SlideShare a Scribd company logo
1 of 9
Download to read offline
1
Topic 4
Representation and Reasoning
with Uncertainty
Contents
4.0 Representing Uncertainty
4.1 Probabilistic methods
4.2 Certainty Factors (CFs)
4.3 Dempster-Shafer theory
4.4 Fuzzy Logic
4.3 Dempster-Shafer Theory
• Dempster-Shafer theory is an approach to combining
evidence
• Dempster (1967) developed means for combining
degrees of belief derived from independent items of
evidence.
• His student, Glenn Shafer (1976), developed method
for obtaining degrees of belief for one question from
subjective probabilities for a related question
• People working in Expert Systems in the 1980s saw
their approach as ideally suitable for such systems.
2
4.3 Dempster-Shafer Theory
• Each fact has a degree of support, between 0 and 1:
– 0 No support for the fact
– 1 full support for the fact
• Differs from Bayesian approah in that:
– Belief in a fact and its negation need not sum to 1.
– Both values can be 0 (meaning no evidence for or against the
fact)
4.3 Dempster-Shafer Theory
Set of possible conclusions: Θ
Θ = { θ1, θ2, …, θn}
Where:
– Θ is the set of possible conclusions to be drawn
– Each θi is mutually exclusive: at most one has to be
true.
– Θ is Exhaustive: At least one θi has to be true.
3
4.3 Dempster-Shafer Theory
Frame of discernment :
Θ = { θ1, θ2, …, θn}
• Bayes was concerned with evidence that supported single
conclusions (e.g., evidence for each outcome θi in Θ):
• p(θi | E)
• D-S Theoryis concerned with evidences which support
subsets of outcomes in Θ, e.g.,
θ1 v θ2 v θ3 or {θ1, θ2, θ3}
4.3 Dempster-Shafer Theory
Frame of discernment :
• The “frame of discernment” (or “Power set”) of Θ is the set
of all possible subsets of Θ:
– E.g., if Θ = { θ1, θ2, θ3}
• Then the frame of discernment of Θ is:
( Ø, θ1, θ2, θ3, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, { θ1, θ2, θ3} )
• Ø, the empty set, has a probability of 0, since one of the
outcomes has to be true.
• Each of the other elements in the power set has a
probability between 0 and 1.
• The probability of { θ1, θ2, θ3} is 1.0 since one has to be
true.
4
4.3 Dempster-Shafer Theory
Mass function m(A):
(where A is a member of the power set)
= proportion of all evidence that supports this element of
the power set.
“The mass m(A) of a given member of the power set, A,
expresses the proportion of all relevant and available
evidence that supports the claim that the actual state
belongs to A but to no particular subset of A.” (wikipedia)
“The value of m(A) pertains only to the set A and makes no
additional claims about any subsets of A, each of which
has, by definition, its own mass.
4.3 Dempster-Shafer Theory
Mass function m(A):
• Each m(A) is between 0 and 1.
• All m(A) sum to 1.
• m(Ø) is 0 - at least one must be true.
5
4.3 Dempster-Shafer Theory
Mass function m(A): Interpetation of m({AvB})=0.3
• means there is evidence for {AvB} that cannot be
divided among more specific beliefs for A or B.
4.3 Dempster-Shafer Theory
Mass function m(A): example
• 4 people (B, J, S and K) are locked in a room when the
lights go out.
• When the lights come on, K is dead, stabbed with a knife.
