email messages were sent to the National Weather Service                            office that forecasted for the region of interest. The email was a query to ask for expert                                  knowledge as it pertains to what defines a high impact winter weather event for the given region.                                  The primary focus of the email was to determine a general 24­hour total snowfall amount that                                dictates a HIWEE for the given location.    Figure 2.1.​ A map of the 36 selected stations for this study  A. Winter Temperatures  Temperature threshold values that were considered after receiving insight from Riskpulse                      are the following: 9˚F, 0˚F, and ­10˚F. Exposure to temperatures within these thresholds affect                            the quality of goods (e.g. Wishbone dressing freezing and exploding at 9˚F, or Budweiser beer                              bottles exploding below ­10˚F) in a manner that would be unacceptable to recipients. These                            15 
  • 17. temperature thresholds mainly focus on how temperatures may affect the cargo being                        transported, as opposed to how it may affect transportation means alone since low temperature                            extremes are not considered major components that critically hinder rail operations. Issues that                          may arise due to cold temperatures are usually resolved in a short time period (Changnon, 2006).  Once the temperature data were collected, they were analyzed to determine a probability                          of occurrence for each day in the defined winter season (October 1st through April 30th) that one                                  of the selected temperature thresholds would be crossed. To assist Riskpulse decision makers, a                            time series analysis was performed to see if extreme winter temperatures were changing in                            frequency over time.  Additionally, temperature data for strong El Niño winters were analyzed, identifying                      correlations between El Niño events and probability of exceeding temperature thresholds, if any.                          A major El Niño may indicate lower than average probability of exceedance because previous                            major El Niño winters exhibited positive temperature anomalies. This analysis was useful in                          producing a general insight in temperatures for the 2015­16 El Niño winter due to the high                                potential of the winter of 2015­16 being a record setting El Niño winter.  B. Surface Conditions  The other aspect of HIWEE that needed to be analyzed were the effects of adverse                              surface conditions that can cause disruptions to the transportation sector. Winter weather that                          typically causes surface conditions to deteriorate include heavy snowfall, blizzard conditions,                      and ice. Because ice accumulation is extremely difficult to analyze in the climatological record,                            this study focused on heavy snow events. The goal of this part of the study was to determine a                                      16 
  • 18. regional threshold that could be used to signify a high impact event for the given station. The                                  study could have considered the standard National Weather Service definition of 6” of snow in a                                24 hour period; however, it was determined that reaching out to the individual NWS offices for                                the 36 stations would offer a stronger scientific approach. An inquiry sent to the NWS offices for                                  this study asked for a daily snowfall intensity (in inches per day) that would cause a major event                                    for the region.  III. Results  This study analyzed HIWWE for 36 stations throughout the continental United States for                          the period of 1950­2014 (i.e. winters of October 1, 1950 through April 30, 1951, up through                                October 1, 2014 through April 30, 2015). For each station, the number of times that daily                                observed minimum temperatures experienced a selected threshold of 9ºF, 0ºF, and ­10ºF were                          determined using the climatological information gathered from the MRCC.  A. Temperature Thresholds and Spatial Patterns  Each of the 36 stations were analyzed independently using a program developed by the                            research group. This program ensured that only high­quality data were analyzed. After the data                            were cleaned, they were analyzed to count the number of times an individual threshold was                              crossed for the given station. From these data, a series of maps were created to illustrate spatial                                  patterns of the number of times a given threshold was crossed for the period of the study.  17 
  • 19.   Figure 3.1.​ A map of the United States. Contours show the number of times the 9ºF threshold was crossed for the  study period (1950­2014).      Figure 3.2​ illustrates the  temperature threshold  analysis for Cincinnati, Ohio.  The 9ºF threshold was broken  716 times, the 0ºF threshold  249 times, and the ­10ºF  threshold 43 times.  The 200­times contour is indicative of frequent low temperatures (Figure 3.1). Any                        location at or above the 200­times contour experienced an average of at least three days a year in                                    which temperatures fell below the 9ºF threshold. Moving south to north, these frequencies                          increase. For example, Cincinnati, Ohio (CVG), experienced temperatures at or below 9ºF a total                            of 716 times between the 1950 and 2014 winter seasons (Figure 3.2). Figure 3.1 illustrates that                                locations south of the Louisiana­Arkansas border, and areas west of the Cascades Range rarely                            18 
  • 20. experience minimum temperatures at or below the 9ºF mark. Over the Rocky Mountain Range,                            contours are less likely to be climatologically accurate as the small­scale topographic differences                          impact the frequencies when thresholds are met or exceeded.    Figure 3.3.​ A map of the United States. Contours show the number of times the 0ºF threshold was crossed for the  study period (1950­2014).      Figure 3.4.​ illustrates the  temperature threshold  analysis for Helena, Montana.  The 9ºF threshold was broken  2,546 times, the 0ºF threshold  1,293 times, and the ­10ºF  threshold 598 times.  For most U.S. locations, the 0ºF threshold has generally been broken about half as many  times as the 9ºF threshold was broken. In other words, the likelihood of temperatures falling at or  19 
  • 21. below 0ºF tends to be  much lower than the likelihood for 9ºF (Figure 3.3). Spatial trends are  very similar between 0ºF and 9ºF exhibiting a maximum over the central U.S. east of the  Rockies. For instance, the 5­times contour in Figure 3.3 closely resembles the 50­times contour  in Figure 3.1. Areas north of the 100­times contour will experience an average of one, if not two,  0ºF days in a given year. For example, temperatures in Helena, Montana (HLN), dropped below  0ºF a total of 1,293 times between the 1950 and 2014 winters, which makes an average of about  20 times per year (Figure 3.4). Along the East Coast from Rhode Island southward, the average  number of days with a minimum temperature at or below 0ºF is less than once per winter. This  same area experienced 3 or less days a winter with minimum temperatures of 9ºF or below.     Figure 3.5.​ A map of the United States. Contours show the number of times the ­10ºF threshold was crossed for the  study period (1950­2014).  20 
