We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Software developers interact with APIs on a daily basis and, therefore, often face the need to learn how to use new APIs suitable for their purposes. Previous work has shown that recommending usage patterns to developers facilitates the learning process. Current approaches to usage pattern recommendation, however, still suffer from high redundancy and poor run-time performance. In this paper, we reformulate the problem of usage pattern recommendation in terms of a collaborative filtering recommender system. We present a new tool, FOCUS, which mines open-source project repositories to recommend API method invocations and usage patterns by analyzing how APIs are used in projects similar to the current project. We evaluate FOCUS on a large number of Java projects extracted from GitHub and Maven Central and find that it outperforms the state-of-the-art approach PAM with regards to success rate, accuracy, and execution time. Results indicate the suitability of context-aware collaborative-filtering recommender systems to provide API usage patterns.
Software developers interact with APIs on a daily basis and, therefore, often face the need to learn how to use new APIs suitable for their purposes. Previous work has shown that recommending usage patterns to developers facilitates the learning process. Current approaches to usage pattern recommendation, however, still suffer from high redundancy and poor run-time performance. In this paper, we reformulate the problem of usage pattern recommendation in terms of a collaborative filtering recommender system. We present a new tool, FOCUS, which mines open-source project repositories to recommend API method invocations and usage patterns by analyzing how APIs are used in projects similar to the current project. We evaluate FOCUS on a large number of Java projects extracted from GitHub and Maven Central and find that it outperforms the state-of-the-art approach PAM with regards to success rate, accuracy, and execution time. Results indicate the suitability of context-aware collaborative-filtering recommender systems to provide API usage patterns.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!