• Not suicide (stabbed in the back)
• No-one entered the room.
• Assume only one killer.
• Θ = { B, J, S}
• P(Θ) = (Ø, {B}, {J}, {S}, {B,J}, {B,S}, {J,S}, {B,J,S} )
6
4.3 Dempster-Shafer Theory
Mass function m(A): example (cont.)
• Detectives, after reviewing the crime-scene, assign mass
probabilities to various elements of the power set:
0No-one is guilty
0.1One of the 3 is guilty
0.3either S or J is guilty
0.1either B or S is guilty
0.1either B or J is guilty
0.1S is guilty
0.2J is guilty
0.1B is guilty
MassEvent
4.3 Dempster-Shafer Theory
Belief in A:
The belief in an element A of the Power set is the sum of
the masses of elements which are subsets of A (including
A itself).
E.g., given A={q1, q2, q3}
Bel(A) = m(q1)+m(q2)+m(q3)
+ m({q1, q2})+m({q2, q3})+m({q1, q3})
+m({q1, q2, q3})
7
4.3 Dempster-Shafer Theory
Belief in A: example
• Given the mass assignments as assigned by the
detectives:
• bel({B}) = m({B}) = 0.1
• bel({B,J}) = m({B})+m({J})+m({B,J}) =0.1+0.2+0.1=0.4
• Result:
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
1.00.60.30.40.10.20.1bel(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
4.3 Dempster-Shafer Theory
Plausibility of A: pl(A)
The plausability of an element A, pl(A), is the sum of
all the masses of the sets that intersect with the set A:
E.g. pl({B,J}) = m(B)+m(J)+m(B,J)+m(B,S)
+m(J,S)+m(B,J,S)
= 0.9
1.00.90.80.90.60.70.4pl(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
All Results:
8
4.3 Dempster-Shafer Theory
Disbelief (or Doubt) in A: dis(A)
The disbelief in A is simply bel(¬A).
It is calculated by summing all masses of elements which do
not intersect with A.
The plausibility of A is thus 1-dis(A):
pl(A) = 1- dis(A)
00.10.20.10.40.30.6dis(A)
1.00.90.80.90.60.70.4pl(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
4.3 Dempster-Shafer Theory
Belief Interval of A:
The certainty associated with a given subset A is defined by the
belief interval:
[ bel(A) pl(A) ]
E.g. the belief interval of {B,S} is: [0.1 0.8]
1.00.60.30.40.10.20.1bel(A)
1.00.90.80.90.60.70.4pl(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
9
4.3 Dempster-Shafer Theory
Belief Intervals & Probability
The probability in A falls somewhere between bel(A) and
pl(A).
– bel(A) represents the evidence we have for A directly.
So prob(A) cannot be less than this value.
– pl(A) represents the maximum share of the evidence we
could possibly have, if, for all sets that intersect with A,
the part that intersects is actually valid. So pl(A) is the
maximum possible value of prob(A).
1.00.60.30.40.10.20.1bel(A)
1.00.90.80.90.60.70.4pl(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A
4.3 Dempster-Shafer Theory
Belief Intervals:
Belief intervals allow Demspter-Shafer theory to reason
about the degree of certainty or certainty of our beliefs.
– A small difference between belief and plausibility shows
that we are certain about our belief.
– A large difference shows that we are uncertain about
our belief.
• However, even with a 0 interval, this does not mean we
know which conclusion is right. Just how probable it is!
1.00.60.30.40.10.20.1bel(A)
1.00.90.80.90.60.70.4pl(A)
0.3
{J,S}
0.10.10.10.10.20.1m(A)
{B,J,S}{B,S}{B,J}{S}{J}{B}A