  • 22.   Figure 3.6.​ illustrates the  temperature threshold analysis  for Bismarck, North Dakota. The  9ºF threshold was broken 4,413  times, the 0ºF threshold 2,757  times, and the ­10ºF threshold  1,360 times. Bismarck has  broken all three temperature  thresholds more frequently than  any other station analyzed in this  study.    Figure 3.7.​ illustrates the  temperature threshold analysis  for Pittsburgh, Pennsylvania.  The 9ºF threshold was broken  890 times, the 0ºF threshold 210  times, and the ­10ºF threshold 26  times.  As was the case with Figure 3.2, the contours continue to be placed farther north for the  ­10ºF threshold (Figure 3.5). Since ­10ºF is considered an “extreme” cold event (i.e. Wind Chill  Warnings can be in effect when temperatures are at or below ­10ºF), even a single occurrence  can severely impact most outdoor activities. Areas north of the 50­times contour line experience  on average at least one ­10ºF day every year. The north­central United States still shows very  high frequencies, including areas north and west of the Ohio River, north of the Missouri River,  and into the Rocky Mountains. ­10ºF events occur on average more frequently than once a year  in this region. On the other hand, temperatures do not fall at or below ­10ºF as frequently over  areas east of the Indiana­Ohio border and south of the Colorado­New Mexico border, as is the  21 
  • 23. case with Pittsburgh, Pennsylvania (PIT) (Figure 3.7). An extreme example is Bismarck, North  Dakota (BIS), where the temperature dropped to or below ­10ºF a total 1,360 times over the 65  studied winters, an average of about 21 times per year (Figure 3.6).  While frequency analyses of the three temperature thresholds aid forecasters in gaining                        an insight of where extreme winter temperatures occur, creating daily probability distribution                        charts of the temperature exceeding each thresholds will enable these forecasters to make                          specific decisions on avoiding extreme temperatures that may damage certain goods.  For each threshold, the daily probability of exceeding the temperature threshold was                        calculated using the daily frequency and the 65­year range. This calculation reveals the                          probability, based on observation history, that a certain day will observe a certain temperature.                            For example, temperatures crossed the 9ºF threshold on January 18th a total of 18 times over the                                  65­year January 18ths between 1951 and 2015 in Cincinnati, Ohio (CVG). This means that based                              on the observed temperatures at CVG, there is a 27.69% chance that a given January 8th will                                  experience temperatures at or below 9ºF (Figure 3.8). This probability analysis was performed                          for all cities that observed temperatures breaking 9ºF, 0ºF, or ­10ºF thresholds.    Figure 3.8.​ illustrates the  probability of breaking any of  the three temperature thresholds  for Cincinnati, Ohio.  22 
  • 24.   Figure 3.9.​ illustrates the  probability of breaking any of  the three temperature thresholds  for Helena, Montana. Note the  secondary spike in high  frequency of cold temperatures  in late February­early March.    Figure 3.10. ​ illustrates the  probability of breaking any of  the three temperature thresholds  for Bismarck, North Dakota.  Note that Bismarck contains the  highest probability of breaking  the temperature threshold than  any of the 36 stations.    Figure 3.12.​ illustrates the  probability of breaking any of  the three temperature thresholds  for Pittsburgh, Pennsylvania  The probability distributions were then used to identify the timing for the peak                          probability of exceedance. The peak was determined by identifying the maximum probability of                          23 
  • 25. exceedance for each threshold. If there were multiple days with the same maximum probability,                            the peak day was calculated by taking an average of the days that exceeded the threshold.   Using the calculated peak probability of exceedance, a map was created to cluster data                            with similar results. In this case, hubs with similar peak probabilities were clustered (Figure                            3.11). Across the U.S., temperatures fall at or below the thresholds most frequently between                            January 3rd and February 1st. Most of the central United States, typically along and east of the                                  Rockies and including the Missouri Valley, experience their peak cold temperatures at the                          beginning of a year, within the first two weeks of January. An example of a peak frequency                                  within the first two weeks of the new year is Helena, MT (Figure 3.9) Areas to the north and east                                        of this region typically follow afterwards, peaking in mid to late January, as is the case for                                  Bismarck, ND (Figure 3.10) or Cincinnati, OH (Figure 3.8). A small band of the south­central                              and south­east United States station was found to experience cold temperature maximums in mid                            to late January. The Upper Midwest experienced its peak frequency around the end of January.                              While some stations experienced maximum values in early February such as Milwaukee, WI,                          with its peak frequency on February 4th and Minneapolis, MN, with its peak threshold on                              February 1st, several other stations never experienced any extreme winter temperatures below                        the 9ºF, 0ºF, or ­10ºF thresholds. For this reason, areas outside of the existing contours either                                experienced a peak after February 1st or did not experience a peak at all (Figure 3.11).  This analysis in peak probability of exceedance is useful for forecasters to identify when                            would statistically be the least ideal day to allow shipments of goods that are susceptible to                                extreme cold damage. A peak in cold temperatures on January 20th for a hub, for example, will                                  24 
  • 26. allow decision makers to be more informed in advance to be prepared for potential shipment                              delays around January 20th.    Figure 3.11.​ A map of the United States. Interpolated contour lines show the date at which the three temperature  thresholds were crossed most frequently. Areas outside of the contours peak after February 1st, or not at all.  B. Winter temperature and temporal changes  In addition to spatial trends and probabilities for HIWWE temperatures, temporal                      changes in the frequency of these extremes were analyzed over the 65­year period. The goal of                                the analysis was to determine if the number of days where temperature thresholds occur are                              changing over a long period of time and, if so, by how much. A time series analysis for stations                                      where the 9ºF threshold exceeded 50 counts during the 65­year period was developed by                            evaluating the winter number of days each year during the 65­year period. The analysis was then                                analyzed for an average rate of change, peak decades, and statistical significance using r^2                            values and t­scores of a normal probability distribution.  25 
  • 27. One example of a significant decrease is exhibited in Bismarck, ND between 1950 and                            2014. Bismarck is losing threshold days over time: After a cool decade between 1955 and 1965,                                a decreasing trend began and persisted throughout the analysis period. The trend line analysis for                              Bismarck shows a loss of about 1 threshold day every 3.5 years (Figure 3.12). Cities like Helena,                                  Montana (HLN), Milwaukee, Wisconsin (MKE), and Minneapolis­St. Paul, Minnesota (MSP),                    observed a similar trend (see Appendix D).  Figure 3.12.​ illustrates the  time series of thresholds for  Bismarck, ND. The statistical  r­value of 0.314 for these  curves shows up to 99%  significance in temporal  trends in frequencies of  broken thresholds, however  there has been a decreasing  trend on average of 1  threshold day every 3.5 years.  On the other hand, Cleveland, OH has generally shown a slower decrease in the number                              of threshold days over the period of the study. Similar to other regions in the Midwest, there was                                    a peak in the threshold counts in the late 1970s followed by a steady decline over the rest of the                                        analysis period (Figure 3.16). A trend analysis of these curves shows that Cleveland has lost                              about one threshold day per 20 years, which is less evident than the trends in Bismarck, ND.                                  Cleveland observes a high variance in the annual count for breaking thresholds. Localized                          maxima indicate the strong variability in the data juxtaposing a weak long­range trend. Cities                            like Detroit, Michigan (DTW), Denver, Colorado (DEN), and Pittsburgh, Pennsylvania (PIT),                      observed similar weak trends.  26 
  • 28.   Figure 3.13. ​illustrates the  time series of thresholds for  Cleveland, OH. Cleveland  shows a negative trend with  an r­value of 0.01206 for the  9ºF threshold, which yields  little to no temporal trend in  frequencies of broken  thresholds over time. In other  words, the trend is a  decreasing slope an average  of about 1 threshold day  every 20 years.  It is noteworthy that the hubs with weak, statistically insignificant trends clustered                        together: Cleveland, OH, Detroit, MI, Pittsburgh, PA, and Cincinnati, OH. Perhaps the location                          and, thus, climate region affects how drastic the long­range changes are. Moreover, strong,                          significant trends are clustered as well: Milwaukee, WI, Minneapolis­St. Paul, MN, Bismarck,                        ND, and Sioux Falls, SD. Further research is needed to determine what is causing the overall                                decrease in frequency across the entire region.  By performing a time series analysis on each of the stations for which there was                              sufficient data to do so, decision makers can be better informed of how the probabilities derived                                in the earlier section may be changing over time. Almost every station for which the analysis was                                  performed on saw a decreasing trend in the number of threshold days (Table 3.14). However,                              Detroit, MI (DTW) observed a neutral trend, and Kansas City, MO (MCI) observed a positive                              trend. As stated earlier, perhaps the neutral trend in Detroit is similar to the statistically                              insignificant slow decrease in frequency of exceedance in Cleveland, OH (CLE) because they are                            in similar regions. The positive trend in Kansas City, MO (MCI) may be a result of poor data, as                                      27 
  • 29. discussed earlier. Of course, further research must be conducted in order to thoroughly examine                            the factors that affect the magnitude of these long­range temporal changes.  Station  Trend  Peak Decade  Rate  r​2  t​­score  Statistical  Significance  HLN  Decrease  1968­78  1 day every 5 years  0.0592  1.9909  ~95%  DEN  Decrease  1955­65  1 day every 25 years  0.0121  0.8784  ~80%  SLC  Decrease  1970­80  1 day every 9 years  0.0770  2.2917  ~95%  CLE  Decrease  1975­85  1 day every 20 years  0.000145  0.09573  < 75%  CVG  Decrease  1975­85  1 day every 20 years  0.0109  0.8348  ~80%  PIT  Decrease  1975­85  1 day every 20 years  0.00904  0.7583  ~75%  BIS  Decrease  1955­65  1 day every 3.5 years  0.0986  2.6251  ~99.5%  DTW  Neutral  1975­85  Neutral  0.00462  0.5410  < 75%  FSD  Decrease  1955­65  1 day every 6.5 years  0.0493  1.8072  ~97.5%  ICT  Decrease  1975­85  1 day every 12.5 years  0.0600  2.0058  ~97.5%  IND  Decrease  1975­85  1 day every 16 years  0.0166  1.0325  ~85%  MCI  Positive  1975­85  1 day every 18.5 years  0.0177  1.0651  ~85%  MDW  Decrease  1975­85  1 day every 10 years  0.0350  1.5109  ~95%  MKE  Decrease  1975­85  1 day every 5 years  0.1176  2.8983  ~99.75%  MSP  Decrease  1975­85  1 day every 5 years  0.0784  2.3150  ~99%  OKC  Decrease  1975­85  1 day every 25 years  0.0515  1.8501  ~97.5%  STL  Decrease  1975­85  1 day every 11.5 years  0.0534  1.8845  ~97.5%  OMA  Decrease  1975­85  1 day every 14 years  0.0199  1.1304  ~90%  Table 3.14. ​contains a list of the 18 stations for which time series analysis were performed on and the trend in the  number of threshold days for those stations. Columns indicate for each hub the trend, peak decade of frequency of  exceedance, the rate at which this trend is occurring, r​2​  values, ​t​­scores, and statistical significance of trend.    Similarities in the threshold counts were analyzed. Most stations saw a period of                          significant cold temperatures in the mid to late 1970’s followed by a trend of decreasing                              threshold days. Similarly, most stations saw a minima in the early 1980s as well as the early and                                    late 1990’s. A majority of the stations saw a recent increase in threshold counts in the early                                  2010’s, which could suggest a large­scale control may be affecting temperatures across the                          CONUS.  C. Major El Niño Events  Major El Niño­Southern Oscillation (ENSO / El Niño) events occur about once every                          decade and are generally associated with warmer temperatures and lower amounts of snowfall                          28 
  • 30. for most of the United States (Figure 3.15). This study looked at the effects of major El Niño                                    years on the number of temperature threshold exceedances for the year in which the event                              occurred. Because 2015 is expected to become the largest El Niño year on record, examining                              past major El Niño years can provide great insight into what the winter season of 2015­16 may                                  hold.    Figure 3.15. ​Average temperature rankings during El Niño events, adapted from the Climate Prediction Center  (CPC). ​Left​, average temperature rankings from October through December for El Niño  winters 1941­42, 1957­58,  1963­64, 1965­66, 1972­73, 1982­83, 1987­88, 1991­92, and 1994­95. ​Right​, average temperature rankings from  December through February for El Niño  winters 1940­41, 1957­58, 1965­66, 1972­73, 1982­83, 1986­87, 1987­88,  1991­92, and 1994­95. Note how El Niño effects are most prevalent inland and over the northeastern part of the  Rocky Mountains and the north central plains.    To analyze the effects of strong El Niño years on the temperature threshold count, the                              individual years needed to be identified. To do this, CPC historical records were analyzed to                              determine the years with the strongest El Niños. The records determined that the winters of                              1957­58, 1972­73, 1982­83, 1991­92, and 1997­98 contained the highest values of El Niño sea                            surface temperature anomalies, with 1982­83 being the largest on record prior to 2015. To                            analyze the effects of the major El Niño years on the temperature thresholds, a localized analysis                                was performed on the time series data by examining the five with major El Niño events to test                                    for local minima (­), maxima (+), or neutral (0) counts of temperature thresholds (Table 3.16).  29 
  • 31. While El Niño years typically bring warmer temperatures and therefore a lower amount                          of threshold crossing (63 of 90 stations, it is not the only variable in forecasting a season. The                                    winter of 1972­73 is a peculiar example of how a forecast can fail even when there was certainty                                    for a strong El Niño winter. Numerous stations actually saw temperature threshold maxima for                            that season.  Station  1957­58  1972­73  1982­83  1991­92  1997­98  Helena, MT  ­  0  ­  0  ­  Denver, CO  ­  +  ­  ­  0  Salt Lake City, UT  ­  +  ­  ­  0  Cleveland, OH  0  ­  ­  ­  ­  Cincinnati, OH  +  0  ­  ­  ­  Pittsburgh, PA  0  +  ­  +  ­  Bismarck. ND  ­  ­  ­  ­  0  Detroit, MI  0  ­  ­  ­  ­  Sioux Falls, SD  ­  ­  ­  ­  ­  Wichita, KS  ­  0  ­  ­  ­  Indianapolis, IN  0  ­  ­  ­  ­  Kansas City, MO  0  +  ­  ­  ­  Chicago, IL  0  ­  ­  ­  ­  Milwaukee, WI  0  ­  ­  ­  ­  Minneapolis, MN  ­  0  ­  ­  ­  Oklahoma City, OK  ­  0  ­  ­  0  St. Louis, MO  0  ­  ­  0  ­  Omaha, NE  0  +  ­  ­  ­  Table 3.16. ​contains a listing of the stations where time series analysis were performed and shows how major El  Niño years impacted the total amount of temperature thresholds crossed. Red squares indicate years where a  localized threshold minima occurred, blue squares indicate a localized maxima, and white squares indicate a neutral  case where no minima or maxima was found.    A possible answer to how the 1972­73 winter was different lies within the North Atlantic                              Oscillation (NAO). For the United States, the NAO is the other major contributor for seasonal                              variation of weather events. Unlike ENSO that contains warm and cold phases, the NAO                            contains positive and negative phases, each with short term modifications to the weather for the                              United States. The NAO typically reverses these phases numerous times during a given year,                            30 