More Related Content

What's hot

Knowledge representation and Predicate logic
Knowledge representation and Predicate logicKnowledge representation and Predicate logic
Knowledge representation and Predicate logicAmey Kerkar
 
Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}FellowBuddy.com
 
Classification techniques in data mining
Classification techniques in data miningClassification techniques in data mining
Classification techniques in data miningKamal Acharya
 
Production System in AI
Production System in AIProduction System in AI
Production System in AIBharat Bhushan
 
Classification and Regression
Classification and RegressionClassification and Regression
Classification and RegressionMegha Sharma
 
Uncertain Knowledge and Reasoning in Artificial Intelligence
Uncertain Knowledge and Reasoning in Artificial IntelligenceUncertain Knowledge and Reasoning in Artificial Intelligence
Uncertain Knowledge and Reasoning in Artificial IntelligenceExperfy
 
Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4DigiGurukul
 
Constraint satisfaction problems (csp)
Constraint satisfaction problems (csp)   Constraint satisfaction problems (csp)
Constraint satisfaction problems (csp) Archana432045
 
Lecture 16 memory bounded search
Lecture 16 memory bounded searchLecture 16 memory bounded search
Lecture 16 memory bounded searchHema Kashyap
 
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...Ashish Duggal
 
sum of subset problem using Backtracking
sum of subset problem using Backtrackingsum of subset problem using Backtracking
sum of subset problem using BacktrackingAbhishek Singh
 
Inference in First-Order Logic
Inference in First-Order Logic Inference in First-Order Logic
Inference in First-Order Logic Junya Tanaka
 
Knowledge Representation in Artificial intelligence
Knowledge Representation in Artificial intelligence Knowledge Representation in Artificial intelligence
Knowledge Representation in Artificial intelligence Yasir Khan
 
Adversarial search
Adversarial searchAdversarial search
Adversarial searchNilu Desai
 
KNOWLEDGE REPRESENTATION ISSUES.ppt
KNOWLEDGE REPRESENTATION ISSUES.pptKNOWLEDGE REPRESENTATION ISSUES.ppt
KNOWLEDGE REPRESENTATION ISSUES.pptSuneethaChittineni
 
Computational Learning Theory
Computational Learning TheoryComputational Learning Theory
Computational Learning Theorybutest
 

What's hot (20)

Knowledge representation and Predicate logic
Knowledge representation and Predicate logicKnowledge representation and Predicate logic
Knowledge representation and Predicate logic
 
Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}
 
Classification techniques in data mining
Classification techniques in data miningClassification techniques in data mining
Classification techniques in data mining
 
Production System in AI
Production System in AIProduction System in AI
Production System in AI
 
Classification and Regression
Classification and RegressionClassification and Regression
Classification and Regression
 
First order logic
First order logicFirst order logic
First order logic
 
Uncertain Knowledge and Reasoning in Artificial Intelligence
Uncertain Knowledge and Reasoning in Artificial IntelligenceUncertain Knowledge and Reasoning in Artificial Intelligence
Uncertain Knowledge and Reasoning in Artificial Intelligence
 
Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4Artificial Intelligence Notes Unit 4
Artificial Intelligence Notes Unit 4
 
Constraint satisfaction problems (csp)
Constraint satisfaction problems (csp)   Constraint satisfaction problems (csp)
Constraint satisfaction problems (csp)
 
Lecture 16 memory bounded search
Lecture 16 memory bounded searchLecture 16 memory bounded search
Lecture 16 memory bounded search
 
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...
Artificial Intelligence (AI) | Prepositional logic (PL)and first order predic...
 
Naive bayes
Naive bayesNaive bayes
Naive bayes
 
sum of subset problem using Backtracking
sum of subset problem using Backtrackingsum of subset problem using Backtracking
sum of subset problem using Backtracking
 
Inference in First-Order Logic
Inference in First-Order Logic Inference in First-Order Logic
Inference in First-Order Logic
 
Knowledge Representation in Artificial intelligence
Knowledge Representation in Artificial intelligence Knowledge Representation in Artificial intelligence
Knowledge Representation in Artificial intelligence
 
Adversarial search
Adversarial searchAdversarial search
Adversarial search
 
Frames
FramesFrames
Frames
 
KNOWLEDGE REPRESENTATION ISSUES.ppt
KNOWLEDGE REPRESENTATION ISSUES.pptKNOWLEDGE REPRESENTATION ISSUES.ppt
KNOWLEDGE REPRESENTATION ISSUES.ppt
 
Truth management system
Truth  management systemTruth  management system
Truth management system
 
Computational Learning Theory
Computational Learning TheoryComputational Learning Theory
Computational Learning Theory
 

Similar to Dempster Shafer Theory AI CSE 8th Sem

Probability/Statistics Lecture Notes 4: Hypothesis Testing
Probability/Statistics Lecture Notes 4: Hypothesis TestingProbability/Statistics Lecture Notes 4: Hypothesis Testing
Probability/Statistics Lecture Notes 4: Hypothesis Testingjemille6
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r introBayesLaplace1
 
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaSolution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaLong Beach City College
 
Class7 converted
Class7 convertedClass7 converted
Class7 convertedshouryasree
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1ramlahmailok
 
Fuzzy Logic.pptx
Fuzzy Logic.pptxFuzzy Logic.pptx
Fuzzy Logic.pptxImXaib
 
hypotesting lecturenotes by Amity university
hypotesting lecturenotes by Amity universityhypotesting lecturenotes by Amity university
hypotesting lecturenotes by Amity universitydeepti .
 