  • 32. however, in some cases, it can remain in a specific phase for an extended period of time,                                  affecting the teleconnection range of other periodic climate oscillations like ENSO.   To determine if the NAO had any potential effect on the winter temperature anomalies                            for the winter of 1972­73, the CPC NAO historical records were analyzed to determine the                              changes of phase (or lack thereof) in NAO for the given winter season.   Season  NAO Phase Changes  Table 3.17. ​describes changes in the NAO phase for  winter seasons for each major El Niño event  1957 ­ 58  Changed from negative to positive  1972 ­ 73  Continually positive throughout season  1982 ­ 83  Changed from negative to positive  1991 ­ 92  Reverses numerous times during season  1997 ­ 98  Reverses numerous times during season    The winter season of 1972­73 showed a continually positive NAO phase during a strong                            El Niño event (Table 3.17). Positive NAO events cause regional low pressure systems to develop                              in the northern Atlantic Ocean and in turn, this can cause a persistent trough pattern to develop                                  over regions of the Northern Hemisphere. Since the NAO remained positive throughout the                          entire season, the trough pattern could have persisted throughout a long period of the season                              causing a cold air outbreak across regions of the United States. It still remains difficult to be                                  certain that a continually positive NAO can override a strong El Niño event, but interactions                              between positive NAO and  strong El Niño events should be explored further.  Even with the NAO phase in mind, most stations in 1972­73 still saw a warmer than                                average season. The winter of 1982­83 was the second strongest El Niño analyzed, and all                              analyzed stations recorded a significant minimum with regards to thresholds. The strongest El                          Niño year on record (1997­98) recorded a similar pattern, however some stations saw a neutral                              31 
  • 33. pattern with regards to threshold counts. This points to the important notion of how El Niño is                                  only one of many potential seasonal controls that need to be studied in the future. Given the                                  historical record of major El Niño events however, it can be assumed that 2015­16 winter season                                will likely see a significant minimum in winter temperature thresholds being broken. Though El                            Niño typically controls the temperatures during major years, it should still be noted that outlier                              seasons are still possible during these seasons due to other teleconnections (1972­73, Table                          3.16).  D. Surface conditions and NWS insights  Useful input from several National Weather Service Offices was taken into consideration                        when evaluating the surface conditions that would be deemed a High Impact Winter Weather                            Event. Societal impacts as well as the complexity of determining local criteria for each hub was                                also discussed. Due to the complexity of winter storms, many offices also expressed how                            difficult it is to determine exactly what would be considered a HIWWE for the specific areas.  The New York City NWS stated that m​ost criteria for impact are set up by NWS                                warnings. In the New York metropolitan area and most areas, 2 inches is determined to be a                                  "plowable" snow and schools tend to close at 6 inches.The factor that is difficult to predict that                                  has the biggest impact is response of the society. For example, if there were numerous cars on                                  the road at the same time as was seen in Atlanta, disaster can result. This has occurred in many                                      other parts of the country including New York. “A snow that begins at 2:00 pm and comes down                                    heavy often results in gridlock” which causes transportation delays.    The NWS in Oklahoma City expressed that the impacts from snowfall in the OKC area                              “differ with each storm”. “These differences can be due to the physical aspects of a winter                                32 
  • 34. weather event (i.e. temperature, ground temperature...etc) or even time of day/day of week.”                          Typically, 4 inches of snow would be seen as a "Winter Storm" which would result in high­end                                  impacts. “However, under certain circumstances, 1­3 inch snowfalls could also result in                        high­end impacts”. It is also obvious that ice is a major winter weather hazard in the OKC area.                                    “Generally, 1/4 inch ice accumulation is considered high­end, but transportation can be impacted                          with less”. OKC NWS also mentioned some factors to consider which include: wind, previous                            weather conditions, ground temperature, other winter weather hazards (e.g.­freezing rain/drizzle,                    sleet). A"Winter Storm Warning" is issued for 6 inches of snow accumulation in a 24­hour                              period, but serious disruption can occur with much less. This southerly location “causes snow to                              mix with sleet or freezing rain/drizzle far more often than not”. Additionally, “the general                            windiness of this area causes issues with drifting and blowing snow when temperatures are low                              enough for the precipitation to fall mostly as snow. The opposite effect occurs when ground                              temperatures are relatively warm, as it can cause quite a lot of rapid snow melt on highways,                                  while grassy areas see accumulation”. Generally speaking, ​any ​snow accumulation causes ​some                        transportation difficulties in the area since snow is uncommon enough that local residents are not                              well skilled in driving on the roads in these conditions and tend to slow down significantly (or                                  slide off the roads). “However, to cause major transportation disruption usually requires more on                            the order of 6 to 8 inches of new accumulation in 24 hours”.   The NWS in ​Albuquerque, New Mexico states that “​disruptions are all about impacts,                          and our diverse terrain contributes to a varying range of impacts during the winter season….our                              forecast warning area is the largest in the CONUS and extends to the Arizona, Colorado, and                                Texas borders for the northern two­thirds of New Mexico”. Travel on the two major interstates,                              33 
  • 35. I­40 and I­25, is often impacted during winter events, though infrastructure can play a greater                              role than the weather. “Widespread freezing precipitation is rare in the area, although the                            foothills of the Albuquerque metro area can be locally impacted by frozen precipitation when                            east gaps winds associated with arctic air masses east of our central mountains usher in cold air.                                  Ice on only a small portion of Interstate 40 can result in fairly significant local impacts and                                  would not be identified using data from ABQ. Ice is possible but not very common across the                                  eastern plains closer to Texas”. Dense fog during winter events, can also cause transportation                            disruptions, “generally from Raton to Las Vegas on I­25 and near Clines Corners on I­40.                              Otherwise, snow and blowing snow is the most common winter element to cause transportation                            disruptions”. The NWS office in Albuquerque is currently making some minor revisions to their                            winter weather advisory and warning criteria but also considering that a different criteria based                            on terrain in the past was maintained. “Generally, high terrain zones need 8­10 inches for a                                warning while lower terrain need 4­6 in. for a warning. Interstates are not located in higher                                terrain zones except for the area between Raton and the Colorado border on I­25, the continental                                divide area between Gallup and Grants on I­40, and Tijeras Pass just east of Albuquerque on                                I­40”. Also, becoming aware that a shift to focus warnings on frequency of events, from common                                to rare to historic, is being considered. “This can be difficult in New Mexico due to a paucity of                                      data on which to base the statistics but certainly needs to be considered. Snow in Albuquerque is                                  most likely during the cooler overnight hours, so 1­2 inches of snow falling just prior to the                                  morning rush hour can have impacts comparable to 2­4 in. events. Across the entire region,                              especially the eastern plains, blowing snow with accumulations of 2­4 inches, can be more                            hazardous than wet events with higher accumulations”. Speaking in societal terms, the biggest                          34 
  • 36. criteria in when focusing on the impacts on transportation is related to the low population                              densities away from the few "metro" areas. “For storms impacting western zones and/or the                            continental divide, it is not uncommon for I­40 to be closed between Gallup and Albuquerque, as                                there are very few hotel rooms between these two locations. Similarly, when the eastern plains                              are being impacted, it is not uncommon for I­40 to be closed between Albuquerque and                              Amarillo, TX for the same reason. Likewise, I­25 can be closed between Santa Fe or Las Vegas                                  (NM) and Raton”. Here, conditions are often more severe along this stretch, but a lack of hotel                                  rooms also contributes to closures.  The NWS office located in Boston, MA indicated that a "major event" in the Boston area                                would be one where snowfall exceeds 6 inches, but “significant disruption for lower snowfall                            amounts that coincide with peak travel times (morning and evening rush hours, typically 6 to 10                                am and 3 to 7 pm)” is also considered. “In some cases, as little as 1 to 3 inches falling at the peak                                              of rush hour caused significant impacts”. Another factor to consider in terms of transportation is                              the consistency of the snow. Also, “powdery (dry) snow has less of an impact on road treatment                                  as compared to wet snow”.  The NWS office in Phoenix, AZ, alike other locations that do not see much winter                              weather, conveyed that ​any ​accumulation of winter weather would create problems for                        transportation and would be then deemed as a “HIWWE”. The same story goes for New,                              Orleans, LA. The NWS here also states that any accumulation of snow or ice creates a major                                  travel disruption since there is a lack of snow plows or salt trucks in the region and “many                                    elevated highways and bridges due to the swampy and coastal nature of the region”. There is no                                  way to leave the city of New Orleans and consequently the port of New Orleans without crossing                                  35 
  • 37. over a bridge or major body of water. The entire region shuts down for any type of winter                                    weather event, as the bridges freeze over and create extremely hazardous driving conditions”.                          Additionally, “all of the major highways and roads out of the city are closed when any snow or                                    ice is forecast to accumulate”. Fortunately, “rail traffic is the least impacted since the tracks are                                rarely covered with enough snow or ice to cause significant issues”. “Snow and ice would be                                considered an extreme event in this region as it is very rare’.   In regards to Denver, CO, the NWS states that the “impact is the snowfall intensities or                                snowfall rates per hour, even more so than maybe a overall "bigger event" where you get say 12                                    inches of snow over 24 hours”. CDOT/airports can usually handle these lower intensity                          snowfalls when they are less than 1 inch snow per hour. “Typically, when we see snowfall rates                                  of 1 inch of snow or greater in less than an hour, then there will be impacts on the transportation                                        system”. Snow impacts become more extreme when wind is added, especially across roadways                          where wind may be blowing perpendicular to the roads at speeds of greater than 10 kts. Snow                                  plows are not able to keep up when when intensity and wind is added. What was seen in the                                      “past several years to be the biggest impacts is an intense, yet shorter duration snow event”,                                especially if this event occurs during a rush hour period (e.g.­4­6pm). “Roadways may be                            initially wet with solar heating, then there is rapid cooling with night fall and snowfall where                                roadway surfaces freeze very quickly and become a glaze of ice. So even a minimal snowfall                                event of 1­2 inches over a 2 hour period could cause a transportation nightmare on highways and                                  roads as they become iced over and snow­packed”. “For an intense event, or for their highest                                level impacts at DIA (when they issue a snow emergency, meaning they max out at 104 pieces of                                    snow removal equipment), this equals greater than 10 inches of snow and/or winds greater than                              36 