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptxsaadurrehman35
 

Similar to Dempster Shafer Theory AI CSE 8th Sem (20)

DST.docx
DST.docxDST.docx
DST.docx
 
Probability/Statistics Lecture Notes 4: Hypothesis Testing
Probability/Statistics Lecture Notes 4: Hypothesis TestingProbability/Statistics Lecture Notes 4: Hypothesis Testing
Probability/Statistics Lecture Notes 4: Hypothesis Testing
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r intro
 
Crisp sets
Crisp setsCrisp sets
Crisp sets
 
Set in discrete mathematics
Set in discrete mathematicsSet in discrete mathematics
Set in discrete mathematics
 
set 1.pdf
set 1.pdfset 1.pdf
set 1.pdf
 
Ch01
Ch01Ch01
Ch01
 
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anovaSolution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
Solution to the practice test ch 10 correlation reg ch 11 gof ch12 anova
 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3
 
Class7 converted
Class7 convertedClass7 converted
Class7 converted
 
file_5.pptx
file_5.pptxfile_5.pptx
file_5.pptx
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1
 
Fuzzy Logic.pptx
Fuzzy Logic.pptxFuzzy Logic.pptx
Fuzzy Logic.pptx
 
Gerstman_PP09.ppt
Gerstman_PP09.pptGerstman_PP09.ppt
Gerstman_PP09.ppt
 
Gerstman_PP09.ppt
Gerstman_PP09.pptGerstman_PP09.ppt
Gerstman_PP09.ppt
 
hypotesting lecturenotes by Amity university
hypotesting lecturenotes by Amity universityhypotesting lecturenotes by Amity university
hypotesting lecturenotes by Amity university
 
A
AA
A
 
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx
53158699-d7c5-4e6e-af19-1f642992cc58-161011142651.pptx
 
Ppt1
Ppt1Ppt1
Ppt1
 
WEEK-1.pdf
WEEK-1.pdfWEEK-1.pdf
WEEK-1.pdf
 

More from DigiGurukul

Fuzzy logic Notes AI CSE 8th Sem
Fuzzy logic Notes AI CSE 8th SemFuzzy logic Notes AI CSE 8th Sem
Fuzzy logic Notes AI CSE 8th SemDigiGurukul
 
Artificial Intelligence Notes Unit 5
Artificial Intelligence Notes Unit 5Artificial Intelligence Notes Unit 5
Artificial Intelligence Notes Unit 5DigiGurukul
 
Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3DigiGurukul
 
Enterprise Resource Planning(ERP) Unit – v
Enterprise Resource Planning(ERP) Unit – vEnterprise Resource Planning(ERP) Unit – v
Enterprise Resource Planning(ERP) Unit – vDigiGurukul
 
Enterprise Resource Planning(ERP) Unit – i
Enterprise Resource Planning(ERP) Unit – iEnterprise Resource Planning(ERP) Unit – i
Enterprise Resource Planning(ERP) Unit – iDigiGurukul
 
Enterprise Resource Planning(ERP) Unit – iii
Enterprise Resource Planning(ERP) Unit – iiiEnterprise Resource Planning(ERP) Unit – iii
Enterprise Resource Planning(ERP) Unit – iiiDigiGurukul
 
Enterprise Resource Planning(ERP) Unit – ii
Enterprise Resource Planning(ERP) Unit – iiEnterprise Resource Planning(ERP) Unit – ii
Enterprise Resource Planning(ERP) Unit – iiDigiGurukul
 
Enterprise Resource Planning(ERP) Unit – iv
Enterprise Resource Planning(ERP) Unit – ivEnterprise Resource Planning(ERP) Unit – iv
Enterprise Resource Planning(ERP) Unit – ivDigiGurukul
 

More from DigiGurukul (8)

Fuzzy logic Notes AI CSE 8th Sem
Fuzzy logic Notes AI CSE 8th SemFuzzy logic Notes AI CSE 8th Sem
Fuzzy logic Notes AI CSE 8th Sem
 