  • 38. 25 kts in a 6 hour period”. ‘This is not to say that we have had some historical snowfall events                                        which have crippled portions of the city, with the most notable events in March of 2003 and                                  December of 1982. ​The March 2003 storm was more of a heavy wet snow where impacts were                                  roof collapses, power outages, and mountain avalanches. The 1982 storm was more                        characterized by strong winds up to 51 mph and intense snowfall for 17 consecutive hours at                                Stapleton Airport, which closed the airport and paralyzed the transportation system”.   The Wichita, KS, NWS office identified that the most important factor in winter weather                            affecting traffic is the timing of the snow. However, behaviors of the driver also play a role in                                    how traffic can be impacted. Winter storm watches tend to cause more careless accidents than                              winter storm warnings do.  For Kansas City, MO, the timing was also discussed. Snowfall during rush hour is much                              more hazardous compared to the weekend. Additionally, the NWS at Kansas City mentioned that                            the first snow of the season causes more impacts than the tenth snow event of the season, and                                    liquid­to­snow ratios also determines how much snow can cause massive disruptions. They also                          noted that the accuracy and quality of communication of forecasts also plays a role on how each                                  winter weather event is perceived by the public. Since snowfall is not very common in Kansas                                City, a large snowstorm of 6 inches will typically shut the city down in an effort to mitigate                                    impacts.  The NWS office at Atlanta, GA, did not disclose a specific snowfall rate that causes                              transportation impacts. Most of the factors that determine the level of impact, they say, are                              non­meteorological. Freezing rain, incoming solar radiation, precipitation rates and timing were                      also discussed in terms of how accumulations occur on the surface. Snowfall impacts are so                              37 
  • 39. complex that the NWS claims that summarizing impacts to simply daily snowfall rates is                            “uncomfortable”, more so because most of the impacts are related with the ground rather than the                                actual precipitation itself. Atlanta introduced a Canadian open­source road condition model                      called the Model of the Environment and Temperature of Roads (METRo) that outputs road                            forecasts for a given location. Research on road sensor observations and model forecasts do                            exist, and road condition forecasting seems to be in development. The Atlanta NWS office                            mentioned several examples of light winter events that caused significant impacts (e.g. the                          “SnowJams” of January 12, 1982 and January 28, 2014), as well as extreme events that caused                                little to no travel impacts (e.g. March 1, 2009)  The NWS Office in Cleveland, OH began their response in societal terms. They stressed                            the fact that “​people are not used to driving in snow and an inch of snow could cause a major                                        disruption in the traffic around the Cleveland area; especially if accidents occur. Ice                          accumulation just enough to glaze over the roadway will cause many accidents across the                            Cleveland area and cause havoc. But, during the winter season once people are use to the snow,                                  there is a scenario that can be disastrous for the city”. An example of an event that has happened                                      in the past would be a lake effect snow band developed over the Cleveland area around 2:00 pm                                    in the afternoon which rapidly changed into “a large blob of heavy lake effect snow right over                                  downtown Cleveland”. This phenomenon caused many business to close early and send their                          employees home. “Snow was accumulating at about 1 inch an hour and at times, 1 to 2 inches an                                      hour”. This caused gridlock in and around the city of Cleveland to develop. This occurred since                                “people were getting stuck in the snow and snow plows were unable to clear the roads due to all                                      of the traffic. Some people spent up to 8 hours in their cars because of the gridlock”. “The key                                      38 
  • 40. factor is more so about ​the rate of snow rather than ​the amount of snow on the ground​.” There                                      were instances where 6 inches of snow fell on the roads but the roads remained passable. In the                                    above example, “the panic caused by the heavy snow falling inundated the roadways with too                              many people trying to drive home at once”. Individuals normally trickle a few at a time out of                                    the city at different hours but not all at once.  The NWS office in Cincinnati, OH, also described the challenge in interpreting impact                          forecasts. Similar to the Atlanta NWS office, the Cincinnati office also mentioned the conditions                            of the pavement themselves as the main controls in travel impacts. They listed pavement skin                              and subskin temperatures, chemical treatments for roads, and precipitation rates and timing. In                          addition to mentioning the occurrence of light winter events causing massive travel disruptions                          and extreme winter events causing minimal disruptions, the NWS at Cincinnati distinguished                        between ​widespread impact and ​localized impact​, stating that most injuries occur in localized                          impacts. They also mentioned how one inch of snow typically shuts down the city in an effort to                                    mitigate impacts.  In Portland, OR, the NWS states that “snowfall in the Portland metro area is fairly rare,                                but usually high­impact”. The impacts from snowfall rely on the time of day and the day of the                                    week. An example would be, “a 1­2 inch snowfall during primary morning or afternoon                            commute times has a much bigger impact than the same amount of snow falling on a Sunday                                  afternoon”. Snowfall of 2­4 inches usually cause issues in Portland. Most of the snowfall events                              in this area are usually followed by a transition to freezing rain and then to rain Therefore, a                                    mixed precipitation during a big winter storm is fairly common in Portland, OR.  39 
  • 41. The NWS office in Houston, TX describes any amount of snow or ice can have a                                significant impact on transportation if it produces ice on roadways. Most of the main                            transportation routes are elevated and are more susceptible to freeze than on surface streets.                            When an event a few years ago where roughly one tenth of an inch of freezing drizzle occurred,                                    about “1000 traffic accidents and numerous road closures of major routes in and around                            Houston” took place. HGX uses 1/8 of an inch of freezing rain for the ice/winter storm warning                                  threshold and 2 inches of snow for the winter storm warning threshold. With all of that aside,                                  “the impacts ​can be significant for lesser amounts ​depending on whether the roads ice up or stay                                  wet or develop an icy glaze”. In their efforts, “TexDOT pre­treats roadways and bridges with                              varying degrees of success”. Jeff Evans, the MIC for the HGX NWS, points out that “sea fog can                                    also have a significant impact on transportation (marine and land based) in the winter and early                                spring”. Scenarios were seen where “the moisture content of the air and associated dew point                              temperature are high relative to the colder water temperatures and sea for can result”. This                              situation can result in shutting down transportation in and out of the Port of Houston and can also                                    impact road travel.  The NWS in Milwaukee, WI declares that “it is all about timing of when the snow is                                  expected to fall and weather it is able to stick to the surfaces”. For example: if 2 inches of snow                                        falls at 6:00 am the consequences are worse than if it falls at 11:00 pm when there are not as                                        many people on the road. ​Timothy Halbach, a meteorologist from the office shared ​his local                              study on “​using DOT accident rates and weather conditions to compare what conditions tend to                              be similar to create our big accident day​s”. The study showed that in early season snows vs. late                                    40 
  • 42. season, “snows tend to have more accidents since people are not as acclimated to driving in the                                  snow”.  Helena, MT, gets little snow during the winters, but the surrounding mountains receive                          much of the snowfall. The NWS office in Helena also mentioned that the daily snowfall is too                                  broad to capture the impacts that the winter precipitation can cause. Traffic conditions and road                              conditions (i.e. how many cars drive through it) can affect how quickly the snow turns to slush                                  and then to ice. A coating of freezing drizzle can cause just as much impact as a 12­18 inch                                      snowfall event within 24 hours.  The NWS office in Detroit, MI, mentioned that the daily snowfall amount is too broad to                                capture the impacts that winter precipitation can cause. Even in Detroit, half an inch of snow can                                  cause significant disruption. The NWS office mentioned the criteria for issuing winter weather                          advisories, including snow advisories for between 3 to 8 inches within 12 hours, 2 to 6 inches                                  within 8 hours, and watches and warnings for over 8 inches within 12 hours or 6 inches in 8                                      hours.  The Los Angeles, CA, NWS office mentioned that there is not a lot of snow in the Los                                    Angeles area. They mentioned significant impacts, if at all, based on the potential impacts of 1                                inch for urban areas, 3 inches in Tejon, 6 inches on the mountains, and 3 inches elsewhere per                                    day.  Extreme variations exist in St. Louis, MO, on what precipitation outputs could be                          considered a HIWWE. The NWS in St. Louis did not disclose a specific snowfall rate and                                instead listed some of the factors to consider, including timing of the precipitation, the                            temperatures of the air and the pavement, any residual pavement treatment for icing, the location                              41 
  • 43. of the roads (i.e. elevated, bridge, on the ground), the accuracy and quality of communication of                                the forecast, and the climatology of the area (i.e. how susceptible and/or resilient is a certain                                location to winter precipitation?). The NWS office stressed that the intensity of the winter                            weather does not mean intense travel impacts. In other words, higher snowfall rates will                            generally have a higher ​potential impact, but the potential impacts reveal virtually nothing about                            actual impacts.  Charlotte, SC, issues winter storm watches and warnings for heavy snow of 3 inches                            within 12 hours, or 4 inches within 24 hours. The NWS office, however, noted that less snowfall                                  can cause more travel disruptions.  Defining HIWWE precipitation is an extremely complex process, and it takes a thorough                          understanding of a plethora of variables that affect how the precipitation disrupts traffic (Table                            3.33). Precipitation types and timing, location and resilience to winter weather were some of the                              most common factors that the NWS considered. In short, no matter how accurate a forecast for                                winter precipitation may be, that forecast does not correlate to an accurate prediction of traffic                              disruptions. For any station, several issues must be adequately addressed by both forecasters and                            users, including rush hour, trucking routes, type of shipping/trucks, etc. Forecasting traffic                        disruptions becomes more of a social science than a physical science.      42 
  • 44.   Physical Factors  Social Factors  ● Precipitation type (rain, snow, etc.)  ● Precipitation duration  ● Precipitation intensity  ● Horizontal visibility  ● Wind  ● Temperature  ● How much snow/ice already on ground  ● Traffic conditions  ● Road quality  ● Trucking schedules  ● Weather resiliency at or between hubs  ● Holiday? Major event?  ● Road types (bridge? underpass?)  ● Power outages? Communication lapses?  Table 3.18.​ Physical and social factors that may affect transportation means as mentioned by the NWS offices.  Factors such as precipitation type can be forecasted, but human factors like traffic conditions and resilience to  weather has a greater effect on disruptions and is also more difficult to quantify.  IV. Discussions  Reflecting on the NWS comments on what determines HIWWE, the biggest challenge for                          this project was determining the precipitation thresholds for what is considered a HIWWE that                            disrupted surface transport. As discussed, the NWS emails revealed no consensus in what daily                            snowfall will be considered “high impact” for many of the hubs. A thin coating of ice during                                  rush hour before the holidays will disrupt traffic more than two inches of snow late Sunday                                night. While local winter storm scales like that of Cerruti and Becker (2011) incorporate factors                              that determine the perceived intensity of the event, such as precipitation timing, rates, and type,                              winter weather susceptibility and resilience of a population, wind conditions, and temperature                        changes, they only provide so much information on direct impacts because these factors only                            describe the ​potential impact of the winter weather event. A general daily snowfall rate, in                              addition to using daily snowfall observations, will only output extremely crude data on snowfall                            across the CONUS.  There is no one type of precipitation that determines the issue that is brought by HIWWE.                                This complex issue should be addressed by the users themselves as opposed to climatologists and                              43 
  • 45. meteorologists. Issues with transporting commodities, whether examining harsh surface                  conditions or analyzing extreme temperatures that may affect the quality of the produce, are                            variable in every situation.   A much more in­depth understanding of HIWWE at a specific location will be needed if                              the project were to provide a conclusive presentation of the climatology of HIWWE                          precipitations. There are two ways, therefore, to improve the data: (1) determining more detailed                            thresholds than simply a daily snowfall rate, and (2) using hourly observations instead of daily                              snowfall observations.  Snowfall rate is just as rudimentary a measure for snowfall ​impacts ​as the Saffir­Simpson                            Hurricane Wind Scale (SSHWS) is a measure for hurricane impacts. Factors outside of snowfall                            rates affect the impact it has on a location. While these factors will need to be determined for a                                      good summary of what a HIWWE can be considered, a better source may be from the companies                                  themselves. If companies keep a record on why a certain transport was cancelled, the history of                                cancelled or delayed shipments due to the weather can determine the winter precipitation rate,                            type, and timing that tend to wreak havoc on the transportation sector the most for any given                                  location. These findings can be used to determine a set HIWWE surface transportation criteria                            that tends to cause the most disruption.    V. Conclusions  This study investigated two aspects of HIWWE: temperatures and surface                    conditions.Extreme temperatures (­10​°F​, 0​°F​, 9​°F​) impact the quality of products and goods                        44 