Artificial Intelligence Notes Unit 5
Artificial Intelligence Notes Unit 5Artificial Intelligence Notes Unit 5
Artificial Intelligence Notes Unit 5
 
Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3Artificial Intelligence Notes Unit 3
Artificial Intelligence Notes Unit 3
 
Enterprise Resource Planning(ERP) Unit – v
Enterprise Resource Planning(ERP) Unit – vEnterprise Resource Planning(ERP) Unit – v
Enterprise Resource Planning(ERP) Unit – v
 
Enterprise Resource Planning(ERP) Unit – i
Enterprise Resource Planning(ERP) Unit – iEnterprise Resource Planning(ERP) Unit – i
Enterprise Resource Planning(ERP) Unit – i
 
Enterprise Resource Planning(ERP) Unit – iii
Enterprise Resource Planning(ERP) Unit – iiiEnterprise Resource Planning(ERP) Unit – iii
Enterprise Resource Planning(ERP) Unit – iii
 
Enterprise Resource Planning(ERP) Unit – ii
Enterprise Resource Planning(ERP) Unit – iiEnterprise Resource Planning(ERP) Unit – ii
Enterprise Resource Planning(ERP) Unit – ii
 
Enterprise Resource Planning(ERP) Unit – iv
Enterprise Resource Planning(ERP) Unit – ivEnterprise Resource Planning(ERP) Unit – iv
Enterprise Resource Planning(ERP) Unit – iv
 

Recently uploaded

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 

Recently uploaded (20)

Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 

Dempster Shafer Theory AI CSE 8th Sem

  • 1. 1 Topic 4 Representation and Reasoning with Uncertainty Contents 4.0 Representing Uncertainty 4.1 Probabilistic methods 4.2 Certainty Factors (CFs) 4.3 Dempster-Shafer theory 4.4 Fuzzy Logic 4.3 Dempster-Shafer Theory • Dempster-Shafer theory is an approach to combining evidence • Dempster (1967) developed means for combining degrees of belief derived from independent items of evidence. • His student, Glenn Shafer (1976), developed method for obtaining degrees of belief for one question from subjective probabilities for a related question • People working in Expert Systems in the 1980s saw their approach as ideally suitable for such systems.
  • 2. 2 4.3 Dempster-Shafer Theory • Each fact has a degree of support, between 0 and 1: – 0 No support for the fact – 1 full support for the fact • Differs from Bayesian approah in that: – Belief in a fact and its negation need not sum to 1. – Both values can be 0 (meaning no evidence for or against the fact) 4.3 Dempster-Shafer Theory Set of possible conclusions: Θ Θ = { θ1, θ2, …, θn} Where: – Θ is the set of possible conclusions to be drawn – Each θi is mutually exclusive: at most one has to be true. – Θ is Exhaustive: At least one θi has to be true.
  • 3. 3 4.3 Dempster-Shafer Theory Frame of discernment : Θ = { θ1, θ2, …, θn} • Bayes was concerned with evidence that supported single conclusions (e.g., evidence for each outcome θi in Θ): • p(θi | E) • D-S Theoryis concerned with evidences which support subsets of outcomes in Θ, e.g., θ1 v θ2 v θ3 or {θ1, θ2, θ3} 4.3 Dempster-Shafer Theory Frame of discernment : • The “frame of discernment” (or “Power set”) of Θ is the set of all possible subsets of Θ: – E.g., if Θ = { θ1, θ2, θ3} • Then the frame of discernment of Θ is: ( Ø, θ1, θ2, θ3, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, { θ1, θ2, θ3} ) • Ø, the empty set, has a probability of 0, since one of the outcomes has to be true. • Each of the other elements in the power set has a probability between 0 and 1. • The probability of { θ1, θ2, θ3} is 1.0 since one has to be true.
  • 4. 4 4.3 Dempster-Shafer Theory Mass function m(A): (where A is a member of the power set) = proportion of all evidence that supports this element of the power set. “The mass m(A) of a given member of the power set, A, expresses the proportion of all relevant and available evidence that supports the claim that the actual state belongs to A but to no particular subset of A.” (wikipedia) “The value of m(A) pertains only to the set A and makes no additional claims about any subsets of A, each of which has, by definition, its own mass. 4.3 Dempster-Shafer Theory Mass function m(A): • Each m(A) is between 0 and 1. • All m(A) sum to 1. • m(Ø) is 0 - at least one must be true.
  • 5. 5 4.3 Dempster-Shafer Theory Mass function m(A): Interpetation of m({AvB})=0.3 • means there is evidence for {AvB} that cannot be divided among more specific beliefs for A or B. 4.3 Dempster-Shafer Theory Mass function m(A): example • 4 people (B, J, S and K) are locked in a room when the lights go out. • When the lights come on, K is dead, stabbed with a knife. • Not suicide (stabbed in the back) • No-one entered the room. • Assume only one killer. • Θ = { B, J, S} • P(Θ) = (Ø, {B}, {J}, {S}, {B,J}, {B,S}, {J,S}, {B,J,S} )
  • 6. 6 4.3 Dempster-Shafer Theory Mass function m(A): example (cont.) • Detectives, after reviewing the crime-scene, assign mass probabilities to various elements of the power set: 0No-one is guilty 0.1One of the 3 is guilty 0.3either S or J is guilty 0.1either B or S is guilty 0.1either B or J is guilty 0.1S is guilty 0.2J is guilty 0.1B is guilty MassEvent 4.3 Dempster-Shafer Theory Belief in A: The belief in an element A of the Power set is the sum of the masses of elements which are subsets of A (including A itself). E.g., given A={q1, q2, q3} Bel(A) = m(q1)+m(q2)+m(q3) + m({q1, q2})+m({q2, q3})+m({q1, q3}) +m({q1, q2, q3})
  • 7. 7 4.3 Dempster-Shafer Theory Belief in A: example • Given the mass assignments as assigned by the detectives: • bel({B}) = m({B}) = 0.1 • bel({B,J}) = m({B})+m({J})+m({B,J}) =0.1+0.2+0.1=0.4 • Result: 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A 1.00.60.30.40.10.20.1bel(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A 4.3 Dempster-Shafer Theory Plausibility of A: pl(A) The plausability of an element A, pl(A), is the sum of all the masses of the sets that intersect with the set A: E.g. pl({B,J}) = m(B)+m(J)+m(B,J)+m(B,S) +m(J,S)+m(B,J,S) = 0.9 1.00.90.80.90.60.70.4pl(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A All Results:
  • 8. 8 4.3 Dempster-Shafer Theory Disbelief (or Doubt) in A: dis(A) The disbelief in A is simply bel(¬A). It is calculated by summing all masses of elements which do not intersect with A. The plausibility of A is thus 1-dis(A): pl(A) = 1- dis(A) 00.10.20.10.40.30.6dis(A) 1.00.90.80.90.60.70.4pl(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A 4.3 Dempster-Shafer Theory Belief Interval of A: The certainty associated with a given subset A is defined by the belief interval: [ bel(A) pl(A) ] E.g. the belief interval of {B,S} is: [0.1 0.8] 1.00.60.30.40.10.20.1bel(A) 1.00.90.80.90.60.70.4pl(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A
  • 9. 9 4.3 Dempster-Shafer Theory Belief Intervals & Probability The probability in A falls somewhere between bel(A) and pl(A). – bel(A) represents the evidence we have for A directly. So prob(A) cannot be less than this value. – pl(A) represents the maximum share of the evidence we could possibly have, if, for all sets that intersect with A, the part that intersects is actually valid. So pl(A) is the maximum possible value of prob(A). 1.00.60.30.40.10.20.1bel(A) 1.00.90.80.90.60.70.4pl(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A 4.3 Dempster-Shafer Theory Belief Intervals: Belief intervals allow Demspter-Shafer theory to reason about the degree of certainty or certainty of our beliefs. – A small difference between belief and plausibility shows that we are certain about our belief. – A large difference shows that we are uncertain about our belief. • However, even with a 0 interval, this does not mean we know which conclusion is right. Just how probable it is! 1.00.60.30.40.10.20.1bel(A) 1.00.90.80.90.60.70.4pl(A) 0.3 {J,S} 0.10.10.10.10.20.1m(A) {B,J,S}{B,S}{B,J}{S}{J}{B}A