  • 46. being transported in order to assist decision makers in preventing the loss of goods at specific                                locations for the 36 U.S. locations. Winter precipitation affects the conditions of road surfaces or                              rail surfaces, which affects the ability of transportation means to leave and enter cities.  Specifically, decision makers can use temperature climatology to avoid potential damage                      to the goods being transported. How often daily temperatures broke these thresholds depended                          on a number of climate controls, primarily latitude and proximity to waters. By expanding the                              daily frequency of these cold temperatures time of the seasons temperatures tended to break                            thresholds most frequently, and climate controls such as topography, latitude, and wind patterns                          affected the timing of these extreme winter temperatures. Additionally, forecasters can use                        climatology of winter precipitation for similar decision making. However, the complexity of how                          different social factors affects the magnitude of traffic disruptions makes producing a thorough                          climatology of high­impact winter precipitation very difficult.  Temperature thresholds were broken more frequently in the northern part of the                        contiguous U.S. This trend is consistent with the fact that latitude is a major climate control that                                  affects the temperature distribution throughout the winter season. The probability of exceedance                        was greater farther inland, which justifies the continentality and proximity to ocean as a climate                              control. Peaks of threshold days were generally concentrated in January, but a few stations                            experienced peaks in February, and some did not experience any exceedance of thresholds                          whatsoever (e.g. Phoenix, New Orleans).  Temporal trends of HIWWE temperatures were also analyzed. In general, transport hubs                        generally exhibited decreasing trends on the order of one fewer day each decade. Most stations                              averaged a loss of about one threshold day every 10 years, while other rates were as fast as a day                                        45 
  • 47. every 3.5 years. While the causes for these changes can be discussed in a future project, these                                  results on temporal trends can be used to identify any possible long­term changes in extreme                              winter temperatures.  The relationship between major El Niño events and the frequency at which temperatures                          reached or exceeded each of the three thresholds was determined for the stations where time                              series analysis were completed. Most stations experienced a localized threshold minimum during                        El Niño years, meaning that the frequency of exceedance was lower than that of the winters                                before and after. The winter of 1972­73 proved to be an outlier for usual El Niño years, with a                                      large number of stations showing a localized maximum in threshold counts instead of the                            expected minimum. A possible cause of this was the deviation of the NAO for the winter of                                  1972­73. NAO remained in a positive phase throughout the 1972­73 winter season, which may                            suggest that NAO affects the ability of ENSO anomalies to impact temperatures over the                            CONUS. However, it was stipulated that the upcoming winter season (2015­16), possibly the                          strongest to date, would have a significant decrease in threshold counts based on the prior record                                setting El Niño years (1997­98, 1982­83).  With the focus on winter temperatures for the purpose of the project, these findings are                              important for Riskpulse because data on winter temperature extremes are hardly readily available                          except for in the medical field. While hypothermia can affect consumers, extreme low                          temperatures can affect goods which the consumers may want. This research topic is also unique                              in that temperature threshold with respect to the quality of goods are based on the company’s                                experiences, rather than the summaries or insights of physical science experts. While the project                            explored precipitation probabilities, exact data cannot be produced using crude methods of                        46 
  • 48. scientific summaries of what a HIWWE is considered. Similar to the method to determine                            temperature thresholds, precipitation with respect to surface conditions should also be based on                          the company’s experiences rather than the summaries or insights of the NWS. In essence,                            requesting histories of when winter weather disrupted trucking/railroad operations may help                      identify the circumstances associated with the transportation disruptions.   VI. Recommendations for Future Work  Surface conditions and NWS responses that of, however, provided no consensus on how                          much snowfall in general can be considered a HIWWE. There are too many other factors to                                consider, including precipitation type, timing, and rates. Other factors include physical                      geography and topography, social factors (e.g. special events, traffic/road conditions, and                      socioeconomic differences). These factors make the HIWWE precipitation too complex to                      perform data analysis of simply the daily snowfall record, and forecasters sometimes simply                          determine the local precipitation thresholds or criteria on a case­by­case basis. Perhaps what                          causes a ‘traffic nightmare’ is up to the transportation logistics to determine. Again, since there is                                no one type of precipitation that determines the issue that is brought by HIWWE, the complex                                issue could be addressed to the users themselves because they will have a better understanding                              on how the conditions that will negatively affect the quality of their produce. Future work may                                involve a more narrow examination on how HIWWE may affect each user at a specific location                                in order to produce more accurate forecasts.  Hubs that displayed long­range temporal changes can be studied to determine the                        potential causes for the decreasing trend. While the most speculated cause is climate change,                            47 
  • 49. other factors (Major El Niño years) may play an important role in explaining these temporal                              changes.   Additionally, El Niño effects are far weaker in the East Coast as opposed to the Midwest                                region. While climate controls may be the driving factor, a detailed study is needed to determine                                what causes this difference in spatial patterns.   Finally, as noted during the section on the seasonal variation of El Niño years, a study                                that looks at the interaction of strong El Niño years with years in which the NAO remains                                  continually positive may help to explain the anomalies that were found in the winter of 1972­73.                                Exploring additional teleconnections and their representative effects on the studied region may                        also help to answer the questions generated by the winter of 1972­73.      48